]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/nilfs2/super.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier...
[mirror_ubuntu-zesty-kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68 MODULE_LICENSE("GPL");
69
70 struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76
77 /**
78 * nilfs_error() - report failure condition on a filesystem
79 *
80 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
81 * reporting an error message. It should be called when NILFS detects
82 * incoherences or defects of meta data on disk. As for sustainable
83 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
84 * function should be used instead.
85 *
86 * The segment constructor must not call this function because it can
87 * kill itself.
88 */
89 void nilfs_error(struct super_block *sb, const char *function,
90 const char *fmt, ...)
91 {
92 struct nilfs_sb_info *sbi = NILFS_SB(sb);
93 va_list args;
94
95 va_start(args, fmt);
96 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
97 vprintk(fmt, args);
98 printk("\n");
99 va_end(args);
100
101 if (!(sb->s_flags & MS_RDONLY)) {
102 struct the_nilfs *nilfs = sbi->s_nilfs;
103
104 down_write(&nilfs->ns_sem);
105 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
106 nilfs->ns_mount_state |= NILFS_ERROR_FS;
107 nilfs->ns_sbp[0]->s_state |=
108 cpu_to_le16(NILFS_ERROR_FS);
109 nilfs_commit_super(sbi, 1);
110 }
111 up_write(&nilfs->ns_sem);
112
113 if (nilfs_test_opt(sbi, ERRORS_RO)) {
114 printk(KERN_CRIT "Remounting filesystem read-only\n");
115 sb->s_flags |= MS_RDONLY;
116 }
117 }
118
119 if (nilfs_test_opt(sbi, ERRORS_PANIC))
120 panic("NILFS (device %s): panic forced after error\n",
121 sb->s_id);
122 }
123
124 void nilfs_warning(struct super_block *sb, const char *function,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
131 sb->s_id, function);
132 vprintk(fmt, args);
133 printk("\n");
134 va_end(args);
135 }
136
137
138 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
139 {
140 struct nilfs_inode_info *ii;
141
142 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
143 if (!ii)
144 return NULL;
145 ii->i_bh = NULL;
146 ii->i_state = 0;
147 ii->vfs_inode.i_version = 1;
148 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
149 return &ii->vfs_inode;
150 }
151
152 struct inode *nilfs_alloc_inode(struct super_block *sb)
153 {
154 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
155 }
156
157 void nilfs_destroy_inode(struct inode *inode)
158 {
159 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
160 }
161
162 static void nilfs_clear_inode(struct inode *inode)
163 {
164 struct nilfs_inode_info *ii = NILFS_I(inode);
165
166 /*
167 * Free resources allocated in nilfs_read_inode(), here.
168 */
169 BUG_ON(!list_empty(&ii->i_dirty));
170 brelse(ii->i_bh);
171 ii->i_bh = NULL;
172
173 if (test_bit(NILFS_I_BMAP, &ii->i_state))
174 nilfs_bmap_clear(ii->i_bmap);
175
176 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
177 }
178
179 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
180 {
181 struct the_nilfs *nilfs = sbi->s_nilfs;
182 int err;
183 int barrier_done = 0;
184
185 if (nilfs_test_opt(sbi, BARRIER)) {
186 set_buffer_ordered(nilfs->ns_sbh[0]);
187 barrier_done = 1;
188 }
189 retry:
190 set_buffer_dirty(nilfs->ns_sbh[0]);
191 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
192 if (err == -EOPNOTSUPP && barrier_done) {
193 nilfs_warning(sbi->s_super, __func__,
194 "barrier-based sync failed. "
195 "disabling barriers\n");
196 nilfs_clear_opt(sbi, BARRIER);
197 barrier_done = 0;
198 clear_buffer_ordered(nilfs->ns_sbh[0]);
199 goto retry;
200 }
201 if (unlikely(err)) {
202 printk(KERN_ERR
203 "NILFS: unable to write superblock (err=%d)\n", err);
204 if (err == -EIO && nilfs->ns_sbh[1]) {
205 nilfs_fall_back_super_block(nilfs);
206 goto retry;
207 }
208 } else {
209 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
210
211 /*
212 * The latest segment becomes trailable from the position
213 * written in superblock.
214 */
215 clear_nilfs_discontinued(nilfs);
216
217 /* update GC protection for recent segments */
218 if (nilfs->ns_sbh[1]) {
219 sbp = NULL;
220 if (dupsb) {
221 set_buffer_dirty(nilfs->ns_sbh[1]);
222 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
223 sbp = nilfs->ns_sbp[1];
224 }
225 }
226 if (sbp) {
227 spin_lock(&nilfs->ns_last_segment_lock);
228 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
229 spin_unlock(&nilfs->ns_last_segment_lock);
230 }
231 }
232
233 return err;
234 }
235
236 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
237 {
238 struct the_nilfs *nilfs = sbi->s_nilfs;
239 struct nilfs_super_block **sbp = nilfs->ns_sbp;
240 sector_t nfreeblocks;
241 time_t t;
242 int err;
243
244 /* nilfs->sem must be locked by the caller. */
245 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
246 if (sbp[1] && sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC))
247 nilfs_swap_super_block(nilfs);
248 else {
249 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
250 sbi->s_super->s_id);
251 return -EIO;
252 }
253 }
254 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 if (unlikely(err)) {
256 printk(KERN_ERR "NILFS: failed to count free blocks\n");
257 return err;
258 }
259 spin_lock(&nilfs->ns_last_segment_lock);
260 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
261 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
262 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
263 spin_unlock(&nilfs->ns_last_segment_lock);
264
265 t = get_seconds();
266 nilfs->ns_sbwtime[0] = t;
267 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
268 sbp[0]->s_wtime = cpu_to_le64(t);
269 sbp[0]->s_sum = 0;
270 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
271 (unsigned char *)sbp[0],
272 nilfs->ns_sbsize));
273 if (dupsb && sbp[1]) {
274 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275 nilfs->ns_sbwtime[1] = t;
276 }
277 clear_nilfs_sb_dirty(nilfs);
278 return nilfs_sync_super(sbi, dupsb);
279 }
280
281 static void nilfs_put_super(struct super_block *sb)
282 {
283 struct nilfs_sb_info *sbi = NILFS_SB(sb);
284 struct the_nilfs *nilfs = sbi->s_nilfs;
285
286 lock_kernel();
287
288 nilfs_detach_segment_constructor(sbi);
289
290 if (!(sb->s_flags & MS_RDONLY)) {
291 down_write(&nilfs->ns_sem);
292 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
293 nilfs_commit_super(sbi, 1);
294 up_write(&nilfs->ns_sem);
295 }
296 down_write(&nilfs->ns_super_sem);
297 if (nilfs->ns_current == sbi)
298 nilfs->ns_current = NULL;
299 up_write(&nilfs->ns_super_sem);
300
301 nilfs_detach_checkpoint(sbi);
302 put_nilfs(sbi->s_nilfs);
303 sbi->s_super = NULL;
304 sb->s_fs_info = NULL;
305 nilfs_put_sbinfo(sbi);
306
307 unlock_kernel();
308 }
309
310 static int nilfs_sync_fs(struct super_block *sb, int wait)
311 {
312 struct nilfs_sb_info *sbi = NILFS_SB(sb);
313 struct the_nilfs *nilfs = sbi->s_nilfs;
314 int err = 0;
315
316 /* This function is called when super block should be written back */
317 if (wait)
318 err = nilfs_construct_segment(sb);
319
320 down_write(&nilfs->ns_sem);
321 if (nilfs_sb_dirty(nilfs))
322 nilfs_commit_super(sbi, 1);
323 up_write(&nilfs->ns_sem);
324
325 return err;
326 }
327
328 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
329 {
330 struct the_nilfs *nilfs = sbi->s_nilfs;
331 struct nilfs_checkpoint *raw_cp;
332 struct buffer_head *bh_cp;
333 int err;
334
335 down_write(&nilfs->ns_super_sem);
336 list_add(&sbi->s_list, &nilfs->ns_supers);
337 up_write(&nilfs->ns_super_sem);
338
339 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
340 if (!sbi->s_ifile)
341 return -ENOMEM;
342
343 down_read(&nilfs->ns_segctor_sem);
344 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
345 &bh_cp);
346 up_read(&nilfs->ns_segctor_sem);
347 if (unlikely(err)) {
348 if (err == -ENOENT || err == -EINVAL) {
349 printk(KERN_ERR
350 "NILFS: Invalid checkpoint "
351 "(checkpoint number=%llu)\n",
352 (unsigned long long)cno);
353 err = -EINVAL;
354 }
355 goto failed;
356 }
357 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
358 if (unlikely(err))
359 goto failed_bh;
360 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
361 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
362
363 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
364 return 0;
365
366 failed_bh:
367 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
368 failed:
369 nilfs_mdt_destroy(sbi->s_ifile);
370 sbi->s_ifile = NULL;
371
372 down_write(&nilfs->ns_super_sem);
373 list_del_init(&sbi->s_list);
374 up_write(&nilfs->ns_super_sem);
375
376 return err;
377 }
378
379 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
380 {
381 struct the_nilfs *nilfs = sbi->s_nilfs;
382
383 nilfs_mdt_destroy(sbi->s_ifile);
384 sbi->s_ifile = NULL;
385 down_write(&nilfs->ns_super_sem);
386 list_del_init(&sbi->s_list);
387 up_write(&nilfs->ns_super_sem);
388 }
389
390 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
391 {
392 struct super_block *sb = dentry->d_sb;
393 struct nilfs_sb_info *sbi = NILFS_SB(sb);
394 struct the_nilfs *nilfs = sbi->s_nilfs;
395 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
396 unsigned long long blocks;
397 unsigned long overhead;
398 unsigned long nrsvblocks;
399 sector_t nfreeblocks;
400 int err;
401
402 /*
403 * Compute all of the segment blocks
404 *
405 * The blocks before first segment and after last segment
406 * are excluded.
407 */
408 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
409 - nilfs->ns_first_data_block;
410 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
411
412 /*
413 * Compute the overhead
414 *
415 * When distributing meta data blocks outside segment structure,
416 * We must count them as the overhead.
417 */
418 overhead = 0;
419
420 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
421 if (unlikely(err))
422 return err;
423
424 buf->f_type = NILFS_SUPER_MAGIC;
425 buf->f_bsize = sb->s_blocksize;
426 buf->f_blocks = blocks - overhead;
427 buf->f_bfree = nfreeblocks;
428 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
429 (buf->f_bfree - nrsvblocks) : 0;
430 buf->f_files = atomic_read(&sbi->s_inodes_count);
431 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
432 buf->f_namelen = NILFS_NAME_LEN;
433 buf->f_fsid.val[0] = (u32)id;
434 buf->f_fsid.val[1] = (u32)(id >> 32);
435
436 return 0;
437 }
438
439 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
440 {
441 struct super_block *sb = vfs->mnt_sb;
442 struct nilfs_sb_info *sbi = NILFS_SB(sb);
443
444 if (!nilfs_test_opt(sbi, BARRIER))
445 seq_printf(seq, ",nobarrier");
446 if (nilfs_test_opt(sbi, SNAPSHOT))
447 seq_printf(seq, ",cp=%llu",
448 (unsigned long long int)sbi->s_snapshot_cno);
449 if (nilfs_test_opt(sbi, ERRORS_PANIC))
450 seq_printf(seq, ",errors=panic");
451 if (nilfs_test_opt(sbi, ERRORS_CONT))
452 seq_printf(seq, ",errors=continue");
453 if (nilfs_test_opt(sbi, STRICT_ORDER))
454 seq_printf(seq, ",order=strict");
455 if (nilfs_test_opt(sbi, NORECOVERY))
456 seq_printf(seq, ",norecovery");
457 if (nilfs_test_opt(sbi, DISCARD))
458 seq_printf(seq, ",discard");
459
460 return 0;
461 }
462
463 static const struct super_operations nilfs_sops = {
464 .alloc_inode = nilfs_alloc_inode,
465 .destroy_inode = nilfs_destroy_inode,
466 .dirty_inode = nilfs_dirty_inode,
467 /* .write_inode = nilfs_write_inode, */
468 /* .put_inode = nilfs_put_inode, */
469 /* .drop_inode = nilfs_drop_inode, */
470 .delete_inode = nilfs_delete_inode,
471 .put_super = nilfs_put_super,
472 /* .write_super = nilfs_write_super, */
473 .sync_fs = nilfs_sync_fs,
474 /* .write_super_lockfs */
475 /* .unlockfs */
476 .statfs = nilfs_statfs,
477 .remount_fs = nilfs_remount,
478 .clear_inode = nilfs_clear_inode,
479 /* .umount_begin */
480 .show_options = nilfs_show_options
481 };
482
483 static struct inode *
484 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
485 {
486 struct inode *inode;
487
488 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
489 ino != NILFS_SKETCH_INO)
490 return ERR_PTR(-ESTALE);
491
492 inode = nilfs_iget(sb, ino);
493 if (IS_ERR(inode))
494 return ERR_CAST(inode);
495 if (generation && inode->i_generation != generation) {
496 iput(inode);
497 return ERR_PTR(-ESTALE);
498 }
499
500 return inode;
501 }
502
503 static struct dentry *
504 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
505 int fh_type)
506 {
507 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
508 nilfs_nfs_get_inode);
509 }
510
511 static struct dentry *
512 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
513 int fh_type)
514 {
515 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
516 nilfs_nfs_get_inode);
517 }
518
519 static const struct export_operations nilfs_export_ops = {
520 .fh_to_dentry = nilfs_fh_to_dentry,
521 .fh_to_parent = nilfs_fh_to_parent,
522 .get_parent = nilfs_get_parent,
523 };
524
525 enum {
526 Opt_err_cont, Opt_err_panic, Opt_err_ro,
527 Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
528 Opt_discard, Opt_err,
529 };
530
531 static match_table_t tokens = {
532 {Opt_err_cont, "errors=continue"},
533 {Opt_err_panic, "errors=panic"},
534 {Opt_err_ro, "errors=remount-ro"},
535 {Opt_nobarrier, "nobarrier"},
536 {Opt_snapshot, "cp=%u"},
537 {Opt_order, "order=%s"},
538 {Opt_norecovery, "norecovery"},
539 {Opt_discard, "discard"},
540 {Opt_err, NULL}
541 };
542
543 static int parse_options(char *options, struct super_block *sb)
544 {
545 struct nilfs_sb_info *sbi = NILFS_SB(sb);
546 char *p;
547 substring_t args[MAX_OPT_ARGS];
548 int option;
549
550 if (!options)
551 return 1;
552
553 while ((p = strsep(&options, ",")) != NULL) {
554 int token;
555 if (!*p)
556 continue;
557
558 token = match_token(p, tokens, args);
559 switch (token) {
560 case Opt_nobarrier:
561 nilfs_clear_opt(sbi, BARRIER);
562 break;
563 case Opt_order:
564 if (strcmp(args[0].from, "relaxed") == 0)
565 /* Ordered data semantics */
566 nilfs_clear_opt(sbi, STRICT_ORDER);
567 else if (strcmp(args[0].from, "strict") == 0)
568 /* Strict in-order semantics */
569 nilfs_set_opt(sbi, STRICT_ORDER);
570 else
571 return 0;
572 break;
573 case Opt_err_panic:
574 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
575 break;
576 case Opt_err_ro:
577 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
578 break;
579 case Opt_err_cont:
580 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
581 break;
582 case Opt_snapshot:
583 if (match_int(&args[0], &option) || option <= 0)
584 return 0;
585 if (!(sb->s_flags & MS_RDONLY))
586 return 0;
587 sbi->s_snapshot_cno = option;
588 nilfs_set_opt(sbi, SNAPSHOT);
589 break;
590 case Opt_norecovery:
591 nilfs_set_opt(sbi, NORECOVERY);
592 break;
593 case Opt_discard:
594 nilfs_set_opt(sbi, DISCARD);
595 break;
596 default:
597 printk(KERN_ERR
598 "NILFS: Unrecognized mount option \"%s\"\n", p);
599 return 0;
600 }
601 }
602 return 1;
603 }
604
605 static inline void
606 nilfs_set_default_options(struct nilfs_sb_info *sbi,
607 struct nilfs_super_block *sbp)
608 {
609 sbi->s_mount_opt =
610 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
611 }
612
613 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
614 {
615 struct the_nilfs *nilfs = sbi->s_nilfs;
616 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
617 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
618 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
619
620 /* nilfs->sem must be locked by the caller. */
621 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
622 printk(KERN_WARNING
623 "NILFS warning: mounting fs with errors\n");
624 #if 0
625 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
626 printk(KERN_WARNING
627 "NILFS warning: maximal mount count reached\n");
628 #endif
629 }
630 if (!max_mnt_count)
631 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
632
633 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
634 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
635 sbp->s_mtime = cpu_to_le64(get_seconds());
636 return nilfs_commit_super(sbi, 1);
637 }
638
639 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
640 u64 pos, int blocksize,
641 struct buffer_head **pbh)
642 {
643 unsigned long long sb_index = pos;
644 unsigned long offset;
645
646 offset = do_div(sb_index, blocksize);
647 *pbh = sb_bread(sb, sb_index);
648 if (!*pbh)
649 return NULL;
650 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
651 }
652
653 int nilfs_store_magic_and_option(struct super_block *sb,
654 struct nilfs_super_block *sbp,
655 char *data)
656 {
657 struct nilfs_sb_info *sbi = NILFS_SB(sb);
658
659 sb->s_magic = le16_to_cpu(sbp->s_magic);
660
661 /* FS independent flags */
662 #ifdef NILFS_ATIME_DISABLE
663 sb->s_flags |= MS_NOATIME;
664 #endif
665
666 nilfs_set_default_options(sbi, sbp);
667
668 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
669 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
670 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
671 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
672
673 return !parse_options(data, sb) ? -EINVAL : 0 ;
674 }
675
676 /**
677 * nilfs_fill_super() - initialize a super block instance
678 * @sb: super_block
679 * @data: mount options
680 * @silent: silent mode flag
681 * @nilfs: the_nilfs struct
682 *
683 * This function is called exclusively by nilfs->ns_mount_mutex.
684 * So, the recovery process is protected from other simultaneous mounts.
685 */
686 static int
687 nilfs_fill_super(struct super_block *sb, void *data, int silent,
688 struct the_nilfs *nilfs)
689 {
690 struct nilfs_sb_info *sbi;
691 struct inode *root;
692 __u64 cno;
693 int err;
694
695 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
696 if (!sbi)
697 return -ENOMEM;
698
699 sb->s_fs_info = sbi;
700
701 get_nilfs(nilfs);
702 sbi->s_nilfs = nilfs;
703 sbi->s_super = sb;
704 atomic_set(&sbi->s_count, 1);
705
706 err = init_nilfs(nilfs, sbi, (char *)data);
707 if (err)
708 goto failed_sbi;
709
710 spin_lock_init(&sbi->s_inode_lock);
711 INIT_LIST_HEAD(&sbi->s_dirty_files);
712 INIT_LIST_HEAD(&sbi->s_list);
713
714 /*
715 * Following initialization is overlapped because
716 * nilfs_sb_info structure has been cleared at the beginning.
717 * But we reserve them to keep our interest and make ready
718 * for the future change.
719 */
720 get_random_bytes(&sbi->s_next_generation,
721 sizeof(sbi->s_next_generation));
722 spin_lock_init(&sbi->s_next_gen_lock);
723
724 sb->s_op = &nilfs_sops;
725 sb->s_export_op = &nilfs_export_ops;
726 sb->s_root = NULL;
727 sb->s_time_gran = 1;
728 sb->s_bdi = nilfs->ns_bdi;
729
730 err = load_nilfs(nilfs, sbi);
731 if (err)
732 goto failed_sbi;
733
734 cno = nilfs_last_cno(nilfs);
735
736 if (sb->s_flags & MS_RDONLY) {
737 if (nilfs_test_opt(sbi, SNAPSHOT)) {
738 down_read(&nilfs->ns_segctor_sem);
739 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
740 sbi->s_snapshot_cno);
741 up_read(&nilfs->ns_segctor_sem);
742 if (err < 0) {
743 if (err == -ENOENT)
744 err = -EINVAL;
745 goto failed_sbi;
746 }
747 if (!err) {
748 printk(KERN_ERR
749 "NILFS: The specified checkpoint is "
750 "not a snapshot "
751 "(checkpoint number=%llu).\n",
752 (unsigned long long)sbi->s_snapshot_cno);
753 err = -EINVAL;
754 goto failed_sbi;
755 }
756 cno = sbi->s_snapshot_cno;
757 }
758 }
759
760 err = nilfs_attach_checkpoint(sbi, cno);
761 if (err) {
762 printk(KERN_ERR "NILFS: error loading a checkpoint"
763 " (checkpoint number=%llu).\n", (unsigned long long)cno);
764 goto failed_sbi;
765 }
766
767 if (!(sb->s_flags & MS_RDONLY)) {
768 err = nilfs_attach_segment_constructor(sbi);
769 if (err)
770 goto failed_checkpoint;
771 }
772
773 root = nilfs_iget(sb, NILFS_ROOT_INO);
774 if (IS_ERR(root)) {
775 printk(KERN_ERR "NILFS: get root inode failed\n");
776 err = PTR_ERR(root);
777 goto failed_segctor;
778 }
779 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
780 iput(root);
781 printk(KERN_ERR "NILFS: corrupt root inode.\n");
782 err = -EINVAL;
783 goto failed_segctor;
784 }
785 sb->s_root = d_alloc_root(root);
786 if (!sb->s_root) {
787 iput(root);
788 printk(KERN_ERR "NILFS: get root dentry failed\n");
789 err = -ENOMEM;
790 goto failed_segctor;
791 }
792
793 if (!(sb->s_flags & MS_RDONLY)) {
794 down_write(&nilfs->ns_sem);
795 nilfs_setup_super(sbi);
796 up_write(&nilfs->ns_sem);
797 }
798
799 down_write(&nilfs->ns_super_sem);
800 if (!nilfs_test_opt(sbi, SNAPSHOT))
801 nilfs->ns_current = sbi;
802 up_write(&nilfs->ns_super_sem);
803
804 return 0;
805
806 failed_segctor:
807 nilfs_detach_segment_constructor(sbi);
808
809 failed_checkpoint:
810 nilfs_detach_checkpoint(sbi);
811
812 failed_sbi:
813 put_nilfs(nilfs);
814 sb->s_fs_info = NULL;
815 nilfs_put_sbinfo(sbi);
816 return err;
817 }
818
819 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
820 {
821 struct nilfs_sb_info *sbi = NILFS_SB(sb);
822 struct nilfs_super_block *sbp;
823 struct the_nilfs *nilfs = sbi->s_nilfs;
824 unsigned long old_sb_flags;
825 struct nilfs_mount_options old_opts;
826 int was_snapshot, err;
827
828 lock_kernel();
829
830 down_write(&nilfs->ns_super_sem);
831 old_sb_flags = sb->s_flags;
832 old_opts.mount_opt = sbi->s_mount_opt;
833 old_opts.snapshot_cno = sbi->s_snapshot_cno;
834 was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
835
836 if (!parse_options(data, sb)) {
837 err = -EINVAL;
838 goto restore_opts;
839 }
840 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
841
842 err = -EINVAL;
843 if (was_snapshot) {
844 if (!(*flags & MS_RDONLY)) {
845 printk(KERN_ERR "NILFS (device %s): cannot remount "
846 "snapshot read/write.\n",
847 sb->s_id);
848 goto restore_opts;
849 } else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) {
850 printk(KERN_ERR "NILFS (device %s): cannot "
851 "remount to a different snapshot.\n",
852 sb->s_id);
853 goto restore_opts;
854 }
855 } else {
856 if (nilfs_test_opt(sbi, SNAPSHOT)) {
857 printk(KERN_ERR "NILFS (device %s): cannot change "
858 "a regular mount to a snapshot.\n",
859 sb->s_id);
860 goto restore_opts;
861 }
862 }
863
864 if (!nilfs_valid_fs(nilfs)) {
865 printk(KERN_WARNING "NILFS (device %s): couldn't "
866 "remount because the filesystem is in an "
867 "incomplete recovery state.\n", sb->s_id);
868 goto restore_opts;
869 }
870
871 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
872 goto out;
873 if (*flags & MS_RDONLY) {
874 /* Shutting down the segment constructor */
875 nilfs_detach_segment_constructor(sbi);
876 sb->s_flags |= MS_RDONLY;
877
878 /*
879 * Remounting a valid RW partition RDONLY, so set
880 * the RDONLY flag and then mark the partition as valid again.
881 */
882 down_write(&nilfs->ns_sem);
883 sbp = nilfs->ns_sbp[0];
884 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
885 (nilfs->ns_mount_state & NILFS_VALID_FS))
886 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
887 sbp->s_mtime = cpu_to_le64(get_seconds());
888 nilfs_commit_super(sbi, 1);
889 up_write(&nilfs->ns_sem);
890 } else {
891 /*
892 * Mounting a RDONLY partition read-write, so reread and
893 * store the current valid flag. (It may have been changed
894 * by fsck since we originally mounted the partition.)
895 */
896 sb->s_flags &= ~MS_RDONLY;
897
898 err = nilfs_attach_segment_constructor(sbi);
899 if (err)
900 goto restore_opts;
901
902 down_write(&nilfs->ns_sem);
903 nilfs_setup_super(sbi);
904 up_write(&nilfs->ns_sem);
905 }
906 out:
907 up_write(&nilfs->ns_super_sem);
908 unlock_kernel();
909 return 0;
910
911 restore_opts:
912 sb->s_flags = old_sb_flags;
913 sbi->s_mount_opt = old_opts.mount_opt;
914 sbi->s_snapshot_cno = old_opts.snapshot_cno;
915 up_write(&nilfs->ns_super_sem);
916 unlock_kernel();
917 return err;
918 }
919
920 struct nilfs_super_data {
921 struct block_device *bdev;
922 struct nilfs_sb_info *sbi;
923 __u64 cno;
924 int flags;
925 };
926
927 /**
928 * nilfs_identify - pre-read mount options needed to identify mount instance
929 * @data: mount options
930 * @sd: nilfs_super_data
931 */
932 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
933 {
934 char *p, *options = data;
935 substring_t args[MAX_OPT_ARGS];
936 int option, token;
937 int ret = 0;
938
939 do {
940 p = strsep(&options, ",");
941 if (p != NULL && *p) {
942 token = match_token(p, tokens, args);
943 if (token == Opt_snapshot) {
944 if (!(sd->flags & MS_RDONLY))
945 ret++;
946 else {
947 ret = match_int(&args[0], &option);
948 if (!ret) {
949 if (option > 0)
950 sd->cno = option;
951 else
952 ret++;
953 }
954 }
955 }
956 if (ret)
957 printk(KERN_ERR
958 "NILFS: invalid mount option: %s\n", p);
959 }
960 if (!options)
961 break;
962 BUG_ON(options == data);
963 *(options - 1) = ',';
964 } while (!ret);
965 return ret;
966 }
967
968 static int nilfs_set_bdev_super(struct super_block *s, void *data)
969 {
970 struct nilfs_super_data *sd = data;
971
972 s->s_bdev = sd->bdev;
973 s->s_dev = s->s_bdev->bd_dev;
974 return 0;
975 }
976
977 static int nilfs_test_bdev_super(struct super_block *s, void *data)
978 {
979 struct nilfs_super_data *sd = data;
980
981 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
982 }
983
984 static int
985 nilfs_get_sb(struct file_system_type *fs_type, int flags,
986 const char *dev_name, void *data, struct vfsmount *mnt)
987 {
988 struct nilfs_super_data sd;
989 struct super_block *s;
990 fmode_t mode = FMODE_READ;
991 struct the_nilfs *nilfs;
992 int err, need_to_close = 1;
993
994 if (!(flags & MS_RDONLY))
995 mode |= FMODE_WRITE;
996
997 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
998 if (IS_ERR(sd.bdev))
999 return PTR_ERR(sd.bdev);
1000
1001 /*
1002 * To get mount instance using sget() vfs-routine, NILFS needs
1003 * much more information than normal filesystems to identify mount
1004 * instance. For snapshot mounts, not only a mount type (ro-mount
1005 * or rw-mount) but also a checkpoint number is required.
1006 */
1007 sd.cno = 0;
1008 sd.flags = flags;
1009 if (nilfs_identify((char *)data, &sd)) {
1010 err = -EINVAL;
1011 goto failed;
1012 }
1013
1014 nilfs = find_or_create_nilfs(sd.bdev);
1015 if (!nilfs) {
1016 err = -ENOMEM;
1017 goto failed;
1018 }
1019
1020 mutex_lock(&nilfs->ns_mount_mutex);
1021
1022 if (!sd.cno) {
1023 /*
1024 * Check if an exclusive mount exists or not.
1025 * Snapshot mounts coexist with a current mount
1026 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1027 * ro-mount are mutually exclusive.
1028 */
1029 down_read(&nilfs->ns_super_sem);
1030 if (nilfs->ns_current &&
1031 ((nilfs->ns_current->s_super->s_flags ^ flags)
1032 & MS_RDONLY)) {
1033 up_read(&nilfs->ns_super_sem);
1034 err = -EBUSY;
1035 goto failed_unlock;
1036 }
1037 up_read(&nilfs->ns_super_sem);
1038 }
1039
1040 /*
1041 * Find existing nilfs_sb_info struct
1042 */
1043 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1044
1045 /*
1046 * Get super block instance holding the nilfs_sb_info struct.
1047 * A new instance is allocated if no existing mount is present or
1048 * existing instance has been unmounted.
1049 */
1050 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1051 if (sd.sbi)
1052 nilfs_put_sbinfo(sd.sbi);
1053
1054 if (IS_ERR(s)) {
1055 err = PTR_ERR(s);
1056 goto failed_unlock;
1057 }
1058
1059 if (!s->s_root) {
1060 char b[BDEVNAME_SIZE];
1061
1062 /* New superblock instance created */
1063 s->s_flags = flags;
1064 s->s_mode = mode;
1065 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1066 sb_set_blocksize(s, block_size(sd.bdev));
1067
1068 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1069 nilfs);
1070 if (err)
1071 goto cancel_new;
1072
1073 s->s_flags |= MS_ACTIVE;
1074 need_to_close = 0;
1075 }
1076
1077 mutex_unlock(&nilfs->ns_mount_mutex);
1078 put_nilfs(nilfs);
1079 if (need_to_close)
1080 close_bdev_exclusive(sd.bdev, mode);
1081 simple_set_mnt(mnt, s);
1082 return 0;
1083
1084 failed_unlock:
1085 mutex_unlock(&nilfs->ns_mount_mutex);
1086 put_nilfs(nilfs);
1087 failed:
1088 close_bdev_exclusive(sd.bdev, mode);
1089
1090 return err;
1091
1092 cancel_new:
1093 /* Abandoning the newly allocated superblock */
1094 mutex_unlock(&nilfs->ns_mount_mutex);
1095 put_nilfs(nilfs);
1096 deactivate_locked_super(s);
1097 /*
1098 * deactivate_locked_super() invokes close_bdev_exclusive().
1099 * We must finish all post-cleaning before this call;
1100 * put_nilfs() needs the block device.
1101 */
1102 return err;
1103 }
1104
1105 struct file_system_type nilfs_fs_type = {
1106 .owner = THIS_MODULE,
1107 .name = "nilfs2",
1108 .get_sb = nilfs_get_sb,
1109 .kill_sb = kill_block_super,
1110 .fs_flags = FS_REQUIRES_DEV,
1111 };
1112
1113 static void nilfs_inode_init_once(void *obj)
1114 {
1115 struct nilfs_inode_info *ii = obj;
1116
1117 INIT_LIST_HEAD(&ii->i_dirty);
1118 #ifdef CONFIG_NILFS_XATTR
1119 init_rwsem(&ii->xattr_sem);
1120 #endif
1121 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1122 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
1123 inode_init_once(&ii->vfs_inode);
1124 }
1125
1126 static void nilfs_segbuf_init_once(void *obj)
1127 {
1128 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1129 }
1130
1131 static void nilfs_destroy_cachep(void)
1132 {
1133 if (nilfs_inode_cachep)
1134 kmem_cache_destroy(nilfs_inode_cachep);
1135 if (nilfs_transaction_cachep)
1136 kmem_cache_destroy(nilfs_transaction_cachep);
1137 if (nilfs_segbuf_cachep)
1138 kmem_cache_destroy(nilfs_segbuf_cachep);
1139 if (nilfs_btree_path_cache)
1140 kmem_cache_destroy(nilfs_btree_path_cache);
1141 }
1142
1143 static int __init nilfs_init_cachep(void)
1144 {
1145 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1146 sizeof(struct nilfs_inode_info), 0,
1147 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1148 if (!nilfs_inode_cachep)
1149 goto fail;
1150
1151 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1152 sizeof(struct nilfs_transaction_info), 0,
1153 SLAB_RECLAIM_ACCOUNT, NULL);
1154 if (!nilfs_transaction_cachep)
1155 goto fail;
1156
1157 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1158 sizeof(struct nilfs_segment_buffer), 0,
1159 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1160 if (!nilfs_segbuf_cachep)
1161 goto fail;
1162
1163 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1164 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1165 0, 0, NULL);
1166 if (!nilfs_btree_path_cache)
1167 goto fail;
1168
1169 return 0;
1170
1171 fail:
1172 nilfs_destroy_cachep();
1173 return -ENOMEM;
1174 }
1175
1176 static int __init init_nilfs_fs(void)
1177 {
1178 int err;
1179
1180 err = nilfs_init_cachep();
1181 if (err)
1182 goto fail;
1183
1184 err = register_filesystem(&nilfs_fs_type);
1185 if (err)
1186 goto free_cachep;
1187
1188 printk(KERN_INFO "NILFS version 2 loaded\n");
1189 return 0;
1190
1191 free_cachep:
1192 nilfs_destroy_cachep();
1193 fail:
1194 return err;
1195 }
1196
1197 static void __exit exit_nilfs_fs(void)
1198 {
1199 nilfs_destroy_cachep();
1200 unregister_filesystem(&nilfs_fs_type);
1201 }
1202
1203 module_init(init_nilfs_fs)
1204 module_exit(exit_nilfs_fs)