]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nilfs2/super.c
05ae52a482c6385c5233ac2d9fc494008f7b0593
[mirror_ubuntu-artful-kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68 MODULE_LICENSE("GPL");
69
70 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
71
72 /**
73 * nilfs_error() - report failure condition on a filesystem
74 *
75 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
76 * reporting an error message. It should be called when NILFS detects
77 * incoherences or defects of meta data on disk. As for sustainable
78 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
79 * function should be used instead.
80 *
81 * The segment constructor must not call this function because it can
82 * kill itself.
83 */
84 void nilfs_error(struct super_block *sb, const char *function,
85 const char *fmt, ...)
86 {
87 struct nilfs_sb_info *sbi = NILFS_SB(sb);
88 va_list args;
89
90 va_start(args, fmt);
91 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
92 vprintk(fmt, args);
93 printk("\n");
94 va_end(args);
95
96 if (!(sb->s_flags & MS_RDONLY)) {
97 struct the_nilfs *nilfs = sbi->s_nilfs;
98
99 if (!nilfs_test_opt(sbi, ERRORS_CONT))
100 nilfs_detach_segment_constructor(sbi);
101
102 down_write(&nilfs->ns_sem);
103 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
104 nilfs->ns_mount_state |= NILFS_ERROR_FS;
105 nilfs->ns_sbp[0]->s_state |=
106 cpu_to_le16(NILFS_ERROR_FS);
107 nilfs_commit_super(sbi, 1);
108 }
109 up_write(&nilfs->ns_sem);
110
111 if (nilfs_test_opt(sbi, ERRORS_RO)) {
112 printk(KERN_CRIT "Remounting filesystem read-only\n");
113 sb->s_flags |= MS_RDONLY;
114 }
115 }
116
117 if (nilfs_test_opt(sbi, ERRORS_PANIC))
118 panic("NILFS (device %s): panic forced after error\n",
119 sb->s_id);
120 }
121
122 void nilfs_warning(struct super_block *sb, const char *function,
123 const char *fmt, ...)
124 {
125 va_list args;
126
127 va_start(args, fmt);
128 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
129 sb->s_id, function);
130 vprintk(fmt, args);
131 printk("\n");
132 va_end(args);
133 }
134
135 static struct kmem_cache *nilfs_inode_cachep;
136
137 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
138 {
139 struct nilfs_inode_info *ii;
140
141 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
142 if (!ii)
143 return NULL;
144 ii->i_bh = NULL;
145 ii->i_state = 0;
146 ii->vfs_inode.i_version = 1;
147 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
148 return &ii->vfs_inode;
149 }
150
151 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 {
153 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
154 }
155
156 void nilfs_destroy_inode(struct inode *inode)
157 {
158 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
159 }
160
161 static void init_once(void *obj)
162 {
163 struct nilfs_inode_info *ii = obj;
164
165 INIT_LIST_HEAD(&ii->i_dirty);
166 #ifdef CONFIG_NILFS_XATTR
167 init_rwsem(&ii->xattr_sem);
168 #endif
169 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
170 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
171 inode_init_once(&ii->vfs_inode);
172 }
173
174 static int nilfs_init_inode_cache(void)
175 {
176 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
177 sizeof(struct nilfs_inode_info),
178 0, SLAB_RECLAIM_ACCOUNT,
179 init_once);
180
181 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
182 }
183
184 static inline void nilfs_destroy_inode_cache(void)
185 {
186 kmem_cache_destroy(nilfs_inode_cachep);
187 }
188
189 static void nilfs_clear_inode(struct inode *inode)
190 {
191 struct nilfs_inode_info *ii = NILFS_I(inode);
192
193 /*
194 * Free resources allocated in nilfs_read_inode(), here.
195 */
196 BUG_ON(!list_empty(&ii->i_dirty));
197 brelse(ii->i_bh);
198 ii->i_bh = NULL;
199
200 if (test_bit(NILFS_I_BMAP, &ii->i_state))
201 nilfs_bmap_clear(ii->i_bmap);
202
203 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
204 }
205
206 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
207 {
208 struct the_nilfs *nilfs = sbi->s_nilfs;
209 int err;
210 int barrier_done = 0;
211
212 if (nilfs_test_opt(sbi, BARRIER)) {
213 set_buffer_ordered(nilfs->ns_sbh[0]);
214 barrier_done = 1;
215 }
216 retry:
217 set_buffer_dirty(nilfs->ns_sbh[0]);
218 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
219 if (err == -EOPNOTSUPP && barrier_done) {
220 nilfs_warning(sbi->s_super, __func__,
221 "barrier-based sync failed. "
222 "disabling barriers\n");
223 nilfs_clear_opt(sbi, BARRIER);
224 barrier_done = 0;
225 clear_buffer_ordered(nilfs->ns_sbh[0]);
226 goto retry;
227 }
228 if (unlikely(err)) {
229 printk(KERN_ERR
230 "NILFS: unable to write superblock (err=%d)\n", err);
231 if (err == -EIO && nilfs->ns_sbh[1]) {
232 nilfs_fall_back_super_block(nilfs);
233 goto retry;
234 }
235 } else {
236 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
237
238 /*
239 * The latest segment becomes trailable from the position
240 * written in superblock.
241 */
242 clear_nilfs_discontinued(nilfs);
243
244 /* update GC protection for recent segments */
245 if (nilfs->ns_sbh[1]) {
246 sbp = NULL;
247 if (dupsb) {
248 set_buffer_dirty(nilfs->ns_sbh[1]);
249 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
250 sbp = nilfs->ns_sbp[1];
251 }
252 }
253 if (sbp) {
254 spin_lock(&nilfs->ns_last_segment_lock);
255 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
256 spin_unlock(&nilfs->ns_last_segment_lock);
257 }
258 }
259
260 return err;
261 }
262
263 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
264 {
265 struct the_nilfs *nilfs = sbi->s_nilfs;
266 struct nilfs_super_block **sbp = nilfs->ns_sbp;
267 sector_t nfreeblocks;
268 time_t t;
269 int err;
270
271 /* nilfs->sem must be locked by the caller. */
272 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
273 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
274 nilfs_swap_super_block(nilfs);
275 else {
276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 sbi->s_super->s_id);
278 return -EIO;
279 }
280 }
281 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
282 if (unlikely(err)) {
283 printk(KERN_ERR "NILFS: failed to count free blocks\n");
284 return err;
285 }
286 spin_lock(&nilfs->ns_last_segment_lock);
287 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
288 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
289 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
290 spin_unlock(&nilfs->ns_last_segment_lock);
291
292 t = get_seconds();
293 nilfs->ns_sbwtime[0] = t;
294 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
295 sbp[0]->s_wtime = cpu_to_le64(t);
296 sbp[0]->s_sum = 0;
297 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
298 (unsigned char *)sbp[0],
299 nilfs->ns_sbsize));
300 if (dupsb && sbp[1]) {
301 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
302 nilfs->ns_sbwtime[1] = t;
303 }
304 sbi->s_super->s_dirt = 0;
305 return nilfs_sync_super(sbi, dupsb);
306 }
307
308 static void nilfs_put_super(struct super_block *sb)
309 {
310 struct nilfs_sb_info *sbi = NILFS_SB(sb);
311 struct the_nilfs *nilfs = sbi->s_nilfs;
312
313 lock_kernel();
314
315 nilfs_detach_segment_constructor(sbi);
316
317 if (!(sb->s_flags & MS_RDONLY)) {
318 down_write(&nilfs->ns_sem);
319 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
320 nilfs_commit_super(sbi, 1);
321 up_write(&nilfs->ns_sem);
322 }
323 down_write(&nilfs->ns_super_sem);
324 if (nilfs->ns_current == sbi)
325 nilfs->ns_current = NULL;
326 up_write(&nilfs->ns_super_sem);
327
328 nilfs_detach_checkpoint(sbi);
329 put_nilfs(sbi->s_nilfs);
330 sbi->s_super = NULL;
331 sb->s_fs_info = NULL;
332 nilfs_put_sbinfo(sbi);
333
334 unlock_kernel();
335 }
336
337 static int nilfs_sync_fs(struct super_block *sb, int wait)
338 {
339 struct nilfs_sb_info *sbi = NILFS_SB(sb);
340 struct the_nilfs *nilfs = sbi->s_nilfs;
341 int err = 0;
342
343 /* This function is called when super block should be written back */
344 if (wait)
345 err = nilfs_construct_segment(sb);
346
347 down_write(&nilfs->ns_sem);
348 if (sb->s_dirt)
349 nilfs_commit_super(sbi, 1);
350 up_write(&nilfs->ns_sem);
351
352 return err;
353 }
354
355 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
356 {
357 struct the_nilfs *nilfs = sbi->s_nilfs;
358 struct nilfs_checkpoint *raw_cp;
359 struct buffer_head *bh_cp;
360 int err;
361
362 down_write(&nilfs->ns_super_sem);
363 list_add(&sbi->s_list, &nilfs->ns_supers);
364 up_write(&nilfs->ns_super_sem);
365
366 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
367 if (!sbi->s_ifile)
368 return -ENOMEM;
369
370 down_read(&nilfs->ns_segctor_sem);
371 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
372 &bh_cp);
373 up_read(&nilfs->ns_segctor_sem);
374 if (unlikely(err)) {
375 if (err == -ENOENT || err == -EINVAL) {
376 printk(KERN_ERR
377 "NILFS: Invalid checkpoint "
378 "(checkpoint number=%llu)\n",
379 (unsigned long long)cno);
380 err = -EINVAL;
381 }
382 goto failed;
383 }
384 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
385 if (unlikely(err))
386 goto failed_bh;
387 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
388 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
389
390 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
391 return 0;
392
393 failed_bh:
394 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
395 failed:
396 nilfs_mdt_destroy(sbi->s_ifile);
397 sbi->s_ifile = NULL;
398
399 down_write(&nilfs->ns_super_sem);
400 list_del_init(&sbi->s_list);
401 up_write(&nilfs->ns_super_sem);
402
403 return err;
404 }
405
406 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
407 {
408 struct the_nilfs *nilfs = sbi->s_nilfs;
409
410 nilfs_mdt_clear(sbi->s_ifile);
411 nilfs_mdt_destroy(sbi->s_ifile);
412 sbi->s_ifile = NULL;
413 down_write(&nilfs->ns_super_sem);
414 list_del_init(&sbi->s_list);
415 up_write(&nilfs->ns_super_sem);
416 }
417
418 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
419 {
420 struct the_nilfs *nilfs = sbi->s_nilfs;
421 int err = 0;
422
423 down_write(&nilfs->ns_sem);
424 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
425 nilfs->ns_mount_state |= NILFS_VALID_FS;
426 err = nilfs_commit_super(sbi, 1);
427 if (likely(!err))
428 printk(KERN_INFO "NILFS: recovery complete.\n");
429 }
430 up_write(&nilfs->ns_sem);
431 return err;
432 }
433
434 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
435 {
436 struct super_block *sb = dentry->d_sb;
437 struct nilfs_sb_info *sbi = NILFS_SB(sb);
438 struct the_nilfs *nilfs = sbi->s_nilfs;
439 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
440 unsigned long long blocks;
441 unsigned long overhead;
442 unsigned long nrsvblocks;
443 sector_t nfreeblocks;
444 int err;
445
446 /*
447 * Compute all of the segment blocks
448 *
449 * The blocks before first segment and after last segment
450 * are excluded.
451 */
452 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
453 - nilfs->ns_first_data_block;
454 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
455
456 /*
457 * Compute the overhead
458 *
459 * When distributing meta data blocks outside semgent structure,
460 * We must count them as the overhead.
461 */
462 overhead = 0;
463
464 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
465 if (unlikely(err))
466 return err;
467
468 buf->f_type = NILFS_SUPER_MAGIC;
469 buf->f_bsize = sb->s_blocksize;
470 buf->f_blocks = blocks - overhead;
471 buf->f_bfree = nfreeblocks;
472 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
473 (buf->f_bfree - nrsvblocks) : 0;
474 buf->f_files = atomic_read(&sbi->s_inodes_count);
475 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
476 buf->f_namelen = NILFS_NAME_LEN;
477 buf->f_fsid.val[0] = (u32)id;
478 buf->f_fsid.val[1] = (u32)(id >> 32);
479
480 return 0;
481 }
482
483 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
484 {
485 struct super_block *sb = vfs->mnt_sb;
486 struct nilfs_sb_info *sbi = NILFS_SB(sb);
487
488 if (!nilfs_test_opt(sbi, BARRIER))
489 seq_printf(seq, ",nobarrier");
490 if (nilfs_test_opt(sbi, SNAPSHOT))
491 seq_printf(seq, ",cp=%llu",
492 (unsigned long long int)sbi->s_snapshot_cno);
493 if (nilfs_test_opt(sbi, ERRORS_RO))
494 seq_printf(seq, ",errors=remount-ro");
495 if (nilfs_test_opt(sbi, ERRORS_PANIC))
496 seq_printf(seq, ",errors=panic");
497 if (nilfs_test_opt(sbi, STRICT_ORDER))
498 seq_printf(seq, ",order=strict");
499
500 return 0;
501 }
502
503 static const struct super_operations nilfs_sops = {
504 .alloc_inode = nilfs_alloc_inode,
505 .destroy_inode = nilfs_destroy_inode,
506 .dirty_inode = nilfs_dirty_inode,
507 /* .write_inode = nilfs_write_inode, */
508 /* .put_inode = nilfs_put_inode, */
509 /* .drop_inode = nilfs_drop_inode, */
510 .delete_inode = nilfs_delete_inode,
511 .put_super = nilfs_put_super,
512 /* .write_super = nilfs_write_super, */
513 .sync_fs = nilfs_sync_fs,
514 /* .write_super_lockfs */
515 /* .unlockfs */
516 .statfs = nilfs_statfs,
517 .remount_fs = nilfs_remount,
518 .clear_inode = nilfs_clear_inode,
519 /* .umount_begin */
520 .show_options = nilfs_show_options
521 };
522
523 static struct inode *
524 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
525 {
526 struct inode *inode;
527
528 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
529 ino != NILFS_SKETCH_INO)
530 return ERR_PTR(-ESTALE);
531
532 inode = nilfs_iget(sb, ino);
533 if (IS_ERR(inode))
534 return ERR_CAST(inode);
535 if (generation && inode->i_generation != generation) {
536 iput(inode);
537 return ERR_PTR(-ESTALE);
538 }
539
540 return inode;
541 }
542
543 static struct dentry *
544 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
545 int fh_type)
546 {
547 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
548 nilfs_nfs_get_inode);
549 }
550
551 static struct dentry *
552 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
553 int fh_type)
554 {
555 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
556 nilfs_nfs_get_inode);
557 }
558
559 static const struct export_operations nilfs_export_ops = {
560 .fh_to_dentry = nilfs_fh_to_dentry,
561 .fh_to_parent = nilfs_fh_to_parent,
562 .get_parent = nilfs_get_parent,
563 };
564
565 enum {
566 Opt_err_cont, Opt_err_panic, Opt_err_ro,
567 Opt_nobarrier, Opt_snapshot, Opt_order,
568 Opt_err,
569 };
570
571 static match_table_t tokens = {
572 {Opt_err_cont, "errors=continue"},
573 {Opt_err_panic, "errors=panic"},
574 {Opt_err_ro, "errors=remount-ro"},
575 {Opt_nobarrier, "nobarrier"},
576 {Opt_snapshot, "cp=%u"},
577 {Opt_order, "order=%s"},
578 {Opt_err, NULL}
579 };
580
581 static int parse_options(char *options, struct super_block *sb)
582 {
583 struct nilfs_sb_info *sbi = NILFS_SB(sb);
584 char *p;
585 substring_t args[MAX_OPT_ARGS];
586 int option;
587
588 if (!options)
589 return 1;
590
591 while ((p = strsep(&options, ",")) != NULL) {
592 int token;
593 if (!*p)
594 continue;
595
596 token = match_token(p, tokens, args);
597 switch (token) {
598 case Opt_nobarrier:
599 nilfs_clear_opt(sbi, BARRIER);
600 break;
601 case Opt_order:
602 if (strcmp(args[0].from, "relaxed") == 0)
603 /* Ordered data semantics */
604 nilfs_clear_opt(sbi, STRICT_ORDER);
605 else if (strcmp(args[0].from, "strict") == 0)
606 /* Strict in-order semantics */
607 nilfs_set_opt(sbi, STRICT_ORDER);
608 else
609 return 0;
610 break;
611 case Opt_err_panic:
612 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
613 break;
614 case Opt_err_ro:
615 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
616 break;
617 case Opt_err_cont:
618 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
619 break;
620 case Opt_snapshot:
621 if (match_int(&args[0], &option) || option <= 0)
622 return 0;
623 if (!(sb->s_flags & MS_RDONLY))
624 return 0;
625 sbi->s_snapshot_cno = option;
626 nilfs_set_opt(sbi, SNAPSHOT);
627 break;
628 default:
629 printk(KERN_ERR
630 "NILFS: Unrecognized mount option \"%s\"\n", p);
631 return 0;
632 }
633 }
634 return 1;
635 }
636
637 static inline void
638 nilfs_set_default_options(struct nilfs_sb_info *sbi,
639 struct nilfs_super_block *sbp)
640 {
641 sbi->s_mount_opt =
642 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
643 }
644
645 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
646 {
647 struct the_nilfs *nilfs = sbi->s_nilfs;
648 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
649 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
650 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
651
652 /* nilfs->sem must be locked by the caller. */
653 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
654 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
655 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
656 printk(KERN_WARNING
657 "NILFS warning: mounting fs with errors\n");
658 #if 0
659 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
660 printk(KERN_WARNING
661 "NILFS warning: maximal mount count reached\n");
662 #endif
663 }
664 if (!max_mnt_count)
665 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
666
667 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
668 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
669 sbp->s_mtime = cpu_to_le64(get_seconds());
670 return nilfs_commit_super(sbi, 1);
671 }
672
673 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
674 u64 pos, int blocksize,
675 struct buffer_head **pbh)
676 {
677 unsigned long long sb_index = pos;
678 unsigned long offset;
679
680 offset = do_div(sb_index, blocksize);
681 *pbh = sb_bread(sb, sb_index);
682 if (!*pbh)
683 return NULL;
684 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
685 }
686
687 int nilfs_store_magic_and_option(struct super_block *sb,
688 struct nilfs_super_block *sbp,
689 char *data)
690 {
691 struct nilfs_sb_info *sbi = NILFS_SB(sb);
692
693 sb->s_magic = le16_to_cpu(sbp->s_magic);
694
695 /* FS independent flags */
696 #ifdef NILFS_ATIME_DISABLE
697 sb->s_flags |= MS_NOATIME;
698 #endif
699
700 nilfs_set_default_options(sbi, sbp);
701
702 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
703 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
704 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
705 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
706
707 return !parse_options(data, sb) ? -EINVAL : 0 ;
708 }
709
710 /**
711 * nilfs_fill_super() - initialize a super block instance
712 * @sb: super_block
713 * @data: mount options
714 * @silent: silent mode flag
715 * @nilfs: the_nilfs struct
716 *
717 * This function is called exclusively by nilfs->ns_mount_mutex.
718 * So, the recovery process is protected from other simultaneous mounts.
719 */
720 static int
721 nilfs_fill_super(struct super_block *sb, void *data, int silent,
722 struct the_nilfs *nilfs)
723 {
724 struct nilfs_sb_info *sbi;
725 struct inode *root;
726 __u64 cno;
727 int err;
728
729 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
730 if (!sbi)
731 return -ENOMEM;
732
733 sb->s_fs_info = sbi;
734
735 get_nilfs(nilfs);
736 sbi->s_nilfs = nilfs;
737 sbi->s_super = sb;
738 atomic_set(&sbi->s_count, 1);
739
740 err = init_nilfs(nilfs, sbi, (char *)data);
741 if (err)
742 goto failed_sbi;
743
744 spin_lock_init(&sbi->s_inode_lock);
745 INIT_LIST_HEAD(&sbi->s_dirty_files);
746 INIT_LIST_HEAD(&sbi->s_list);
747
748 /*
749 * Following initialization is overlapped because
750 * nilfs_sb_info structure has been cleared at the beginning.
751 * But we reserve them to keep our interest and make ready
752 * for the future change.
753 */
754 get_random_bytes(&sbi->s_next_generation,
755 sizeof(sbi->s_next_generation));
756 spin_lock_init(&sbi->s_next_gen_lock);
757
758 sb->s_op = &nilfs_sops;
759 sb->s_export_op = &nilfs_export_ops;
760 sb->s_root = NULL;
761 sb->s_time_gran = 1;
762
763 if (!nilfs_loaded(nilfs)) {
764 err = load_nilfs(nilfs, sbi);
765 if (err)
766 goto failed_sbi;
767 }
768 cno = nilfs_last_cno(nilfs);
769
770 if (sb->s_flags & MS_RDONLY) {
771 if (nilfs_test_opt(sbi, SNAPSHOT)) {
772 down_read(&nilfs->ns_segctor_sem);
773 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
774 sbi->s_snapshot_cno);
775 up_read(&nilfs->ns_segctor_sem);
776 if (err < 0) {
777 if (err == -ENOENT)
778 err = -EINVAL;
779 goto failed_sbi;
780 }
781 if (!err) {
782 printk(KERN_ERR
783 "NILFS: The specified checkpoint is "
784 "not a snapshot "
785 "(checkpoint number=%llu).\n",
786 (unsigned long long)sbi->s_snapshot_cno);
787 err = -EINVAL;
788 goto failed_sbi;
789 }
790 cno = sbi->s_snapshot_cno;
791 } else
792 /* Read-only mount */
793 sbi->s_snapshot_cno = cno;
794 }
795
796 err = nilfs_attach_checkpoint(sbi, cno);
797 if (err) {
798 printk(KERN_ERR "NILFS: error loading a checkpoint"
799 " (checkpoint number=%llu).\n", (unsigned long long)cno);
800 goto failed_sbi;
801 }
802
803 if (!(sb->s_flags & MS_RDONLY)) {
804 err = nilfs_attach_segment_constructor(sbi);
805 if (err)
806 goto failed_checkpoint;
807 }
808
809 root = nilfs_iget(sb, NILFS_ROOT_INO);
810 if (IS_ERR(root)) {
811 printk(KERN_ERR "NILFS: get root inode failed\n");
812 err = PTR_ERR(root);
813 goto failed_segctor;
814 }
815 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
816 iput(root);
817 printk(KERN_ERR "NILFS: corrupt root inode.\n");
818 err = -EINVAL;
819 goto failed_segctor;
820 }
821 sb->s_root = d_alloc_root(root);
822 if (!sb->s_root) {
823 iput(root);
824 printk(KERN_ERR "NILFS: get root dentry failed\n");
825 err = -ENOMEM;
826 goto failed_segctor;
827 }
828
829 if (!(sb->s_flags & MS_RDONLY)) {
830 down_write(&nilfs->ns_sem);
831 nilfs_setup_super(sbi);
832 up_write(&nilfs->ns_sem);
833 }
834
835 err = nilfs_mark_recovery_complete(sbi);
836 if (unlikely(err)) {
837 printk(KERN_ERR "NILFS: recovery failed.\n");
838 goto failed_root;
839 }
840
841 down_write(&nilfs->ns_super_sem);
842 if (!nilfs_test_opt(sbi, SNAPSHOT))
843 nilfs->ns_current = sbi;
844 up_write(&nilfs->ns_super_sem);
845
846 return 0;
847
848 failed_root:
849 dput(sb->s_root);
850 sb->s_root = NULL;
851
852 failed_segctor:
853 nilfs_detach_segment_constructor(sbi);
854
855 failed_checkpoint:
856 nilfs_detach_checkpoint(sbi);
857
858 failed_sbi:
859 put_nilfs(nilfs);
860 sb->s_fs_info = NULL;
861 nilfs_put_sbinfo(sbi);
862 return err;
863 }
864
865 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
866 {
867 struct nilfs_sb_info *sbi = NILFS_SB(sb);
868 struct nilfs_super_block *sbp;
869 struct the_nilfs *nilfs = sbi->s_nilfs;
870 unsigned long old_sb_flags;
871 struct nilfs_mount_options old_opts;
872 int err;
873
874 lock_kernel();
875
876 down_write(&nilfs->ns_super_sem);
877 old_sb_flags = sb->s_flags;
878 old_opts.mount_opt = sbi->s_mount_opt;
879 old_opts.snapshot_cno = sbi->s_snapshot_cno;
880
881 if (!parse_options(data, sb)) {
882 err = -EINVAL;
883 goto restore_opts;
884 }
885 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
886
887 if ((*flags & MS_RDONLY) &&
888 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
889 printk(KERN_WARNING "NILFS (device %s): couldn't "
890 "remount to a different snapshot. \n",
891 sb->s_id);
892 err = -EINVAL;
893 goto restore_opts;
894 }
895
896 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
897 goto out;
898 if (*flags & MS_RDONLY) {
899 /* Shutting down the segment constructor */
900 nilfs_detach_segment_constructor(sbi);
901 sb->s_flags |= MS_RDONLY;
902
903 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
904 /* nilfs_set_opt(sbi, SNAPSHOT); */
905
906 /*
907 * Remounting a valid RW partition RDONLY, so set
908 * the RDONLY flag and then mark the partition as valid again.
909 */
910 down_write(&nilfs->ns_sem);
911 sbp = nilfs->ns_sbp[0];
912 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
913 (nilfs->ns_mount_state & NILFS_VALID_FS))
914 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
915 sbp->s_mtime = cpu_to_le64(get_seconds());
916 nilfs_commit_super(sbi, 1);
917 up_write(&nilfs->ns_sem);
918 } else {
919 /*
920 * Mounting a RDONLY partition read-write, so reread and
921 * store the current valid flag. (It may have been changed
922 * by fsck since we originally mounted the partition.)
923 */
924 if (nilfs->ns_current && nilfs->ns_current != sbi) {
925 printk(KERN_WARNING "NILFS (device %s): couldn't "
926 "remount because an RW-mount exists.\n",
927 sb->s_id);
928 err = -EBUSY;
929 goto restore_opts;
930 }
931 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
932 printk(KERN_WARNING "NILFS (device %s): couldn't "
933 "remount because the current RO-mount is not "
934 "the latest one.\n",
935 sb->s_id);
936 err = -EINVAL;
937 goto restore_opts;
938 }
939 sb->s_flags &= ~MS_RDONLY;
940 nilfs_clear_opt(sbi, SNAPSHOT);
941 sbi->s_snapshot_cno = 0;
942
943 err = nilfs_attach_segment_constructor(sbi);
944 if (err)
945 goto restore_opts;
946
947 down_write(&nilfs->ns_sem);
948 nilfs_setup_super(sbi);
949 up_write(&nilfs->ns_sem);
950
951 nilfs->ns_current = sbi;
952 }
953 out:
954 up_write(&nilfs->ns_super_sem);
955 unlock_kernel();
956 return 0;
957
958 restore_opts:
959 sb->s_flags = old_sb_flags;
960 sbi->s_mount_opt = old_opts.mount_opt;
961 sbi->s_snapshot_cno = old_opts.snapshot_cno;
962 up_write(&nilfs->ns_super_sem);
963 unlock_kernel();
964 return err;
965 }
966
967 struct nilfs_super_data {
968 struct block_device *bdev;
969 struct nilfs_sb_info *sbi;
970 __u64 cno;
971 int flags;
972 };
973
974 /**
975 * nilfs_identify - pre-read mount options needed to identify mount instance
976 * @data: mount options
977 * @sd: nilfs_super_data
978 */
979 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
980 {
981 char *p, *options = data;
982 substring_t args[MAX_OPT_ARGS];
983 int option, token;
984 int ret = 0;
985
986 do {
987 p = strsep(&options, ",");
988 if (p != NULL && *p) {
989 token = match_token(p, tokens, args);
990 if (token == Opt_snapshot) {
991 if (!(sd->flags & MS_RDONLY))
992 ret++;
993 else {
994 ret = match_int(&args[0], &option);
995 if (!ret) {
996 if (option > 0)
997 sd->cno = option;
998 else
999 ret++;
1000 }
1001 }
1002 }
1003 if (ret)
1004 printk(KERN_ERR
1005 "NILFS: invalid mount option: %s\n", p);
1006 }
1007 if (!options)
1008 break;
1009 BUG_ON(options == data);
1010 *(options - 1) = ',';
1011 } while (!ret);
1012 return ret;
1013 }
1014
1015 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1016 {
1017 struct nilfs_super_data *sd = data;
1018
1019 s->s_bdev = sd->bdev;
1020 s->s_dev = s->s_bdev->bd_dev;
1021 return 0;
1022 }
1023
1024 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1025 {
1026 struct nilfs_super_data *sd = data;
1027
1028 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1029 }
1030
1031 static int
1032 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1033 const char *dev_name, void *data, struct vfsmount *mnt)
1034 {
1035 struct nilfs_super_data sd;
1036 struct super_block *s;
1037 struct the_nilfs *nilfs;
1038 int err, need_to_close = 1;
1039
1040 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1041 if (IS_ERR(sd.bdev))
1042 return PTR_ERR(sd.bdev);
1043
1044 /*
1045 * To get mount instance using sget() vfs-routine, NILFS needs
1046 * much more information than normal filesystems to identify mount
1047 * instance. For snapshot mounts, not only a mount type (ro-mount
1048 * or rw-mount) but also a checkpoint number is required.
1049 */
1050 sd.cno = 0;
1051 sd.flags = flags;
1052 if (nilfs_identify((char *)data, &sd)) {
1053 err = -EINVAL;
1054 goto failed;
1055 }
1056
1057 nilfs = find_or_create_nilfs(sd.bdev);
1058 if (!nilfs) {
1059 err = -ENOMEM;
1060 goto failed;
1061 }
1062
1063 mutex_lock(&nilfs->ns_mount_mutex);
1064
1065 if (!sd.cno) {
1066 /*
1067 * Check if an exclusive mount exists or not.
1068 * Snapshot mounts coexist with a current mount
1069 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1070 * ro-mount are mutually exclusive.
1071 */
1072 down_read(&nilfs->ns_super_sem);
1073 if (nilfs->ns_current &&
1074 ((nilfs->ns_current->s_super->s_flags ^ flags)
1075 & MS_RDONLY)) {
1076 up_read(&nilfs->ns_super_sem);
1077 err = -EBUSY;
1078 goto failed_unlock;
1079 }
1080 up_read(&nilfs->ns_super_sem);
1081 }
1082
1083 /*
1084 * Find existing nilfs_sb_info struct
1085 */
1086 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1087
1088 /*
1089 * Get super block instance holding the nilfs_sb_info struct.
1090 * A new instance is allocated if no existing mount is present or
1091 * existing instance has been unmounted.
1092 */
1093 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1094 if (sd.sbi)
1095 nilfs_put_sbinfo(sd.sbi);
1096
1097 if (IS_ERR(s)) {
1098 err = PTR_ERR(s);
1099 goto failed_unlock;
1100 }
1101
1102 if (!s->s_root) {
1103 char b[BDEVNAME_SIZE];
1104
1105 /* New superblock instance created */
1106 s->s_flags = flags;
1107 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1108 sb_set_blocksize(s, block_size(sd.bdev));
1109
1110 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1111 if (err)
1112 goto cancel_new;
1113
1114 s->s_flags |= MS_ACTIVE;
1115 need_to_close = 0;
1116 }
1117
1118 mutex_unlock(&nilfs->ns_mount_mutex);
1119 put_nilfs(nilfs);
1120 if (need_to_close)
1121 close_bdev_exclusive(sd.bdev, flags);
1122 simple_set_mnt(mnt, s);
1123 return 0;
1124
1125 failed_unlock:
1126 mutex_unlock(&nilfs->ns_mount_mutex);
1127 put_nilfs(nilfs);
1128 failed:
1129 close_bdev_exclusive(sd.bdev, flags);
1130
1131 return err;
1132
1133 cancel_new:
1134 /* Abandoning the newly allocated superblock */
1135 mutex_unlock(&nilfs->ns_mount_mutex);
1136 put_nilfs(nilfs);
1137 up_write(&s->s_umount);
1138 deactivate_super(s);
1139 /*
1140 * deactivate_super() invokes close_bdev_exclusive().
1141 * We must finish all post-cleaning before this call;
1142 * put_nilfs() needs the block device.
1143 */
1144 return err;
1145 }
1146
1147 struct file_system_type nilfs_fs_type = {
1148 .owner = THIS_MODULE,
1149 .name = "nilfs2",
1150 .get_sb = nilfs_get_sb,
1151 .kill_sb = kill_block_super,
1152 .fs_flags = FS_REQUIRES_DEV,
1153 };
1154
1155 static int __init init_nilfs_fs(void)
1156 {
1157 int err;
1158
1159 err = nilfs_init_inode_cache();
1160 if (err)
1161 goto failed;
1162
1163 err = nilfs_init_transaction_cache();
1164 if (err)
1165 goto failed_inode_cache;
1166
1167 err = nilfs_init_segbuf_cache();
1168 if (err)
1169 goto failed_transaction_cache;
1170
1171 err = nilfs_btree_path_cache_init();
1172 if (err)
1173 goto failed_segbuf_cache;
1174
1175 err = register_filesystem(&nilfs_fs_type);
1176 if (err)
1177 goto failed_btree_path_cache;
1178
1179 return 0;
1180
1181 failed_btree_path_cache:
1182 nilfs_btree_path_cache_destroy();
1183
1184 failed_segbuf_cache:
1185 nilfs_destroy_segbuf_cache();
1186
1187 failed_transaction_cache:
1188 nilfs_destroy_transaction_cache();
1189
1190 failed_inode_cache:
1191 nilfs_destroy_inode_cache();
1192
1193 failed:
1194 return err;
1195 }
1196
1197 static void __exit exit_nilfs_fs(void)
1198 {
1199 nilfs_destroy_segbuf_cache();
1200 nilfs_destroy_transaction_cache();
1201 nilfs_destroy_inode_cache();
1202 nilfs_btree_path_cache_destroy();
1203 unregister_filesystem(&nilfs_fs_type);
1204 }
1205
1206 module_init(init_nilfs_fs)
1207 module_exit(exit_nilfs_fs)