]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nilfs2/super.c
Merge branch 'fix/asoc' into for-linus
[mirror_ubuntu-artful-kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66 MODULE_LICENSE("GPL");
67
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70
71 /**
72 * nilfs_error() - report failure condition on a filesystem
73 *
74 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75 * reporting an error message. It should be called when NILFS detects
76 * incoherences or defects of meta data on disk. As for sustainable
77 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78 * function should be used instead.
79 *
80 * The segment constructor must not call this function because it can
81 * kill itself.
82 */
83 void nilfs_error(struct super_block *sb, const char *function,
84 const char *fmt, ...)
85 {
86 struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 va_list args;
88
89 va_start(args, fmt);
90 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 vprintk(fmt, args);
92 printk("\n");
93 va_end(args);
94
95 if (!(sb->s_flags & MS_RDONLY)) {
96 struct the_nilfs *nilfs = sbi->s_nilfs;
97
98 if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 nilfs_detach_segment_constructor(sbi);
100
101 down_write(&nilfs->ns_sem);
102 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 nilfs->ns_sbp[0]->s_state |=
105 cpu_to_le16(NILFS_ERROR_FS);
106 nilfs_commit_super(sbi, 1);
107 }
108 up_write(&nilfs->ns_sem);
109
110 if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 printk(KERN_CRIT "Remounting filesystem read-only\n");
112 sb->s_flags |= MS_RDONLY;
113 }
114 }
115
116 if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 panic("NILFS (device %s): panic forced after error\n",
118 sb->s_id);
119 }
120
121 void nilfs_warning(struct super_block *sb, const char *function,
122 const char *fmt, ...)
123 {
124 va_list args;
125
126 va_start(args, fmt);
127 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 sb->s_id, function);
129 vprintk(fmt, args);
130 printk("\n");
131 va_end(args);
132 }
133
134 static struct kmem_cache *nilfs_inode_cachep;
135
136 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
137 {
138 struct nilfs_inode_info *ii;
139
140 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 if (!ii)
142 return NULL;
143 ii->i_bh = NULL;
144 ii->i_state = 0;
145 ii->vfs_inode.i_version = 1;
146 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
147 return &ii->vfs_inode;
148 }
149
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
153 }
154
155 void nilfs_destroy_inode(struct inode *inode)
156 {
157 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
158 }
159
160 static void init_once(void *obj)
161 {
162 struct nilfs_inode_info *ii = obj;
163
164 INIT_LIST_HEAD(&ii->i_dirty);
165 #ifdef CONFIG_NILFS_XATTR
166 init_rwsem(&ii->xattr_sem);
167 #endif
168 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
169 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
170 inode_init_once(&ii->vfs_inode);
171 }
172
173 static int nilfs_init_inode_cache(void)
174 {
175 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
176 sizeof(struct nilfs_inode_info),
177 0, SLAB_RECLAIM_ACCOUNT,
178 init_once);
179
180 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
181 }
182
183 static inline void nilfs_destroy_inode_cache(void)
184 {
185 kmem_cache_destroy(nilfs_inode_cachep);
186 }
187
188 static void nilfs_clear_inode(struct inode *inode)
189 {
190 struct nilfs_inode_info *ii = NILFS_I(inode);
191
192 /*
193 * Free resources allocated in nilfs_read_inode(), here.
194 */
195 BUG_ON(!list_empty(&ii->i_dirty));
196 brelse(ii->i_bh);
197 ii->i_bh = NULL;
198
199 if (test_bit(NILFS_I_BMAP, &ii->i_state))
200 nilfs_bmap_clear(ii->i_bmap);
201
202 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
203 }
204
205 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
206 {
207 struct the_nilfs *nilfs = sbi->s_nilfs;
208 int err;
209 int barrier_done = 0;
210
211 if (nilfs_test_opt(sbi, BARRIER)) {
212 set_buffer_ordered(nilfs->ns_sbh[0]);
213 barrier_done = 1;
214 }
215 retry:
216 set_buffer_dirty(nilfs->ns_sbh[0]);
217 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
218 if (err == -EOPNOTSUPP && barrier_done) {
219 nilfs_warning(sbi->s_super, __func__,
220 "barrier-based sync failed. "
221 "disabling barriers\n");
222 nilfs_clear_opt(sbi, BARRIER);
223 barrier_done = 0;
224 clear_buffer_ordered(nilfs->ns_sbh[0]);
225 goto retry;
226 }
227 if (unlikely(err)) {
228 printk(KERN_ERR
229 "NILFS: unable to write superblock (err=%d)\n", err);
230 if (err == -EIO && nilfs->ns_sbh[1]) {
231 nilfs_fall_back_super_block(nilfs);
232 goto retry;
233 }
234 } else {
235 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
236
237 /*
238 * The latest segment becomes trailable from the position
239 * written in superblock.
240 */
241 clear_nilfs_discontinued(nilfs);
242
243 /* update GC protection for recent segments */
244 if (nilfs->ns_sbh[1]) {
245 sbp = NULL;
246 if (dupsb) {
247 set_buffer_dirty(nilfs->ns_sbh[1]);
248 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
249 sbp = nilfs->ns_sbp[1];
250 }
251 }
252 if (sbp) {
253 spin_lock(&nilfs->ns_last_segment_lock);
254 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
255 spin_unlock(&nilfs->ns_last_segment_lock);
256 }
257 }
258
259 return err;
260 }
261
262 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
263 {
264 struct the_nilfs *nilfs = sbi->s_nilfs;
265 struct nilfs_super_block **sbp = nilfs->ns_sbp;
266 sector_t nfreeblocks;
267 time_t t;
268 int err;
269
270 /* nilfs->sem must be locked by the caller. */
271 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
272 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
273 nilfs_swap_super_block(nilfs);
274 else {
275 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
276 sbi->s_super->s_id);
277 return -EIO;
278 }
279 }
280 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
281 if (unlikely(err)) {
282 printk(KERN_ERR "NILFS: failed to count free blocks\n");
283 return err;
284 }
285 spin_lock(&nilfs->ns_last_segment_lock);
286 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
287 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
288 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
289 spin_unlock(&nilfs->ns_last_segment_lock);
290
291 t = get_seconds();
292 nilfs->ns_sbwtime[0] = t;
293 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
294 sbp[0]->s_wtime = cpu_to_le64(t);
295 sbp[0]->s_sum = 0;
296 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297 (unsigned char *)sbp[0],
298 nilfs->ns_sbsize));
299 if (dupsb && sbp[1]) {
300 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
301 nilfs->ns_sbwtime[1] = t;
302 }
303 sbi->s_super->s_dirt = 0;
304 return nilfs_sync_super(sbi, dupsb);
305 }
306
307 static void nilfs_put_super(struct super_block *sb)
308 {
309 struct nilfs_sb_info *sbi = NILFS_SB(sb);
310 struct the_nilfs *nilfs = sbi->s_nilfs;
311
312 lock_kernel();
313
314 if (sb->s_dirt)
315 nilfs_write_super(sb);
316
317 nilfs_detach_segment_constructor(sbi);
318
319 if (!(sb->s_flags & MS_RDONLY)) {
320 down_write(&nilfs->ns_sem);
321 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
322 nilfs_commit_super(sbi, 1);
323 up_write(&nilfs->ns_sem);
324 }
325 down_write(&nilfs->ns_super_sem);
326 if (nilfs->ns_current == sbi)
327 nilfs->ns_current = NULL;
328 up_write(&nilfs->ns_super_sem);
329
330 nilfs_detach_checkpoint(sbi);
331 put_nilfs(sbi->s_nilfs);
332 sbi->s_super = NULL;
333 sb->s_fs_info = NULL;
334 nilfs_put_sbinfo(sbi);
335
336 unlock_kernel();
337 }
338
339 /**
340 * nilfs_write_super - write super block(s) of NILFS
341 * @sb: super_block
342 *
343 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
344 * clears s_dirt. This function is called in the section protected by
345 * lock_super().
346 *
347 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
348 * of the struct the_nilfs. Lock order must be as follows:
349 *
350 * 1. lock_super()
351 * 2. down_write(&nilfs->ns_sem)
352 *
353 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
354 * of the super block (nilfs->ns_sbp[]).
355 *
356 * In most cases, VFS functions call lock_super() before calling these
357 * methods. So we must be careful not to bring on deadlocks when using
358 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
359 *
360 * Note that order of lock_kernel() and lock_super() depends on contexts
361 * of VFS. We should also note that lock_kernel() can be used in its
362 * protective section and only the outermost one has an effect.
363 */
364 static void nilfs_write_super(struct super_block *sb)
365 {
366 struct nilfs_sb_info *sbi = NILFS_SB(sb);
367 struct the_nilfs *nilfs = sbi->s_nilfs;
368
369 down_write(&nilfs->ns_sem);
370 if (!(sb->s_flags & MS_RDONLY)) {
371 struct nilfs_super_block **sbp = nilfs->ns_sbp;
372 u64 t = get_seconds();
373 int dupsb;
374
375 if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
376 t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
377 up_write(&nilfs->ns_sem);
378 return;
379 }
380 dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
381 nilfs_commit_super(sbi, dupsb);
382 }
383 sb->s_dirt = 0;
384 up_write(&nilfs->ns_sem);
385 }
386
387 static int nilfs_sync_fs(struct super_block *sb, int wait)
388 {
389 int err = 0;
390
391 nilfs_write_super(sb);
392
393 /* This function is called when super block should be written back */
394 if (wait)
395 err = nilfs_construct_segment(sb);
396 return err;
397 }
398
399 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
400 {
401 struct the_nilfs *nilfs = sbi->s_nilfs;
402 struct nilfs_checkpoint *raw_cp;
403 struct buffer_head *bh_cp;
404 int err;
405
406 down_write(&nilfs->ns_super_sem);
407 list_add(&sbi->s_list, &nilfs->ns_supers);
408 up_write(&nilfs->ns_super_sem);
409
410 sbi->s_ifile = nilfs_mdt_new(
411 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
412 if (!sbi->s_ifile)
413 return -ENOMEM;
414
415 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
416 if (unlikely(err))
417 goto failed;
418
419 down_read(&nilfs->ns_segctor_sem);
420 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
421 &bh_cp);
422 up_read(&nilfs->ns_segctor_sem);
423 if (unlikely(err)) {
424 if (err == -ENOENT || err == -EINVAL) {
425 printk(KERN_ERR
426 "NILFS: Invalid checkpoint "
427 "(checkpoint number=%llu)\n",
428 (unsigned long long)cno);
429 err = -EINVAL;
430 }
431 goto failed;
432 }
433 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
434 if (unlikely(err))
435 goto failed_bh;
436 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
437 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
438
439 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
440 return 0;
441
442 failed_bh:
443 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
444 failed:
445 nilfs_mdt_destroy(sbi->s_ifile);
446 sbi->s_ifile = NULL;
447
448 down_write(&nilfs->ns_super_sem);
449 list_del_init(&sbi->s_list);
450 up_write(&nilfs->ns_super_sem);
451
452 return err;
453 }
454
455 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
456 {
457 struct the_nilfs *nilfs = sbi->s_nilfs;
458
459 nilfs_mdt_clear(sbi->s_ifile);
460 nilfs_mdt_destroy(sbi->s_ifile);
461 sbi->s_ifile = NULL;
462 down_write(&nilfs->ns_super_sem);
463 list_del_init(&sbi->s_list);
464 up_write(&nilfs->ns_super_sem);
465 }
466
467 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
468 {
469 struct the_nilfs *nilfs = sbi->s_nilfs;
470 int err = 0;
471
472 down_write(&nilfs->ns_sem);
473 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
474 nilfs->ns_mount_state |= NILFS_VALID_FS;
475 err = nilfs_commit_super(sbi, 1);
476 if (likely(!err))
477 printk(KERN_INFO "NILFS: recovery complete.\n");
478 }
479 up_write(&nilfs->ns_sem);
480 return err;
481 }
482
483 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
484 {
485 struct super_block *sb = dentry->d_sb;
486 struct nilfs_sb_info *sbi = NILFS_SB(sb);
487 struct the_nilfs *nilfs = sbi->s_nilfs;
488 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
489 unsigned long long blocks;
490 unsigned long overhead;
491 unsigned long nrsvblocks;
492 sector_t nfreeblocks;
493 int err;
494
495 /*
496 * Compute all of the segment blocks
497 *
498 * The blocks before first segment and after last segment
499 * are excluded.
500 */
501 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
502 - nilfs->ns_first_data_block;
503 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
504
505 /*
506 * Compute the overhead
507 *
508 * When distributing meta data blocks outside semgent structure,
509 * We must count them as the overhead.
510 */
511 overhead = 0;
512
513 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
514 if (unlikely(err))
515 return err;
516
517 buf->f_type = NILFS_SUPER_MAGIC;
518 buf->f_bsize = sb->s_blocksize;
519 buf->f_blocks = blocks - overhead;
520 buf->f_bfree = nfreeblocks;
521 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
522 (buf->f_bfree - nrsvblocks) : 0;
523 buf->f_files = atomic_read(&sbi->s_inodes_count);
524 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
525 buf->f_namelen = NILFS_NAME_LEN;
526 buf->f_fsid.val[0] = (u32)id;
527 buf->f_fsid.val[1] = (u32)(id >> 32);
528
529 return 0;
530 }
531
532 static struct super_operations nilfs_sops = {
533 .alloc_inode = nilfs_alloc_inode,
534 .destroy_inode = nilfs_destroy_inode,
535 .dirty_inode = nilfs_dirty_inode,
536 /* .write_inode = nilfs_write_inode, */
537 /* .put_inode = nilfs_put_inode, */
538 /* .drop_inode = nilfs_drop_inode, */
539 .delete_inode = nilfs_delete_inode,
540 .put_super = nilfs_put_super,
541 .write_super = nilfs_write_super,
542 .sync_fs = nilfs_sync_fs,
543 /* .write_super_lockfs */
544 /* .unlockfs */
545 .statfs = nilfs_statfs,
546 .remount_fs = nilfs_remount,
547 .clear_inode = nilfs_clear_inode,
548 /* .umount_begin */
549 /* .show_options */
550 };
551
552 static struct inode *
553 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
554 {
555 struct inode *inode;
556
557 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
558 ino != NILFS_SKETCH_INO)
559 return ERR_PTR(-ESTALE);
560
561 inode = nilfs_iget(sb, ino);
562 if (IS_ERR(inode))
563 return ERR_CAST(inode);
564 if (generation && inode->i_generation != generation) {
565 iput(inode);
566 return ERR_PTR(-ESTALE);
567 }
568
569 return inode;
570 }
571
572 static struct dentry *
573 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
574 int fh_type)
575 {
576 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
577 nilfs_nfs_get_inode);
578 }
579
580 static struct dentry *
581 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
582 int fh_type)
583 {
584 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
585 nilfs_nfs_get_inode);
586 }
587
588 static struct export_operations nilfs_export_ops = {
589 .fh_to_dentry = nilfs_fh_to_dentry,
590 .fh_to_parent = nilfs_fh_to_parent,
591 .get_parent = nilfs_get_parent,
592 };
593
594 enum {
595 Opt_err_cont, Opt_err_panic, Opt_err_ro,
596 Opt_barrier, Opt_snapshot, Opt_order,
597 Opt_err,
598 };
599
600 static match_table_t tokens = {
601 {Opt_err_cont, "errors=continue"},
602 {Opt_err_panic, "errors=panic"},
603 {Opt_err_ro, "errors=remount-ro"},
604 {Opt_barrier, "barrier=%s"},
605 {Opt_snapshot, "cp=%u"},
606 {Opt_order, "order=%s"},
607 {Opt_err, NULL}
608 };
609
610 static int match_bool(substring_t *s, int *result)
611 {
612 int len = s->to - s->from;
613
614 if (strncmp(s->from, "on", len) == 0)
615 *result = 1;
616 else if (strncmp(s->from, "off", len) == 0)
617 *result = 0;
618 else
619 return 1;
620 return 0;
621 }
622
623 static int parse_options(char *options, struct super_block *sb)
624 {
625 struct nilfs_sb_info *sbi = NILFS_SB(sb);
626 char *p;
627 substring_t args[MAX_OPT_ARGS];
628 int option;
629
630 if (!options)
631 return 1;
632
633 while ((p = strsep(&options, ",")) != NULL) {
634 int token;
635 if (!*p)
636 continue;
637
638 token = match_token(p, tokens, args);
639 switch (token) {
640 case Opt_barrier:
641 if (match_bool(&args[0], &option))
642 return 0;
643 if (option)
644 nilfs_set_opt(sbi, BARRIER);
645 else
646 nilfs_clear_opt(sbi, BARRIER);
647 break;
648 case Opt_order:
649 if (strcmp(args[0].from, "relaxed") == 0)
650 /* Ordered data semantics */
651 nilfs_clear_opt(sbi, STRICT_ORDER);
652 else if (strcmp(args[0].from, "strict") == 0)
653 /* Strict in-order semantics */
654 nilfs_set_opt(sbi, STRICT_ORDER);
655 else
656 return 0;
657 break;
658 case Opt_err_panic:
659 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
660 break;
661 case Opt_err_ro:
662 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
663 break;
664 case Opt_err_cont:
665 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
666 break;
667 case Opt_snapshot:
668 if (match_int(&args[0], &option) || option <= 0)
669 return 0;
670 if (!(sb->s_flags & MS_RDONLY))
671 return 0;
672 sbi->s_snapshot_cno = option;
673 nilfs_set_opt(sbi, SNAPSHOT);
674 break;
675 default:
676 printk(KERN_ERR
677 "NILFS: Unrecognized mount option \"%s\"\n", p);
678 return 0;
679 }
680 }
681 return 1;
682 }
683
684 static inline void
685 nilfs_set_default_options(struct nilfs_sb_info *sbi,
686 struct nilfs_super_block *sbp)
687 {
688 sbi->s_mount_opt =
689 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
690 }
691
692 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
693 {
694 struct the_nilfs *nilfs = sbi->s_nilfs;
695 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
696 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
697 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
698
699 /* nilfs->sem must be locked by the caller. */
700 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
701 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
702 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
703 printk(KERN_WARNING
704 "NILFS warning: mounting fs with errors\n");
705 #if 0
706 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
707 printk(KERN_WARNING
708 "NILFS warning: maximal mount count reached\n");
709 #endif
710 }
711 if (!max_mnt_count)
712 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
713
714 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
715 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
716 sbp->s_mtime = cpu_to_le64(get_seconds());
717 return nilfs_commit_super(sbi, 1);
718 }
719
720 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
721 u64 pos, int blocksize,
722 struct buffer_head **pbh)
723 {
724 unsigned long long sb_index = pos;
725 unsigned long offset;
726
727 offset = do_div(sb_index, blocksize);
728 *pbh = sb_bread(sb, sb_index);
729 if (!*pbh)
730 return NULL;
731 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
732 }
733
734 int nilfs_store_magic_and_option(struct super_block *sb,
735 struct nilfs_super_block *sbp,
736 char *data)
737 {
738 struct nilfs_sb_info *sbi = NILFS_SB(sb);
739
740 sb->s_magic = le16_to_cpu(sbp->s_magic);
741
742 /* FS independent flags */
743 #ifdef NILFS_ATIME_DISABLE
744 sb->s_flags |= MS_NOATIME;
745 #endif
746
747 nilfs_set_default_options(sbi, sbp);
748
749 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
750 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
751 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
752 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
753
754 return !parse_options(data, sb) ? -EINVAL : 0 ;
755 }
756
757 /**
758 * nilfs_fill_super() - initialize a super block instance
759 * @sb: super_block
760 * @data: mount options
761 * @silent: silent mode flag
762 * @nilfs: the_nilfs struct
763 *
764 * This function is called exclusively by nilfs->ns_mount_mutex.
765 * So, the recovery process is protected from other simultaneous mounts.
766 */
767 static int
768 nilfs_fill_super(struct super_block *sb, void *data, int silent,
769 struct the_nilfs *nilfs)
770 {
771 struct nilfs_sb_info *sbi;
772 struct inode *root;
773 __u64 cno;
774 int err;
775
776 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
777 if (!sbi)
778 return -ENOMEM;
779
780 sb->s_fs_info = sbi;
781
782 get_nilfs(nilfs);
783 sbi->s_nilfs = nilfs;
784 sbi->s_super = sb;
785 atomic_set(&sbi->s_count, 1);
786
787 err = init_nilfs(nilfs, sbi, (char *)data);
788 if (err)
789 goto failed_sbi;
790
791 spin_lock_init(&sbi->s_inode_lock);
792 INIT_LIST_HEAD(&sbi->s_dirty_files);
793 INIT_LIST_HEAD(&sbi->s_list);
794
795 /*
796 * Following initialization is overlapped because
797 * nilfs_sb_info structure has been cleared at the beginning.
798 * But we reserve them to keep our interest and make ready
799 * for the future change.
800 */
801 get_random_bytes(&sbi->s_next_generation,
802 sizeof(sbi->s_next_generation));
803 spin_lock_init(&sbi->s_next_gen_lock);
804
805 sb->s_op = &nilfs_sops;
806 sb->s_export_op = &nilfs_export_ops;
807 sb->s_root = NULL;
808 sb->s_time_gran = 1;
809
810 if (!nilfs_loaded(nilfs)) {
811 err = load_nilfs(nilfs, sbi);
812 if (err)
813 goto failed_sbi;
814 }
815 cno = nilfs_last_cno(nilfs);
816
817 if (sb->s_flags & MS_RDONLY) {
818 if (nilfs_test_opt(sbi, SNAPSHOT)) {
819 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
820 sbi->s_snapshot_cno);
821 if (err < 0)
822 goto failed_sbi;
823 if (!err) {
824 printk(KERN_ERR
825 "NILFS: The specified checkpoint is "
826 "not a snapshot "
827 "(checkpoint number=%llu).\n",
828 (unsigned long long)sbi->s_snapshot_cno);
829 err = -EINVAL;
830 goto failed_sbi;
831 }
832 cno = sbi->s_snapshot_cno;
833 } else
834 /* Read-only mount */
835 sbi->s_snapshot_cno = cno;
836 }
837
838 err = nilfs_attach_checkpoint(sbi, cno);
839 if (err) {
840 printk(KERN_ERR "NILFS: error loading a checkpoint"
841 " (checkpoint number=%llu).\n", (unsigned long long)cno);
842 goto failed_sbi;
843 }
844
845 if (!(sb->s_flags & MS_RDONLY)) {
846 err = nilfs_attach_segment_constructor(sbi);
847 if (err)
848 goto failed_checkpoint;
849 }
850
851 root = nilfs_iget(sb, NILFS_ROOT_INO);
852 if (IS_ERR(root)) {
853 printk(KERN_ERR "NILFS: get root inode failed\n");
854 err = PTR_ERR(root);
855 goto failed_segctor;
856 }
857 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
858 iput(root);
859 printk(KERN_ERR "NILFS: corrupt root inode.\n");
860 err = -EINVAL;
861 goto failed_segctor;
862 }
863 sb->s_root = d_alloc_root(root);
864 if (!sb->s_root) {
865 iput(root);
866 printk(KERN_ERR "NILFS: get root dentry failed\n");
867 err = -ENOMEM;
868 goto failed_segctor;
869 }
870
871 if (!(sb->s_flags & MS_RDONLY)) {
872 down_write(&nilfs->ns_sem);
873 nilfs_setup_super(sbi);
874 up_write(&nilfs->ns_sem);
875 }
876
877 err = nilfs_mark_recovery_complete(sbi);
878 if (unlikely(err)) {
879 printk(KERN_ERR "NILFS: recovery failed.\n");
880 goto failed_root;
881 }
882
883 down_write(&nilfs->ns_super_sem);
884 if (!nilfs_test_opt(sbi, SNAPSHOT))
885 nilfs->ns_current = sbi;
886 up_write(&nilfs->ns_super_sem);
887
888 return 0;
889
890 failed_root:
891 dput(sb->s_root);
892 sb->s_root = NULL;
893
894 failed_segctor:
895 nilfs_detach_segment_constructor(sbi);
896
897 failed_checkpoint:
898 nilfs_detach_checkpoint(sbi);
899
900 failed_sbi:
901 put_nilfs(nilfs);
902 sb->s_fs_info = NULL;
903 nilfs_put_sbinfo(sbi);
904 return err;
905 }
906
907 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
908 {
909 struct nilfs_sb_info *sbi = NILFS_SB(sb);
910 struct nilfs_super_block *sbp;
911 struct the_nilfs *nilfs = sbi->s_nilfs;
912 unsigned long old_sb_flags;
913 struct nilfs_mount_options old_opts;
914 int err;
915
916 lock_kernel();
917
918 down_write(&nilfs->ns_super_sem);
919 old_sb_flags = sb->s_flags;
920 old_opts.mount_opt = sbi->s_mount_opt;
921 old_opts.snapshot_cno = sbi->s_snapshot_cno;
922
923 if (!parse_options(data, sb)) {
924 err = -EINVAL;
925 goto restore_opts;
926 }
927 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
928
929 if ((*flags & MS_RDONLY) &&
930 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
931 printk(KERN_WARNING "NILFS (device %s): couldn't "
932 "remount to a different snapshot. \n",
933 sb->s_id);
934 err = -EINVAL;
935 goto restore_opts;
936 }
937
938 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
939 goto out;
940 if (*flags & MS_RDONLY) {
941 /* Shutting down the segment constructor */
942 nilfs_detach_segment_constructor(sbi);
943 sb->s_flags |= MS_RDONLY;
944
945 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
946 /* nilfs_set_opt(sbi, SNAPSHOT); */
947
948 /*
949 * Remounting a valid RW partition RDONLY, so set
950 * the RDONLY flag and then mark the partition as valid again.
951 */
952 down_write(&nilfs->ns_sem);
953 sbp = nilfs->ns_sbp[0];
954 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
955 (nilfs->ns_mount_state & NILFS_VALID_FS))
956 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
957 sbp->s_mtime = cpu_to_le64(get_seconds());
958 nilfs_commit_super(sbi, 1);
959 up_write(&nilfs->ns_sem);
960 } else {
961 /*
962 * Mounting a RDONLY partition read-write, so reread and
963 * store the current valid flag. (It may have been changed
964 * by fsck since we originally mounted the partition.)
965 */
966 if (nilfs->ns_current && nilfs->ns_current != sbi) {
967 printk(KERN_WARNING "NILFS (device %s): couldn't "
968 "remount because an RW-mount exists.\n",
969 sb->s_id);
970 err = -EBUSY;
971 goto restore_opts;
972 }
973 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
974 printk(KERN_WARNING "NILFS (device %s): couldn't "
975 "remount because the current RO-mount is not "
976 "the latest one.\n",
977 sb->s_id);
978 err = -EINVAL;
979 goto restore_opts;
980 }
981 sb->s_flags &= ~MS_RDONLY;
982 nilfs_clear_opt(sbi, SNAPSHOT);
983 sbi->s_snapshot_cno = 0;
984
985 err = nilfs_attach_segment_constructor(sbi);
986 if (err)
987 goto restore_opts;
988
989 down_write(&nilfs->ns_sem);
990 nilfs_setup_super(sbi);
991 up_write(&nilfs->ns_sem);
992
993 nilfs->ns_current = sbi;
994 }
995 out:
996 up_write(&nilfs->ns_super_sem);
997 unlock_kernel();
998 return 0;
999
1000 restore_opts:
1001 sb->s_flags = old_sb_flags;
1002 sbi->s_mount_opt = old_opts.mount_opt;
1003 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1004 up_write(&nilfs->ns_super_sem);
1005 unlock_kernel();
1006 return err;
1007 }
1008
1009 struct nilfs_super_data {
1010 struct block_device *bdev;
1011 struct nilfs_sb_info *sbi;
1012 __u64 cno;
1013 int flags;
1014 };
1015
1016 /**
1017 * nilfs_identify - pre-read mount options needed to identify mount instance
1018 * @data: mount options
1019 * @sd: nilfs_super_data
1020 */
1021 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1022 {
1023 char *p, *options = data;
1024 substring_t args[MAX_OPT_ARGS];
1025 int option, token;
1026 int ret = 0;
1027
1028 do {
1029 p = strsep(&options, ",");
1030 if (p != NULL && *p) {
1031 token = match_token(p, tokens, args);
1032 if (token == Opt_snapshot) {
1033 if (!(sd->flags & MS_RDONLY))
1034 ret++;
1035 else {
1036 ret = match_int(&args[0], &option);
1037 if (!ret) {
1038 if (option > 0)
1039 sd->cno = option;
1040 else
1041 ret++;
1042 }
1043 }
1044 }
1045 if (ret)
1046 printk(KERN_ERR
1047 "NILFS: invalid mount option: %s\n", p);
1048 }
1049 if (!options)
1050 break;
1051 BUG_ON(options == data);
1052 *(options - 1) = ',';
1053 } while (!ret);
1054 return ret;
1055 }
1056
1057 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1058 {
1059 struct nilfs_super_data *sd = data;
1060
1061 s->s_bdev = sd->bdev;
1062 s->s_dev = s->s_bdev->bd_dev;
1063 return 0;
1064 }
1065
1066 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1067 {
1068 struct nilfs_super_data *sd = data;
1069
1070 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1071 }
1072
1073 static int
1074 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1075 const char *dev_name, void *data, struct vfsmount *mnt)
1076 {
1077 struct nilfs_super_data sd;
1078 struct super_block *s;
1079 struct the_nilfs *nilfs;
1080 int err, need_to_close = 1;
1081
1082 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1083 if (IS_ERR(sd.bdev))
1084 return PTR_ERR(sd.bdev);
1085
1086 /*
1087 * To get mount instance using sget() vfs-routine, NILFS needs
1088 * much more information than normal filesystems to identify mount
1089 * instance. For snapshot mounts, not only a mount type (ro-mount
1090 * or rw-mount) but also a checkpoint number is required.
1091 */
1092 sd.cno = 0;
1093 sd.flags = flags;
1094 if (nilfs_identify((char *)data, &sd)) {
1095 err = -EINVAL;
1096 goto failed;
1097 }
1098
1099 nilfs = find_or_create_nilfs(sd.bdev);
1100 if (!nilfs) {
1101 err = -ENOMEM;
1102 goto failed;
1103 }
1104
1105 mutex_lock(&nilfs->ns_mount_mutex);
1106
1107 if (!sd.cno) {
1108 /*
1109 * Check if an exclusive mount exists or not.
1110 * Snapshot mounts coexist with a current mount
1111 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1112 * ro-mount are mutually exclusive.
1113 */
1114 down_read(&nilfs->ns_super_sem);
1115 if (nilfs->ns_current &&
1116 ((nilfs->ns_current->s_super->s_flags ^ flags)
1117 & MS_RDONLY)) {
1118 up_read(&nilfs->ns_super_sem);
1119 err = -EBUSY;
1120 goto failed_unlock;
1121 }
1122 up_read(&nilfs->ns_super_sem);
1123 }
1124
1125 /*
1126 * Find existing nilfs_sb_info struct
1127 */
1128 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1129
1130 if (!sd.cno)
1131 /* trying to get the latest checkpoint. */
1132 sd.cno = nilfs_last_cno(nilfs);
1133
1134 /*
1135 * Get super block instance holding the nilfs_sb_info struct.
1136 * A new instance is allocated if no existing mount is present or
1137 * existing instance has been unmounted.
1138 */
1139 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1140 if (sd.sbi)
1141 nilfs_put_sbinfo(sd.sbi);
1142
1143 if (IS_ERR(s)) {
1144 err = PTR_ERR(s);
1145 goto failed_unlock;
1146 }
1147
1148 if (!s->s_root) {
1149 char b[BDEVNAME_SIZE];
1150
1151 /* New superblock instance created */
1152 s->s_flags = flags;
1153 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1154 sb_set_blocksize(s, block_size(sd.bdev));
1155
1156 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1157 if (err)
1158 goto cancel_new;
1159
1160 s->s_flags |= MS_ACTIVE;
1161 need_to_close = 0;
1162 }
1163
1164 mutex_unlock(&nilfs->ns_mount_mutex);
1165 put_nilfs(nilfs);
1166 if (need_to_close)
1167 close_bdev_exclusive(sd.bdev, flags);
1168 simple_set_mnt(mnt, s);
1169 return 0;
1170
1171 failed_unlock:
1172 mutex_unlock(&nilfs->ns_mount_mutex);
1173 put_nilfs(nilfs);
1174 failed:
1175 close_bdev_exclusive(sd.bdev, flags);
1176
1177 return err;
1178
1179 cancel_new:
1180 /* Abandoning the newly allocated superblock */
1181 mutex_unlock(&nilfs->ns_mount_mutex);
1182 put_nilfs(nilfs);
1183 up_write(&s->s_umount);
1184 deactivate_super(s);
1185 /*
1186 * deactivate_super() invokes close_bdev_exclusive().
1187 * We must finish all post-cleaning before this call;
1188 * put_nilfs() needs the block device.
1189 */
1190 return err;
1191 }
1192
1193 struct file_system_type nilfs_fs_type = {
1194 .owner = THIS_MODULE,
1195 .name = "nilfs2",
1196 .get_sb = nilfs_get_sb,
1197 .kill_sb = kill_block_super,
1198 .fs_flags = FS_REQUIRES_DEV,
1199 };
1200
1201 static int __init init_nilfs_fs(void)
1202 {
1203 int err;
1204
1205 err = nilfs_init_inode_cache();
1206 if (err)
1207 goto failed;
1208
1209 err = nilfs_init_transaction_cache();
1210 if (err)
1211 goto failed_inode_cache;
1212
1213 err = nilfs_init_segbuf_cache();
1214 if (err)
1215 goto failed_transaction_cache;
1216
1217 err = nilfs_btree_path_cache_init();
1218 if (err)
1219 goto failed_segbuf_cache;
1220
1221 err = register_filesystem(&nilfs_fs_type);
1222 if (err)
1223 goto failed_btree_path_cache;
1224
1225 return 0;
1226
1227 failed_btree_path_cache:
1228 nilfs_btree_path_cache_destroy();
1229
1230 failed_segbuf_cache:
1231 nilfs_destroy_segbuf_cache();
1232
1233 failed_transaction_cache:
1234 nilfs_destroy_transaction_cache();
1235
1236 failed_inode_cache:
1237 nilfs_destroy_inode_cache();
1238
1239 failed:
1240 return err;
1241 }
1242
1243 static void __exit exit_nilfs_fs(void)
1244 {
1245 nilfs_destroy_segbuf_cache();
1246 nilfs_destroy_transaction_cache();
1247 nilfs_destroy_inode_cache();
1248 nilfs_btree_path_cache_destroy();
1249 unregister_filesystem(&nilfs_fs_type);
1250 }
1251
1252 module_init(init_nilfs_fs)
1253 module_exit(exit_nilfs_fs)