]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nilfs2/super.c
nilfs2: clean up old e-mail addresses
[mirror_ubuntu-bionic-kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi.
17 */
18 /*
19 * linux/fs/ext2/super.c
20 *
21 * Copyright (C) 1992, 1993, 1994, 1995
22 * Remy Card (card@masi.ibp.fr)
23 * Laboratoire MASI - Institut Blaise Pascal
24 * Universite Pierre et Marie Curie (Paris VI)
25 *
26 * from
27 *
28 * linux/fs/minix/inode.c
29 *
30 * Copyright (C) 1991, 1992 Linus Torvalds
31 *
32 * Big-endian to little-endian byte-swapping/bitmaps by
33 * David S. Miller (davem@caip.rutgers.edu), 1995
34 */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 static void nilfs_set_error(struct super_block *sb)
75 {
76 struct the_nilfs *nilfs = sb->s_fs_info;
77 struct nilfs_super_block **sbp;
78
79 down_write(&nilfs->ns_sem);
80 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81 nilfs->ns_mount_state |= NILFS_ERROR_FS;
82 sbp = nilfs_prepare_super(sb, 0);
83 if (likely(sbp)) {
84 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85 if (sbp[1])
86 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88 }
89 }
90 up_write(&nilfs->ns_sem);
91 }
92
93 /**
94 * nilfs_error() - report failure condition on a filesystem
95 *
96 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
97 * reporting an error message. It should be called when NILFS detects
98 * incoherences or defects of meta data on disk. As for sustainable
99 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
100 * function should be used instead.
101 *
102 * The segment constructor must not call this function because it can
103 * kill itself.
104 */
105 void nilfs_error(struct super_block *sb, const char *function,
106 const char *fmt, ...)
107 {
108 struct the_nilfs *nilfs = sb->s_fs_info;
109 struct va_format vaf;
110 va_list args;
111
112 va_start(args, fmt);
113
114 vaf.fmt = fmt;
115 vaf.va = &args;
116
117 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
118 sb->s_id, function, &vaf);
119
120 va_end(args);
121
122 if (!(sb->s_flags & MS_RDONLY)) {
123 nilfs_set_error(sb);
124
125 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
126 printk(KERN_CRIT "Remounting filesystem read-only\n");
127 sb->s_flags |= MS_RDONLY;
128 }
129 }
130
131 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
132 panic("NILFS (device %s): panic forced after error\n",
133 sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137 const char *fmt, ...)
138 {
139 struct va_format vaf;
140 va_list args;
141
142 va_start(args, fmt);
143
144 vaf.fmt = fmt;
145 vaf.va = &args;
146
147 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
148 sb->s_id, function, &vaf);
149
150 va_end(args);
151 }
152
153
154 struct inode *nilfs_alloc_inode(struct super_block *sb)
155 {
156 struct nilfs_inode_info *ii;
157
158 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159 if (!ii)
160 return NULL;
161 ii->i_bh = NULL;
162 ii->i_state = 0;
163 ii->i_cno = 0;
164 ii->vfs_inode.i_version = 1;
165 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
166 return &ii->vfs_inode;
167 }
168
169 static void nilfs_i_callback(struct rcu_head *head)
170 {
171 struct inode *inode = container_of(head, struct inode, i_rcu);
172 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
173
174 if (mdi) {
175 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
176 kfree(mdi);
177 }
178 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
179 }
180
181 void nilfs_destroy_inode(struct inode *inode)
182 {
183 call_rcu(&inode->i_rcu, nilfs_i_callback);
184 }
185
186 static int nilfs_sync_super(struct super_block *sb, int flag)
187 {
188 struct the_nilfs *nilfs = sb->s_fs_info;
189 int err;
190
191 retry:
192 set_buffer_dirty(nilfs->ns_sbh[0]);
193 if (nilfs_test_opt(nilfs, BARRIER)) {
194 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
195 WRITE_SYNC | WRITE_FLUSH_FUA);
196 } else {
197 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
198 }
199
200 if (unlikely(err)) {
201 printk(KERN_ERR
202 "NILFS: unable to write superblock (err=%d)\n", err);
203 if (err == -EIO && nilfs->ns_sbh[1]) {
204 /*
205 * sbp[0] points to newer log than sbp[1],
206 * so copy sbp[0] to sbp[1] to take over sbp[0].
207 */
208 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
209 nilfs->ns_sbsize);
210 nilfs_fall_back_super_block(nilfs);
211 goto retry;
212 }
213 } else {
214 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
215
216 nilfs->ns_sbwcount++;
217
218 /*
219 * The latest segment becomes trailable from the position
220 * written in superblock.
221 */
222 clear_nilfs_discontinued(nilfs);
223
224 /* update GC protection for recent segments */
225 if (nilfs->ns_sbh[1]) {
226 if (flag == NILFS_SB_COMMIT_ALL) {
227 set_buffer_dirty(nilfs->ns_sbh[1]);
228 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
229 goto out;
230 }
231 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
232 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
233 sbp = nilfs->ns_sbp[1];
234 }
235
236 spin_lock(&nilfs->ns_last_segment_lock);
237 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
238 spin_unlock(&nilfs->ns_last_segment_lock);
239 }
240 out:
241 return err;
242 }
243
244 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
245 struct the_nilfs *nilfs)
246 {
247 sector_t nfreeblocks;
248
249 /* nilfs->ns_sem must be locked by the caller. */
250 nilfs_count_free_blocks(nilfs, &nfreeblocks);
251 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
252
253 spin_lock(&nilfs->ns_last_segment_lock);
254 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
255 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
256 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
257 spin_unlock(&nilfs->ns_last_segment_lock);
258 }
259
260 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
261 int flip)
262 {
263 struct the_nilfs *nilfs = sb->s_fs_info;
264 struct nilfs_super_block **sbp = nilfs->ns_sbp;
265
266 /* nilfs->ns_sem must be locked by the caller. */
267 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
268 if (sbp[1] &&
269 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
270 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
271 } else {
272 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
273 sb->s_id);
274 return NULL;
275 }
276 } else if (sbp[1] &&
277 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
278 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
279 }
280
281 if (flip && sbp[1])
282 nilfs_swap_super_block(nilfs);
283
284 return sbp;
285 }
286
287 int nilfs_commit_super(struct super_block *sb, int flag)
288 {
289 struct the_nilfs *nilfs = sb->s_fs_info;
290 struct nilfs_super_block **sbp = nilfs->ns_sbp;
291 time_t t;
292
293 /* nilfs->ns_sem must be locked by the caller. */
294 t = get_seconds();
295 nilfs->ns_sbwtime = t;
296 sbp[0]->s_wtime = cpu_to_le64(t);
297 sbp[0]->s_sum = 0;
298 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
299 (unsigned char *)sbp[0],
300 nilfs->ns_sbsize));
301 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
302 sbp[1]->s_wtime = sbp[0]->s_wtime;
303 sbp[1]->s_sum = 0;
304 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
305 (unsigned char *)sbp[1],
306 nilfs->ns_sbsize));
307 }
308 clear_nilfs_sb_dirty(nilfs);
309 nilfs->ns_flushed_device = 1;
310 /* make sure store to ns_flushed_device cannot be reordered */
311 smp_wmb();
312 return nilfs_sync_super(sb, flag);
313 }
314
315 /**
316 * nilfs_cleanup_super() - write filesystem state for cleanup
317 * @sb: super block instance to be unmounted or degraded to read-only
318 *
319 * This function restores state flags in the on-disk super block.
320 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
321 * filesystem was not clean previously.
322 */
323 int nilfs_cleanup_super(struct super_block *sb)
324 {
325 struct the_nilfs *nilfs = sb->s_fs_info;
326 struct nilfs_super_block **sbp;
327 int flag = NILFS_SB_COMMIT;
328 int ret = -EIO;
329
330 sbp = nilfs_prepare_super(sb, 0);
331 if (sbp) {
332 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
333 nilfs_set_log_cursor(sbp[0], nilfs);
334 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
335 /*
336 * make the "clean" flag also to the opposite
337 * super block if both super blocks point to
338 * the same checkpoint.
339 */
340 sbp[1]->s_state = sbp[0]->s_state;
341 flag = NILFS_SB_COMMIT_ALL;
342 }
343 ret = nilfs_commit_super(sb, flag);
344 }
345 return ret;
346 }
347
348 /**
349 * nilfs_move_2nd_super - relocate secondary super block
350 * @sb: super block instance
351 * @sb2off: new offset of the secondary super block (in bytes)
352 */
353 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
354 {
355 struct the_nilfs *nilfs = sb->s_fs_info;
356 struct buffer_head *nsbh;
357 struct nilfs_super_block *nsbp;
358 sector_t blocknr, newblocknr;
359 unsigned long offset;
360 int sb2i; /* array index of the secondary superblock */
361 int ret = 0;
362
363 /* nilfs->ns_sem must be locked by the caller. */
364 if (nilfs->ns_sbh[1] &&
365 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
366 sb2i = 1;
367 blocknr = nilfs->ns_sbh[1]->b_blocknr;
368 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
369 sb2i = 0;
370 blocknr = nilfs->ns_sbh[0]->b_blocknr;
371 } else {
372 sb2i = -1;
373 blocknr = 0;
374 }
375 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
376 goto out; /* super block location is unchanged */
377
378 /* Get new super block buffer */
379 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
380 offset = sb2off & (nilfs->ns_blocksize - 1);
381 nsbh = sb_getblk(sb, newblocknr);
382 if (!nsbh) {
383 printk(KERN_WARNING
384 "NILFS warning: unable to move secondary superblock "
385 "to block %llu\n", (unsigned long long)newblocknr);
386 ret = -EIO;
387 goto out;
388 }
389 nsbp = (void *)nsbh->b_data + offset;
390 memset(nsbp, 0, nilfs->ns_blocksize);
391
392 if (sb2i >= 0) {
393 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
394 brelse(nilfs->ns_sbh[sb2i]);
395 nilfs->ns_sbh[sb2i] = nsbh;
396 nilfs->ns_sbp[sb2i] = nsbp;
397 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
398 /* secondary super block will be restored to index 1 */
399 nilfs->ns_sbh[1] = nsbh;
400 nilfs->ns_sbp[1] = nsbp;
401 } else {
402 brelse(nsbh);
403 }
404 out:
405 return ret;
406 }
407
408 /**
409 * nilfs_resize_fs - resize the filesystem
410 * @sb: super block instance
411 * @newsize: new size of the filesystem (in bytes)
412 */
413 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
414 {
415 struct the_nilfs *nilfs = sb->s_fs_info;
416 struct nilfs_super_block **sbp;
417 __u64 devsize, newnsegs;
418 loff_t sb2off;
419 int ret;
420
421 ret = -ERANGE;
422 devsize = i_size_read(sb->s_bdev->bd_inode);
423 if (newsize > devsize)
424 goto out;
425
426 /*
427 * Write lock is required to protect some functions depending
428 * on the number of segments, the number of reserved segments,
429 * and so forth.
430 */
431 down_write(&nilfs->ns_segctor_sem);
432
433 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
434 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
435 do_div(newnsegs, nilfs->ns_blocks_per_segment);
436
437 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
438 up_write(&nilfs->ns_segctor_sem);
439 if (ret < 0)
440 goto out;
441
442 ret = nilfs_construct_segment(sb);
443 if (ret < 0)
444 goto out;
445
446 down_write(&nilfs->ns_sem);
447 nilfs_move_2nd_super(sb, sb2off);
448 ret = -EIO;
449 sbp = nilfs_prepare_super(sb, 0);
450 if (likely(sbp)) {
451 nilfs_set_log_cursor(sbp[0], nilfs);
452 /*
453 * Drop NILFS_RESIZE_FS flag for compatibility with
454 * mount-time resize which may be implemented in a
455 * future release.
456 */
457 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
458 ~NILFS_RESIZE_FS);
459 sbp[0]->s_dev_size = cpu_to_le64(newsize);
460 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
461 if (sbp[1])
462 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
463 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
464 }
465 up_write(&nilfs->ns_sem);
466
467 /*
468 * Reset the range of allocatable segments last. This order
469 * is important in the case of expansion because the secondary
470 * superblock must be protected from log write until migration
471 * completes.
472 */
473 if (!ret)
474 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
475 out:
476 return ret;
477 }
478
479 static void nilfs_put_super(struct super_block *sb)
480 {
481 struct the_nilfs *nilfs = sb->s_fs_info;
482
483 nilfs_detach_log_writer(sb);
484
485 if (!(sb->s_flags & MS_RDONLY)) {
486 down_write(&nilfs->ns_sem);
487 nilfs_cleanup_super(sb);
488 up_write(&nilfs->ns_sem);
489 }
490
491 iput(nilfs->ns_sufile);
492 iput(nilfs->ns_cpfile);
493 iput(nilfs->ns_dat);
494
495 destroy_nilfs(nilfs);
496 sb->s_fs_info = NULL;
497 }
498
499 static int nilfs_sync_fs(struct super_block *sb, int wait)
500 {
501 struct the_nilfs *nilfs = sb->s_fs_info;
502 struct nilfs_super_block **sbp;
503 int err = 0;
504
505 /* This function is called when super block should be written back */
506 if (wait)
507 err = nilfs_construct_segment(sb);
508
509 down_write(&nilfs->ns_sem);
510 if (nilfs_sb_dirty(nilfs)) {
511 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
512 if (likely(sbp)) {
513 nilfs_set_log_cursor(sbp[0], nilfs);
514 nilfs_commit_super(sb, NILFS_SB_COMMIT);
515 }
516 }
517 up_write(&nilfs->ns_sem);
518
519 if (!err)
520 err = nilfs_flush_device(nilfs);
521
522 return err;
523 }
524
525 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
526 struct nilfs_root **rootp)
527 {
528 struct the_nilfs *nilfs = sb->s_fs_info;
529 struct nilfs_root *root;
530 struct nilfs_checkpoint *raw_cp;
531 struct buffer_head *bh_cp;
532 int err = -ENOMEM;
533
534 root = nilfs_find_or_create_root(
535 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
536 if (!root)
537 return err;
538
539 if (root->ifile)
540 goto reuse; /* already attached checkpoint */
541
542 down_read(&nilfs->ns_segctor_sem);
543 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
544 &bh_cp);
545 up_read(&nilfs->ns_segctor_sem);
546 if (unlikely(err)) {
547 if (err == -ENOENT || err == -EINVAL) {
548 printk(KERN_ERR
549 "NILFS: Invalid checkpoint "
550 "(checkpoint number=%llu)\n",
551 (unsigned long long)cno);
552 err = -EINVAL;
553 }
554 goto failed;
555 }
556
557 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
558 &raw_cp->cp_ifile_inode, &root->ifile);
559 if (err)
560 goto failed_bh;
561
562 atomic64_set(&root->inodes_count,
563 le64_to_cpu(raw_cp->cp_inodes_count));
564 atomic64_set(&root->blocks_count,
565 le64_to_cpu(raw_cp->cp_blocks_count));
566
567 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
568
569 reuse:
570 *rootp = root;
571 return 0;
572
573 failed_bh:
574 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
575 failed:
576 nilfs_put_root(root);
577
578 return err;
579 }
580
581 static int nilfs_freeze(struct super_block *sb)
582 {
583 struct the_nilfs *nilfs = sb->s_fs_info;
584 int err;
585
586 if (sb->s_flags & MS_RDONLY)
587 return 0;
588
589 /* Mark super block clean */
590 down_write(&nilfs->ns_sem);
591 err = nilfs_cleanup_super(sb);
592 up_write(&nilfs->ns_sem);
593 return err;
594 }
595
596 static int nilfs_unfreeze(struct super_block *sb)
597 {
598 struct the_nilfs *nilfs = sb->s_fs_info;
599
600 if (sb->s_flags & MS_RDONLY)
601 return 0;
602
603 down_write(&nilfs->ns_sem);
604 nilfs_setup_super(sb, false);
605 up_write(&nilfs->ns_sem);
606 return 0;
607 }
608
609 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
610 {
611 struct super_block *sb = dentry->d_sb;
612 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
613 struct the_nilfs *nilfs = root->nilfs;
614 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
615 unsigned long long blocks;
616 unsigned long overhead;
617 unsigned long nrsvblocks;
618 sector_t nfreeblocks;
619 u64 nmaxinodes, nfreeinodes;
620 int err;
621
622 /*
623 * Compute all of the segment blocks
624 *
625 * The blocks before first segment and after last segment
626 * are excluded.
627 */
628 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
629 - nilfs->ns_first_data_block;
630 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
631
632 /*
633 * Compute the overhead
634 *
635 * When distributing meta data blocks outside segment structure,
636 * We must count them as the overhead.
637 */
638 overhead = 0;
639
640 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
641 if (unlikely(err))
642 return err;
643
644 err = nilfs_ifile_count_free_inodes(root->ifile,
645 &nmaxinodes, &nfreeinodes);
646 if (unlikely(err)) {
647 printk(KERN_WARNING
648 "NILFS warning: fail to count free inodes: err %d.\n",
649 err);
650 if (err == -ERANGE) {
651 /*
652 * If nilfs_palloc_count_max_entries() returns
653 * -ERANGE error code then we simply treat
654 * curent inodes count as maximum possible and
655 * zero as free inodes value.
656 */
657 nmaxinodes = atomic64_read(&root->inodes_count);
658 nfreeinodes = 0;
659 err = 0;
660 } else
661 return err;
662 }
663
664 buf->f_type = NILFS_SUPER_MAGIC;
665 buf->f_bsize = sb->s_blocksize;
666 buf->f_blocks = blocks - overhead;
667 buf->f_bfree = nfreeblocks;
668 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
669 (buf->f_bfree - nrsvblocks) : 0;
670 buf->f_files = nmaxinodes;
671 buf->f_ffree = nfreeinodes;
672 buf->f_namelen = NILFS_NAME_LEN;
673 buf->f_fsid.val[0] = (u32)id;
674 buf->f_fsid.val[1] = (u32)(id >> 32);
675
676 return 0;
677 }
678
679 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
680 {
681 struct super_block *sb = dentry->d_sb;
682 struct the_nilfs *nilfs = sb->s_fs_info;
683 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
684
685 if (!nilfs_test_opt(nilfs, BARRIER))
686 seq_puts(seq, ",nobarrier");
687 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
688 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
689 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
690 seq_puts(seq, ",errors=panic");
691 if (nilfs_test_opt(nilfs, ERRORS_CONT))
692 seq_puts(seq, ",errors=continue");
693 if (nilfs_test_opt(nilfs, STRICT_ORDER))
694 seq_puts(seq, ",order=strict");
695 if (nilfs_test_opt(nilfs, NORECOVERY))
696 seq_puts(seq, ",norecovery");
697 if (nilfs_test_opt(nilfs, DISCARD))
698 seq_puts(seq, ",discard");
699
700 return 0;
701 }
702
703 static const struct super_operations nilfs_sops = {
704 .alloc_inode = nilfs_alloc_inode,
705 .destroy_inode = nilfs_destroy_inode,
706 .dirty_inode = nilfs_dirty_inode,
707 .evict_inode = nilfs_evict_inode,
708 .put_super = nilfs_put_super,
709 .sync_fs = nilfs_sync_fs,
710 .freeze_fs = nilfs_freeze,
711 .unfreeze_fs = nilfs_unfreeze,
712 .statfs = nilfs_statfs,
713 .remount_fs = nilfs_remount,
714 .show_options = nilfs_show_options
715 };
716
717 enum {
718 Opt_err_cont, Opt_err_panic, Opt_err_ro,
719 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
720 Opt_discard, Opt_nodiscard, Opt_err,
721 };
722
723 static match_table_t tokens = {
724 {Opt_err_cont, "errors=continue"},
725 {Opt_err_panic, "errors=panic"},
726 {Opt_err_ro, "errors=remount-ro"},
727 {Opt_barrier, "barrier"},
728 {Opt_nobarrier, "nobarrier"},
729 {Opt_snapshot, "cp=%u"},
730 {Opt_order, "order=%s"},
731 {Opt_norecovery, "norecovery"},
732 {Opt_discard, "discard"},
733 {Opt_nodiscard, "nodiscard"},
734 {Opt_err, NULL}
735 };
736
737 static int parse_options(char *options, struct super_block *sb, int is_remount)
738 {
739 struct the_nilfs *nilfs = sb->s_fs_info;
740 char *p;
741 substring_t args[MAX_OPT_ARGS];
742
743 if (!options)
744 return 1;
745
746 while ((p = strsep(&options, ",")) != NULL) {
747 int token;
748 if (!*p)
749 continue;
750
751 token = match_token(p, tokens, args);
752 switch (token) {
753 case Opt_barrier:
754 nilfs_set_opt(nilfs, BARRIER);
755 break;
756 case Opt_nobarrier:
757 nilfs_clear_opt(nilfs, BARRIER);
758 break;
759 case Opt_order:
760 if (strcmp(args[0].from, "relaxed") == 0)
761 /* Ordered data semantics */
762 nilfs_clear_opt(nilfs, STRICT_ORDER);
763 else if (strcmp(args[0].from, "strict") == 0)
764 /* Strict in-order semantics */
765 nilfs_set_opt(nilfs, STRICT_ORDER);
766 else
767 return 0;
768 break;
769 case Opt_err_panic:
770 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
771 break;
772 case Opt_err_ro:
773 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
774 break;
775 case Opt_err_cont:
776 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
777 break;
778 case Opt_snapshot:
779 if (is_remount) {
780 printk(KERN_ERR
781 "NILFS: \"%s\" option is invalid "
782 "for remount.\n", p);
783 return 0;
784 }
785 break;
786 case Opt_norecovery:
787 nilfs_set_opt(nilfs, NORECOVERY);
788 break;
789 case Opt_discard:
790 nilfs_set_opt(nilfs, DISCARD);
791 break;
792 case Opt_nodiscard:
793 nilfs_clear_opt(nilfs, DISCARD);
794 break;
795 default:
796 printk(KERN_ERR
797 "NILFS: Unrecognized mount option \"%s\"\n", p);
798 return 0;
799 }
800 }
801 return 1;
802 }
803
804 static inline void
805 nilfs_set_default_options(struct super_block *sb,
806 struct nilfs_super_block *sbp)
807 {
808 struct the_nilfs *nilfs = sb->s_fs_info;
809
810 nilfs->ns_mount_opt =
811 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
812 }
813
814 static int nilfs_setup_super(struct super_block *sb, int is_mount)
815 {
816 struct the_nilfs *nilfs = sb->s_fs_info;
817 struct nilfs_super_block **sbp;
818 int max_mnt_count;
819 int mnt_count;
820
821 /* nilfs->ns_sem must be locked by the caller. */
822 sbp = nilfs_prepare_super(sb, 0);
823 if (!sbp)
824 return -EIO;
825
826 if (!is_mount)
827 goto skip_mount_setup;
828
829 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
830 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
831
832 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
833 printk(KERN_WARNING
834 "NILFS warning: mounting fs with errors\n");
835 #if 0
836 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
837 printk(KERN_WARNING
838 "NILFS warning: maximal mount count reached\n");
839 #endif
840 }
841 if (!max_mnt_count)
842 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
843
844 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
845 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
846
847 skip_mount_setup:
848 sbp[0]->s_state =
849 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
850 /* synchronize sbp[1] with sbp[0] */
851 if (sbp[1])
852 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
853 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
854 }
855
856 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
857 u64 pos, int blocksize,
858 struct buffer_head **pbh)
859 {
860 unsigned long long sb_index = pos;
861 unsigned long offset;
862
863 offset = do_div(sb_index, blocksize);
864 *pbh = sb_bread(sb, sb_index);
865 if (!*pbh)
866 return NULL;
867 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
868 }
869
870 int nilfs_store_magic_and_option(struct super_block *sb,
871 struct nilfs_super_block *sbp,
872 char *data)
873 {
874 struct the_nilfs *nilfs = sb->s_fs_info;
875
876 sb->s_magic = le16_to_cpu(sbp->s_magic);
877
878 /* FS independent flags */
879 #ifdef NILFS_ATIME_DISABLE
880 sb->s_flags |= MS_NOATIME;
881 #endif
882
883 nilfs_set_default_options(sb, sbp);
884
885 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
886 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
887 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
888 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
889
890 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
891 }
892
893 int nilfs_check_feature_compatibility(struct super_block *sb,
894 struct nilfs_super_block *sbp)
895 {
896 __u64 features;
897
898 features = le64_to_cpu(sbp->s_feature_incompat) &
899 ~NILFS_FEATURE_INCOMPAT_SUPP;
900 if (features) {
901 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
902 "optional features (%llx)\n",
903 (unsigned long long)features);
904 return -EINVAL;
905 }
906 features = le64_to_cpu(sbp->s_feature_compat_ro) &
907 ~NILFS_FEATURE_COMPAT_RO_SUPP;
908 if (!(sb->s_flags & MS_RDONLY) && features) {
909 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
910 "unsupported optional features (%llx)\n",
911 (unsigned long long)features);
912 return -EINVAL;
913 }
914 return 0;
915 }
916
917 static int nilfs_get_root_dentry(struct super_block *sb,
918 struct nilfs_root *root,
919 struct dentry **root_dentry)
920 {
921 struct inode *inode;
922 struct dentry *dentry;
923 int ret = 0;
924
925 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
926 if (IS_ERR(inode)) {
927 printk(KERN_ERR "NILFS: get root inode failed\n");
928 ret = PTR_ERR(inode);
929 goto out;
930 }
931 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
932 iput(inode);
933 printk(KERN_ERR "NILFS: corrupt root inode.\n");
934 ret = -EINVAL;
935 goto out;
936 }
937
938 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
939 dentry = d_find_alias(inode);
940 if (!dentry) {
941 dentry = d_make_root(inode);
942 if (!dentry) {
943 ret = -ENOMEM;
944 goto failed_dentry;
945 }
946 } else {
947 iput(inode);
948 }
949 } else {
950 dentry = d_obtain_root(inode);
951 if (IS_ERR(dentry)) {
952 ret = PTR_ERR(dentry);
953 goto failed_dentry;
954 }
955 }
956 *root_dentry = dentry;
957 out:
958 return ret;
959
960 failed_dentry:
961 printk(KERN_ERR "NILFS: get root dentry failed\n");
962 goto out;
963 }
964
965 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
966 struct dentry **root_dentry)
967 {
968 struct the_nilfs *nilfs = s->s_fs_info;
969 struct nilfs_root *root;
970 int ret;
971
972 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
973
974 down_read(&nilfs->ns_segctor_sem);
975 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
976 up_read(&nilfs->ns_segctor_sem);
977 if (ret < 0) {
978 ret = (ret == -ENOENT) ? -EINVAL : ret;
979 goto out;
980 } else if (!ret) {
981 printk(KERN_ERR "NILFS: The specified checkpoint is "
982 "not a snapshot (checkpoint number=%llu).\n",
983 (unsigned long long)cno);
984 ret = -EINVAL;
985 goto out;
986 }
987
988 ret = nilfs_attach_checkpoint(s, cno, false, &root);
989 if (ret) {
990 printk(KERN_ERR "NILFS: error loading snapshot "
991 "(checkpoint number=%llu).\n",
992 (unsigned long long)cno);
993 goto out;
994 }
995 ret = nilfs_get_root_dentry(s, root, root_dentry);
996 nilfs_put_root(root);
997 out:
998 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
999 return ret;
1000 }
1001
1002 /**
1003 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1004 * @root_dentry: root dentry of the tree to be shrunk
1005 *
1006 * This function returns true if the tree was in-use.
1007 */
1008 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1009 {
1010 shrink_dcache_parent(root_dentry);
1011 return d_count(root_dentry) > 1;
1012 }
1013
1014 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1015 {
1016 struct the_nilfs *nilfs = sb->s_fs_info;
1017 struct nilfs_root *root;
1018 struct inode *inode;
1019 struct dentry *dentry;
1020 int ret;
1021
1022 if (cno > nilfs->ns_cno)
1023 return false;
1024
1025 if (cno >= nilfs_last_cno(nilfs))
1026 return true; /* protect recent checkpoints */
1027
1028 ret = false;
1029 root = nilfs_lookup_root(nilfs, cno);
1030 if (root) {
1031 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1032 if (inode) {
1033 dentry = d_find_alias(inode);
1034 if (dentry) {
1035 ret = nilfs_tree_is_busy(dentry);
1036 dput(dentry);
1037 }
1038 iput(inode);
1039 }
1040 nilfs_put_root(root);
1041 }
1042 return ret;
1043 }
1044
1045 /**
1046 * nilfs_fill_super() - initialize a super block instance
1047 * @sb: super_block
1048 * @data: mount options
1049 * @silent: silent mode flag
1050 *
1051 * This function is called exclusively by nilfs->ns_mount_mutex.
1052 * So, the recovery process is protected from other simultaneous mounts.
1053 */
1054 static int
1055 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1056 {
1057 struct the_nilfs *nilfs;
1058 struct nilfs_root *fsroot;
1059 __u64 cno;
1060 int err;
1061
1062 nilfs = alloc_nilfs(sb->s_bdev);
1063 if (!nilfs)
1064 return -ENOMEM;
1065
1066 sb->s_fs_info = nilfs;
1067
1068 err = init_nilfs(nilfs, sb, (char *)data);
1069 if (err)
1070 goto failed_nilfs;
1071
1072 sb->s_op = &nilfs_sops;
1073 sb->s_export_op = &nilfs_export_ops;
1074 sb->s_root = NULL;
1075 sb->s_time_gran = 1;
1076 sb->s_max_links = NILFS_LINK_MAX;
1077
1078 sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1079
1080 err = load_nilfs(nilfs, sb);
1081 if (err)
1082 goto failed_nilfs;
1083
1084 cno = nilfs_last_cno(nilfs);
1085 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1086 if (err) {
1087 printk(KERN_ERR "NILFS: error loading last checkpoint "
1088 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1089 goto failed_unload;
1090 }
1091
1092 if (!(sb->s_flags & MS_RDONLY)) {
1093 err = nilfs_attach_log_writer(sb, fsroot);
1094 if (err)
1095 goto failed_checkpoint;
1096 }
1097
1098 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1099 if (err)
1100 goto failed_segctor;
1101
1102 nilfs_put_root(fsroot);
1103
1104 if (!(sb->s_flags & MS_RDONLY)) {
1105 down_write(&nilfs->ns_sem);
1106 nilfs_setup_super(sb, true);
1107 up_write(&nilfs->ns_sem);
1108 }
1109
1110 return 0;
1111
1112 failed_segctor:
1113 nilfs_detach_log_writer(sb);
1114
1115 failed_checkpoint:
1116 nilfs_put_root(fsroot);
1117
1118 failed_unload:
1119 iput(nilfs->ns_sufile);
1120 iput(nilfs->ns_cpfile);
1121 iput(nilfs->ns_dat);
1122
1123 failed_nilfs:
1124 destroy_nilfs(nilfs);
1125 return err;
1126 }
1127
1128 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1129 {
1130 struct the_nilfs *nilfs = sb->s_fs_info;
1131 unsigned long old_sb_flags;
1132 unsigned long old_mount_opt;
1133 int err;
1134
1135 sync_filesystem(sb);
1136 old_sb_flags = sb->s_flags;
1137 old_mount_opt = nilfs->ns_mount_opt;
1138
1139 if (!parse_options(data, sb, 1)) {
1140 err = -EINVAL;
1141 goto restore_opts;
1142 }
1143 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1144
1145 err = -EINVAL;
1146
1147 if (!nilfs_valid_fs(nilfs)) {
1148 printk(KERN_WARNING "NILFS (device %s): couldn't "
1149 "remount because the filesystem is in an "
1150 "incomplete recovery state.\n", sb->s_id);
1151 goto restore_opts;
1152 }
1153
1154 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1155 goto out;
1156 if (*flags & MS_RDONLY) {
1157 /* Shutting down log writer */
1158 nilfs_detach_log_writer(sb);
1159 sb->s_flags |= MS_RDONLY;
1160
1161 /*
1162 * Remounting a valid RW partition RDONLY, so set
1163 * the RDONLY flag and then mark the partition as valid again.
1164 */
1165 down_write(&nilfs->ns_sem);
1166 nilfs_cleanup_super(sb);
1167 up_write(&nilfs->ns_sem);
1168 } else {
1169 __u64 features;
1170 struct nilfs_root *root;
1171
1172 /*
1173 * Mounting a RDONLY partition read-write, so reread and
1174 * store the current valid flag. (It may have been changed
1175 * by fsck since we originally mounted the partition.)
1176 */
1177 down_read(&nilfs->ns_sem);
1178 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1179 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1180 up_read(&nilfs->ns_sem);
1181 if (features) {
1182 printk(KERN_WARNING "NILFS (device %s): couldn't "
1183 "remount RDWR because of unsupported optional "
1184 "features (%llx)\n",
1185 sb->s_id, (unsigned long long)features);
1186 err = -EROFS;
1187 goto restore_opts;
1188 }
1189
1190 sb->s_flags &= ~MS_RDONLY;
1191
1192 root = NILFS_I(d_inode(sb->s_root))->i_root;
1193 err = nilfs_attach_log_writer(sb, root);
1194 if (err)
1195 goto restore_opts;
1196
1197 down_write(&nilfs->ns_sem);
1198 nilfs_setup_super(sb, true);
1199 up_write(&nilfs->ns_sem);
1200 }
1201 out:
1202 return 0;
1203
1204 restore_opts:
1205 sb->s_flags = old_sb_flags;
1206 nilfs->ns_mount_opt = old_mount_opt;
1207 return err;
1208 }
1209
1210 struct nilfs_super_data {
1211 struct block_device *bdev;
1212 __u64 cno;
1213 int flags;
1214 };
1215
1216 /**
1217 * nilfs_identify - pre-read mount options needed to identify mount instance
1218 * @data: mount options
1219 * @sd: nilfs_super_data
1220 */
1221 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1222 {
1223 char *p, *options = data;
1224 substring_t args[MAX_OPT_ARGS];
1225 int token;
1226 int ret = 0;
1227
1228 do {
1229 p = strsep(&options, ",");
1230 if (p != NULL && *p) {
1231 token = match_token(p, tokens, args);
1232 if (token == Opt_snapshot) {
1233 if (!(sd->flags & MS_RDONLY)) {
1234 ret++;
1235 } else {
1236 sd->cno = simple_strtoull(args[0].from,
1237 NULL, 0);
1238 /*
1239 * No need to see the end pointer;
1240 * match_token() has done syntax
1241 * checking.
1242 */
1243 if (sd->cno == 0)
1244 ret++;
1245 }
1246 }
1247 if (ret)
1248 printk(KERN_ERR
1249 "NILFS: invalid mount option: %s\n", p);
1250 }
1251 if (!options)
1252 break;
1253 BUG_ON(options == data);
1254 *(options - 1) = ',';
1255 } while (!ret);
1256 return ret;
1257 }
1258
1259 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1260 {
1261 s->s_bdev = data;
1262 s->s_dev = s->s_bdev->bd_dev;
1263 return 0;
1264 }
1265
1266 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1267 {
1268 return (void *)s->s_bdev == data;
1269 }
1270
1271 static struct dentry *
1272 nilfs_mount(struct file_system_type *fs_type, int flags,
1273 const char *dev_name, void *data)
1274 {
1275 struct nilfs_super_data sd;
1276 struct super_block *s;
1277 fmode_t mode = FMODE_READ | FMODE_EXCL;
1278 struct dentry *root_dentry;
1279 int err, s_new = false;
1280
1281 if (!(flags & MS_RDONLY))
1282 mode |= FMODE_WRITE;
1283
1284 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1285 if (IS_ERR(sd.bdev))
1286 return ERR_CAST(sd.bdev);
1287
1288 sd.cno = 0;
1289 sd.flags = flags;
1290 if (nilfs_identify((char *)data, &sd)) {
1291 err = -EINVAL;
1292 goto failed;
1293 }
1294
1295 /*
1296 * once the super is inserted into the list by sget, s_umount
1297 * will protect the lockfs code from trying to start a snapshot
1298 * while we are mounting
1299 */
1300 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1301 if (sd.bdev->bd_fsfreeze_count > 0) {
1302 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1303 err = -EBUSY;
1304 goto failed;
1305 }
1306 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1307 sd.bdev);
1308 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1309 if (IS_ERR(s)) {
1310 err = PTR_ERR(s);
1311 goto failed;
1312 }
1313
1314 if (!s->s_root) {
1315 s_new = true;
1316
1317 /* New superblock instance created */
1318 s->s_mode = mode;
1319 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1320 sb_set_blocksize(s, block_size(sd.bdev));
1321
1322 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1323 if (err)
1324 goto failed_super;
1325
1326 s->s_flags |= MS_ACTIVE;
1327 } else if (!sd.cno) {
1328 if (nilfs_tree_is_busy(s->s_root)) {
1329 if ((flags ^ s->s_flags) & MS_RDONLY) {
1330 printk(KERN_ERR "NILFS: the device already "
1331 "has a %s mount.\n",
1332 (s->s_flags & MS_RDONLY) ?
1333 "read-only" : "read/write");
1334 err = -EBUSY;
1335 goto failed_super;
1336 }
1337 } else {
1338 /*
1339 * Try remount to setup mount states if the current
1340 * tree is not mounted and only snapshots use this sb.
1341 */
1342 err = nilfs_remount(s, &flags, data);
1343 if (err)
1344 goto failed_super;
1345 }
1346 }
1347
1348 if (sd.cno) {
1349 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1350 if (err)
1351 goto failed_super;
1352 } else {
1353 root_dentry = dget(s->s_root);
1354 }
1355
1356 if (!s_new)
1357 blkdev_put(sd.bdev, mode);
1358
1359 return root_dentry;
1360
1361 failed_super:
1362 deactivate_locked_super(s);
1363
1364 failed:
1365 if (!s_new)
1366 blkdev_put(sd.bdev, mode);
1367 return ERR_PTR(err);
1368 }
1369
1370 struct file_system_type nilfs_fs_type = {
1371 .owner = THIS_MODULE,
1372 .name = "nilfs2",
1373 .mount = nilfs_mount,
1374 .kill_sb = kill_block_super,
1375 .fs_flags = FS_REQUIRES_DEV,
1376 };
1377 MODULE_ALIAS_FS("nilfs2");
1378
1379 static void nilfs_inode_init_once(void *obj)
1380 {
1381 struct nilfs_inode_info *ii = obj;
1382
1383 INIT_LIST_HEAD(&ii->i_dirty);
1384 #ifdef CONFIG_NILFS_XATTR
1385 init_rwsem(&ii->xattr_sem);
1386 #endif
1387 address_space_init_once(&ii->i_btnode_cache);
1388 ii->i_bmap = &ii->i_bmap_data;
1389 inode_init_once(&ii->vfs_inode);
1390 }
1391
1392 static void nilfs_segbuf_init_once(void *obj)
1393 {
1394 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1395 }
1396
1397 static void nilfs_destroy_cachep(void)
1398 {
1399 /*
1400 * Make sure all delayed rcu free inodes are flushed before we
1401 * destroy cache.
1402 */
1403 rcu_barrier();
1404
1405 kmem_cache_destroy(nilfs_inode_cachep);
1406 kmem_cache_destroy(nilfs_transaction_cachep);
1407 kmem_cache_destroy(nilfs_segbuf_cachep);
1408 kmem_cache_destroy(nilfs_btree_path_cache);
1409 }
1410
1411 static int __init nilfs_init_cachep(void)
1412 {
1413 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1414 sizeof(struct nilfs_inode_info), 0,
1415 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1416 nilfs_inode_init_once);
1417 if (!nilfs_inode_cachep)
1418 goto fail;
1419
1420 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1421 sizeof(struct nilfs_transaction_info), 0,
1422 SLAB_RECLAIM_ACCOUNT, NULL);
1423 if (!nilfs_transaction_cachep)
1424 goto fail;
1425
1426 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1427 sizeof(struct nilfs_segment_buffer), 0,
1428 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1429 if (!nilfs_segbuf_cachep)
1430 goto fail;
1431
1432 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1433 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1434 0, 0, NULL);
1435 if (!nilfs_btree_path_cache)
1436 goto fail;
1437
1438 return 0;
1439
1440 fail:
1441 nilfs_destroy_cachep();
1442 return -ENOMEM;
1443 }
1444
1445 static int __init init_nilfs_fs(void)
1446 {
1447 int err;
1448
1449 err = nilfs_init_cachep();
1450 if (err)
1451 goto fail;
1452
1453 err = nilfs_sysfs_init();
1454 if (err)
1455 goto free_cachep;
1456
1457 err = register_filesystem(&nilfs_fs_type);
1458 if (err)
1459 goto deinit_sysfs_entry;
1460
1461 printk(KERN_INFO "NILFS version 2 loaded\n");
1462 return 0;
1463
1464 deinit_sysfs_entry:
1465 nilfs_sysfs_exit();
1466 free_cachep:
1467 nilfs_destroy_cachep();
1468 fail:
1469 return err;
1470 }
1471
1472 static void __exit exit_nilfs_fs(void)
1473 {
1474 nilfs_destroy_cachep();
1475 nilfs_sysfs_exit();
1476 unregister_filesystem(&nilfs_fs_type);
1477 }
1478
1479 module_init(init_nilfs_fs)
1480 module_exit(exit_nilfs_fs)