]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfsd/nfscache.c
lib/vsprintf.c: remove %Z support
[mirror_ubuntu-artful-kernel.git] / fs / nfsd / nfscache.c
1 /*
2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
4 *
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
7 *
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 */
10
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/highmem.h>
15 #include <linux/log2.h>
16 #include <linux/hash.h>
17 #include <net/checksum.h>
18
19 #include "nfsd.h"
20 #include "cache.h"
21
22 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
23
24 /*
25 * We use this value to determine the number of hash buckets from the max
26 * cache size, the idea being that when the cache is at its maximum number
27 * of entries, then this should be the average number of entries per bucket.
28 */
29 #define TARGET_BUCKET_SIZE 64
30
31 struct nfsd_drc_bucket {
32 struct list_head lru_head;
33 spinlock_t cache_lock;
34 };
35
36 static struct nfsd_drc_bucket *drc_hashtbl;
37 static struct kmem_cache *drc_slab;
38
39 /* max number of entries allowed in the cache */
40 static unsigned int max_drc_entries;
41
42 /* number of significant bits in the hash value */
43 static unsigned int maskbits;
44 static unsigned int drc_hashsize;
45
46 /*
47 * Stats and other tracking of on the duplicate reply cache. All of these and
48 * the "rc" fields in nfsdstats are protected by the cache_lock
49 */
50
51 /* total number of entries */
52 static atomic_t num_drc_entries;
53
54 /* cache misses due only to checksum comparison failures */
55 static unsigned int payload_misses;
56
57 /* amount of memory (in bytes) currently consumed by the DRC */
58 static unsigned int drc_mem_usage;
59
60 /* longest hash chain seen */
61 static unsigned int longest_chain;
62
63 /* size of cache when we saw the longest hash chain */
64 static unsigned int longest_chain_cachesize;
65
66 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
67 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
68 struct shrink_control *sc);
69 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
70 struct shrink_control *sc);
71
72 static struct shrinker nfsd_reply_cache_shrinker = {
73 .scan_objects = nfsd_reply_cache_scan,
74 .count_objects = nfsd_reply_cache_count,
75 .seeks = 1,
76 };
77
78 /*
79 * Put a cap on the size of the DRC based on the amount of available
80 * low memory in the machine.
81 *
82 * 64MB: 8192
83 * 128MB: 11585
84 * 256MB: 16384
85 * 512MB: 23170
86 * 1GB: 32768
87 * 2GB: 46340
88 * 4GB: 65536
89 * 8GB: 92681
90 * 16GB: 131072
91 *
92 * ...with a hard cap of 256k entries. In the worst case, each entry will be
93 * ~1k, so the above numbers should give a rough max of the amount of memory
94 * used in k.
95 */
96 static unsigned int
97 nfsd_cache_size_limit(void)
98 {
99 unsigned int limit;
100 unsigned long low_pages = totalram_pages - totalhigh_pages;
101
102 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
103 return min_t(unsigned int, limit, 256*1024);
104 }
105
106 /*
107 * Compute the number of hash buckets we need. Divide the max cachesize by
108 * the "target" max bucket size, and round up to next power of two.
109 */
110 static unsigned int
111 nfsd_hashsize(unsigned int limit)
112 {
113 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
114 }
115
116 static u32
117 nfsd_cache_hash(__be32 xid)
118 {
119 return hash_32(be32_to_cpu(xid), maskbits);
120 }
121
122 static struct svc_cacherep *
123 nfsd_reply_cache_alloc(void)
124 {
125 struct svc_cacherep *rp;
126
127 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
128 if (rp) {
129 rp->c_state = RC_UNUSED;
130 rp->c_type = RC_NOCACHE;
131 INIT_LIST_HEAD(&rp->c_lru);
132 }
133 return rp;
134 }
135
136 static void
137 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
138 {
139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
140 drc_mem_usage -= rp->c_replvec.iov_len;
141 kfree(rp->c_replvec.iov_base);
142 }
143 list_del(&rp->c_lru);
144 atomic_dec(&num_drc_entries);
145 drc_mem_usage -= sizeof(*rp);
146 kmem_cache_free(drc_slab, rp);
147 }
148
149 static void
150 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151 {
152 spin_lock(&b->cache_lock);
153 nfsd_reply_cache_free_locked(rp);
154 spin_unlock(&b->cache_lock);
155 }
156
157 int nfsd_reply_cache_init(void)
158 {
159 unsigned int hashsize;
160 unsigned int i;
161 int status = 0;
162
163 max_drc_entries = nfsd_cache_size_limit();
164 atomic_set(&num_drc_entries, 0);
165 hashsize = nfsd_hashsize(max_drc_entries);
166 maskbits = ilog2(hashsize);
167
168 status = register_shrinker(&nfsd_reply_cache_shrinker);
169 if (status)
170 return status;
171
172 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
173 0, 0, NULL);
174 if (!drc_slab)
175 goto out_nomem;
176
177 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
178 if (!drc_hashtbl) {
179 drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl));
180 if (!drc_hashtbl)
181 goto out_nomem;
182 }
183
184 for (i = 0; i < hashsize; i++) {
185 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
186 spin_lock_init(&drc_hashtbl[i].cache_lock);
187 }
188 drc_hashsize = hashsize;
189
190 return 0;
191 out_nomem:
192 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
193 nfsd_reply_cache_shutdown();
194 return -ENOMEM;
195 }
196
197 void nfsd_reply_cache_shutdown(void)
198 {
199 struct svc_cacherep *rp;
200 unsigned int i;
201
202 unregister_shrinker(&nfsd_reply_cache_shrinker);
203
204 for (i = 0; i < drc_hashsize; i++) {
205 struct list_head *head = &drc_hashtbl[i].lru_head;
206 while (!list_empty(head)) {
207 rp = list_first_entry(head, struct svc_cacherep, c_lru);
208 nfsd_reply_cache_free_locked(rp);
209 }
210 }
211
212 kvfree(drc_hashtbl);
213 drc_hashtbl = NULL;
214 drc_hashsize = 0;
215
216 kmem_cache_destroy(drc_slab);
217 drc_slab = NULL;
218 }
219
220 /*
221 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
222 * not already scheduled.
223 */
224 static void
225 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
226 {
227 rp->c_timestamp = jiffies;
228 list_move_tail(&rp->c_lru, &b->lru_head);
229 }
230
231 static long
232 prune_bucket(struct nfsd_drc_bucket *b)
233 {
234 struct svc_cacherep *rp, *tmp;
235 long freed = 0;
236
237 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
238 /*
239 * Don't free entries attached to calls that are still
240 * in-progress, but do keep scanning the list.
241 */
242 if (rp->c_state == RC_INPROG)
243 continue;
244 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
245 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
246 break;
247 nfsd_reply_cache_free_locked(rp);
248 freed++;
249 }
250 return freed;
251 }
252
253 /*
254 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
255 * Also prune the oldest ones when the total exceeds the max number of entries.
256 */
257 static long
258 prune_cache_entries(void)
259 {
260 unsigned int i;
261 long freed = 0;
262
263 for (i = 0; i < drc_hashsize; i++) {
264 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
265
266 if (list_empty(&b->lru_head))
267 continue;
268 spin_lock(&b->cache_lock);
269 freed += prune_bucket(b);
270 spin_unlock(&b->cache_lock);
271 }
272 return freed;
273 }
274
275 static unsigned long
276 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
277 {
278 return atomic_read(&num_drc_entries);
279 }
280
281 static unsigned long
282 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
283 {
284 return prune_cache_entries();
285 }
286 /*
287 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
288 */
289 static __wsum
290 nfsd_cache_csum(struct svc_rqst *rqstp)
291 {
292 int idx;
293 unsigned int base;
294 __wsum csum;
295 struct xdr_buf *buf = &rqstp->rq_arg;
296 const unsigned char *p = buf->head[0].iov_base;
297 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
298 RC_CSUMLEN);
299 size_t len = min(buf->head[0].iov_len, csum_len);
300
301 /* rq_arg.head first */
302 csum = csum_partial(p, len, 0);
303 csum_len -= len;
304
305 /* Continue into page array */
306 idx = buf->page_base / PAGE_SIZE;
307 base = buf->page_base & ~PAGE_MASK;
308 while (csum_len) {
309 p = page_address(buf->pages[idx]) + base;
310 len = min_t(size_t, PAGE_SIZE - base, csum_len);
311 csum = csum_partial(p, len, csum);
312 csum_len -= len;
313 base = 0;
314 ++idx;
315 }
316 return csum;
317 }
318
319 static bool
320 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
321 {
322 /* Check RPC XID first */
323 if (rqstp->rq_xid != rp->c_xid)
324 return false;
325 /* compare checksum of NFS data */
326 if (csum != rp->c_csum) {
327 ++payload_misses;
328 return false;
329 }
330
331 /* Other discriminators */
332 if (rqstp->rq_proc != rp->c_proc ||
333 rqstp->rq_prot != rp->c_prot ||
334 rqstp->rq_vers != rp->c_vers ||
335 rqstp->rq_arg.len != rp->c_len ||
336 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
337 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
338 return false;
339
340 return true;
341 }
342
343 /*
344 * Search the request hash for an entry that matches the given rqstp.
345 * Must be called with cache_lock held. Returns the found entry or
346 * NULL on failure.
347 */
348 static struct svc_cacherep *
349 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
350 __wsum csum)
351 {
352 struct svc_cacherep *rp, *ret = NULL;
353 struct list_head *rh = &b->lru_head;
354 unsigned int entries = 0;
355
356 list_for_each_entry(rp, rh, c_lru) {
357 ++entries;
358 if (nfsd_cache_match(rqstp, csum, rp)) {
359 ret = rp;
360 break;
361 }
362 }
363
364 /* tally hash chain length stats */
365 if (entries > longest_chain) {
366 longest_chain = entries;
367 longest_chain_cachesize = atomic_read(&num_drc_entries);
368 } else if (entries == longest_chain) {
369 /* prefer to keep the smallest cachesize possible here */
370 longest_chain_cachesize = min_t(unsigned int,
371 longest_chain_cachesize,
372 atomic_read(&num_drc_entries));
373 }
374
375 return ret;
376 }
377
378 /*
379 * Try to find an entry matching the current call in the cache. When none
380 * is found, we try to grab the oldest expired entry off the LRU list. If
381 * a suitable one isn't there, then drop the cache_lock and allocate a
382 * new one, then search again in case one got inserted while this thread
383 * didn't hold the lock.
384 */
385 int
386 nfsd_cache_lookup(struct svc_rqst *rqstp)
387 {
388 struct svc_cacherep *rp, *found;
389 __be32 xid = rqstp->rq_xid;
390 u32 proto = rqstp->rq_prot,
391 vers = rqstp->rq_vers,
392 proc = rqstp->rq_proc;
393 __wsum csum;
394 u32 hash = nfsd_cache_hash(xid);
395 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
396 unsigned long age;
397 int type = rqstp->rq_cachetype;
398 int rtn = RC_DOIT;
399
400 rqstp->rq_cacherep = NULL;
401 if (type == RC_NOCACHE) {
402 nfsdstats.rcnocache++;
403 return rtn;
404 }
405
406 csum = nfsd_cache_csum(rqstp);
407
408 /*
409 * Since the common case is a cache miss followed by an insert,
410 * preallocate an entry.
411 */
412 rp = nfsd_reply_cache_alloc();
413 spin_lock(&b->cache_lock);
414 if (likely(rp)) {
415 atomic_inc(&num_drc_entries);
416 drc_mem_usage += sizeof(*rp);
417 }
418
419 /* go ahead and prune the cache */
420 prune_bucket(b);
421
422 found = nfsd_cache_search(b, rqstp, csum);
423 if (found) {
424 if (likely(rp))
425 nfsd_reply_cache_free_locked(rp);
426 rp = found;
427 goto found_entry;
428 }
429
430 if (!rp) {
431 dprintk("nfsd: unable to allocate DRC entry!\n");
432 goto out;
433 }
434
435 nfsdstats.rcmisses++;
436 rqstp->rq_cacherep = rp;
437 rp->c_state = RC_INPROG;
438 rp->c_xid = xid;
439 rp->c_proc = proc;
440 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
441 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
442 rp->c_prot = proto;
443 rp->c_vers = vers;
444 rp->c_len = rqstp->rq_arg.len;
445 rp->c_csum = csum;
446
447 lru_put_end(b, rp);
448
449 /* release any buffer */
450 if (rp->c_type == RC_REPLBUFF) {
451 drc_mem_usage -= rp->c_replvec.iov_len;
452 kfree(rp->c_replvec.iov_base);
453 rp->c_replvec.iov_base = NULL;
454 }
455 rp->c_type = RC_NOCACHE;
456 out:
457 spin_unlock(&b->cache_lock);
458 return rtn;
459
460 found_entry:
461 nfsdstats.rchits++;
462 /* We found a matching entry which is either in progress or done. */
463 age = jiffies - rp->c_timestamp;
464 lru_put_end(b, rp);
465
466 rtn = RC_DROPIT;
467 /* Request being processed or excessive rexmits */
468 if (rp->c_state == RC_INPROG || age < RC_DELAY)
469 goto out;
470
471 /* From the hall of fame of impractical attacks:
472 * Is this a user who tries to snoop on the cache? */
473 rtn = RC_DOIT;
474 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
475 goto out;
476
477 /* Compose RPC reply header */
478 switch (rp->c_type) {
479 case RC_NOCACHE:
480 break;
481 case RC_REPLSTAT:
482 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
483 rtn = RC_REPLY;
484 break;
485 case RC_REPLBUFF:
486 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
487 goto out; /* should not happen */
488 rtn = RC_REPLY;
489 break;
490 default:
491 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
492 nfsd_reply_cache_free_locked(rp);
493 }
494
495 goto out;
496 }
497
498 /*
499 * Update a cache entry. This is called from nfsd_dispatch when
500 * the procedure has been executed and the complete reply is in
501 * rqstp->rq_res.
502 *
503 * We're copying around data here rather than swapping buffers because
504 * the toplevel loop requires max-sized buffers, which would be a waste
505 * of memory for a cache with a max reply size of 100 bytes (diropokres).
506 *
507 * If we should start to use different types of cache entries tailored
508 * specifically for attrstat and fh's, we may save even more space.
509 *
510 * Also note that a cachetype of RC_NOCACHE can legally be passed when
511 * nfsd failed to encode a reply that otherwise would have been cached.
512 * In this case, nfsd_cache_update is called with statp == NULL.
513 */
514 void
515 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
516 {
517 struct svc_cacherep *rp = rqstp->rq_cacherep;
518 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
519 u32 hash;
520 struct nfsd_drc_bucket *b;
521 int len;
522 size_t bufsize = 0;
523
524 if (!rp)
525 return;
526
527 hash = nfsd_cache_hash(rp->c_xid);
528 b = &drc_hashtbl[hash];
529
530 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
531 len >>= 2;
532
533 /* Don't cache excessive amounts of data and XDR failures */
534 if (!statp || len > (256 >> 2)) {
535 nfsd_reply_cache_free(b, rp);
536 return;
537 }
538
539 switch (cachetype) {
540 case RC_REPLSTAT:
541 if (len != 1)
542 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
543 rp->c_replstat = *statp;
544 break;
545 case RC_REPLBUFF:
546 cachv = &rp->c_replvec;
547 bufsize = len << 2;
548 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
549 if (!cachv->iov_base) {
550 nfsd_reply_cache_free(b, rp);
551 return;
552 }
553 cachv->iov_len = bufsize;
554 memcpy(cachv->iov_base, statp, bufsize);
555 break;
556 case RC_NOCACHE:
557 nfsd_reply_cache_free(b, rp);
558 return;
559 }
560 spin_lock(&b->cache_lock);
561 drc_mem_usage += bufsize;
562 lru_put_end(b, rp);
563 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
564 rp->c_type = cachetype;
565 rp->c_state = RC_DONE;
566 spin_unlock(&b->cache_lock);
567 return;
568 }
569
570 /*
571 * Copy cached reply to current reply buffer. Should always fit.
572 * FIXME as reply is in a page, we should just attach the page, and
573 * keep a refcount....
574 */
575 static int
576 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
577 {
578 struct kvec *vec = &rqstp->rq_res.head[0];
579
580 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
581 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
582 data->iov_len);
583 return 0;
584 }
585 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
586 vec->iov_len += data->iov_len;
587 return 1;
588 }
589
590 /*
591 * Note that fields may be added, removed or reordered in the future. Programs
592 * scraping this file for info should test the labels to ensure they're
593 * getting the correct field.
594 */
595 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
596 {
597 seq_printf(m, "max entries: %u\n", max_drc_entries);
598 seq_printf(m, "num entries: %u\n",
599 atomic_read(&num_drc_entries));
600 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
601 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
602 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
603 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
604 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
605 seq_printf(m, "payload misses: %u\n", payload_misses);
606 seq_printf(m, "longest chain len: %u\n", longest_chain);
607 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
608 return 0;
609 }
610
611 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
612 {
613 return single_open(file, nfsd_reply_cache_stats_show, NULL);
614 }