]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/nfsd/nfscache.c
slab: infrastructure for bulk object allocation and freeing
[mirror_ubuntu-zesty-kernel.git] / fs / nfsd / nfscache.c
1 /*
2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
4 *
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
7 *
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 */
10
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
17
18 #include "nfsd.h"
19 #include "cache.h"
20
21 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
22
23 /*
24 * We use this value to determine the number of hash buckets from the max
25 * cache size, the idea being that when the cache is at its maximum number
26 * of entries, then this should be the average number of entries per bucket.
27 */
28 #define TARGET_BUCKET_SIZE 64
29
30 struct nfsd_drc_bucket {
31 struct list_head lru_head;
32 spinlock_t cache_lock;
33 };
34
35 static struct nfsd_drc_bucket *drc_hashtbl;
36 static struct kmem_cache *drc_slab;
37
38 /* max number of entries allowed in the cache */
39 static unsigned int max_drc_entries;
40
41 /* number of significant bits in the hash value */
42 static unsigned int maskbits;
43 static unsigned int drc_hashsize;
44
45 /*
46 * Stats and other tracking of on the duplicate reply cache. All of these and
47 * the "rc" fields in nfsdstats are protected by the cache_lock
48 */
49
50 /* total number of entries */
51 static atomic_t num_drc_entries;
52
53 /* cache misses due only to checksum comparison failures */
54 static unsigned int payload_misses;
55
56 /* amount of memory (in bytes) currently consumed by the DRC */
57 static unsigned int drc_mem_usage;
58
59 /* longest hash chain seen */
60 static unsigned int longest_chain;
61
62 /* size of cache when we saw the longest hash chain */
63 static unsigned int longest_chain_cachesize;
64
65 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
66 static void cache_cleaner_func(struct work_struct *unused);
67 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
68 struct shrink_control *sc);
69 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
70 struct shrink_control *sc);
71
72 static struct shrinker nfsd_reply_cache_shrinker = {
73 .scan_objects = nfsd_reply_cache_scan,
74 .count_objects = nfsd_reply_cache_count,
75 .seeks = 1,
76 };
77
78 /*
79 * locking for the reply cache:
80 * A cache entry is "single use" if c_state == RC_INPROG
81 * Otherwise, it when accessing _prev or _next, the lock must be held.
82 */
83 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
84
85 /*
86 * Put a cap on the size of the DRC based on the amount of available
87 * low memory in the machine.
88 *
89 * 64MB: 8192
90 * 128MB: 11585
91 * 256MB: 16384
92 * 512MB: 23170
93 * 1GB: 32768
94 * 2GB: 46340
95 * 4GB: 65536
96 * 8GB: 92681
97 * 16GB: 131072
98 *
99 * ...with a hard cap of 256k entries. In the worst case, each entry will be
100 * ~1k, so the above numbers should give a rough max of the amount of memory
101 * used in k.
102 */
103 static unsigned int
104 nfsd_cache_size_limit(void)
105 {
106 unsigned int limit;
107 unsigned long low_pages = totalram_pages - totalhigh_pages;
108
109 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
110 return min_t(unsigned int, limit, 256*1024);
111 }
112
113 /*
114 * Compute the number of hash buckets we need. Divide the max cachesize by
115 * the "target" max bucket size, and round up to next power of two.
116 */
117 static unsigned int
118 nfsd_hashsize(unsigned int limit)
119 {
120 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
121 }
122
123 static u32
124 nfsd_cache_hash(__be32 xid)
125 {
126 return hash_32(be32_to_cpu(xid), maskbits);
127 }
128
129 static struct svc_cacherep *
130 nfsd_reply_cache_alloc(void)
131 {
132 struct svc_cacherep *rp;
133
134 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
135 if (rp) {
136 rp->c_state = RC_UNUSED;
137 rp->c_type = RC_NOCACHE;
138 INIT_LIST_HEAD(&rp->c_lru);
139 }
140 return rp;
141 }
142
143 static void
144 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
145 {
146 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
147 drc_mem_usage -= rp->c_replvec.iov_len;
148 kfree(rp->c_replvec.iov_base);
149 }
150 list_del(&rp->c_lru);
151 atomic_dec(&num_drc_entries);
152 drc_mem_usage -= sizeof(*rp);
153 kmem_cache_free(drc_slab, rp);
154 }
155
156 static void
157 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
158 {
159 spin_lock(&b->cache_lock);
160 nfsd_reply_cache_free_locked(rp);
161 spin_unlock(&b->cache_lock);
162 }
163
164 int nfsd_reply_cache_init(void)
165 {
166 unsigned int hashsize;
167 unsigned int i;
168 int status = 0;
169
170 max_drc_entries = nfsd_cache_size_limit();
171 atomic_set(&num_drc_entries, 0);
172 hashsize = nfsd_hashsize(max_drc_entries);
173 maskbits = ilog2(hashsize);
174
175 status = register_shrinker(&nfsd_reply_cache_shrinker);
176 if (status)
177 return status;
178
179 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
180 0, 0, NULL);
181 if (!drc_slab)
182 goto out_nomem;
183
184 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
185 if (!drc_hashtbl)
186 goto out_nomem;
187 for (i = 0; i < hashsize; i++) {
188 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
189 spin_lock_init(&drc_hashtbl[i].cache_lock);
190 }
191 drc_hashsize = hashsize;
192
193 return 0;
194 out_nomem:
195 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
196 nfsd_reply_cache_shutdown();
197 return -ENOMEM;
198 }
199
200 void nfsd_reply_cache_shutdown(void)
201 {
202 struct svc_cacherep *rp;
203 unsigned int i;
204
205 unregister_shrinker(&nfsd_reply_cache_shrinker);
206 cancel_delayed_work_sync(&cache_cleaner);
207
208 for (i = 0; i < drc_hashsize; i++) {
209 struct list_head *head = &drc_hashtbl[i].lru_head;
210 while (!list_empty(head)) {
211 rp = list_first_entry(head, struct svc_cacherep, c_lru);
212 nfsd_reply_cache_free_locked(rp);
213 }
214 }
215
216 kfree (drc_hashtbl);
217 drc_hashtbl = NULL;
218 drc_hashsize = 0;
219
220 if (drc_slab) {
221 kmem_cache_destroy(drc_slab);
222 drc_slab = NULL;
223 }
224 }
225
226 /*
227 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
228 * not already scheduled.
229 */
230 static void
231 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
232 {
233 rp->c_timestamp = jiffies;
234 list_move_tail(&rp->c_lru, &b->lru_head);
235 schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
236 }
237
238 static long
239 prune_bucket(struct nfsd_drc_bucket *b)
240 {
241 struct svc_cacherep *rp, *tmp;
242 long freed = 0;
243
244 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
245 /*
246 * Don't free entries attached to calls that are still
247 * in-progress, but do keep scanning the list.
248 */
249 if (rp->c_state == RC_INPROG)
250 continue;
251 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
252 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
253 break;
254 nfsd_reply_cache_free_locked(rp);
255 freed++;
256 }
257 return freed;
258 }
259
260 /*
261 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
262 * Also prune the oldest ones when the total exceeds the max number of entries.
263 */
264 static long
265 prune_cache_entries(void)
266 {
267 unsigned int i;
268 long freed = 0;
269 bool cancel = true;
270
271 for (i = 0; i < drc_hashsize; i++) {
272 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
273
274 if (list_empty(&b->lru_head))
275 continue;
276 spin_lock(&b->cache_lock);
277 freed += prune_bucket(b);
278 if (!list_empty(&b->lru_head))
279 cancel = false;
280 spin_unlock(&b->cache_lock);
281 }
282
283 /*
284 * Conditionally rearm the job to run in RC_EXPIRE since we just
285 * ran the pruner.
286 */
287 if (!cancel)
288 mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
289 return freed;
290 }
291
292 static void
293 cache_cleaner_func(struct work_struct *unused)
294 {
295 prune_cache_entries();
296 }
297
298 static unsigned long
299 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
300 {
301 return atomic_read(&num_drc_entries);
302 }
303
304 static unsigned long
305 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
306 {
307 return prune_cache_entries();
308 }
309 /*
310 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
311 */
312 static __wsum
313 nfsd_cache_csum(struct svc_rqst *rqstp)
314 {
315 int idx;
316 unsigned int base;
317 __wsum csum;
318 struct xdr_buf *buf = &rqstp->rq_arg;
319 const unsigned char *p = buf->head[0].iov_base;
320 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
321 RC_CSUMLEN);
322 size_t len = min(buf->head[0].iov_len, csum_len);
323
324 /* rq_arg.head first */
325 csum = csum_partial(p, len, 0);
326 csum_len -= len;
327
328 /* Continue into page array */
329 idx = buf->page_base / PAGE_SIZE;
330 base = buf->page_base & ~PAGE_MASK;
331 while (csum_len) {
332 p = page_address(buf->pages[idx]) + base;
333 len = min_t(size_t, PAGE_SIZE - base, csum_len);
334 csum = csum_partial(p, len, csum);
335 csum_len -= len;
336 base = 0;
337 ++idx;
338 }
339 return csum;
340 }
341
342 static bool
343 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
344 {
345 /* Check RPC XID first */
346 if (rqstp->rq_xid != rp->c_xid)
347 return false;
348 /* compare checksum of NFS data */
349 if (csum != rp->c_csum) {
350 ++payload_misses;
351 return false;
352 }
353
354 /* Other discriminators */
355 if (rqstp->rq_proc != rp->c_proc ||
356 rqstp->rq_prot != rp->c_prot ||
357 rqstp->rq_vers != rp->c_vers ||
358 rqstp->rq_arg.len != rp->c_len ||
359 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
360 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
361 return false;
362
363 return true;
364 }
365
366 /*
367 * Search the request hash for an entry that matches the given rqstp.
368 * Must be called with cache_lock held. Returns the found entry or
369 * NULL on failure.
370 */
371 static struct svc_cacherep *
372 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
373 __wsum csum)
374 {
375 struct svc_cacherep *rp, *ret = NULL;
376 struct list_head *rh = &b->lru_head;
377 unsigned int entries = 0;
378
379 list_for_each_entry(rp, rh, c_lru) {
380 ++entries;
381 if (nfsd_cache_match(rqstp, csum, rp)) {
382 ret = rp;
383 break;
384 }
385 }
386
387 /* tally hash chain length stats */
388 if (entries > longest_chain) {
389 longest_chain = entries;
390 longest_chain_cachesize = atomic_read(&num_drc_entries);
391 } else if (entries == longest_chain) {
392 /* prefer to keep the smallest cachesize possible here */
393 longest_chain_cachesize = min_t(unsigned int,
394 longest_chain_cachesize,
395 atomic_read(&num_drc_entries));
396 }
397
398 return ret;
399 }
400
401 /*
402 * Try to find an entry matching the current call in the cache. When none
403 * is found, we try to grab the oldest expired entry off the LRU list. If
404 * a suitable one isn't there, then drop the cache_lock and allocate a
405 * new one, then search again in case one got inserted while this thread
406 * didn't hold the lock.
407 */
408 int
409 nfsd_cache_lookup(struct svc_rqst *rqstp)
410 {
411 struct svc_cacherep *rp, *found;
412 __be32 xid = rqstp->rq_xid;
413 u32 proto = rqstp->rq_prot,
414 vers = rqstp->rq_vers,
415 proc = rqstp->rq_proc;
416 __wsum csum;
417 u32 hash = nfsd_cache_hash(xid);
418 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
419 unsigned long age;
420 int type = rqstp->rq_cachetype;
421 int rtn = RC_DOIT;
422
423 rqstp->rq_cacherep = NULL;
424 if (type == RC_NOCACHE) {
425 nfsdstats.rcnocache++;
426 return rtn;
427 }
428
429 csum = nfsd_cache_csum(rqstp);
430
431 /*
432 * Since the common case is a cache miss followed by an insert,
433 * preallocate an entry.
434 */
435 rp = nfsd_reply_cache_alloc();
436 spin_lock(&b->cache_lock);
437 if (likely(rp)) {
438 atomic_inc(&num_drc_entries);
439 drc_mem_usage += sizeof(*rp);
440 }
441
442 /* go ahead and prune the cache */
443 prune_bucket(b);
444
445 found = nfsd_cache_search(b, rqstp, csum);
446 if (found) {
447 if (likely(rp))
448 nfsd_reply_cache_free_locked(rp);
449 rp = found;
450 goto found_entry;
451 }
452
453 if (!rp) {
454 dprintk("nfsd: unable to allocate DRC entry!\n");
455 goto out;
456 }
457
458 nfsdstats.rcmisses++;
459 rqstp->rq_cacherep = rp;
460 rp->c_state = RC_INPROG;
461 rp->c_xid = xid;
462 rp->c_proc = proc;
463 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
464 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
465 rp->c_prot = proto;
466 rp->c_vers = vers;
467 rp->c_len = rqstp->rq_arg.len;
468 rp->c_csum = csum;
469
470 lru_put_end(b, rp);
471
472 /* release any buffer */
473 if (rp->c_type == RC_REPLBUFF) {
474 drc_mem_usage -= rp->c_replvec.iov_len;
475 kfree(rp->c_replvec.iov_base);
476 rp->c_replvec.iov_base = NULL;
477 }
478 rp->c_type = RC_NOCACHE;
479 out:
480 spin_unlock(&b->cache_lock);
481 return rtn;
482
483 found_entry:
484 nfsdstats.rchits++;
485 /* We found a matching entry which is either in progress or done. */
486 age = jiffies - rp->c_timestamp;
487 lru_put_end(b, rp);
488
489 rtn = RC_DROPIT;
490 /* Request being processed or excessive rexmits */
491 if (rp->c_state == RC_INPROG || age < RC_DELAY)
492 goto out;
493
494 /* From the hall of fame of impractical attacks:
495 * Is this a user who tries to snoop on the cache? */
496 rtn = RC_DOIT;
497 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
498 goto out;
499
500 /* Compose RPC reply header */
501 switch (rp->c_type) {
502 case RC_NOCACHE:
503 break;
504 case RC_REPLSTAT:
505 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
506 rtn = RC_REPLY;
507 break;
508 case RC_REPLBUFF:
509 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
510 goto out; /* should not happen */
511 rtn = RC_REPLY;
512 break;
513 default:
514 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
515 nfsd_reply_cache_free_locked(rp);
516 }
517
518 goto out;
519 }
520
521 /*
522 * Update a cache entry. This is called from nfsd_dispatch when
523 * the procedure has been executed and the complete reply is in
524 * rqstp->rq_res.
525 *
526 * We're copying around data here rather than swapping buffers because
527 * the toplevel loop requires max-sized buffers, which would be a waste
528 * of memory for a cache with a max reply size of 100 bytes (diropokres).
529 *
530 * If we should start to use different types of cache entries tailored
531 * specifically for attrstat and fh's, we may save even more space.
532 *
533 * Also note that a cachetype of RC_NOCACHE can legally be passed when
534 * nfsd failed to encode a reply that otherwise would have been cached.
535 * In this case, nfsd_cache_update is called with statp == NULL.
536 */
537 void
538 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
539 {
540 struct svc_cacherep *rp = rqstp->rq_cacherep;
541 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
542 u32 hash;
543 struct nfsd_drc_bucket *b;
544 int len;
545 size_t bufsize = 0;
546
547 if (!rp)
548 return;
549
550 hash = nfsd_cache_hash(rp->c_xid);
551 b = &drc_hashtbl[hash];
552
553 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
554 len >>= 2;
555
556 /* Don't cache excessive amounts of data and XDR failures */
557 if (!statp || len > (256 >> 2)) {
558 nfsd_reply_cache_free(b, rp);
559 return;
560 }
561
562 switch (cachetype) {
563 case RC_REPLSTAT:
564 if (len != 1)
565 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
566 rp->c_replstat = *statp;
567 break;
568 case RC_REPLBUFF:
569 cachv = &rp->c_replvec;
570 bufsize = len << 2;
571 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
572 if (!cachv->iov_base) {
573 nfsd_reply_cache_free(b, rp);
574 return;
575 }
576 cachv->iov_len = bufsize;
577 memcpy(cachv->iov_base, statp, bufsize);
578 break;
579 case RC_NOCACHE:
580 nfsd_reply_cache_free(b, rp);
581 return;
582 }
583 spin_lock(&b->cache_lock);
584 drc_mem_usage += bufsize;
585 lru_put_end(b, rp);
586 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
587 rp->c_type = cachetype;
588 rp->c_state = RC_DONE;
589 spin_unlock(&b->cache_lock);
590 return;
591 }
592
593 /*
594 * Copy cached reply to current reply buffer. Should always fit.
595 * FIXME as reply is in a page, we should just attach the page, and
596 * keep a refcount....
597 */
598 static int
599 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
600 {
601 struct kvec *vec = &rqstp->rq_res.head[0];
602
603 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
604 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
605 data->iov_len);
606 return 0;
607 }
608 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
609 vec->iov_len += data->iov_len;
610 return 1;
611 }
612
613 /*
614 * Note that fields may be added, removed or reordered in the future. Programs
615 * scraping this file for info should test the labels to ensure they're
616 * getting the correct field.
617 */
618 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
619 {
620 seq_printf(m, "max entries: %u\n", max_drc_entries);
621 seq_printf(m, "num entries: %u\n",
622 atomic_read(&num_drc_entries));
623 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
624 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
625 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
626 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
627 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
628 seq_printf(m, "payload misses: %u\n", payload_misses);
629 seq_printf(m, "longest chain len: %u\n", longest_chain);
630 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
631 return 0;
632 }
633
634 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
635 {
636 return single_open(file, nfsd_reply_cache_stats_show, NULL);
637 }