]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ntfs/inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-zesty-kernel.git] / fs / ntfs / inode.c
1 /**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 #include <linux/aio.h>
32
33 #include "aops.h"
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "dir.h"
37 #include "debug.h"
38 #include "inode.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "time.h"
43 #include "ntfs.h"
44
45 /**
46 * ntfs_test_inode - compare two (possibly fake) inodes for equality
47 * @vi: vfs inode which to test
48 * @na: ntfs attribute which is being tested with
49 *
50 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51 * inode @vi for equality with the ntfs attribute @na.
52 *
53 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54 * @na->name and @na->name_len are then ignored.
55 *
56 * Return 1 if the attributes match and 0 if not.
57 *
58 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
59 * allowed to sleep.
60 */
61 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
62 {
63 ntfs_inode *ni;
64
65 if (vi->i_ino != na->mft_no)
66 return 0;
67 ni = NTFS_I(vi);
68 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 if (likely(!NInoAttr(ni))) {
70 /* If not looking for a normal inode this is a mismatch. */
71 if (unlikely(na->type != AT_UNUSED))
72 return 0;
73 } else {
74 /* A fake inode describing an attribute. */
75 if (ni->type != na->type)
76 return 0;
77 if (ni->name_len != na->name_len)
78 return 0;
79 if (na->name_len && memcmp(ni->name, na->name,
80 na->name_len * sizeof(ntfschar)))
81 return 0;
82 }
83 /* Match! */
84 return 1;
85 }
86
87 /**
88 * ntfs_init_locked_inode - initialize an inode
89 * @vi: vfs inode to initialize
90 * @na: ntfs attribute which to initialize @vi to
91 *
92 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93 * order to enable ntfs_test_inode() to do its work.
94 *
95 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96 * In that case, @na->name and @na->name_len should be set to NULL and 0,
97 * respectively. Although that is not strictly necessary as
98 * ntfs_read_locked_inode() will fill them in later.
99 *
100 * Return 0 on success and -errno on error.
101 *
102 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
103 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 */
105 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 {
107 ntfs_inode *ni = NTFS_I(vi);
108
109 vi->i_ino = na->mft_no;
110
111 ni->type = na->type;
112 if (na->type == AT_INDEX_ALLOCATION)
113 NInoSetMstProtected(ni);
114
115 ni->name = na->name;
116 ni->name_len = na->name_len;
117
118 /* If initializing a normal inode, we are done. */
119 if (likely(na->type == AT_UNUSED)) {
120 BUG_ON(na->name);
121 BUG_ON(na->name_len);
122 return 0;
123 }
124
125 /* It is a fake inode. */
126 NInoSetAttr(ni);
127
128 /*
129 * We have I30 global constant as an optimization as it is the name
130 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 * allocation but that is ok. And most attributes are unnamed anyway,
132 * thus the fraction of named attributes with name != I30 is actually
133 * absolutely tiny.
134 */
135 if (na->name_len && na->name != I30) {
136 unsigned int i;
137
138 BUG_ON(!na->name);
139 i = na->name_len * sizeof(ntfschar);
140 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
141 if (!ni->name)
142 return -ENOMEM;
143 memcpy(ni->name, na->name, i);
144 ni->name[na->name_len] = 0;
145 }
146 return 0;
147 }
148
149 typedef int (*set_t)(struct inode *, void *);
150 static int ntfs_read_locked_inode(struct inode *vi);
151 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
152 static int ntfs_read_locked_index_inode(struct inode *base_vi,
153 struct inode *vi);
154
155 /**
156 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157 * @sb: super block of mounted volume
158 * @mft_no: mft record number / inode number to obtain
159 *
160 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161 * file or directory).
162 *
163 * If the inode is in the cache, it is just returned with an increased
164 * reference count. Otherwise, a new struct inode is allocated and initialized,
165 * and finally ntfs_read_locked_inode() is called to read in the inode and
166 * fill in the remainder of the inode structure.
167 *
168 * Return the struct inode on success. Check the return value with IS_ERR() and
169 * if true, the function failed and the error code is obtained from PTR_ERR().
170 */
171 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
172 {
173 struct inode *vi;
174 int err;
175 ntfs_attr na;
176
177 na.mft_no = mft_no;
178 na.type = AT_UNUSED;
179 na.name = NULL;
180 na.name_len = 0;
181
182 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
183 (set_t)ntfs_init_locked_inode, &na);
184 if (unlikely(!vi))
185 return ERR_PTR(-ENOMEM);
186
187 err = 0;
188
189 /* If this is a freshly allocated inode, need to read it now. */
190 if (vi->i_state & I_NEW) {
191 err = ntfs_read_locked_inode(vi);
192 unlock_new_inode(vi);
193 }
194 /*
195 * There is no point in keeping bad inodes around if the failure was
196 * due to ENOMEM. We want to be able to retry again later.
197 */
198 if (unlikely(err == -ENOMEM)) {
199 iput(vi);
200 vi = ERR_PTR(err);
201 }
202 return vi;
203 }
204
205 /**
206 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207 * @base_vi: vfs base inode containing the attribute
208 * @type: attribute type
209 * @name: Unicode name of the attribute (NULL if unnamed)
210 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 *
212 * Obtain the (fake) struct inode corresponding to the attribute specified by
213 * @type, @name, and @name_len, which is present in the base mft record
214 * specified by the vfs inode @base_vi.
215 *
216 * If the attribute inode is in the cache, it is just returned with an
217 * increased reference count. Otherwise, a new struct inode is allocated and
218 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219 * attribute and fill in the inode structure.
220 *
221 * Note, for index allocation attributes, you need to use ntfs_index_iget()
222 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 *
224 * Return the struct inode of the attribute inode on success. Check the return
225 * value with IS_ERR() and if true, the function failed and the error code is
226 * obtained from PTR_ERR().
227 */
228 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
229 ntfschar *name, u32 name_len)
230 {
231 struct inode *vi;
232 int err;
233 ntfs_attr na;
234
235 /* Make sure no one calls ntfs_attr_iget() for indices. */
236 BUG_ON(type == AT_INDEX_ALLOCATION);
237
238 na.mft_no = base_vi->i_ino;
239 na.type = type;
240 na.name = name;
241 na.name_len = name_len;
242
243 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
244 (set_t)ntfs_init_locked_inode, &na);
245 if (unlikely(!vi))
246 return ERR_PTR(-ENOMEM);
247
248 err = 0;
249
250 /* If this is a freshly allocated inode, need to read it now. */
251 if (vi->i_state & I_NEW) {
252 err = ntfs_read_locked_attr_inode(base_vi, vi);
253 unlock_new_inode(vi);
254 }
255 /*
256 * There is no point in keeping bad attribute inodes around. This also
257 * simplifies things in that we never need to check for bad attribute
258 * inodes elsewhere.
259 */
260 if (unlikely(err)) {
261 iput(vi);
262 vi = ERR_PTR(err);
263 }
264 return vi;
265 }
266
267 /**
268 * ntfs_index_iget - obtain a struct inode corresponding to an index
269 * @base_vi: vfs base inode containing the index related attributes
270 * @name: Unicode name of the index
271 * @name_len: length of @name in Unicode characters
272 *
273 * Obtain the (fake) struct inode corresponding to the index specified by @name
274 * and @name_len, which is present in the base mft record specified by the vfs
275 * inode @base_vi.
276 *
277 * If the index inode is in the cache, it is just returned with an increased
278 * reference count. Otherwise, a new struct inode is allocated and
279 * initialized, and finally ntfs_read_locked_index_inode() is called to read
280 * the index related attributes and fill in the inode structure.
281 *
282 * Return the struct inode of the index inode on success. Check the return
283 * value with IS_ERR() and if true, the function failed and the error code is
284 * obtained from PTR_ERR().
285 */
286 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
287 u32 name_len)
288 {
289 struct inode *vi;
290 int err;
291 ntfs_attr na;
292
293 na.mft_no = base_vi->i_ino;
294 na.type = AT_INDEX_ALLOCATION;
295 na.name = name;
296 na.name_len = name_len;
297
298 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
299 (set_t)ntfs_init_locked_inode, &na);
300 if (unlikely(!vi))
301 return ERR_PTR(-ENOMEM);
302
303 err = 0;
304
305 /* If this is a freshly allocated inode, need to read it now. */
306 if (vi->i_state & I_NEW) {
307 err = ntfs_read_locked_index_inode(base_vi, vi);
308 unlock_new_inode(vi);
309 }
310 /*
311 * There is no point in keeping bad index inodes around. This also
312 * simplifies things in that we never need to check for bad index
313 * inodes elsewhere.
314 */
315 if (unlikely(err)) {
316 iput(vi);
317 vi = ERR_PTR(err);
318 }
319 return vi;
320 }
321
322 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
323 {
324 ntfs_inode *ni;
325
326 ntfs_debug("Entering.");
327 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
328 if (likely(ni != NULL)) {
329 ni->state = 0;
330 return VFS_I(ni);
331 }
332 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
333 return NULL;
334 }
335
336 static void ntfs_i_callback(struct rcu_head *head)
337 {
338 struct inode *inode = container_of(head, struct inode, i_rcu);
339 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
340 }
341
342 void ntfs_destroy_big_inode(struct inode *inode)
343 {
344 ntfs_inode *ni = NTFS_I(inode);
345
346 ntfs_debug("Entering.");
347 BUG_ON(ni->page);
348 if (!atomic_dec_and_test(&ni->count))
349 BUG();
350 call_rcu(&inode->i_rcu, ntfs_i_callback);
351 }
352
353 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
354 {
355 ntfs_inode *ni;
356
357 ntfs_debug("Entering.");
358 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
359 if (likely(ni != NULL)) {
360 ni->state = 0;
361 return ni;
362 }
363 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
364 return NULL;
365 }
366
367 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
368 {
369 ntfs_debug("Entering.");
370 BUG_ON(ni->page);
371 if (!atomic_dec_and_test(&ni->count))
372 BUG();
373 kmem_cache_free(ntfs_inode_cache, ni);
374 }
375
376 /*
377 * The attribute runlist lock has separate locking rules from the
378 * normal runlist lock, so split the two lock-classes:
379 */
380 static struct lock_class_key attr_list_rl_lock_class;
381
382 /**
383 * __ntfs_init_inode - initialize ntfs specific part of an inode
384 * @sb: super block of mounted volume
385 * @ni: freshly allocated ntfs inode which to initialize
386 *
387 * Initialize an ntfs inode to defaults.
388 *
389 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
390 * untouched. Make sure to initialize them elsewhere.
391 *
392 * Return zero on success and -ENOMEM on error.
393 */
394 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
395 {
396 ntfs_debug("Entering.");
397 rwlock_init(&ni->size_lock);
398 ni->initialized_size = ni->allocated_size = 0;
399 ni->seq_no = 0;
400 atomic_set(&ni->count, 1);
401 ni->vol = NTFS_SB(sb);
402 ntfs_init_runlist(&ni->runlist);
403 mutex_init(&ni->mrec_lock);
404 ni->page = NULL;
405 ni->page_ofs = 0;
406 ni->attr_list_size = 0;
407 ni->attr_list = NULL;
408 ntfs_init_runlist(&ni->attr_list_rl);
409 lockdep_set_class(&ni->attr_list_rl.lock,
410 &attr_list_rl_lock_class);
411 ni->itype.index.block_size = 0;
412 ni->itype.index.vcn_size = 0;
413 ni->itype.index.collation_rule = 0;
414 ni->itype.index.block_size_bits = 0;
415 ni->itype.index.vcn_size_bits = 0;
416 mutex_init(&ni->extent_lock);
417 ni->nr_extents = 0;
418 ni->ext.base_ntfs_ino = NULL;
419 }
420
421 /*
422 * Extent inodes get MFT-mapped in a nested way, while the base inode
423 * is still mapped. Teach this nesting to the lock validator by creating
424 * a separate class for nested inode's mrec_lock's:
425 */
426 static struct lock_class_key extent_inode_mrec_lock_key;
427
428 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
429 unsigned long mft_no)
430 {
431 ntfs_inode *ni = ntfs_alloc_extent_inode();
432
433 ntfs_debug("Entering.");
434 if (likely(ni != NULL)) {
435 __ntfs_init_inode(sb, ni);
436 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
437 ni->mft_no = mft_no;
438 ni->type = AT_UNUSED;
439 ni->name = NULL;
440 ni->name_len = 0;
441 }
442 return ni;
443 }
444
445 /**
446 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
447 * @ctx: initialized attribute search context
448 *
449 * Search all file name attributes in the inode described by the attribute
450 * search context @ctx and check if any of the names are in the $Extend system
451 * directory.
452 *
453 * Return values:
454 * 1: file is in $Extend directory
455 * 0: file is not in $Extend directory
456 * -errno: failed to determine if the file is in the $Extend directory
457 */
458 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
459 {
460 int nr_links, err;
461
462 /* Restart search. */
463 ntfs_attr_reinit_search_ctx(ctx);
464
465 /* Get number of hard links. */
466 nr_links = le16_to_cpu(ctx->mrec->link_count);
467
468 /* Loop through all hard links. */
469 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
470 ctx))) {
471 FILE_NAME_ATTR *file_name_attr;
472 ATTR_RECORD *attr = ctx->attr;
473 u8 *p, *p2;
474
475 nr_links--;
476 /*
477 * Maximum sanity checking as we are called on an inode that
478 * we suspect might be corrupt.
479 */
480 p = (u8*)attr + le32_to_cpu(attr->length);
481 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
482 le32_to_cpu(ctx->mrec->bytes_in_use)) {
483 err_corrupt_attr:
484 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
485 "attribute. You should run chkdsk.");
486 return -EIO;
487 }
488 if (attr->non_resident) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
490 "name. You should run chkdsk.");
491 return -EIO;
492 }
493 if (attr->flags) {
494 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
495 "invalid flags. You should run "
496 "chkdsk.");
497 return -EIO;
498 }
499 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
500 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
501 "name. You should run chkdsk.");
502 return -EIO;
503 }
504 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
505 le16_to_cpu(attr->data.resident.value_offset));
506 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
507 if (p2 < (u8*)attr || p2 > p)
508 goto err_corrupt_attr;
509 /* This attribute is ok, but is it in the $Extend directory? */
510 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
511 return 1; /* YES, it's an extended system file. */
512 }
513 if (unlikely(err != -ENOENT))
514 return err;
515 if (unlikely(nr_links)) {
516 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
517 "doesn't match number of name attributes. You "
518 "should run chkdsk.");
519 return -EIO;
520 }
521 return 0; /* NO, it is not an extended system file. */
522 }
523
524 /**
525 * ntfs_read_locked_inode - read an inode from its device
526 * @vi: inode to read
527 *
528 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
529 * described by @vi into memory from the device.
530 *
531 * The only fields in @vi that we need to/can look at when the function is
532 * called are i_sb, pointing to the mounted device's super block, and i_ino,
533 * the number of the inode to load.
534 *
535 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
536 * for reading and sets up the necessary @vi fields as well as initializing
537 * the ntfs inode.
538 *
539 * Q: What locks are held when the function is called?
540 * A: i_state has I_NEW set, hence the inode is locked, also
541 * i_count is set to 1, so it is not going to go away
542 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
543 * is allowed to write to them. We should of course be honouring them but
544 * we need to do that using the IS_* macros defined in include/linux/fs.h.
545 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546 *
547 * Return 0 on success and -errno on error. In the error case, the inode will
548 * have had make_bad_inode() executed on it.
549 */
550 static int ntfs_read_locked_inode(struct inode *vi)
551 {
552 ntfs_volume *vol = NTFS_SB(vi->i_sb);
553 ntfs_inode *ni;
554 struct inode *bvi;
555 MFT_RECORD *m;
556 ATTR_RECORD *a;
557 STANDARD_INFORMATION *si;
558 ntfs_attr_search_ctx *ctx;
559 int err = 0;
560
561 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
562
563 /* Setup the generic vfs inode parts now. */
564
565 /*
566 * This is for checking whether an inode has changed w.r.t. a file so
567 * that the file can be updated if necessary (compare with f_version).
568 */
569 vi->i_version = 1;
570
571 vi->i_uid = vol->uid;
572 vi->i_gid = vol->gid;
573 vi->i_mode = 0;
574
575 /*
576 * Initialize the ntfs specific part of @vi special casing
577 * FILE_MFT which we need to do at mount time.
578 */
579 if (vi->i_ino != FILE_MFT)
580 ntfs_init_big_inode(vi);
581 ni = NTFS_I(vi);
582
583 m = map_mft_record(ni);
584 if (IS_ERR(m)) {
585 err = PTR_ERR(m);
586 goto err_out;
587 }
588 ctx = ntfs_attr_get_search_ctx(ni, m);
589 if (!ctx) {
590 err = -ENOMEM;
591 goto unm_err_out;
592 }
593
594 if (!(m->flags & MFT_RECORD_IN_USE)) {
595 ntfs_error(vi->i_sb, "Inode is not in use!");
596 goto unm_err_out;
597 }
598 if (m->base_mft_record) {
599 ntfs_error(vi->i_sb, "Inode is an extent inode!");
600 goto unm_err_out;
601 }
602
603 /* Transfer information from mft record into vfs and ntfs inodes. */
604 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
605
606 /*
607 * FIXME: Keep in mind that link_count is two for files which have both
608 * a long file name and a short file name as separate entries, so if
609 * we are hiding short file names this will be too high. Either we need
610 * to account for the short file names by subtracting them or we need
611 * to make sure we delete files even though i_nlink is not zero which
612 * might be tricky due to vfs interactions. Need to think about this
613 * some more when implementing the unlink command.
614 */
615 set_nlink(vi, le16_to_cpu(m->link_count));
616 /*
617 * FIXME: Reparse points can have the directory bit set even though
618 * they would be S_IFLNK. Need to deal with this further below when we
619 * implement reparse points / symbolic links but it will do for now.
620 * Also if not a directory, it could be something else, rather than
621 * a regular file. But again, will do for now.
622 */
623 /* Everyone gets all permissions. */
624 vi->i_mode |= S_IRWXUGO;
625 /* If read-only, no one gets write permissions. */
626 if (IS_RDONLY(vi))
627 vi->i_mode &= ~S_IWUGO;
628 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
629 vi->i_mode |= S_IFDIR;
630 /*
631 * Apply the directory permissions mask set in the mount
632 * options.
633 */
634 vi->i_mode &= ~vol->dmask;
635 /* Things break without this kludge! */
636 if (vi->i_nlink > 1)
637 set_nlink(vi, 1);
638 } else {
639 vi->i_mode |= S_IFREG;
640 /* Apply the file permissions mask set in the mount options. */
641 vi->i_mode &= ~vol->fmask;
642 }
643 /*
644 * Find the standard information attribute in the mft record. At this
645 * stage we haven't setup the attribute list stuff yet, so this could
646 * in fact fail if the standard information is in an extent record, but
647 * I don't think this actually ever happens.
648 */
649 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
650 ctx);
651 if (unlikely(err)) {
652 if (err == -ENOENT) {
653 /*
654 * TODO: We should be performing a hot fix here (if the
655 * recover mount option is set) by creating a new
656 * attribute.
657 */
658 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
659 "is missing.");
660 }
661 goto unm_err_out;
662 }
663 a = ctx->attr;
664 /* Get the standard information attribute value. */
665 si = (STANDARD_INFORMATION*)((u8*)a +
666 le16_to_cpu(a->data.resident.value_offset));
667
668 /* Transfer information from the standard information into vi. */
669 /*
670 * Note: The i_?times do not quite map perfectly onto the NTFS times,
671 * but they are close enough, and in the end it doesn't really matter
672 * that much...
673 */
674 /*
675 * mtime is the last change of the data within the file. Not changed
676 * when only metadata is changed, e.g. a rename doesn't affect mtime.
677 */
678 vi->i_mtime = ntfs2utc(si->last_data_change_time);
679 /*
680 * ctime is the last change of the metadata of the file. This obviously
681 * always changes, when mtime is changed. ctime can be changed on its
682 * own, mtime is then not changed, e.g. when a file is renamed.
683 */
684 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
685 /*
686 * Last access to the data within the file. Not changed during a rename
687 * for example but changed whenever the file is written to.
688 */
689 vi->i_atime = ntfs2utc(si->last_access_time);
690
691 /* Find the attribute list attribute if present. */
692 ntfs_attr_reinit_search_ctx(ctx);
693 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
694 if (err) {
695 if (unlikely(err != -ENOENT)) {
696 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
697 "attribute.");
698 goto unm_err_out;
699 }
700 } else /* if (!err) */ {
701 if (vi->i_ino == FILE_MFT)
702 goto skip_attr_list_load;
703 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
704 NInoSetAttrList(ni);
705 a = ctx->attr;
706 if (a->flags & ATTR_COMPRESSION_MASK) {
707 ntfs_error(vi->i_sb, "Attribute list attribute is "
708 "compressed.");
709 goto unm_err_out;
710 }
711 if (a->flags & ATTR_IS_ENCRYPTED ||
712 a->flags & ATTR_IS_SPARSE) {
713 if (a->non_resident) {
714 ntfs_error(vi->i_sb, "Non-resident attribute "
715 "list attribute is encrypted/"
716 "sparse.");
717 goto unm_err_out;
718 }
719 ntfs_warning(vi->i_sb, "Resident attribute list "
720 "attribute in inode 0x%lx is marked "
721 "encrypted/sparse which is not true. "
722 "However, Windows allows this and "
723 "chkdsk does not detect or correct it "
724 "so we will just ignore the invalid "
725 "flags and pretend they are not set.",
726 vi->i_ino);
727 }
728 /* Now allocate memory for the attribute list. */
729 ni->attr_list_size = (u32)ntfs_attr_size(a);
730 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
731 if (!ni->attr_list) {
732 ntfs_error(vi->i_sb, "Not enough memory to allocate "
733 "buffer for attribute list.");
734 err = -ENOMEM;
735 goto unm_err_out;
736 }
737 if (a->non_resident) {
738 NInoSetAttrListNonResident(ni);
739 if (a->data.non_resident.lowest_vcn) {
740 ntfs_error(vi->i_sb, "Attribute list has non "
741 "zero lowest_vcn.");
742 goto unm_err_out;
743 }
744 /*
745 * Setup the runlist. No need for locking as we have
746 * exclusive access to the inode at this time.
747 */
748 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
749 a, NULL);
750 if (IS_ERR(ni->attr_list_rl.rl)) {
751 err = PTR_ERR(ni->attr_list_rl.rl);
752 ni->attr_list_rl.rl = NULL;
753 ntfs_error(vi->i_sb, "Mapping pairs "
754 "decompression failed.");
755 goto unm_err_out;
756 }
757 /* Now load the attribute list. */
758 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
759 ni->attr_list, ni->attr_list_size,
760 sle64_to_cpu(a->data.non_resident.
761 initialized_size)))) {
762 ntfs_error(vi->i_sb, "Failed to load "
763 "attribute list attribute.");
764 goto unm_err_out;
765 }
766 } else /* if (!a->non_resident) */ {
767 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
768 + le32_to_cpu(
769 a->data.resident.value_length) >
770 (u8*)ctx->mrec + vol->mft_record_size) {
771 ntfs_error(vi->i_sb, "Corrupt attribute list "
772 "in inode.");
773 goto unm_err_out;
774 }
775 /* Now copy the attribute list. */
776 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
777 a->data.resident.value_offset),
778 le32_to_cpu(
779 a->data.resident.value_length));
780 }
781 }
782 skip_attr_list_load:
783 /*
784 * If an attribute list is present we now have the attribute list value
785 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
786 */
787 if (S_ISDIR(vi->i_mode)) {
788 loff_t bvi_size;
789 ntfs_inode *bni;
790 INDEX_ROOT *ir;
791 u8 *ir_end, *index_end;
792
793 /* It is a directory, find index root attribute. */
794 ntfs_attr_reinit_search_ctx(ctx);
795 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
796 0, NULL, 0, ctx);
797 if (unlikely(err)) {
798 if (err == -ENOENT) {
799 // FIXME: File is corrupt! Hot-fix with empty
800 // index root attribute if recovery option is
801 // set.
802 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
803 "is missing.");
804 }
805 goto unm_err_out;
806 }
807 a = ctx->attr;
808 /* Set up the state. */
809 if (unlikely(a->non_resident)) {
810 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
811 "resident.");
812 goto unm_err_out;
813 }
814 /* Ensure the attribute name is placed before the value. */
815 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
816 le16_to_cpu(a->data.resident.value_offset)))) {
817 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
818 "placed after the attribute value.");
819 goto unm_err_out;
820 }
821 /*
822 * Compressed/encrypted index root just means that the newly
823 * created files in that directory should be created compressed/
824 * encrypted. However index root cannot be both compressed and
825 * encrypted.
826 */
827 if (a->flags & ATTR_COMPRESSION_MASK)
828 NInoSetCompressed(ni);
829 if (a->flags & ATTR_IS_ENCRYPTED) {
830 if (a->flags & ATTR_COMPRESSION_MASK) {
831 ntfs_error(vi->i_sb, "Found encrypted and "
832 "compressed attribute.");
833 goto unm_err_out;
834 }
835 NInoSetEncrypted(ni);
836 }
837 if (a->flags & ATTR_IS_SPARSE)
838 NInoSetSparse(ni);
839 ir = (INDEX_ROOT*)((u8*)a +
840 le16_to_cpu(a->data.resident.value_offset));
841 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
842 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
843 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
844 "corrupt.");
845 goto unm_err_out;
846 }
847 index_end = (u8*)&ir->index +
848 le32_to_cpu(ir->index.index_length);
849 if (index_end > ir_end) {
850 ntfs_error(vi->i_sb, "Directory index is corrupt.");
851 goto unm_err_out;
852 }
853 if (ir->type != AT_FILE_NAME) {
854 ntfs_error(vi->i_sb, "Indexed attribute is not "
855 "$FILE_NAME.");
856 goto unm_err_out;
857 }
858 if (ir->collation_rule != COLLATION_FILE_NAME) {
859 ntfs_error(vi->i_sb, "Index collation rule is not "
860 "COLLATION_FILE_NAME.");
861 goto unm_err_out;
862 }
863 ni->itype.index.collation_rule = ir->collation_rule;
864 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
865 if (ni->itype.index.block_size &
866 (ni->itype.index.block_size - 1)) {
867 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
868 "power of two.",
869 ni->itype.index.block_size);
870 goto unm_err_out;
871 }
872 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
873 ntfs_error(vi->i_sb, "Index block size (%u) > "
874 "PAGE_CACHE_SIZE (%ld) is not "
875 "supported. Sorry.",
876 ni->itype.index.block_size,
877 PAGE_CACHE_SIZE);
878 err = -EOPNOTSUPP;
879 goto unm_err_out;
880 }
881 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
882 ntfs_error(vi->i_sb, "Index block size (%u) < "
883 "NTFS_BLOCK_SIZE (%i) is not "
884 "supported. Sorry.",
885 ni->itype.index.block_size,
886 NTFS_BLOCK_SIZE);
887 err = -EOPNOTSUPP;
888 goto unm_err_out;
889 }
890 ni->itype.index.block_size_bits =
891 ffs(ni->itype.index.block_size) - 1;
892 /* Determine the size of a vcn in the directory index. */
893 if (vol->cluster_size <= ni->itype.index.block_size) {
894 ni->itype.index.vcn_size = vol->cluster_size;
895 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
896 } else {
897 ni->itype.index.vcn_size = vol->sector_size;
898 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
899 }
900
901 /* Setup the index allocation attribute, even if not present. */
902 NInoSetMstProtected(ni);
903 ni->type = AT_INDEX_ALLOCATION;
904 ni->name = I30;
905 ni->name_len = 4;
906
907 if (!(ir->index.flags & LARGE_INDEX)) {
908 /* No index allocation. */
909 vi->i_size = ni->initialized_size =
910 ni->allocated_size = 0;
911 /* We are done with the mft record, so we release it. */
912 ntfs_attr_put_search_ctx(ctx);
913 unmap_mft_record(ni);
914 m = NULL;
915 ctx = NULL;
916 goto skip_large_dir_stuff;
917 } /* LARGE_INDEX: Index allocation present. Setup state. */
918 NInoSetIndexAllocPresent(ni);
919 /* Find index allocation attribute. */
920 ntfs_attr_reinit_search_ctx(ctx);
921 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
922 CASE_SENSITIVE, 0, NULL, 0, ctx);
923 if (unlikely(err)) {
924 if (err == -ENOENT)
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
926 "attribute is not present but "
927 "$INDEX_ROOT indicated it is.");
928 else
929 ntfs_error(vi->i_sb, "Failed to lookup "
930 "$INDEX_ALLOCATION "
931 "attribute.");
932 goto unm_err_out;
933 }
934 a = ctx->attr;
935 if (!a->non_resident) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 "is resident.");
938 goto unm_err_out;
939 }
940 /*
941 * Ensure the attribute name is placed before the mapping pairs
942 * array.
943 */
944 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
945 le16_to_cpu(
946 a->data.non_resident.mapping_pairs_offset)))) {
947 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
948 "is placed after the mapping pairs "
949 "array.");
950 goto unm_err_out;
951 }
952 if (a->flags & ATTR_IS_ENCRYPTED) {
953 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
954 "is encrypted.");
955 goto unm_err_out;
956 }
957 if (a->flags & ATTR_IS_SPARSE) {
958 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
959 "is sparse.");
960 goto unm_err_out;
961 }
962 if (a->flags & ATTR_COMPRESSION_MASK) {
963 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
964 "is compressed.");
965 goto unm_err_out;
966 }
967 if (a->data.non_resident.lowest_vcn) {
968 ntfs_error(vi->i_sb, "First extent of "
969 "$INDEX_ALLOCATION attribute has non "
970 "zero lowest_vcn.");
971 goto unm_err_out;
972 }
973 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
974 ni->initialized_size = sle64_to_cpu(
975 a->data.non_resident.initialized_size);
976 ni->allocated_size = sle64_to_cpu(
977 a->data.non_resident.allocated_size);
978 /*
979 * We are done with the mft record, so we release it. Otherwise
980 * we would deadlock in ntfs_attr_iget().
981 */
982 ntfs_attr_put_search_ctx(ctx);
983 unmap_mft_record(ni);
984 m = NULL;
985 ctx = NULL;
986 /* Get the index bitmap attribute inode. */
987 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
988 if (IS_ERR(bvi)) {
989 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
990 err = PTR_ERR(bvi);
991 goto unm_err_out;
992 }
993 bni = NTFS_I(bvi);
994 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
995 NInoSparse(bni)) {
996 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
997 "and/or encrypted and/or sparse.");
998 goto iput_unm_err_out;
999 }
1000 /* Consistency check bitmap size vs. index allocation size. */
1001 bvi_size = i_size_read(bvi);
1002 if ((bvi_size << 3) < (vi->i_size >>
1003 ni->itype.index.block_size_bits)) {
1004 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1005 "for index allocation (0x%llx).",
1006 bvi_size << 3, vi->i_size);
1007 goto iput_unm_err_out;
1008 }
1009 /* No longer need the bitmap attribute inode. */
1010 iput(bvi);
1011 skip_large_dir_stuff:
1012 /* Setup the operations for this inode. */
1013 vi->i_op = &ntfs_dir_inode_ops;
1014 vi->i_fop = &ntfs_dir_ops;
1015 } else {
1016 /* It is a file. */
1017 ntfs_attr_reinit_search_ctx(ctx);
1018
1019 /* Setup the data attribute, even if not present. */
1020 ni->type = AT_DATA;
1021 ni->name = NULL;
1022 ni->name_len = 0;
1023
1024 /* Find first extent of the unnamed data attribute. */
1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026 if (unlikely(err)) {
1027 vi->i_size = ni->initialized_size =
1028 ni->allocated_size = 0;
1029 if (err != -ENOENT) {
1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031 "attribute.");
1032 goto unm_err_out;
1033 }
1034 /*
1035 * FILE_Secure does not have an unnamed $DATA
1036 * attribute, so we special case it here.
1037 */
1038 if (vi->i_ino == FILE_Secure)
1039 goto no_data_attr_special_case;
1040 /*
1041 * Most if not all the system files in the $Extend
1042 * system directory do not have unnamed data
1043 * attributes so we need to check if the parent
1044 * directory of the file is FILE_Extend and if it is
1045 * ignore this error. To do this we need to get the
1046 * name of this inode from the mft record as the name
1047 * contains the back reference to the parent directory.
1048 */
1049 if (ntfs_is_extended_system_file(ctx) > 0)
1050 goto no_data_attr_special_case;
1051 // FIXME: File is corrupt! Hot-fix with empty data
1052 // attribute if recovery option is set.
1053 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054 goto unm_err_out;
1055 }
1056 a = ctx->attr;
1057 /* Setup the state. */
1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059 if (a->flags & ATTR_COMPRESSION_MASK) {
1060 NInoSetCompressed(ni);
1061 if (vol->cluster_size > 4096) {
1062 ntfs_error(vi->i_sb, "Found "
1063 "compressed data but "
1064 "compression is "
1065 "disabled due to "
1066 "cluster size (%i) > "
1067 "4kiB.",
1068 vol->cluster_size);
1069 goto unm_err_out;
1070 }
1071 if ((a->flags & ATTR_COMPRESSION_MASK)
1072 != ATTR_IS_COMPRESSED) {
1073 ntfs_error(vi->i_sb, "Found unknown "
1074 "compression method "
1075 "or corrupt file.");
1076 goto unm_err_out;
1077 }
1078 }
1079 if (a->flags & ATTR_IS_SPARSE)
1080 NInoSetSparse(ni);
1081 }
1082 if (a->flags & ATTR_IS_ENCRYPTED) {
1083 if (NInoCompressed(ni)) {
1084 ntfs_error(vi->i_sb, "Found encrypted and "
1085 "compressed data.");
1086 goto unm_err_out;
1087 }
1088 NInoSetEncrypted(ni);
1089 }
1090 if (a->non_resident) {
1091 NInoSetNonResident(ni);
1092 if (NInoCompressed(ni) || NInoSparse(ni)) {
1093 if (NInoCompressed(ni) && a->data.non_resident.
1094 compression_unit != 4) {
1095 ntfs_error(vi->i_sb, "Found "
1096 "non-standard "
1097 "compression unit (%u "
1098 "instead of 4). "
1099 "Cannot handle this.",
1100 a->data.non_resident.
1101 compression_unit);
1102 err = -EOPNOTSUPP;
1103 goto unm_err_out;
1104 }
1105 if (a->data.non_resident.compression_unit) {
1106 ni->itype.compressed.block_size = 1U <<
1107 (a->data.non_resident.
1108 compression_unit +
1109 vol->cluster_size_bits);
1110 ni->itype.compressed.block_size_bits =
1111 ffs(ni->itype.
1112 compressed.
1113 block_size) - 1;
1114 ni->itype.compressed.block_clusters =
1115 1U << a->data.
1116 non_resident.
1117 compression_unit;
1118 } else {
1119 ni->itype.compressed.block_size = 0;
1120 ni->itype.compressed.block_size_bits =
1121 0;
1122 ni->itype.compressed.block_clusters =
1123 0;
1124 }
1125 ni->itype.compressed.size = sle64_to_cpu(
1126 a->data.non_resident.
1127 compressed_size);
1128 }
1129 if (a->data.non_resident.lowest_vcn) {
1130 ntfs_error(vi->i_sb, "First extent of $DATA "
1131 "attribute has non zero "
1132 "lowest_vcn.");
1133 goto unm_err_out;
1134 }
1135 vi->i_size = sle64_to_cpu(
1136 a->data.non_resident.data_size);
1137 ni->initialized_size = sle64_to_cpu(
1138 a->data.non_resident.initialized_size);
1139 ni->allocated_size = sle64_to_cpu(
1140 a->data.non_resident.allocated_size);
1141 } else { /* Resident attribute. */
1142 vi->i_size = ni->initialized_size = le32_to_cpu(
1143 a->data.resident.value_length);
1144 ni->allocated_size = le32_to_cpu(a->length) -
1145 le16_to_cpu(
1146 a->data.resident.value_offset);
1147 if (vi->i_size > ni->allocated_size) {
1148 ntfs_error(vi->i_sb, "Resident data attribute "
1149 "is corrupt (size exceeds "
1150 "allocation).");
1151 goto unm_err_out;
1152 }
1153 }
1154 no_data_attr_special_case:
1155 /* We are done with the mft record, so we release it. */
1156 ntfs_attr_put_search_ctx(ctx);
1157 unmap_mft_record(ni);
1158 m = NULL;
1159 ctx = NULL;
1160 /* Setup the operations for this inode. */
1161 vi->i_op = &ntfs_file_inode_ops;
1162 vi->i_fop = &ntfs_file_ops;
1163 }
1164 if (NInoMstProtected(ni))
1165 vi->i_mapping->a_ops = &ntfs_mst_aops;
1166 else
1167 vi->i_mapping->a_ops = &ntfs_aops;
1168 /*
1169 * The number of 512-byte blocks used on disk (for stat). This is in so
1170 * far inaccurate as it doesn't account for any named streams or other
1171 * special non-resident attributes, but that is how Windows works, too,
1172 * so we are at least consistent with Windows, if not entirely
1173 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174 * significant slowdown as it would involve iterating over all
1175 * attributes in the mft record and adding the allocated/compressed
1176 * sizes of all non-resident attributes present to give us the Linux
1177 * correct size that should go into i_blocks (after division by 512).
1178 */
1179 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1180 vi->i_blocks = ni->itype.compressed.size >> 9;
1181 else
1182 vi->i_blocks = ni->allocated_size >> 9;
1183 ntfs_debug("Done.");
1184 return 0;
1185 iput_unm_err_out:
1186 iput(bvi);
1187 unm_err_out:
1188 if (!err)
1189 err = -EIO;
1190 if (ctx)
1191 ntfs_attr_put_search_ctx(ctx);
1192 if (m)
1193 unmap_mft_record(ni);
1194 err_out:
1195 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1196 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1197 make_bad_inode(vi);
1198 if (err != -EOPNOTSUPP && err != -ENOMEM)
1199 NVolSetErrors(vol);
1200 return err;
1201 }
1202
1203 /**
1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205 * @base_vi: base inode
1206 * @vi: attribute inode to read
1207 *
1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209 * attribute inode described by @vi into memory from the base mft record
1210 * described by @base_ni.
1211 *
1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213 * reading and looks up the attribute described by @vi before setting up the
1214 * necessary fields in @vi as well as initializing the ntfs inode.
1215 *
1216 * Q: What locks are held when the function is called?
1217 * A: i_state has I_NEW set, hence the inode is locked, also
1218 * i_count is set to 1, so it is not going to go away
1219 *
1220 * Return 0 on success and -errno on error. In the error case, the inode will
1221 * have had make_bad_inode() executed on it.
1222 *
1223 * Note this cannot be called for AT_INDEX_ALLOCATION.
1224 */
1225 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1226 {
1227 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1228 ntfs_inode *ni, *base_ni;
1229 MFT_RECORD *m;
1230 ATTR_RECORD *a;
1231 ntfs_attr_search_ctx *ctx;
1232 int err = 0;
1233
1234 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1235
1236 ntfs_init_big_inode(vi);
1237
1238 ni = NTFS_I(vi);
1239 base_ni = NTFS_I(base_vi);
1240
1241 /* Just mirror the values from the base inode. */
1242 vi->i_version = base_vi->i_version;
1243 vi->i_uid = base_vi->i_uid;
1244 vi->i_gid = base_vi->i_gid;
1245 set_nlink(vi, base_vi->i_nlink);
1246 vi->i_mtime = base_vi->i_mtime;
1247 vi->i_ctime = base_vi->i_ctime;
1248 vi->i_atime = base_vi->i_atime;
1249 vi->i_generation = ni->seq_no = base_ni->seq_no;
1250
1251 /* Set inode type to zero but preserve permissions. */
1252 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1253
1254 m = map_mft_record(base_ni);
1255 if (IS_ERR(m)) {
1256 err = PTR_ERR(m);
1257 goto err_out;
1258 }
1259 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1260 if (!ctx) {
1261 err = -ENOMEM;
1262 goto unm_err_out;
1263 }
1264 /* Find the attribute. */
1265 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1266 CASE_SENSITIVE, 0, NULL, 0, ctx);
1267 if (unlikely(err))
1268 goto unm_err_out;
1269 a = ctx->attr;
1270 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1271 if (a->flags & ATTR_COMPRESSION_MASK) {
1272 NInoSetCompressed(ni);
1273 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1274 ni->name_len)) {
1275 ntfs_error(vi->i_sb, "Found compressed "
1276 "non-data or named data "
1277 "attribute. Please report "
1278 "you saw this message to "
1279 "linux-ntfs-dev@lists."
1280 "sourceforge.net");
1281 goto unm_err_out;
1282 }
1283 if (vol->cluster_size > 4096) {
1284 ntfs_error(vi->i_sb, "Found compressed "
1285 "attribute but compression is "
1286 "disabled due to cluster size "
1287 "(%i) > 4kiB.",
1288 vol->cluster_size);
1289 goto unm_err_out;
1290 }
1291 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1292 ATTR_IS_COMPRESSED) {
1293 ntfs_error(vi->i_sb, "Found unknown "
1294 "compression method.");
1295 goto unm_err_out;
1296 }
1297 }
1298 /*
1299 * The compressed/sparse flag set in an index root just means
1300 * to compress all files.
1301 */
1302 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1303 ntfs_error(vi->i_sb, "Found mst protected attribute "
1304 "but the attribute is %s. Please "
1305 "report you saw this message to "
1306 "linux-ntfs-dev@lists.sourceforge.net",
1307 NInoCompressed(ni) ? "compressed" :
1308 "sparse");
1309 goto unm_err_out;
1310 }
1311 if (a->flags & ATTR_IS_SPARSE)
1312 NInoSetSparse(ni);
1313 }
1314 if (a->flags & ATTR_IS_ENCRYPTED) {
1315 if (NInoCompressed(ni)) {
1316 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1317 "data.");
1318 goto unm_err_out;
1319 }
1320 /*
1321 * The encryption flag set in an index root just means to
1322 * encrypt all files.
1323 */
1324 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1325 ntfs_error(vi->i_sb, "Found mst protected attribute "
1326 "but the attribute is encrypted. "
1327 "Please report you saw this message "
1328 "to linux-ntfs-dev@lists.sourceforge."
1329 "net");
1330 goto unm_err_out;
1331 }
1332 if (ni->type != AT_DATA) {
1333 ntfs_error(vi->i_sb, "Found encrypted non-data "
1334 "attribute.");
1335 goto unm_err_out;
1336 }
1337 NInoSetEncrypted(ni);
1338 }
1339 if (!a->non_resident) {
1340 /* Ensure the attribute name is placed before the value. */
1341 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1342 le16_to_cpu(a->data.resident.value_offset)))) {
1343 ntfs_error(vol->sb, "Attribute name is placed after "
1344 "the attribute value.");
1345 goto unm_err_out;
1346 }
1347 if (NInoMstProtected(ni)) {
1348 ntfs_error(vi->i_sb, "Found mst protected attribute "
1349 "but the attribute is resident. "
1350 "Please report you saw this message to "
1351 "linux-ntfs-dev@lists.sourceforge.net");
1352 goto unm_err_out;
1353 }
1354 vi->i_size = ni->initialized_size = le32_to_cpu(
1355 a->data.resident.value_length);
1356 ni->allocated_size = le32_to_cpu(a->length) -
1357 le16_to_cpu(a->data.resident.value_offset);
1358 if (vi->i_size > ni->allocated_size) {
1359 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1360 "(size exceeds allocation).");
1361 goto unm_err_out;
1362 }
1363 } else {
1364 NInoSetNonResident(ni);
1365 /*
1366 * Ensure the attribute name is placed before the mapping pairs
1367 * array.
1368 */
1369 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1370 le16_to_cpu(
1371 a->data.non_resident.mapping_pairs_offset)))) {
1372 ntfs_error(vol->sb, "Attribute name is placed after "
1373 "the mapping pairs array.");
1374 goto unm_err_out;
1375 }
1376 if (NInoCompressed(ni) || NInoSparse(ni)) {
1377 if (NInoCompressed(ni) && a->data.non_resident.
1378 compression_unit != 4) {
1379 ntfs_error(vi->i_sb, "Found non-standard "
1380 "compression unit (%u instead "
1381 "of 4). Cannot handle this.",
1382 a->data.non_resident.
1383 compression_unit);
1384 err = -EOPNOTSUPP;
1385 goto unm_err_out;
1386 }
1387 if (a->data.non_resident.compression_unit) {
1388 ni->itype.compressed.block_size = 1U <<
1389 (a->data.non_resident.
1390 compression_unit +
1391 vol->cluster_size_bits);
1392 ni->itype.compressed.block_size_bits =
1393 ffs(ni->itype.compressed.
1394 block_size) - 1;
1395 ni->itype.compressed.block_clusters = 1U <<
1396 a->data.non_resident.
1397 compression_unit;
1398 } else {
1399 ni->itype.compressed.block_size = 0;
1400 ni->itype.compressed.block_size_bits = 0;
1401 ni->itype.compressed.block_clusters = 0;
1402 }
1403 ni->itype.compressed.size = sle64_to_cpu(
1404 a->data.non_resident.compressed_size);
1405 }
1406 if (a->data.non_resident.lowest_vcn) {
1407 ntfs_error(vi->i_sb, "First extent of attribute has "
1408 "non-zero lowest_vcn.");
1409 goto unm_err_out;
1410 }
1411 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1412 ni->initialized_size = sle64_to_cpu(
1413 a->data.non_resident.initialized_size);
1414 ni->allocated_size = sle64_to_cpu(
1415 a->data.non_resident.allocated_size);
1416 }
1417 if (NInoMstProtected(ni))
1418 vi->i_mapping->a_ops = &ntfs_mst_aops;
1419 else
1420 vi->i_mapping->a_ops = &ntfs_aops;
1421 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1422 vi->i_blocks = ni->itype.compressed.size >> 9;
1423 else
1424 vi->i_blocks = ni->allocated_size >> 9;
1425 /*
1426 * Make sure the base inode does not go away and attach it to the
1427 * attribute inode.
1428 */
1429 igrab(base_vi);
1430 ni->ext.base_ntfs_ino = base_ni;
1431 ni->nr_extents = -1;
1432
1433 ntfs_attr_put_search_ctx(ctx);
1434 unmap_mft_record(base_ni);
1435
1436 ntfs_debug("Done.");
1437 return 0;
1438
1439 unm_err_out:
1440 if (!err)
1441 err = -EIO;
1442 if (ctx)
1443 ntfs_attr_put_search_ctx(ctx);
1444 unmap_mft_record(base_ni);
1445 err_out:
1446 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1447 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1448 "Marking corrupt inode and base inode 0x%lx as bad. "
1449 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1450 base_vi->i_ino);
1451 make_bad_inode(vi);
1452 if (err != -ENOMEM)
1453 NVolSetErrors(vol);
1454 return err;
1455 }
1456
1457 /**
1458 * ntfs_read_locked_index_inode - read an index inode from its base inode
1459 * @base_vi: base inode
1460 * @vi: index inode to read
1461 *
1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463 * index inode described by @vi into memory from the base mft record described
1464 * by @base_ni.
1465 *
1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467 * reading and looks up the attributes relating to the index described by @vi
1468 * before setting up the necessary fields in @vi as well as initializing the
1469 * ntfs inode.
1470 *
1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1473 * are setup like directory inodes since directories are a special case of
1474 * indices ao they need to be treated in much the same way. Most importantly,
1475 * for small indices the index allocation attribute might not actually exist.
1476 * However, the index root attribute always exists but this does not need to
1477 * have an inode associated with it and this is why we define a new inode type
1478 * index. Also, like for directories, we need to have an attribute inode for
1479 * the bitmap attribute corresponding to the index allocation attribute and we
1480 * can store this in the appropriate field of the inode, just like we do for
1481 * normal directory inodes.
1482 *
1483 * Q: What locks are held when the function is called?
1484 * A: i_state has I_NEW set, hence the inode is locked, also
1485 * i_count is set to 1, so it is not going to go away
1486 *
1487 * Return 0 on success and -errno on error. In the error case, the inode will
1488 * have had make_bad_inode() executed on it.
1489 */
1490 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1491 {
1492 loff_t bvi_size;
1493 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1494 ntfs_inode *ni, *base_ni, *bni;
1495 struct inode *bvi;
1496 MFT_RECORD *m;
1497 ATTR_RECORD *a;
1498 ntfs_attr_search_ctx *ctx;
1499 INDEX_ROOT *ir;
1500 u8 *ir_end, *index_end;
1501 int err = 0;
1502
1503 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1504 ntfs_init_big_inode(vi);
1505 ni = NTFS_I(vi);
1506 base_ni = NTFS_I(base_vi);
1507 /* Just mirror the values from the base inode. */
1508 vi->i_version = base_vi->i_version;
1509 vi->i_uid = base_vi->i_uid;
1510 vi->i_gid = base_vi->i_gid;
1511 set_nlink(vi, base_vi->i_nlink);
1512 vi->i_mtime = base_vi->i_mtime;
1513 vi->i_ctime = base_vi->i_ctime;
1514 vi->i_atime = base_vi->i_atime;
1515 vi->i_generation = ni->seq_no = base_ni->seq_no;
1516 /* Set inode type to zero but preserve permissions. */
1517 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1518 /* Map the mft record for the base inode. */
1519 m = map_mft_record(base_ni);
1520 if (IS_ERR(m)) {
1521 err = PTR_ERR(m);
1522 goto err_out;
1523 }
1524 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1525 if (!ctx) {
1526 err = -ENOMEM;
1527 goto unm_err_out;
1528 }
1529 /* Find the index root attribute. */
1530 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1531 CASE_SENSITIVE, 0, NULL, 0, ctx);
1532 if (unlikely(err)) {
1533 if (err == -ENOENT)
1534 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1535 "missing.");
1536 goto unm_err_out;
1537 }
1538 a = ctx->attr;
1539 /* Set up the state. */
1540 if (unlikely(a->non_resident)) {
1541 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1542 goto unm_err_out;
1543 }
1544 /* Ensure the attribute name is placed before the value. */
1545 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1546 le16_to_cpu(a->data.resident.value_offset)))) {
1547 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1548 "after the attribute value.");
1549 goto unm_err_out;
1550 }
1551 /*
1552 * Compressed/encrypted/sparse index root is not allowed, except for
1553 * directories of course but those are not dealt with here.
1554 */
1555 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1556 ATTR_IS_SPARSE)) {
1557 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1558 "root attribute.");
1559 goto unm_err_out;
1560 }
1561 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1562 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1563 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1564 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1565 goto unm_err_out;
1566 }
1567 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1568 if (index_end > ir_end) {
1569 ntfs_error(vi->i_sb, "Index is corrupt.");
1570 goto unm_err_out;
1571 }
1572 if (ir->type) {
1573 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1574 le32_to_cpu(ir->type));
1575 goto unm_err_out;
1576 }
1577 ni->itype.index.collation_rule = ir->collation_rule;
1578 ntfs_debug("Index collation rule is 0x%x.",
1579 le32_to_cpu(ir->collation_rule));
1580 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1581 if (!is_power_of_2(ni->itype.index.block_size)) {
1582 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1583 "two.", ni->itype.index.block_size);
1584 goto unm_err_out;
1585 }
1586 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1587 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1588 "(%ld) is not supported. Sorry.",
1589 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1590 err = -EOPNOTSUPP;
1591 goto unm_err_out;
1592 }
1593 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1594 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1595 "(%i) is not supported. Sorry.",
1596 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1597 err = -EOPNOTSUPP;
1598 goto unm_err_out;
1599 }
1600 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1601 /* Determine the size of a vcn in the index. */
1602 if (vol->cluster_size <= ni->itype.index.block_size) {
1603 ni->itype.index.vcn_size = vol->cluster_size;
1604 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1605 } else {
1606 ni->itype.index.vcn_size = vol->sector_size;
1607 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1608 }
1609 /* Check for presence of index allocation attribute. */
1610 if (!(ir->index.flags & LARGE_INDEX)) {
1611 /* No index allocation. */
1612 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1613 /* We are done with the mft record, so we release it. */
1614 ntfs_attr_put_search_ctx(ctx);
1615 unmap_mft_record(base_ni);
1616 m = NULL;
1617 ctx = NULL;
1618 goto skip_large_index_stuff;
1619 } /* LARGE_INDEX: Index allocation present. Setup state. */
1620 NInoSetIndexAllocPresent(ni);
1621 /* Find index allocation attribute. */
1622 ntfs_attr_reinit_search_ctx(ctx);
1623 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1624 CASE_SENSITIVE, 0, NULL, 0, ctx);
1625 if (unlikely(err)) {
1626 if (err == -ENOENT)
1627 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1628 "not present but $INDEX_ROOT "
1629 "indicated it is.");
1630 else
1631 ntfs_error(vi->i_sb, "Failed to lookup "
1632 "$INDEX_ALLOCATION attribute.");
1633 goto unm_err_out;
1634 }
1635 a = ctx->attr;
1636 if (!a->non_resident) {
1637 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1638 "resident.");
1639 goto unm_err_out;
1640 }
1641 /*
1642 * Ensure the attribute name is placed before the mapping pairs array.
1643 */
1644 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1645 le16_to_cpu(
1646 a->data.non_resident.mapping_pairs_offset)))) {
1647 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1648 "placed after the mapping pairs array.");
1649 goto unm_err_out;
1650 }
1651 if (a->flags & ATTR_IS_ENCRYPTED) {
1652 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1653 "encrypted.");
1654 goto unm_err_out;
1655 }
1656 if (a->flags & ATTR_IS_SPARSE) {
1657 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1658 goto unm_err_out;
1659 }
1660 if (a->flags & ATTR_COMPRESSION_MASK) {
1661 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1662 "compressed.");
1663 goto unm_err_out;
1664 }
1665 if (a->data.non_resident.lowest_vcn) {
1666 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1667 "attribute has non zero lowest_vcn.");
1668 goto unm_err_out;
1669 }
1670 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1671 ni->initialized_size = sle64_to_cpu(
1672 a->data.non_resident.initialized_size);
1673 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1674 /*
1675 * We are done with the mft record, so we release it. Otherwise
1676 * we would deadlock in ntfs_attr_iget().
1677 */
1678 ntfs_attr_put_search_ctx(ctx);
1679 unmap_mft_record(base_ni);
1680 m = NULL;
1681 ctx = NULL;
1682 /* Get the index bitmap attribute inode. */
1683 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1684 if (IS_ERR(bvi)) {
1685 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1686 err = PTR_ERR(bvi);
1687 goto unm_err_out;
1688 }
1689 bni = NTFS_I(bvi);
1690 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1691 NInoSparse(bni)) {
1692 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1693 "encrypted and/or sparse.");
1694 goto iput_unm_err_out;
1695 }
1696 /* Consistency check bitmap size vs. index allocation size. */
1697 bvi_size = i_size_read(bvi);
1698 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1699 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1700 "index allocation (0x%llx).", bvi_size << 3,
1701 vi->i_size);
1702 goto iput_unm_err_out;
1703 }
1704 iput(bvi);
1705 skip_large_index_stuff:
1706 /* Setup the operations for this index inode. */
1707 vi->i_mapping->a_ops = &ntfs_mst_aops;
1708 vi->i_blocks = ni->allocated_size >> 9;
1709 /*
1710 * Make sure the base inode doesn't go away and attach it to the
1711 * index inode.
1712 */
1713 igrab(base_vi);
1714 ni->ext.base_ntfs_ino = base_ni;
1715 ni->nr_extents = -1;
1716
1717 ntfs_debug("Done.");
1718 return 0;
1719 iput_unm_err_out:
1720 iput(bvi);
1721 unm_err_out:
1722 if (!err)
1723 err = -EIO;
1724 if (ctx)
1725 ntfs_attr_put_search_ctx(ctx);
1726 if (m)
1727 unmap_mft_record(base_ni);
1728 err_out:
1729 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1730 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1731 ni->name_len);
1732 make_bad_inode(vi);
1733 if (err != -EOPNOTSUPP && err != -ENOMEM)
1734 NVolSetErrors(vol);
1735 return err;
1736 }
1737
1738 /*
1739 * The MFT inode has special locking, so teach the lock validator
1740 * about this by splitting off the locking rules of the MFT from
1741 * the locking rules of other inodes. The MFT inode can never be
1742 * accessed from the VFS side (or even internally), only by the
1743 * map_mft functions.
1744 */
1745 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1746
1747 /**
1748 * ntfs_read_inode_mount - special read_inode for mount time use only
1749 * @vi: inode to read
1750 *
1751 * Read inode FILE_MFT at mount time, only called with super_block lock
1752 * held from within the read_super() code path.
1753 *
1754 * This function exists because when it is called the page cache for $MFT/$DATA
1755 * is not initialized and hence we cannot get at the contents of mft records
1756 * by calling map_mft_record*().
1757 *
1758 * Further it needs to cope with the circular references problem, i.e. cannot
1759 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1760 * we do not know where the other extent mft records are yet and again, because
1761 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1762 * attribute list is actually present in $MFT inode.
1763 *
1764 * We solve these problems by starting with the $DATA attribute before anything
1765 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1766 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1767 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1768 * sufficient information for the next step to complete.
1769 *
1770 * This should work but there are two possible pit falls (see inline comments
1771 * below), but only time will tell if they are real pits or just smoke...
1772 */
1773 int ntfs_read_inode_mount(struct inode *vi)
1774 {
1775 VCN next_vcn, last_vcn, highest_vcn;
1776 s64 block;
1777 struct super_block *sb = vi->i_sb;
1778 ntfs_volume *vol = NTFS_SB(sb);
1779 struct buffer_head *bh;
1780 ntfs_inode *ni;
1781 MFT_RECORD *m = NULL;
1782 ATTR_RECORD *a;
1783 ntfs_attr_search_ctx *ctx;
1784 unsigned int i, nr_blocks;
1785 int err;
1786
1787 ntfs_debug("Entering.");
1788
1789 /* Initialize the ntfs specific part of @vi. */
1790 ntfs_init_big_inode(vi);
1791
1792 ni = NTFS_I(vi);
1793
1794 /* Setup the data attribute. It is special as it is mst protected. */
1795 NInoSetNonResident(ni);
1796 NInoSetMstProtected(ni);
1797 NInoSetSparseDisabled(ni);
1798 ni->type = AT_DATA;
1799 ni->name = NULL;
1800 ni->name_len = 0;
1801 /*
1802 * This sets up our little cheat allowing us to reuse the async read io
1803 * completion handler for directories.
1804 */
1805 ni->itype.index.block_size = vol->mft_record_size;
1806 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1807
1808 /* Very important! Needed to be able to call map_mft_record*(). */
1809 vol->mft_ino = vi;
1810
1811 /* Allocate enough memory to read the first mft record. */
1812 if (vol->mft_record_size > 64 * 1024) {
1813 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1814 vol->mft_record_size);
1815 goto err_out;
1816 }
1817 i = vol->mft_record_size;
1818 if (i < sb->s_blocksize)
1819 i = sb->s_blocksize;
1820 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1821 if (!m) {
1822 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1823 goto err_out;
1824 }
1825
1826 /* Determine the first block of the $MFT/$DATA attribute. */
1827 block = vol->mft_lcn << vol->cluster_size_bits >>
1828 sb->s_blocksize_bits;
1829 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1830 if (!nr_blocks)
1831 nr_blocks = 1;
1832
1833 /* Load $MFT/$DATA's first mft record. */
1834 for (i = 0; i < nr_blocks; i++) {
1835 bh = sb_bread(sb, block++);
1836 if (!bh) {
1837 ntfs_error(sb, "Device read failed.");
1838 goto err_out;
1839 }
1840 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1841 sb->s_blocksize);
1842 brelse(bh);
1843 }
1844
1845 /* Apply the mst fixups. */
1846 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1847 /* FIXME: Try to use the $MFTMirr now. */
1848 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1849 goto err_out;
1850 }
1851
1852 /* Need this to sanity check attribute list references to $MFT. */
1853 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1854
1855 /* Provides readpage() and sync_page() for map_mft_record(). */
1856 vi->i_mapping->a_ops = &ntfs_mst_aops;
1857
1858 ctx = ntfs_attr_get_search_ctx(ni, m);
1859 if (!ctx) {
1860 err = -ENOMEM;
1861 goto err_out;
1862 }
1863
1864 /* Find the attribute list attribute if present. */
1865 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1866 if (err) {
1867 if (unlikely(err != -ENOENT)) {
1868 ntfs_error(sb, "Failed to lookup attribute list "
1869 "attribute. You should run chkdsk.");
1870 goto put_err_out;
1871 }
1872 } else /* if (!err) */ {
1873 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1874 u8 *al_end;
1875 static const char *es = " Not allowed. $MFT is corrupt. "
1876 "You should run chkdsk.";
1877
1878 ntfs_debug("Attribute list attribute found in $MFT.");
1879 NInoSetAttrList(ni);
1880 a = ctx->attr;
1881 if (a->flags & ATTR_COMPRESSION_MASK) {
1882 ntfs_error(sb, "Attribute list attribute is "
1883 "compressed.%s", es);
1884 goto put_err_out;
1885 }
1886 if (a->flags & ATTR_IS_ENCRYPTED ||
1887 a->flags & ATTR_IS_SPARSE) {
1888 if (a->non_resident) {
1889 ntfs_error(sb, "Non-resident attribute list "
1890 "attribute is encrypted/"
1891 "sparse.%s", es);
1892 goto put_err_out;
1893 }
1894 ntfs_warning(sb, "Resident attribute list attribute "
1895 "in $MFT system file is marked "
1896 "encrypted/sparse which is not true. "
1897 "However, Windows allows this and "
1898 "chkdsk does not detect or correct it "
1899 "so we will just ignore the invalid "
1900 "flags and pretend they are not set.");
1901 }
1902 /* Now allocate memory for the attribute list. */
1903 ni->attr_list_size = (u32)ntfs_attr_size(a);
1904 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1905 if (!ni->attr_list) {
1906 ntfs_error(sb, "Not enough memory to allocate buffer "
1907 "for attribute list.");
1908 goto put_err_out;
1909 }
1910 if (a->non_resident) {
1911 NInoSetAttrListNonResident(ni);
1912 if (a->data.non_resident.lowest_vcn) {
1913 ntfs_error(sb, "Attribute list has non zero "
1914 "lowest_vcn. $MFT is corrupt. "
1915 "You should run chkdsk.");
1916 goto put_err_out;
1917 }
1918 /* Setup the runlist. */
1919 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1920 a, NULL);
1921 if (IS_ERR(ni->attr_list_rl.rl)) {
1922 err = PTR_ERR(ni->attr_list_rl.rl);
1923 ni->attr_list_rl.rl = NULL;
1924 ntfs_error(sb, "Mapping pairs decompression "
1925 "failed with error code %i.",
1926 -err);
1927 goto put_err_out;
1928 }
1929 /* Now load the attribute list. */
1930 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1931 ni->attr_list, ni->attr_list_size,
1932 sle64_to_cpu(a->data.
1933 non_resident.initialized_size)))) {
1934 ntfs_error(sb, "Failed to load attribute list "
1935 "attribute with error code %i.",
1936 -err);
1937 goto put_err_out;
1938 }
1939 } else /* if (!ctx.attr->non_resident) */ {
1940 if ((u8*)a + le16_to_cpu(
1941 a->data.resident.value_offset) +
1942 le32_to_cpu(
1943 a->data.resident.value_length) >
1944 (u8*)ctx->mrec + vol->mft_record_size) {
1945 ntfs_error(sb, "Corrupt attribute list "
1946 "attribute.");
1947 goto put_err_out;
1948 }
1949 /* Now copy the attribute list. */
1950 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1951 a->data.resident.value_offset),
1952 le32_to_cpu(
1953 a->data.resident.value_length));
1954 }
1955 /* The attribute list is now setup in memory. */
1956 /*
1957 * FIXME: I don't know if this case is actually possible.
1958 * According to logic it is not possible but I have seen too
1959 * many weird things in MS software to rely on logic... Thus we
1960 * perform a manual search and make sure the first $MFT/$DATA
1961 * extent is in the base inode. If it is not we abort with an
1962 * error and if we ever see a report of this error we will need
1963 * to do some magic in order to have the necessary mft record
1964 * loaded and in the right place in the page cache. But
1965 * hopefully logic will prevail and this never happens...
1966 */
1967 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1968 al_end = (u8*)al_entry + ni->attr_list_size;
1969 for (;; al_entry = next_al_entry) {
1970 /* Out of bounds check. */
1971 if ((u8*)al_entry < ni->attr_list ||
1972 (u8*)al_entry > al_end)
1973 goto em_put_err_out;
1974 /* Catch the end of the attribute list. */
1975 if ((u8*)al_entry == al_end)
1976 goto em_put_err_out;
1977 if (!al_entry->length)
1978 goto em_put_err_out;
1979 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1980 le16_to_cpu(al_entry->length) > al_end)
1981 goto em_put_err_out;
1982 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1983 le16_to_cpu(al_entry->length));
1984 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1985 goto em_put_err_out;
1986 if (AT_DATA != al_entry->type)
1987 continue;
1988 /* We want an unnamed attribute. */
1989 if (al_entry->name_length)
1990 goto em_put_err_out;
1991 /* Want the first entry, i.e. lowest_vcn == 0. */
1992 if (al_entry->lowest_vcn)
1993 goto em_put_err_out;
1994 /* First entry has to be in the base mft record. */
1995 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1996 /* MFT references do not match, logic fails. */
1997 ntfs_error(sb, "BUG: The first $DATA extent "
1998 "of $MFT is not in the base "
1999 "mft record. Please report "
2000 "you saw this message to "
2001 "linux-ntfs-dev@lists."
2002 "sourceforge.net");
2003 goto put_err_out;
2004 } else {
2005 /* Sequence numbers must match. */
2006 if (MSEQNO_LE(al_entry->mft_reference) !=
2007 ni->seq_no)
2008 goto em_put_err_out;
2009 /* Got it. All is ok. We can stop now. */
2010 break;
2011 }
2012 }
2013 }
2014
2015 ntfs_attr_reinit_search_ctx(ctx);
2016
2017 /* Now load all attribute extents. */
2018 a = NULL;
2019 next_vcn = last_vcn = highest_vcn = 0;
2020 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2021 ctx))) {
2022 runlist_element *nrl;
2023
2024 /* Cache the current attribute. */
2025 a = ctx->attr;
2026 /* $MFT must be non-resident. */
2027 if (!a->non_resident) {
2028 ntfs_error(sb, "$MFT must be non-resident but a "
2029 "resident extent was found. $MFT is "
2030 "corrupt. Run chkdsk.");
2031 goto put_err_out;
2032 }
2033 /* $MFT must be uncompressed and unencrypted. */
2034 if (a->flags & ATTR_COMPRESSION_MASK ||
2035 a->flags & ATTR_IS_ENCRYPTED ||
2036 a->flags & ATTR_IS_SPARSE) {
2037 ntfs_error(sb, "$MFT must be uncompressed, "
2038 "non-sparse, and unencrypted but a "
2039 "compressed/sparse/encrypted extent "
2040 "was found. $MFT is corrupt. Run "
2041 "chkdsk.");
2042 goto put_err_out;
2043 }
2044 /*
2045 * Decompress the mapping pairs array of this extent and merge
2046 * the result into the existing runlist. No need for locking
2047 * as we have exclusive access to the inode at this time and we
2048 * are a mount in progress task, too.
2049 */
2050 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2051 if (IS_ERR(nrl)) {
2052 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2053 "failed with error code %ld. $MFT is "
2054 "corrupt.", PTR_ERR(nrl));
2055 goto put_err_out;
2056 }
2057 ni->runlist.rl = nrl;
2058
2059 /* Are we in the first extent? */
2060 if (!next_vcn) {
2061 if (a->data.non_resident.lowest_vcn) {
2062 ntfs_error(sb, "First extent of $DATA "
2063 "attribute has non zero "
2064 "lowest_vcn. $MFT is corrupt. "
2065 "You should run chkdsk.");
2066 goto put_err_out;
2067 }
2068 /* Get the last vcn in the $DATA attribute. */
2069 last_vcn = sle64_to_cpu(
2070 a->data.non_resident.allocated_size)
2071 >> vol->cluster_size_bits;
2072 /* Fill in the inode size. */
2073 vi->i_size = sle64_to_cpu(
2074 a->data.non_resident.data_size);
2075 ni->initialized_size = sle64_to_cpu(
2076 a->data.non_resident.initialized_size);
2077 ni->allocated_size = sle64_to_cpu(
2078 a->data.non_resident.allocated_size);
2079 /*
2080 * Verify the number of mft records does not exceed
2081 * 2^32 - 1.
2082 */
2083 if ((vi->i_size >> vol->mft_record_size_bits) >=
2084 (1ULL << 32)) {
2085 ntfs_error(sb, "$MFT is too big! Aborting.");
2086 goto put_err_out;
2087 }
2088 /*
2089 * We have got the first extent of the runlist for
2090 * $MFT which means it is now relatively safe to call
2091 * the normal ntfs_read_inode() function.
2092 * Complete reading the inode, this will actually
2093 * re-read the mft record for $MFT, this time entering
2094 * it into the page cache with which we complete the
2095 * kick start of the volume. It should be safe to do
2096 * this now as the first extent of $MFT/$DATA is
2097 * already known and we would hope that we don't need
2098 * further extents in order to find the other
2099 * attributes belonging to $MFT. Only time will tell if
2100 * this is really the case. If not we will have to play
2101 * magic at this point, possibly duplicating a lot of
2102 * ntfs_read_inode() at this point. We will need to
2103 * ensure we do enough of its work to be able to call
2104 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2105 * hope this never happens...
2106 */
2107 ntfs_read_locked_inode(vi);
2108 if (is_bad_inode(vi)) {
2109 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2110 "failed. BUG or corrupt $MFT. "
2111 "Run chkdsk and if no errors "
2112 "are found, please report you "
2113 "saw this message to "
2114 "linux-ntfs-dev@lists."
2115 "sourceforge.net");
2116 ntfs_attr_put_search_ctx(ctx);
2117 /* Revert to the safe super operations. */
2118 ntfs_free(m);
2119 return -1;
2120 }
2121 /*
2122 * Re-initialize some specifics about $MFT's inode as
2123 * ntfs_read_inode() will have set up the default ones.
2124 */
2125 /* Set uid and gid to root. */
2126 vi->i_uid = GLOBAL_ROOT_UID;
2127 vi->i_gid = GLOBAL_ROOT_GID;
2128 /* Regular file. No access for anyone. */
2129 vi->i_mode = S_IFREG;
2130 /* No VFS initiated operations allowed for $MFT. */
2131 vi->i_op = &ntfs_empty_inode_ops;
2132 vi->i_fop = &ntfs_empty_file_ops;
2133 }
2134
2135 /* Get the lowest vcn for the next extent. */
2136 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2137 next_vcn = highest_vcn + 1;
2138
2139 /* Only one extent or error, which we catch below. */
2140 if (next_vcn <= 0)
2141 break;
2142
2143 /* Avoid endless loops due to corruption. */
2144 if (next_vcn < sle64_to_cpu(
2145 a->data.non_resident.lowest_vcn)) {
2146 ntfs_error(sb, "$MFT has corrupt attribute list "
2147 "attribute. Run chkdsk.");
2148 goto put_err_out;
2149 }
2150 }
2151 if (err != -ENOENT) {
2152 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2153 "$MFT is corrupt. Run chkdsk.");
2154 goto put_err_out;
2155 }
2156 if (!a) {
2157 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2158 "corrupt. Run chkdsk.");
2159 goto put_err_out;
2160 }
2161 if (highest_vcn && highest_vcn != last_vcn - 1) {
2162 ntfs_error(sb, "Failed to load the complete runlist for "
2163 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2164 "Run chkdsk.");
2165 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2166 (unsigned long long)highest_vcn,
2167 (unsigned long long)last_vcn - 1);
2168 goto put_err_out;
2169 }
2170 ntfs_attr_put_search_ctx(ctx);
2171 ntfs_debug("Done.");
2172 ntfs_free(m);
2173
2174 /*
2175 * Split the locking rules of the MFT inode from the
2176 * locking rules of other inodes:
2177 */
2178 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2179 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2180
2181 return 0;
2182
2183 em_put_err_out:
2184 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2185 "attribute list. $MFT is corrupt. Run chkdsk.");
2186 put_err_out:
2187 ntfs_attr_put_search_ctx(ctx);
2188 err_out:
2189 ntfs_error(sb, "Failed. Marking inode as bad.");
2190 make_bad_inode(vi);
2191 ntfs_free(m);
2192 return -1;
2193 }
2194
2195 static void __ntfs_clear_inode(ntfs_inode *ni)
2196 {
2197 /* Free all alocated memory. */
2198 down_write(&ni->runlist.lock);
2199 if (ni->runlist.rl) {
2200 ntfs_free(ni->runlist.rl);
2201 ni->runlist.rl = NULL;
2202 }
2203 up_write(&ni->runlist.lock);
2204
2205 if (ni->attr_list) {
2206 ntfs_free(ni->attr_list);
2207 ni->attr_list = NULL;
2208 }
2209
2210 down_write(&ni->attr_list_rl.lock);
2211 if (ni->attr_list_rl.rl) {
2212 ntfs_free(ni->attr_list_rl.rl);
2213 ni->attr_list_rl.rl = NULL;
2214 }
2215 up_write(&ni->attr_list_rl.lock);
2216
2217 if (ni->name_len && ni->name != I30) {
2218 /* Catch bugs... */
2219 BUG_ON(!ni->name);
2220 kfree(ni->name);
2221 }
2222 }
2223
2224 void ntfs_clear_extent_inode(ntfs_inode *ni)
2225 {
2226 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2227
2228 BUG_ON(NInoAttr(ni));
2229 BUG_ON(ni->nr_extents != -1);
2230
2231 #ifdef NTFS_RW
2232 if (NInoDirty(ni)) {
2233 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2234 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2235 "Losing data! This is a BUG!!!");
2236 // FIXME: Do something!!!
2237 }
2238 #endif /* NTFS_RW */
2239
2240 __ntfs_clear_inode(ni);
2241
2242 /* Bye, bye... */
2243 ntfs_destroy_extent_inode(ni);
2244 }
2245
2246 /**
2247 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2248 * @vi: vfs inode pending annihilation
2249 *
2250 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2251 * is called, which deallocates all memory belonging to the NTFS specific part
2252 * of the inode and returns.
2253 *
2254 * If the MFT record is dirty, we commit it before doing anything else.
2255 */
2256 void ntfs_evict_big_inode(struct inode *vi)
2257 {
2258 ntfs_inode *ni = NTFS_I(vi);
2259
2260 truncate_inode_pages_final(&vi->i_data);
2261 clear_inode(vi);
2262
2263 #ifdef NTFS_RW
2264 if (NInoDirty(ni)) {
2265 bool was_bad = (is_bad_inode(vi));
2266
2267 /* Committing the inode also commits all extent inodes. */
2268 ntfs_commit_inode(vi);
2269
2270 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2271 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2272 "0x%lx. Losing data!", vi->i_ino);
2273 // FIXME: Do something!!!
2274 }
2275 }
2276 #endif /* NTFS_RW */
2277
2278 /* No need to lock at this stage as no one else has a reference. */
2279 if (ni->nr_extents > 0) {
2280 int i;
2281
2282 for (i = 0; i < ni->nr_extents; i++)
2283 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2284 kfree(ni->ext.extent_ntfs_inos);
2285 }
2286
2287 __ntfs_clear_inode(ni);
2288
2289 if (NInoAttr(ni)) {
2290 /* Release the base inode if we are holding it. */
2291 if (ni->nr_extents == -1) {
2292 iput(VFS_I(ni->ext.base_ntfs_ino));
2293 ni->nr_extents = 0;
2294 ni->ext.base_ntfs_ino = NULL;
2295 }
2296 }
2297 return;
2298 }
2299
2300 /**
2301 * ntfs_show_options - show mount options in /proc/mounts
2302 * @sf: seq_file in which to write our mount options
2303 * @root: root of the mounted tree whose mount options to display
2304 *
2305 * Called by the VFS once for each mounted ntfs volume when someone reads
2306 * /proc/mounts in order to display the NTFS specific mount options of each
2307 * mount. The mount options of fs specified by @root are written to the seq file
2308 * @sf and success is returned.
2309 */
2310 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2311 {
2312 ntfs_volume *vol = NTFS_SB(root->d_sb);
2313 int i;
2314
2315 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2316 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2317 if (vol->fmask == vol->dmask)
2318 seq_printf(sf, ",umask=0%o", vol->fmask);
2319 else {
2320 seq_printf(sf, ",fmask=0%o", vol->fmask);
2321 seq_printf(sf, ",dmask=0%o", vol->dmask);
2322 }
2323 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2324 if (NVolCaseSensitive(vol))
2325 seq_printf(sf, ",case_sensitive");
2326 if (NVolShowSystemFiles(vol))
2327 seq_printf(sf, ",show_sys_files");
2328 if (!NVolSparseEnabled(vol))
2329 seq_printf(sf, ",disable_sparse");
2330 for (i = 0; on_errors_arr[i].val; i++) {
2331 if (on_errors_arr[i].val & vol->on_errors)
2332 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2333 }
2334 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2335 return 0;
2336 }
2337
2338 #ifdef NTFS_RW
2339
2340 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2341 "chkdsk.";
2342
2343 /**
2344 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2345 * @vi: inode for which the i_size was changed
2346 *
2347 * We only support i_size changes for normal files at present, i.e. not
2348 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2349 * below.
2350 *
2351 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2352 * that the change is allowed.
2353 *
2354 * This implies for us that @vi is a file inode rather than a directory, index,
2355 * or attribute inode as well as that @vi is a base inode.
2356 *
2357 * Returns 0 on success or -errno on error.
2358 *
2359 * Called with ->i_mutex held.
2360 */
2361 int ntfs_truncate(struct inode *vi)
2362 {
2363 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2364 VCN highest_vcn;
2365 unsigned long flags;
2366 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2367 ntfs_volume *vol = ni->vol;
2368 ntfs_attr_search_ctx *ctx;
2369 MFT_RECORD *m;
2370 ATTR_RECORD *a;
2371 const char *te = " Leaving file length out of sync with i_size.";
2372 int err, mp_size, size_change, alloc_change;
2373 u32 attr_len;
2374
2375 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2376 BUG_ON(NInoAttr(ni));
2377 BUG_ON(S_ISDIR(vi->i_mode));
2378 BUG_ON(NInoMstProtected(ni));
2379 BUG_ON(ni->nr_extents < 0);
2380 retry_truncate:
2381 /*
2382 * Lock the runlist for writing and map the mft record to ensure it is
2383 * safe to mess with the attribute runlist and sizes.
2384 */
2385 down_write(&ni->runlist.lock);
2386 if (!NInoAttr(ni))
2387 base_ni = ni;
2388 else
2389 base_ni = ni->ext.base_ntfs_ino;
2390 m = map_mft_record(base_ni);
2391 if (IS_ERR(m)) {
2392 err = PTR_ERR(m);
2393 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2394 "(error code %d).%s", vi->i_ino, err, te);
2395 ctx = NULL;
2396 m = NULL;
2397 goto old_bad_out;
2398 }
2399 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2400 if (unlikely(!ctx)) {
2401 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2402 "inode 0x%lx (not enough memory).%s",
2403 vi->i_ino, te);
2404 err = -ENOMEM;
2405 goto old_bad_out;
2406 }
2407 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2408 CASE_SENSITIVE, 0, NULL, 0, ctx);
2409 if (unlikely(err)) {
2410 if (err == -ENOENT) {
2411 ntfs_error(vi->i_sb, "Open attribute is missing from "
2412 "mft record. Inode 0x%lx is corrupt. "
2413 "Run chkdsk.%s", vi->i_ino, te);
2414 err = -EIO;
2415 } else
2416 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2417 "inode 0x%lx (error code %d).%s",
2418 vi->i_ino, err, te);
2419 goto old_bad_out;
2420 }
2421 m = ctx->mrec;
2422 a = ctx->attr;
2423 /*
2424 * The i_size of the vfs inode is the new size for the attribute value.
2425 */
2426 new_size = i_size_read(vi);
2427 /* The current size of the attribute value is the old size. */
2428 old_size = ntfs_attr_size(a);
2429 /* Calculate the new allocated size. */
2430 if (NInoNonResident(ni))
2431 new_alloc_size = (new_size + vol->cluster_size - 1) &
2432 ~(s64)vol->cluster_size_mask;
2433 else
2434 new_alloc_size = (new_size + 7) & ~7;
2435 /* The current allocated size is the old allocated size. */
2436 read_lock_irqsave(&ni->size_lock, flags);
2437 old_alloc_size = ni->allocated_size;
2438 read_unlock_irqrestore(&ni->size_lock, flags);
2439 /*
2440 * The change in the file size. This will be 0 if no change, >0 if the
2441 * size is growing, and <0 if the size is shrinking.
2442 */
2443 size_change = -1;
2444 if (new_size - old_size >= 0) {
2445 size_change = 1;
2446 if (new_size == old_size)
2447 size_change = 0;
2448 }
2449 /* As above for the allocated size. */
2450 alloc_change = -1;
2451 if (new_alloc_size - old_alloc_size >= 0) {
2452 alloc_change = 1;
2453 if (new_alloc_size == old_alloc_size)
2454 alloc_change = 0;
2455 }
2456 /*
2457 * If neither the size nor the allocation are being changed there is
2458 * nothing to do.
2459 */
2460 if (!size_change && !alloc_change)
2461 goto unm_done;
2462 /* If the size is changing, check if new size is allowed in $AttrDef. */
2463 if (size_change) {
2464 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2465 if (unlikely(err)) {
2466 if (err == -ERANGE) {
2467 ntfs_error(vol->sb, "Truncate would cause the "
2468 "inode 0x%lx to %simum size "
2469 "for its attribute type "
2470 "(0x%x). Aborting truncate.",
2471 vi->i_ino,
2472 new_size > old_size ? "exceed "
2473 "the max" : "go under the min",
2474 le32_to_cpu(ni->type));
2475 err = -EFBIG;
2476 } else {
2477 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2478 "attribute type 0x%x. "
2479 "Aborting truncate.",
2480 vi->i_ino,
2481 le32_to_cpu(ni->type));
2482 err = -EIO;
2483 }
2484 /* Reset the vfs inode size to the old size. */
2485 i_size_write(vi, old_size);
2486 goto err_out;
2487 }
2488 }
2489 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2490 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2491 "supported yet for %s files, ignoring.",
2492 NInoCompressed(ni) ? "compressed" :
2493 "encrypted");
2494 err = -EOPNOTSUPP;
2495 goto bad_out;
2496 }
2497 if (a->non_resident)
2498 goto do_non_resident_truncate;
2499 BUG_ON(NInoNonResident(ni));
2500 /* Resize the attribute record to best fit the new attribute size. */
2501 if (new_size < vol->mft_record_size &&
2502 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2503 /* The resize succeeded! */
2504 flush_dcache_mft_record_page(ctx->ntfs_ino);
2505 mark_mft_record_dirty(ctx->ntfs_ino);
2506 write_lock_irqsave(&ni->size_lock, flags);
2507 /* Update the sizes in the ntfs inode and all is done. */
2508 ni->allocated_size = le32_to_cpu(a->length) -
2509 le16_to_cpu(a->data.resident.value_offset);
2510 /*
2511 * Note ntfs_resident_attr_value_resize() has already done any
2512 * necessary data clearing in the attribute record. When the
2513 * file is being shrunk vmtruncate() will already have cleared
2514 * the top part of the last partial page, i.e. since this is
2515 * the resident case this is the page with index 0. However,
2516 * when the file is being expanded, the page cache page data
2517 * between the old data_size, i.e. old_size, and the new_size
2518 * has not been zeroed. Fortunately, we do not need to zero it
2519 * either since on one hand it will either already be zero due
2520 * to both readpage and writepage clearing partial page data
2521 * beyond i_size in which case there is nothing to do or in the
2522 * case of the file being mmap()ped at the same time, POSIX
2523 * specifies that the behaviour is unspecified thus we do not
2524 * have to do anything. This means that in our implementation
2525 * in the rare case that the file is mmap()ped and a write
2526 * occurred into the mmap()ped region just beyond the file size
2527 * and writepage has not yet been called to write out the page
2528 * (which would clear the area beyond the file size) and we now
2529 * extend the file size to incorporate this dirty region
2530 * outside the file size, a write of the page would result in
2531 * this data being written to disk instead of being cleared.
2532 * Given both POSIX and the Linux mmap(2) man page specify that
2533 * this corner case is undefined, we choose to leave it like
2534 * that as this is much simpler for us as we cannot lock the
2535 * relevant page now since we are holding too many ntfs locks
2536 * which would result in a lock reversal deadlock.
2537 */
2538 ni->initialized_size = new_size;
2539 write_unlock_irqrestore(&ni->size_lock, flags);
2540 goto unm_done;
2541 }
2542 /* If the above resize failed, this must be an attribute extension. */
2543 BUG_ON(size_change < 0);
2544 /*
2545 * We have to drop all the locks so we can call
2546 * ntfs_attr_make_non_resident(). This could be optimised by try-
2547 * locking the first page cache page and only if that fails dropping
2548 * the locks, locking the page, and redoing all the locking and
2549 * lookups. While this would be a huge optimisation, it is not worth
2550 * it as this is definitely a slow code path as it only ever can happen
2551 * once for any given file.
2552 */
2553 ntfs_attr_put_search_ctx(ctx);
2554 unmap_mft_record(base_ni);
2555 up_write(&ni->runlist.lock);
2556 /*
2557 * Not enough space in the mft record, try to make the attribute
2558 * non-resident and if successful restart the truncation process.
2559 */
2560 err = ntfs_attr_make_non_resident(ni, old_size);
2561 if (likely(!err))
2562 goto retry_truncate;
2563 /*
2564 * Could not make non-resident. If this is due to this not being
2565 * permitted for this attribute type or there not being enough space,
2566 * try to make other attributes non-resident. Otherwise fail.
2567 */
2568 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2569 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2570 "type 0x%x, because the conversion from "
2571 "resident to non-resident attribute failed "
2572 "with error code %i.", vi->i_ino,
2573 (unsigned)le32_to_cpu(ni->type), err);
2574 if (err != -ENOMEM)
2575 err = -EIO;
2576 goto conv_err_out;
2577 }
2578 /* TODO: Not implemented from here, abort. */
2579 if (err == -ENOSPC)
2580 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2581 "disk for the non-resident attribute value. "
2582 "This case is not implemented yet.");
2583 else /* if (err == -EPERM) */
2584 ntfs_error(vol->sb, "This attribute type may not be "
2585 "non-resident. This case is not implemented "
2586 "yet.");
2587 err = -EOPNOTSUPP;
2588 goto conv_err_out;
2589 #if 0
2590 // TODO: Attempt to make other attributes non-resident.
2591 if (!err)
2592 goto do_resident_extend;
2593 /*
2594 * Both the attribute list attribute and the standard information
2595 * attribute must remain in the base inode. Thus, if this is one of
2596 * these attributes, we have to try to move other attributes out into
2597 * extent mft records instead.
2598 */
2599 if (ni->type == AT_ATTRIBUTE_LIST ||
2600 ni->type == AT_STANDARD_INFORMATION) {
2601 // TODO: Attempt to move other attributes into extent mft
2602 // records.
2603 err = -EOPNOTSUPP;
2604 if (!err)
2605 goto do_resident_extend;
2606 goto err_out;
2607 }
2608 // TODO: Attempt to move this attribute to an extent mft record, but
2609 // only if it is not already the only attribute in an mft record in
2610 // which case there would be nothing to gain.
2611 err = -EOPNOTSUPP;
2612 if (!err)
2613 goto do_resident_extend;
2614 /* There is nothing we can do to make enough space. )-: */
2615 goto err_out;
2616 #endif
2617 do_non_resident_truncate:
2618 BUG_ON(!NInoNonResident(ni));
2619 if (alloc_change < 0) {
2620 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2621 if (highest_vcn > 0 &&
2622 old_alloc_size >> vol->cluster_size_bits >
2623 highest_vcn + 1) {
2624 /*
2625 * This attribute has multiple extents. Not yet
2626 * supported.
2627 */
2628 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2629 "attribute type 0x%x, because the "
2630 "attribute is highly fragmented (it "
2631 "consists of multiple extents) and "
2632 "this case is not implemented yet.",
2633 vi->i_ino,
2634 (unsigned)le32_to_cpu(ni->type));
2635 err = -EOPNOTSUPP;
2636 goto bad_out;
2637 }
2638 }
2639 /*
2640 * If the size is shrinking, need to reduce the initialized_size and
2641 * the data_size before reducing the allocation.
2642 */
2643 if (size_change < 0) {
2644 /*
2645 * Make the valid size smaller (i_size is already up-to-date).
2646 */
2647 write_lock_irqsave(&ni->size_lock, flags);
2648 if (new_size < ni->initialized_size) {
2649 ni->initialized_size = new_size;
2650 a->data.non_resident.initialized_size =
2651 cpu_to_sle64(new_size);
2652 }
2653 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2654 write_unlock_irqrestore(&ni->size_lock, flags);
2655 flush_dcache_mft_record_page(ctx->ntfs_ino);
2656 mark_mft_record_dirty(ctx->ntfs_ino);
2657 /* If the allocated size is not changing, we are done. */
2658 if (!alloc_change)
2659 goto unm_done;
2660 /*
2661 * If the size is shrinking it makes no sense for the
2662 * allocation to be growing.
2663 */
2664 BUG_ON(alloc_change > 0);
2665 } else /* if (size_change >= 0) */ {
2666 /*
2667 * The file size is growing or staying the same but the
2668 * allocation can be shrinking, growing or staying the same.
2669 */
2670 if (alloc_change > 0) {
2671 /*
2672 * We need to extend the allocation and possibly update
2673 * the data size. If we are updating the data size,
2674 * since we are not touching the initialized_size we do
2675 * not need to worry about the actual data on disk.
2676 * And as far as the page cache is concerned, there
2677 * will be no pages beyond the old data size and any
2678 * partial region in the last page between the old and
2679 * new data size (or the end of the page if the new
2680 * data size is outside the page) does not need to be
2681 * modified as explained above for the resident
2682 * attribute truncate case. To do this, we simply drop
2683 * the locks we hold and leave all the work to our
2684 * friendly helper ntfs_attr_extend_allocation().
2685 */
2686 ntfs_attr_put_search_ctx(ctx);
2687 unmap_mft_record(base_ni);
2688 up_write(&ni->runlist.lock);
2689 err = ntfs_attr_extend_allocation(ni, new_size,
2690 size_change > 0 ? new_size : -1, -1);
2691 /*
2692 * ntfs_attr_extend_allocation() will have done error
2693 * output already.
2694 */
2695 goto done;
2696 }
2697 if (!alloc_change)
2698 goto alloc_done;
2699 }
2700 /* alloc_change < 0 */
2701 /* Free the clusters. */
2702 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2703 vol->cluster_size_bits, -1, ctx);
2704 m = ctx->mrec;
2705 a = ctx->attr;
2706 if (unlikely(nr_freed < 0)) {
2707 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2708 "%lli). Unmount and run chkdsk to recover "
2709 "the lost cluster(s).", (long long)nr_freed);
2710 NVolSetErrors(vol);
2711 nr_freed = 0;
2712 }
2713 /* Truncate the runlist. */
2714 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2715 new_alloc_size >> vol->cluster_size_bits);
2716 /*
2717 * If the runlist truncation failed and/or the search context is no
2718 * longer valid, we cannot resize the attribute record or build the
2719 * mapping pairs array thus we mark the inode bad so that no access to
2720 * the freed clusters can happen.
2721 */
2722 if (unlikely(err || IS_ERR(m))) {
2723 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2724 IS_ERR(m) ?
2725 "restore attribute search context" :
2726 "truncate attribute runlist",
2727 IS_ERR(m) ? PTR_ERR(m) : err, es);
2728 err = -EIO;
2729 goto bad_out;
2730 }
2731 /* Get the size for the shrunk mapping pairs array for the runlist. */
2732 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2733 if (unlikely(mp_size <= 0)) {
2734 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2735 "attribute type 0x%x, because determining the "
2736 "size for the mapping pairs failed with error "
2737 "code %i.%s", vi->i_ino,
2738 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2739 err = -EIO;
2740 goto bad_out;
2741 }
2742 /*
2743 * Shrink the attribute record for the new mapping pairs array. Note,
2744 * this cannot fail since we are making the attribute smaller thus by
2745 * definition there is enough space to do so.
2746 */
2747 attr_len = le32_to_cpu(a->length);
2748 err = ntfs_attr_record_resize(m, a, mp_size +
2749 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2750 BUG_ON(err);
2751 /*
2752 * Generate the mapping pairs array directly into the attribute record.
2753 */
2754 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2755 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2756 mp_size, ni->runlist.rl, 0, -1, NULL);
2757 if (unlikely(err)) {
2758 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2759 "attribute type 0x%x, because building the "
2760 "mapping pairs failed with error code %i.%s",
2761 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2762 err, es);
2763 err = -EIO;
2764 goto bad_out;
2765 }
2766 /* Update the allocated/compressed size as well as the highest vcn. */
2767 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2768 vol->cluster_size_bits) - 1);
2769 write_lock_irqsave(&ni->size_lock, flags);
2770 ni->allocated_size = new_alloc_size;
2771 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2772 if (NInoSparse(ni) || NInoCompressed(ni)) {
2773 if (nr_freed) {
2774 ni->itype.compressed.size -= nr_freed <<
2775 vol->cluster_size_bits;
2776 BUG_ON(ni->itype.compressed.size < 0);
2777 a->data.non_resident.compressed_size = cpu_to_sle64(
2778 ni->itype.compressed.size);
2779 vi->i_blocks = ni->itype.compressed.size >> 9;
2780 }
2781 } else
2782 vi->i_blocks = new_alloc_size >> 9;
2783 write_unlock_irqrestore(&ni->size_lock, flags);
2784 /*
2785 * We have shrunk the allocation. If this is a shrinking truncate we
2786 * have already dealt with the initialized_size and the data_size above
2787 * and we are done. If the truncate is only changing the allocation
2788 * and not the data_size, we are also done. If this is an extending
2789 * truncate, need to extend the data_size now which is ensured by the
2790 * fact that @size_change is positive.
2791 */
2792 alloc_done:
2793 /*
2794 * If the size is growing, need to update it now. If it is shrinking,
2795 * we have already updated it above (before the allocation change).
2796 */
2797 if (size_change > 0)
2798 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2799 /* Ensure the modified mft record is written out. */
2800 flush_dcache_mft_record_page(ctx->ntfs_ino);
2801 mark_mft_record_dirty(ctx->ntfs_ino);
2802 unm_done:
2803 ntfs_attr_put_search_ctx(ctx);
2804 unmap_mft_record(base_ni);
2805 up_write(&ni->runlist.lock);
2806 done:
2807 /* Update the mtime and ctime on the base inode. */
2808 /* normally ->truncate shouldn't update ctime or mtime,
2809 * but ntfs did before so it got a copy & paste version
2810 * of file_update_time. one day someone should fix this
2811 * for real.
2812 */
2813 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2814 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2815 int sync_it = 0;
2816
2817 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2818 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2819 sync_it = 1;
2820 VFS_I(base_ni)->i_mtime = now;
2821 VFS_I(base_ni)->i_ctime = now;
2822
2823 if (sync_it)
2824 mark_inode_dirty_sync(VFS_I(base_ni));
2825 }
2826
2827 if (likely(!err)) {
2828 NInoClearTruncateFailed(ni);
2829 ntfs_debug("Done.");
2830 }
2831 return err;
2832 old_bad_out:
2833 old_size = -1;
2834 bad_out:
2835 if (err != -ENOMEM && err != -EOPNOTSUPP)
2836 NVolSetErrors(vol);
2837 if (err != -EOPNOTSUPP)
2838 NInoSetTruncateFailed(ni);
2839 else if (old_size >= 0)
2840 i_size_write(vi, old_size);
2841 err_out:
2842 if (ctx)
2843 ntfs_attr_put_search_ctx(ctx);
2844 if (m)
2845 unmap_mft_record(base_ni);
2846 up_write(&ni->runlist.lock);
2847 out:
2848 ntfs_debug("Failed. Returning error code %i.", err);
2849 return err;
2850 conv_err_out:
2851 if (err != -ENOMEM && err != -EOPNOTSUPP)
2852 NVolSetErrors(vol);
2853 if (err != -EOPNOTSUPP)
2854 NInoSetTruncateFailed(ni);
2855 else
2856 i_size_write(vi, old_size);
2857 goto out;
2858 }
2859
2860 /**
2861 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2862 * @vi: inode for which the i_size was changed
2863 *
2864 * Wrapper for ntfs_truncate() that has no return value.
2865 *
2866 * See ntfs_truncate() description above for details.
2867 */
2868 #ifdef NTFS_RW
2869 void ntfs_truncate_vfs(struct inode *vi) {
2870 ntfs_truncate(vi);
2871 }
2872 #endif
2873
2874 /**
2875 * ntfs_setattr - called from notify_change() when an attribute is being changed
2876 * @dentry: dentry whose attributes to change
2877 * @attr: structure describing the attributes and the changes
2878 *
2879 * We have to trap VFS attempts to truncate the file described by @dentry as
2880 * soon as possible, because we do not implement changes in i_size yet. So we
2881 * abort all i_size changes here.
2882 *
2883 * We also abort all changes of user, group, and mode as we do not implement
2884 * the NTFS ACLs yet.
2885 *
2886 * Called with ->i_mutex held.
2887 */
2888 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2889 {
2890 struct inode *vi = dentry->d_inode;
2891 int err;
2892 unsigned int ia_valid = attr->ia_valid;
2893
2894 err = inode_change_ok(vi, attr);
2895 if (err)
2896 goto out;
2897 /* We do not support NTFS ACLs yet. */
2898 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2899 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2900 "supported yet, ignoring.");
2901 err = -EOPNOTSUPP;
2902 goto out;
2903 }
2904 if (ia_valid & ATTR_SIZE) {
2905 if (attr->ia_size != i_size_read(vi)) {
2906 ntfs_inode *ni = NTFS_I(vi);
2907 /*
2908 * FIXME: For now we do not support resizing of
2909 * compressed or encrypted files yet.
2910 */
2911 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2912 ntfs_warning(vi->i_sb, "Changes in inode size "
2913 "are not supported yet for "
2914 "%s files, ignoring.",
2915 NInoCompressed(ni) ?
2916 "compressed" : "encrypted");
2917 err = -EOPNOTSUPP;
2918 } else {
2919 truncate_setsize(vi, attr->ia_size);
2920 ntfs_truncate_vfs(vi);
2921 }
2922 if (err || ia_valid == ATTR_SIZE)
2923 goto out;
2924 } else {
2925 /*
2926 * We skipped the truncate but must still update
2927 * timestamps.
2928 */
2929 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2930 }
2931 }
2932 if (ia_valid & ATTR_ATIME)
2933 vi->i_atime = timespec_trunc(attr->ia_atime,
2934 vi->i_sb->s_time_gran);
2935 if (ia_valid & ATTR_MTIME)
2936 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2937 vi->i_sb->s_time_gran);
2938 if (ia_valid & ATTR_CTIME)
2939 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2940 vi->i_sb->s_time_gran);
2941 mark_inode_dirty(vi);
2942 out:
2943 return err;
2944 }
2945
2946 /**
2947 * ntfs_write_inode - write out a dirty inode
2948 * @vi: inode to write out
2949 * @sync: if true, write out synchronously
2950 *
2951 * Write out a dirty inode to disk including any extent inodes if present.
2952 *
2953 * If @sync is true, commit the inode to disk and wait for io completion. This
2954 * is done using write_mft_record().
2955 *
2956 * If @sync is false, just schedule the write to happen but do not wait for i/o
2957 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2958 * marking the page (and in this case mft record) dirty but we do not implement
2959 * this yet as write_mft_record() largely ignores the @sync parameter and
2960 * always performs synchronous writes.
2961 *
2962 * Return 0 on success and -errno on error.
2963 */
2964 int __ntfs_write_inode(struct inode *vi, int sync)
2965 {
2966 sle64 nt;
2967 ntfs_inode *ni = NTFS_I(vi);
2968 ntfs_attr_search_ctx *ctx;
2969 MFT_RECORD *m;
2970 STANDARD_INFORMATION *si;
2971 int err = 0;
2972 bool modified = false;
2973
2974 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2975 vi->i_ino);
2976 /*
2977 * Dirty attribute inodes are written via their real inodes so just
2978 * clean them here. Access time updates are taken care off when the
2979 * real inode is written.
2980 */
2981 if (NInoAttr(ni)) {
2982 NInoClearDirty(ni);
2983 ntfs_debug("Done.");
2984 return 0;
2985 }
2986 /* Map, pin, and lock the mft record belonging to the inode. */
2987 m = map_mft_record(ni);
2988 if (IS_ERR(m)) {
2989 err = PTR_ERR(m);
2990 goto err_out;
2991 }
2992 /* Update the access times in the standard information attribute. */
2993 ctx = ntfs_attr_get_search_ctx(ni, m);
2994 if (unlikely(!ctx)) {
2995 err = -ENOMEM;
2996 goto unm_err_out;
2997 }
2998 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2999 CASE_SENSITIVE, 0, NULL, 0, ctx);
3000 if (unlikely(err)) {
3001 ntfs_attr_put_search_ctx(ctx);
3002 goto unm_err_out;
3003 }
3004 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3005 le16_to_cpu(ctx->attr->data.resident.value_offset));
3006 /* Update the access times if they have changed. */
3007 nt = utc2ntfs(vi->i_mtime);
3008 if (si->last_data_change_time != nt) {
3009 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3010 "new = 0x%llx", vi->i_ino, (long long)
3011 sle64_to_cpu(si->last_data_change_time),
3012 (long long)sle64_to_cpu(nt));
3013 si->last_data_change_time = nt;
3014 modified = true;
3015 }
3016 nt = utc2ntfs(vi->i_ctime);
3017 if (si->last_mft_change_time != nt) {
3018 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3019 "new = 0x%llx", vi->i_ino, (long long)
3020 sle64_to_cpu(si->last_mft_change_time),
3021 (long long)sle64_to_cpu(nt));
3022 si->last_mft_change_time = nt;
3023 modified = true;
3024 }
3025 nt = utc2ntfs(vi->i_atime);
3026 if (si->last_access_time != nt) {
3027 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3028 "new = 0x%llx", vi->i_ino,
3029 (long long)sle64_to_cpu(si->last_access_time),
3030 (long long)sle64_to_cpu(nt));
3031 si->last_access_time = nt;
3032 modified = true;
3033 }
3034 /*
3035 * If we just modified the standard information attribute we need to
3036 * mark the mft record it is in dirty. We do this manually so that
3037 * mark_inode_dirty() is not called which would redirty the inode and
3038 * hence result in an infinite loop of trying to write the inode.
3039 * There is no need to mark the base inode nor the base mft record
3040 * dirty, since we are going to write this mft record below in any case
3041 * and the base mft record may actually not have been modified so it
3042 * might not need to be written out.
3043 * NOTE: It is not a problem when the inode for $MFT itself is being
3044 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3045 * on the $MFT inode and hence ntfs_write_inode() will not be
3046 * re-invoked because of it which in turn is ok since the dirtied mft
3047 * record will be cleaned and written out to disk below, i.e. before
3048 * this function returns.
3049 */
3050 if (modified) {
3051 flush_dcache_mft_record_page(ctx->ntfs_ino);
3052 if (!NInoTestSetDirty(ctx->ntfs_ino))
3053 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3054 ctx->ntfs_ino->page_ofs);
3055 }
3056 ntfs_attr_put_search_ctx(ctx);
3057 /* Now the access times are updated, write the base mft record. */
3058 if (NInoDirty(ni))
3059 err = write_mft_record(ni, m, sync);
3060 /* Write all attached extent mft records. */
3061 mutex_lock(&ni->extent_lock);
3062 if (ni->nr_extents > 0) {
3063 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3064 int i;
3065
3066 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3067 for (i = 0; i < ni->nr_extents; i++) {
3068 ntfs_inode *tni = extent_nis[i];
3069
3070 if (NInoDirty(tni)) {
3071 MFT_RECORD *tm = map_mft_record(tni);
3072 int ret;
3073
3074 if (IS_ERR(tm)) {
3075 if (!err || err == -ENOMEM)
3076 err = PTR_ERR(tm);
3077 continue;
3078 }
3079 ret = write_mft_record(tni, tm, sync);
3080 unmap_mft_record(tni);
3081 if (unlikely(ret)) {
3082 if (!err || err == -ENOMEM)
3083 err = ret;
3084 }
3085 }
3086 }
3087 }
3088 mutex_unlock(&ni->extent_lock);
3089 unmap_mft_record(ni);
3090 if (unlikely(err))
3091 goto err_out;
3092 ntfs_debug("Done.");
3093 return 0;
3094 unm_err_out:
3095 unmap_mft_record(ni);
3096 err_out:
3097 if (err == -ENOMEM) {
3098 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3099 "Marking the inode dirty again, so the VFS "
3100 "retries later.");
3101 mark_inode_dirty(vi);
3102 } else {
3103 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3104 NVolSetErrors(ni->vol);
3105 }
3106 return err;
3107 }
3108
3109 #endif /* NTFS_RW */