]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nilfs2/super.c
164457316df17ef743e8e5b85fbba0859a9810ec
[mirror_ubuntu-bionic-kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "btree.h"
59 #include "btnode.h"
60 #include "page.h"
61 #include "cpfile.h"
62 #include "ifile.h"
63 #include "dat.h"
64 #include "segment.h"
65 #include "segbuf.h"
66
67 MODULE_AUTHOR("NTT Corp.");
68 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
69 "(NILFS)");
70 MODULE_LICENSE("GPL");
71
72 struct kmem_cache *nilfs_inode_cachep;
73 struct kmem_cache *nilfs_transaction_cachep;
74 struct kmem_cache *nilfs_segbuf_cachep;
75 struct kmem_cache *nilfs_btree_path_cache;
76
77 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78
79 static void nilfs_set_error(struct nilfs_sb_info *sbi)
80 {
81 struct the_nilfs *nilfs = sbi->s_nilfs;
82 struct nilfs_super_block **sbp;
83
84 down_write(&nilfs->ns_sem);
85 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
86 nilfs->ns_mount_state |= NILFS_ERROR_FS;
87 sbp = nilfs_prepare_super(sbi, 0);
88 if (likely(sbp)) {
89 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90 if (sbp[1])
91 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
93 }
94 }
95 up_write(&nilfs->ns_sem);
96 }
97
98 /**
99 * nilfs_error() - report failure condition on a filesystem
100 *
101 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
102 * reporting an error message. It should be called when NILFS detects
103 * incoherences or defects of meta data on disk. As for sustainable
104 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
105 * function should be used instead.
106 *
107 * The segment constructor must not call this function because it can
108 * kill itself.
109 */
110 void nilfs_error(struct super_block *sb, const char *function,
111 const char *fmt, ...)
112 {
113 struct nilfs_sb_info *sbi = NILFS_SB(sb);
114 va_list args;
115
116 va_start(args, fmt);
117 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
118 vprintk(fmt, args);
119 printk("\n");
120 va_end(args);
121
122 if (!(sb->s_flags & MS_RDONLY)) {
123 nilfs_set_error(sbi);
124
125 if (nilfs_test_opt(sbi, ERRORS_RO)) {
126 printk(KERN_CRIT "Remounting filesystem read-only\n");
127 sb->s_flags |= MS_RDONLY;
128 }
129 }
130
131 if (nilfs_test_opt(sbi, ERRORS_PANIC))
132 panic("NILFS (device %s): panic forced after error\n",
133 sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
143 sb->s_id, function);
144 vprintk(fmt, args);
145 printk("\n");
146 va_end(args);
147 }
148
149
150 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
151 {
152 struct nilfs_inode_info *ii;
153
154 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155 if (!ii)
156 return NULL;
157 ii->i_bh = NULL;
158 ii->i_state = 0;
159 ii->vfs_inode.i_version = 1;
160 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161 return &ii->vfs_inode;
162 }
163
164 struct inode *nilfs_alloc_inode(struct super_block *sb)
165 {
166 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
167 }
168
169 void nilfs_destroy_inode(struct inode *inode)
170 {
171 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173
174 static void nilfs_clear_inode(struct inode *inode)
175 {
176 struct nilfs_inode_info *ii = NILFS_I(inode);
177
178 /*
179 * Free resources allocated in nilfs_read_inode(), here.
180 */
181 BUG_ON(!list_empty(&ii->i_dirty));
182 brelse(ii->i_bh);
183 ii->i_bh = NULL;
184
185 if (test_bit(NILFS_I_BMAP, &ii->i_state))
186 nilfs_bmap_clear(ii->i_bmap);
187
188 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
189 }
190
191 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
192 {
193 struct the_nilfs *nilfs = sbi->s_nilfs;
194 int err;
195 int barrier_done = 0;
196
197 if (nilfs_test_opt(sbi, BARRIER)) {
198 set_buffer_ordered(nilfs->ns_sbh[0]);
199 barrier_done = 1;
200 }
201 retry:
202 set_buffer_dirty(nilfs->ns_sbh[0]);
203 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
204 if (err == -EOPNOTSUPP && barrier_done) {
205 nilfs_warning(sbi->s_super, __func__,
206 "barrier-based sync failed. "
207 "disabling barriers\n");
208 nilfs_clear_opt(sbi, BARRIER);
209 barrier_done = 0;
210 clear_buffer_ordered(nilfs->ns_sbh[0]);
211 goto retry;
212 }
213 if (unlikely(err)) {
214 printk(KERN_ERR
215 "NILFS: unable to write superblock (err=%d)\n", err);
216 if (err == -EIO && nilfs->ns_sbh[1]) {
217 /*
218 * sbp[0] points to newer log than sbp[1],
219 * so copy sbp[0] to sbp[1] to take over sbp[0].
220 */
221 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
222 nilfs->ns_sbsize);
223 nilfs_fall_back_super_block(nilfs);
224 goto retry;
225 }
226 } else {
227 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
228
229 nilfs->ns_sbwcount++;
230
231 /*
232 * The latest segment becomes trailable from the position
233 * written in superblock.
234 */
235 clear_nilfs_discontinued(nilfs);
236
237 /* update GC protection for recent segments */
238 if (nilfs->ns_sbh[1]) {
239 if (flag == NILFS_SB_COMMIT_ALL) {
240 set_buffer_dirty(nilfs->ns_sbh[1]);
241 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
242 goto out;
243 }
244 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
245 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
246 sbp = nilfs->ns_sbp[1];
247 }
248
249 spin_lock(&nilfs->ns_last_segment_lock);
250 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
251 spin_unlock(&nilfs->ns_last_segment_lock);
252 }
253 out:
254 return err;
255 }
256
257 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
258 struct the_nilfs *nilfs)
259 {
260 sector_t nfreeblocks;
261
262 /* nilfs->ns_sem must be locked by the caller. */
263 nilfs_count_free_blocks(nilfs, &nfreeblocks);
264 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
265
266 spin_lock(&nilfs->ns_last_segment_lock);
267 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
268 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
269 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
270 spin_unlock(&nilfs->ns_last_segment_lock);
271 }
272
273 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
274 int flip)
275 {
276 struct the_nilfs *nilfs = sbi->s_nilfs;
277 struct nilfs_super_block **sbp = nilfs->ns_sbp;
278
279 /* nilfs->ns_sem must be locked by the caller. */
280 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
281 if (sbp[1] &&
282 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
283 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
284 } else {
285 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
286 sbi->s_super->s_id);
287 return NULL;
288 }
289 } else if (sbp[1] &&
290 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
291 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
292 }
293
294 if (flip && sbp[1])
295 nilfs_swap_super_block(nilfs);
296
297 return sbp;
298 }
299
300 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
301 {
302 struct the_nilfs *nilfs = sbi->s_nilfs;
303 struct nilfs_super_block **sbp = nilfs->ns_sbp;
304 time_t t;
305
306 /* nilfs->ns_sem must be locked by the caller. */
307 t = get_seconds();
308 nilfs->ns_sbwtime = t;
309 sbp[0]->s_wtime = cpu_to_le64(t);
310 sbp[0]->s_sum = 0;
311 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
312 (unsigned char *)sbp[0],
313 nilfs->ns_sbsize));
314 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
315 sbp[1]->s_wtime = sbp[0]->s_wtime;
316 sbp[1]->s_sum = 0;
317 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
318 (unsigned char *)sbp[1],
319 nilfs->ns_sbsize));
320 }
321 clear_nilfs_sb_dirty(nilfs);
322 return nilfs_sync_super(sbi, flag);
323 }
324
325 /**
326 * nilfs_cleanup_super() - write filesystem state for cleanup
327 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
328 *
329 * This function restores state flags in the on-disk super block.
330 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
331 * filesystem was not clean previously.
332 */
333 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
334 {
335 struct nilfs_super_block **sbp;
336 int flag = NILFS_SB_COMMIT;
337 int ret = -EIO;
338
339 sbp = nilfs_prepare_super(sbi, 0);
340 if (sbp) {
341 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
342 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
343 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
344 /*
345 * make the "clean" flag also to the opposite
346 * super block if both super blocks point to
347 * the same checkpoint.
348 */
349 sbp[1]->s_state = sbp[0]->s_state;
350 flag = NILFS_SB_COMMIT_ALL;
351 }
352 ret = nilfs_commit_super(sbi, flag);
353 }
354 return ret;
355 }
356
357 static void nilfs_put_super(struct super_block *sb)
358 {
359 struct nilfs_sb_info *sbi = NILFS_SB(sb);
360 struct the_nilfs *nilfs = sbi->s_nilfs;
361
362 lock_kernel();
363
364 nilfs_detach_segment_constructor(sbi);
365
366 if (!(sb->s_flags & MS_RDONLY)) {
367 down_write(&nilfs->ns_sem);
368 nilfs_cleanup_super(sbi);
369 up_write(&nilfs->ns_sem);
370 }
371 down_write(&nilfs->ns_super_sem);
372 if (nilfs->ns_current == sbi)
373 nilfs->ns_current = NULL;
374 up_write(&nilfs->ns_super_sem);
375
376 nilfs_detach_checkpoint(sbi);
377 put_nilfs(sbi->s_nilfs);
378 sbi->s_super = NULL;
379 sb->s_fs_info = NULL;
380 nilfs_put_sbinfo(sbi);
381
382 unlock_kernel();
383 }
384
385 static int nilfs_sync_fs(struct super_block *sb, int wait)
386 {
387 struct nilfs_sb_info *sbi = NILFS_SB(sb);
388 struct the_nilfs *nilfs = sbi->s_nilfs;
389 struct nilfs_super_block **sbp;
390 int err = 0;
391
392 /* This function is called when super block should be written back */
393 if (wait)
394 err = nilfs_construct_segment(sb);
395
396 down_write(&nilfs->ns_sem);
397 if (nilfs_sb_dirty(nilfs)) {
398 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
399 if (likely(sbp)) {
400 nilfs_set_log_cursor(sbp[0], nilfs);
401 nilfs_commit_super(sbi, NILFS_SB_COMMIT);
402 }
403 }
404 up_write(&nilfs->ns_sem);
405
406 return err;
407 }
408
409 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
410 {
411 struct the_nilfs *nilfs = sbi->s_nilfs;
412 struct nilfs_checkpoint *raw_cp;
413 struct buffer_head *bh_cp;
414 int err;
415
416 down_write(&nilfs->ns_super_sem);
417 list_add(&sbi->s_list, &nilfs->ns_supers);
418 up_write(&nilfs->ns_super_sem);
419
420 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
421 if (!sbi->s_ifile)
422 return -ENOMEM;
423
424 down_read(&nilfs->ns_segctor_sem);
425 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
426 &bh_cp);
427 up_read(&nilfs->ns_segctor_sem);
428 if (unlikely(err)) {
429 if (err == -ENOENT || err == -EINVAL) {
430 printk(KERN_ERR
431 "NILFS: Invalid checkpoint "
432 "(checkpoint number=%llu)\n",
433 (unsigned long long)cno);
434 err = -EINVAL;
435 }
436 goto failed;
437 }
438 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
439 if (unlikely(err))
440 goto failed_bh;
441 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
442 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
443
444 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
445 return 0;
446
447 failed_bh:
448 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
449 failed:
450 nilfs_mdt_destroy(sbi->s_ifile);
451 sbi->s_ifile = NULL;
452
453 down_write(&nilfs->ns_super_sem);
454 list_del_init(&sbi->s_list);
455 up_write(&nilfs->ns_super_sem);
456
457 return err;
458 }
459
460 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
461 {
462 struct the_nilfs *nilfs = sbi->s_nilfs;
463
464 nilfs_mdt_destroy(sbi->s_ifile);
465 sbi->s_ifile = NULL;
466 down_write(&nilfs->ns_super_sem);
467 list_del_init(&sbi->s_list);
468 up_write(&nilfs->ns_super_sem);
469 }
470
471 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
472 {
473 struct super_block *sb = dentry->d_sb;
474 struct nilfs_sb_info *sbi = NILFS_SB(sb);
475 struct the_nilfs *nilfs = sbi->s_nilfs;
476 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
477 unsigned long long blocks;
478 unsigned long overhead;
479 unsigned long nrsvblocks;
480 sector_t nfreeblocks;
481 int err;
482
483 /*
484 * Compute all of the segment blocks
485 *
486 * The blocks before first segment and after last segment
487 * are excluded.
488 */
489 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
490 - nilfs->ns_first_data_block;
491 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
492
493 /*
494 * Compute the overhead
495 *
496 * When distributing meta data blocks outside segment structure,
497 * We must count them as the overhead.
498 */
499 overhead = 0;
500
501 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
502 if (unlikely(err))
503 return err;
504
505 buf->f_type = NILFS_SUPER_MAGIC;
506 buf->f_bsize = sb->s_blocksize;
507 buf->f_blocks = blocks - overhead;
508 buf->f_bfree = nfreeblocks;
509 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
510 (buf->f_bfree - nrsvblocks) : 0;
511 buf->f_files = atomic_read(&sbi->s_inodes_count);
512 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
513 buf->f_namelen = NILFS_NAME_LEN;
514 buf->f_fsid.val[0] = (u32)id;
515 buf->f_fsid.val[1] = (u32)(id >> 32);
516
517 return 0;
518 }
519
520 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
521 {
522 struct super_block *sb = vfs->mnt_sb;
523 struct nilfs_sb_info *sbi = NILFS_SB(sb);
524
525 if (!nilfs_test_opt(sbi, BARRIER))
526 seq_puts(seq, ",nobarrier");
527 if (nilfs_test_opt(sbi, SNAPSHOT))
528 seq_printf(seq, ",cp=%llu",
529 (unsigned long long int)sbi->s_snapshot_cno);
530 if (nilfs_test_opt(sbi, ERRORS_PANIC))
531 seq_puts(seq, ",errors=panic");
532 if (nilfs_test_opt(sbi, ERRORS_CONT))
533 seq_puts(seq, ",errors=continue");
534 if (nilfs_test_opt(sbi, STRICT_ORDER))
535 seq_puts(seq, ",order=strict");
536 if (nilfs_test_opt(sbi, NORECOVERY))
537 seq_puts(seq, ",norecovery");
538 if (nilfs_test_opt(sbi, DISCARD))
539 seq_puts(seq, ",discard");
540
541 return 0;
542 }
543
544 static const struct super_operations nilfs_sops = {
545 .alloc_inode = nilfs_alloc_inode,
546 .destroy_inode = nilfs_destroy_inode,
547 .dirty_inode = nilfs_dirty_inode,
548 /* .write_inode = nilfs_write_inode, */
549 /* .put_inode = nilfs_put_inode, */
550 /* .drop_inode = nilfs_drop_inode, */
551 .delete_inode = nilfs_delete_inode,
552 .put_super = nilfs_put_super,
553 /* .write_super = nilfs_write_super, */
554 .sync_fs = nilfs_sync_fs,
555 /* .write_super_lockfs */
556 /* .unlockfs */
557 .statfs = nilfs_statfs,
558 .remount_fs = nilfs_remount,
559 .clear_inode = nilfs_clear_inode,
560 /* .umount_begin */
561 .show_options = nilfs_show_options
562 };
563
564 static struct inode *
565 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
566 {
567 struct inode *inode;
568
569 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
570 ino != NILFS_SKETCH_INO)
571 return ERR_PTR(-ESTALE);
572
573 inode = nilfs_iget(sb, ino);
574 if (IS_ERR(inode))
575 return ERR_CAST(inode);
576 if (generation && inode->i_generation != generation) {
577 iput(inode);
578 return ERR_PTR(-ESTALE);
579 }
580
581 return inode;
582 }
583
584 static struct dentry *
585 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
586 int fh_type)
587 {
588 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
589 nilfs_nfs_get_inode);
590 }
591
592 static struct dentry *
593 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
594 int fh_type)
595 {
596 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
597 nilfs_nfs_get_inode);
598 }
599
600 static const struct export_operations nilfs_export_ops = {
601 .fh_to_dentry = nilfs_fh_to_dentry,
602 .fh_to_parent = nilfs_fh_to_parent,
603 .get_parent = nilfs_get_parent,
604 };
605
606 enum {
607 Opt_err_cont, Opt_err_panic, Opt_err_ro,
608 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
609 Opt_discard, Opt_nodiscard, Opt_err,
610 };
611
612 static match_table_t tokens = {
613 {Opt_err_cont, "errors=continue"},
614 {Opt_err_panic, "errors=panic"},
615 {Opt_err_ro, "errors=remount-ro"},
616 {Opt_barrier, "barrier"},
617 {Opt_nobarrier, "nobarrier"},
618 {Opt_snapshot, "cp=%u"},
619 {Opt_order, "order=%s"},
620 {Opt_norecovery, "norecovery"},
621 {Opt_discard, "discard"},
622 {Opt_nodiscard, "nodiscard"},
623 {Opt_err, NULL}
624 };
625
626 static int parse_options(char *options, struct super_block *sb, int is_remount)
627 {
628 struct nilfs_sb_info *sbi = NILFS_SB(sb);
629 char *p;
630 substring_t args[MAX_OPT_ARGS];
631 int option;
632
633 if (!options)
634 return 1;
635
636 while ((p = strsep(&options, ",")) != NULL) {
637 int token;
638 if (!*p)
639 continue;
640
641 token = match_token(p, tokens, args);
642 switch (token) {
643 case Opt_barrier:
644 nilfs_set_opt(sbi, BARRIER);
645 break;
646 case Opt_nobarrier:
647 nilfs_clear_opt(sbi, BARRIER);
648 break;
649 case Opt_order:
650 if (strcmp(args[0].from, "relaxed") == 0)
651 /* Ordered data semantics */
652 nilfs_clear_opt(sbi, STRICT_ORDER);
653 else if (strcmp(args[0].from, "strict") == 0)
654 /* Strict in-order semantics */
655 nilfs_set_opt(sbi, STRICT_ORDER);
656 else
657 return 0;
658 break;
659 case Opt_err_panic:
660 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
661 break;
662 case Opt_err_ro:
663 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
664 break;
665 case Opt_err_cont:
666 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
667 break;
668 case Opt_snapshot:
669 if (match_int(&args[0], &option) || option <= 0)
670 return 0;
671 if (is_remount) {
672 if (!nilfs_test_opt(sbi, SNAPSHOT)) {
673 printk(KERN_ERR
674 "NILFS: cannot change regular "
675 "mount to snapshot.\n");
676 return 0;
677 } else if (option != sbi->s_snapshot_cno) {
678 printk(KERN_ERR
679 "NILFS: cannot remount to a "
680 "different snapshot.\n");
681 return 0;
682 }
683 break;
684 }
685 if (!(sb->s_flags & MS_RDONLY)) {
686 printk(KERN_ERR "NILFS: cannot mount snapshot "
687 "read/write. A read-only option is "
688 "required.\n");
689 return 0;
690 }
691 sbi->s_snapshot_cno = option;
692 nilfs_set_opt(sbi, SNAPSHOT);
693 break;
694 case Opt_norecovery:
695 nilfs_set_opt(sbi, NORECOVERY);
696 break;
697 case Opt_discard:
698 nilfs_set_opt(sbi, DISCARD);
699 break;
700 case Opt_nodiscard:
701 nilfs_clear_opt(sbi, DISCARD);
702 break;
703 default:
704 printk(KERN_ERR
705 "NILFS: Unrecognized mount option \"%s\"\n", p);
706 return 0;
707 }
708 }
709 return 1;
710 }
711
712 static inline void
713 nilfs_set_default_options(struct nilfs_sb_info *sbi,
714 struct nilfs_super_block *sbp)
715 {
716 sbi->s_mount_opt =
717 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
718 }
719
720 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
721 {
722 struct the_nilfs *nilfs = sbi->s_nilfs;
723 struct nilfs_super_block **sbp;
724 int max_mnt_count;
725 int mnt_count;
726
727 /* nilfs->ns_sem must be locked by the caller. */
728 sbp = nilfs_prepare_super(sbi, 0);
729 if (!sbp)
730 return -EIO;
731
732 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
733 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
734
735 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
736 printk(KERN_WARNING
737 "NILFS warning: mounting fs with errors\n");
738 #if 0
739 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
740 printk(KERN_WARNING
741 "NILFS warning: maximal mount count reached\n");
742 #endif
743 }
744 if (!max_mnt_count)
745 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
746
747 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
748 sbp[0]->s_state =
749 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
750 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
751 /* synchronize sbp[1] with sbp[0] */
752 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
753 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
754 }
755
756 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
757 u64 pos, int blocksize,
758 struct buffer_head **pbh)
759 {
760 unsigned long long sb_index = pos;
761 unsigned long offset;
762
763 offset = do_div(sb_index, blocksize);
764 *pbh = sb_bread(sb, sb_index);
765 if (!*pbh)
766 return NULL;
767 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
768 }
769
770 int nilfs_store_magic_and_option(struct super_block *sb,
771 struct nilfs_super_block *sbp,
772 char *data)
773 {
774 struct nilfs_sb_info *sbi = NILFS_SB(sb);
775
776 sb->s_magic = le16_to_cpu(sbp->s_magic);
777
778 /* FS independent flags */
779 #ifdef NILFS_ATIME_DISABLE
780 sb->s_flags |= MS_NOATIME;
781 #endif
782
783 nilfs_set_default_options(sbi, sbp);
784
785 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
786 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
787 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
788 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
789
790 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
791 }
792
793 /**
794 * nilfs_fill_super() - initialize a super block instance
795 * @sb: super_block
796 * @data: mount options
797 * @silent: silent mode flag
798 * @nilfs: the_nilfs struct
799 *
800 * This function is called exclusively by nilfs->ns_mount_mutex.
801 * So, the recovery process is protected from other simultaneous mounts.
802 */
803 static int
804 nilfs_fill_super(struct super_block *sb, void *data, int silent,
805 struct the_nilfs *nilfs)
806 {
807 struct nilfs_sb_info *sbi;
808 struct inode *root;
809 __u64 cno;
810 int err;
811
812 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
813 if (!sbi)
814 return -ENOMEM;
815
816 sb->s_fs_info = sbi;
817
818 get_nilfs(nilfs);
819 sbi->s_nilfs = nilfs;
820 sbi->s_super = sb;
821 atomic_set(&sbi->s_count, 1);
822
823 err = init_nilfs(nilfs, sbi, (char *)data);
824 if (err)
825 goto failed_sbi;
826
827 spin_lock_init(&sbi->s_inode_lock);
828 INIT_LIST_HEAD(&sbi->s_dirty_files);
829 INIT_LIST_HEAD(&sbi->s_list);
830
831 /*
832 * Following initialization is overlapped because
833 * nilfs_sb_info structure has been cleared at the beginning.
834 * But we reserve them to keep our interest and make ready
835 * for the future change.
836 */
837 get_random_bytes(&sbi->s_next_generation,
838 sizeof(sbi->s_next_generation));
839 spin_lock_init(&sbi->s_next_gen_lock);
840
841 sb->s_op = &nilfs_sops;
842 sb->s_export_op = &nilfs_export_ops;
843 sb->s_root = NULL;
844 sb->s_time_gran = 1;
845 sb->s_bdi = nilfs->ns_bdi;
846
847 err = load_nilfs(nilfs, sbi);
848 if (err)
849 goto failed_sbi;
850
851 cno = nilfs_last_cno(nilfs);
852
853 if (sb->s_flags & MS_RDONLY) {
854 if (nilfs_test_opt(sbi, SNAPSHOT)) {
855 down_read(&nilfs->ns_segctor_sem);
856 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
857 sbi->s_snapshot_cno);
858 up_read(&nilfs->ns_segctor_sem);
859 if (err < 0) {
860 if (err == -ENOENT)
861 err = -EINVAL;
862 goto failed_sbi;
863 }
864 if (!err) {
865 printk(KERN_ERR
866 "NILFS: The specified checkpoint is "
867 "not a snapshot "
868 "(checkpoint number=%llu).\n",
869 (unsigned long long)sbi->s_snapshot_cno);
870 err = -EINVAL;
871 goto failed_sbi;
872 }
873 cno = sbi->s_snapshot_cno;
874 }
875 }
876
877 err = nilfs_attach_checkpoint(sbi, cno);
878 if (err) {
879 printk(KERN_ERR "NILFS: error loading a checkpoint"
880 " (checkpoint number=%llu).\n", (unsigned long long)cno);
881 goto failed_sbi;
882 }
883
884 if (!(sb->s_flags & MS_RDONLY)) {
885 err = nilfs_attach_segment_constructor(sbi);
886 if (err)
887 goto failed_checkpoint;
888 }
889
890 root = nilfs_iget(sb, NILFS_ROOT_INO);
891 if (IS_ERR(root)) {
892 printk(KERN_ERR "NILFS: get root inode failed\n");
893 err = PTR_ERR(root);
894 goto failed_segctor;
895 }
896 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
897 iput(root);
898 printk(KERN_ERR "NILFS: corrupt root inode.\n");
899 err = -EINVAL;
900 goto failed_segctor;
901 }
902 sb->s_root = d_alloc_root(root);
903 if (!sb->s_root) {
904 iput(root);
905 printk(KERN_ERR "NILFS: get root dentry failed\n");
906 err = -ENOMEM;
907 goto failed_segctor;
908 }
909
910 if (!(sb->s_flags & MS_RDONLY)) {
911 down_write(&nilfs->ns_sem);
912 nilfs_setup_super(sbi);
913 up_write(&nilfs->ns_sem);
914 }
915
916 down_write(&nilfs->ns_super_sem);
917 if (!nilfs_test_opt(sbi, SNAPSHOT))
918 nilfs->ns_current = sbi;
919 up_write(&nilfs->ns_super_sem);
920
921 return 0;
922
923 failed_segctor:
924 nilfs_detach_segment_constructor(sbi);
925
926 failed_checkpoint:
927 nilfs_detach_checkpoint(sbi);
928
929 failed_sbi:
930 put_nilfs(nilfs);
931 sb->s_fs_info = NULL;
932 nilfs_put_sbinfo(sbi);
933 return err;
934 }
935
936 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
937 {
938 struct nilfs_sb_info *sbi = NILFS_SB(sb);
939 struct the_nilfs *nilfs = sbi->s_nilfs;
940 unsigned long old_sb_flags;
941 struct nilfs_mount_options old_opts;
942 int was_snapshot, err;
943
944 lock_kernel();
945
946 down_write(&nilfs->ns_super_sem);
947 old_sb_flags = sb->s_flags;
948 old_opts.mount_opt = sbi->s_mount_opt;
949 old_opts.snapshot_cno = sbi->s_snapshot_cno;
950 was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
951
952 if (!parse_options(data, sb, 1)) {
953 err = -EINVAL;
954 goto restore_opts;
955 }
956 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
957
958 err = -EINVAL;
959 if (was_snapshot && !(*flags & MS_RDONLY)) {
960 printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
961 "read/write.\n", sb->s_id);
962 goto restore_opts;
963 }
964
965 if (!nilfs_valid_fs(nilfs)) {
966 printk(KERN_WARNING "NILFS (device %s): couldn't "
967 "remount because the filesystem is in an "
968 "incomplete recovery state.\n", sb->s_id);
969 goto restore_opts;
970 }
971
972 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
973 goto out;
974 if (*flags & MS_RDONLY) {
975 /* Shutting down the segment constructor */
976 nilfs_detach_segment_constructor(sbi);
977 sb->s_flags |= MS_RDONLY;
978
979 /*
980 * Remounting a valid RW partition RDONLY, so set
981 * the RDONLY flag and then mark the partition as valid again.
982 */
983 down_write(&nilfs->ns_sem);
984 nilfs_cleanup_super(sbi);
985 up_write(&nilfs->ns_sem);
986 } else {
987 /*
988 * Mounting a RDONLY partition read-write, so reread and
989 * store the current valid flag. (It may have been changed
990 * by fsck since we originally mounted the partition.)
991 */
992 sb->s_flags &= ~MS_RDONLY;
993
994 err = nilfs_attach_segment_constructor(sbi);
995 if (err)
996 goto restore_opts;
997
998 down_write(&nilfs->ns_sem);
999 nilfs_setup_super(sbi);
1000 up_write(&nilfs->ns_sem);
1001 }
1002 out:
1003 up_write(&nilfs->ns_super_sem);
1004 unlock_kernel();
1005 return 0;
1006
1007 restore_opts:
1008 sb->s_flags = old_sb_flags;
1009 sbi->s_mount_opt = old_opts.mount_opt;
1010 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1011 up_write(&nilfs->ns_super_sem);
1012 unlock_kernel();
1013 return err;
1014 }
1015
1016 struct nilfs_super_data {
1017 struct block_device *bdev;
1018 struct nilfs_sb_info *sbi;
1019 __u64 cno;
1020 int flags;
1021 };
1022
1023 /**
1024 * nilfs_identify - pre-read mount options needed to identify mount instance
1025 * @data: mount options
1026 * @sd: nilfs_super_data
1027 */
1028 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1029 {
1030 char *p, *options = data;
1031 substring_t args[MAX_OPT_ARGS];
1032 int option, token;
1033 int ret = 0;
1034
1035 do {
1036 p = strsep(&options, ",");
1037 if (p != NULL && *p) {
1038 token = match_token(p, tokens, args);
1039 if (token == Opt_snapshot) {
1040 if (!(sd->flags & MS_RDONLY))
1041 ret++;
1042 else {
1043 ret = match_int(&args[0], &option);
1044 if (!ret) {
1045 if (option > 0)
1046 sd->cno = option;
1047 else
1048 ret++;
1049 }
1050 }
1051 }
1052 if (ret)
1053 printk(KERN_ERR
1054 "NILFS: invalid mount option: %s\n", p);
1055 }
1056 if (!options)
1057 break;
1058 BUG_ON(options == data);
1059 *(options - 1) = ',';
1060 } while (!ret);
1061 return ret;
1062 }
1063
1064 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1065 {
1066 struct nilfs_super_data *sd = data;
1067
1068 s->s_bdev = sd->bdev;
1069 s->s_dev = s->s_bdev->bd_dev;
1070 return 0;
1071 }
1072
1073 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1074 {
1075 struct nilfs_super_data *sd = data;
1076
1077 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1078 }
1079
1080 static int
1081 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1082 const char *dev_name, void *data, struct vfsmount *mnt)
1083 {
1084 struct nilfs_super_data sd;
1085 struct super_block *s;
1086 fmode_t mode = FMODE_READ;
1087 struct the_nilfs *nilfs;
1088 int err, need_to_close = 1;
1089
1090 if (!(flags & MS_RDONLY))
1091 mode |= FMODE_WRITE;
1092
1093 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1094 if (IS_ERR(sd.bdev))
1095 return PTR_ERR(sd.bdev);
1096
1097 /*
1098 * To get mount instance using sget() vfs-routine, NILFS needs
1099 * much more information than normal filesystems to identify mount
1100 * instance. For snapshot mounts, not only a mount type (ro-mount
1101 * or rw-mount) but also a checkpoint number is required.
1102 */
1103 sd.cno = 0;
1104 sd.flags = flags;
1105 if (nilfs_identify((char *)data, &sd)) {
1106 err = -EINVAL;
1107 goto failed;
1108 }
1109
1110 nilfs = find_or_create_nilfs(sd.bdev);
1111 if (!nilfs) {
1112 err = -ENOMEM;
1113 goto failed;
1114 }
1115
1116 mutex_lock(&nilfs->ns_mount_mutex);
1117
1118 if (!sd.cno) {
1119 /*
1120 * Check if an exclusive mount exists or not.
1121 * Snapshot mounts coexist with a current mount
1122 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1123 * ro-mount are mutually exclusive.
1124 */
1125 down_read(&nilfs->ns_super_sem);
1126 if (nilfs->ns_current &&
1127 ((nilfs->ns_current->s_super->s_flags ^ flags)
1128 & MS_RDONLY)) {
1129 up_read(&nilfs->ns_super_sem);
1130 err = -EBUSY;
1131 goto failed_unlock;
1132 }
1133 up_read(&nilfs->ns_super_sem);
1134 }
1135
1136 /*
1137 * Find existing nilfs_sb_info struct
1138 */
1139 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1140
1141 /*
1142 * Get super block instance holding the nilfs_sb_info struct.
1143 * A new instance is allocated if no existing mount is present or
1144 * existing instance has been unmounted.
1145 */
1146 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1147 if (sd.sbi)
1148 nilfs_put_sbinfo(sd.sbi);
1149
1150 if (IS_ERR(s)) {
1151 err = PTR_ERR(s);
1152 goto failed_unlock;
1153 }
1154
1155 if (!s->s_root) {
1156 char b[BDEVNAME_SIZE];
1157
1158 /* New superblock instance created */
1159 s->s_flags = flags;
1160 s->s_mode = mode;
1161 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1162 sb_set_blocksize(s, block_size(sd.bdev));
1163
1164 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1165 nilfs);
1166 if (err)
1167 goto cancel_new;
1168
1169 s->s_flags |= MS_ACTIVE;
1170 need_to_close = 0;
1171 }
1172
1173 mutex_unlock(&nilfs->ns_mount_mutex);
1174 put_nilfs(nilfs);
1175 if (need_to_close)
1176 close_bdev_exclusive(sd.bdev, mode);
1177 simple_set_mnt(mnt, s);
1178 return 0;
1179
1180 failed_unlock:
1181 mutex_unlock(&nilfs->ns_mount_mutex);
1182 put_nilfs(nilfs);
1183 failed:
1184 close_bdev_exclusive(sd.bdev, mode);
1185
1186 return err;
1187
1188 cancel_new:
1189 /* Abandoning the newly allocated superblock */
1190 mutex_unlock(&nilfs->ns_mount_mutex);
1191 put_nilfs(nilfs);
1192 deactivate_locked_super(s);
1193 /*
1194 * deactivate_locked_super() invokes close_bdev_exclusive().
1195 * We must finish all post-cleaning before this call;
1196 * put_nilfs() needs the block device.
1197 */
1198 return err;
1199 }
1200
1201 struct file_system_type nilfs_fs_type = {
1202 .owner = THIS_MODULE,
1203 .name = "nilfs2",
1204 .get_sb = nilfs_get_sb,
1205 .kill_sb = kill_block_super,
1206 .fs_flags = FS_REQUIRES_DEV,
1207 };
1208
1209 static void nilfs_inode_init_once(void *obj)
1210 {
1211 struct nilfs_inode_info *ii = obj;
1212
1213 INIT_LIST_HEAD(&ii->i_dirty);
1214 #ifdef CONFIG_NILFS_XATTR
1215 init_rwsem(&ii->xattr_sem);
1216 #endif
1217 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1218 ii->i_bmap = &ii->i_bmap_data;
1219 inode_init_once(&ii->vfs_inode);
1220 }
1221
1222 static void nilfs_segbuf_init_once(void *obj)
1223 {
1224 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1225 }
1226
1227 static void nilfs_destroy_cachep(void)
1228 {
1229 if (nilfs_inode_cachep)
1230 kmem_cache_destroy(nilfs_inode_cachep);
1231 if (nilfs_transaction_cachep)
1232 kmem_cache_destroy(nilfs_transaction_cachep);
1233 if (nilfs_segbuf_cachep)
1234 kmem_cache_destroy(nilfs_segbuf_cachep);
1235 if (nilfs_btree_path_cache)
1236 kmem_cache_destroy(nilfs_btree_path_cache);
1237 }
1238
1239 static int __init nilfs_init_cachep(void)
1240 {
1241 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1242 sizeof(struct nilfs_inode_info), 0,
1243 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1244 if (!nilfs_inode_cachep)
1245 goto fail;
1246
1247 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1248 sizeof(struct nilfs_transaction_info), 0,
1249 SLAB_RECLAIM_ACCOUNT, NULL);
1250 if (!nilfs_transaction_cachep)
1251 goto fail;
1252
1253 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1254 sizeof(struct nilfs_segment_buffer), 0,
1255 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1256 if (!nilfs_segbuf_cachep)
1257 goto fail;
1258
1259 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1260 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1261 0, 0, NULL);
1262 if (!nilfs_btree_path_cache)
1263 goto fail;
1264
1265 return 0;
1266
1267 fail:
1268 nilfs_destroy_cachep();
1269 return -ENOMEM;
1270 }
1271
1272 static int __init init_nilfs_fs(void)
1273 {
1274 int err;
1275
1276 err = nilfs_init_cachep();
1277 if (err)
1278 goto fail;
1279
1280 err = register_filesystem(&nilfs_fs_type);
1281 if (err)
1282 goto free_cachep;
1283
1284 printk(KERN_INFO "NILFS version 2 loaded\n");
1285 return 0;
1286
1287 free_cachep:
1288 nilfs_destroy_cachep();
1289 fail:
1290 return err;
1291 }
1292
1293 static void __exit exit_nilfs_fs(void)
1294 {
1295 nilfs_destroy_cachep();
1296 unregister_filesystem(&nilfs_fs_type);
1297 }
1298
1299 module_init(init_nilfs_fs)
1300 module_exit(exit_nilfs_fs)