]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/ntfs3/index.c
fs/ntfs3: Restyle comments to better align with kernel-doc
[mirror_ubuntu-kernels.git] / fs / ntfs3 / index.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/nls.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25
26 /*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36 {
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64 }
65
66 /*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71 {
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83 }
84
85 /*
86 * cmp_sdh - $SDH of $Secure
87 */
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90 {
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118 }
119
120 /*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125 {
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166 }
167
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192 }
193
194 struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202 };
203
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206 {
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284 }
285
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308 out:
309 unlock_buffer(bh);
310 put_bh(bh);
311 }
312
313 /*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318 {
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331 }
332
333 /*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338 {
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351 }
352
353 /*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365 {
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396 next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456 }
457
458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466 }
467
468 /*
469 * indx_find_free - Look for free bit.
470 *
471 * Return: -1 if no free bits.
472 */
473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475 {
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504 }
505
506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514 }
515
516 /*
517 * indx_used_bit - Look for used bit.
518 *
519 * Return: MINUS_ONE_T if no used bits.
520 */
521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550 }
551
552 /*
553 * hdr_find_split
554 *
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
557 */
558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 u16 esize;
564
565 if (!e || de_is_last(e))
566 return NULL;
567
568 esize = le16_to_cpu(e->size);
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
574 /* We must not return END entry. */
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582 }
583
584 /*
585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
586 *
587 * It is used to insert entries into a newly-created buffer.
588 */
589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591 {
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606 }
607
608 void fnd_clear(struct ntfs_fnd *fnd)
609 {
610 int i;
611
612 for (i = 0; i < fnd->level; i++) {
613 struct indx_node *n = fnd->nodes[i];
614
615 if (!n)
616 continue;
617
618 put_indx_node(n);
619 fnd->nodes[i] = NULL;
620 }
621 fnd->level = 0;
622 fnd->root_de = NULL;
623 }
624
625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 struct NTFS_DE *e)
627 {
628 int i;
629
630 i = fnd->level;
631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 return -EINVAL;
633 fnd->nodes[i] = n;
634 fnd->de[i] = e;
635 fnd->level += 1;
636 return 0;
637 }
638
639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640 {
641 struct indx_node *n;
642 int i = fnd->level;
643
644 i -= 1;
645 n = fnd->nodes[i];
646 fnd->nodes[i] = NULL;
647 fnd->level = i;
648
649 return n;
650 }
651
652 static bool fnd_is_empty(struct ntfs_fnd *fnd)
653 {
654 if (!fnd->level)
655 return !fnd->root_de;
656
657 return !fnd->de[fnd->level - 1];
658 }
659
660 /*
661 * hdr_find_e - Locate an entry the index buffer.
662 *
663 * If no matching entry is found, it returns the first entry which is greater
664 * than the desired entry If the search key is greater than all the entries the
665 * buffer, it returns the 'end' entry. This function does a binary search of the
666 * current index buffer, for the first entry that is <= to the search value.
667 *
668 * Return: NULL if error.
669 */
670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 const struct INDEX_HDR *hdr, const void *key,
672 size_t key_len, const void *ctx, int *diff)
673 {
674 struct NTFS_DE *e;
675 NTFS_CMP_FUNC cmp = indx->cmp;
676 u32 e_size, e_key_len;
677 u32 end = le32_to_cpu(hdr->used);
678 u32 off = le32_to_cpu(hdr->de_off);
679
680 #ifdef NTFS3_INDEX_BINARY_SEARCH
681 int max_idx = 0, fnd, min_idx;
682 int nslots = 64;
683 u16 *offs;
684
685 if (end > 0x10000)
686 goto next;
687
688 offs = kmalloc(sizeof(u16) * nslots, GFP_NOFS);
689 if (!offs)
690 goto next;
691
692 /* Use binary search algorithm. */
693 next1:
694 if (off + sizeof(struct NTFS_DE) > end) {
695 e = NULL;
696 goto out1;
697 }
698 e = Add2Ptr(hdr, off);
699 e_size = le16_to_cpu(e->size);
700
701 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) {
702 e = NULL;
703 goto out1;
704 }
705
706 if (max_idx >= nslots) {
707 u16 *ptr;
708 int new_slots = ALIGN(2 * nslots, 8);
709
710 ptr = kmalloc(sizeof(u16) * new_slots, GFP_NOFS);
711 if (ptr)
712 memcpy(ptr, offs, sizeof(u16) * max_idx);
713 kfree(offs);
714 offs = ptr;
715 nslots = new_slots;
716 if (!ptr)
717 goto next;
718 }
719
720 /* Store entry table. */
721 offs[max_idx] = off;
722
723 if (!de_is_last(e)) {
724 off += e_size;
725 max_idx += 1;
726 goto next1;
727 }
728
729 /*
730 * Table of pointers is created.
731 * Use binary search to find entry that is <= to the search value.
732 */
733 fnd = -1;
734 min_idx = 0;
735
736 while (min_idx <= max_idx) {
737 int mid_idx = min_idx + ((max_idx - min_idx) >> 1);
738 int diff2;
739
740 e = Add2Ptr(hdr, offs[mid_idx]);
741
742 e_key_len = le16_to_cpu(e->key_size);
743
744 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
745
746 if (!diff2) {
747 *diff = 0;
748 goto out1;
749 }
750
751 if (diff2 < 0) {
752 max_idx = mid_idx - 1;
753 fnd = mid_idx;
754 if (!fnd)
755 break;
756 } else {
757 min_idx = mid_idx + 1;
758 }
759 }
760
761 if (fnd == -1) {
762 e = NULL;
763 goto out1;
764 }
765
766 *diff = -1;
767 e = Add2Ptr(hdr, offs[fnd]);
768
769 out1:
770 kfree(offs);
771
772 return e;
773 #endif
774
775 next:
776 /*
777 * Entries index are sorted.
778 * Enumerate all entries until we find entry
779 * that is <= to the search value.
780 */
781 if (off + sizeof(struct NTFS_DE) > end)
782 return NULL;
783
784 e = Add2Ptr(hdr, off);
785 e_size = le16_to_cpu(e->size);
786
787 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
788 return NULL;
789
790 off += e_size;
791
792 e_key_len = le16_to_cpu(e->key_size);
793
794 *diff = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
795 if (!*diff)
796 return e;
797
798 if (*diff <= 0)
799 return e;
800
801 if (de_is_last(e)) {
802 *diff = 1;
803 return e;
804 }
805 goto next;
806 }
807
808 /*
809 * hdr_insert_de - Insert an index entry into the buffer.
810 *
811 * 'before' should be a pointer previously returned from hdr_find_e.
812 */
813 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
814 struct INDEX_HDR *hdr,
815 const struct NTFS_DE *de,
816 struct NTFS_DE *before, const void *ctx)
817 {
818 int diff;
819 size_t off = PtrOffset(hdr, before);
820 u32 used = le32_to_cpu(hdr->used);
821 u32 total = le32_to_cpu(hdr->total);
822 u16 de_size = le16_to_cpu(de->size);
823
824 /* First, check to see if there's enough room. */
825 if (used + de_size > total)
826 return NULL;
827
828 /* We know there's enough space, so we know we'll succeed. */
829 if (before) {
830 /* Check that before is inside Index. */
831 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
832 off + le16_to_cpu(before->size) > total) {
833 return NULL;
834 }
835 goto ok;
836 }
837 /* No insert point is applied. Get it manually. */
838 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
839 &diff);
840 if (!before)
841 return NULL;
842 off = PtrOffset(hdr, before);
843
844 ok:
845 /* Now we just make room for the entry and jam it in. */
846 memmove(Add2Ptr(before, de_size), before, used - off);
847
848 hdr->used = cpu_to_le32(used + de_size);
849 memcpy(before, de, de_size);
850
851 return before;
852 }
853
854 /*
855 * hdr_delete_de - Remove an entry from the index buffer.
856 */
857 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
858 struct NTFS_DE *re)
859 {
860 u32 used = le32_to_cpu(hdr->used);
861 u16 esize = le16_to_cpu(re->size);
862 u32 off = PtrOffset(hdr, re);
863 int bytes = used - (off + esize);
864
865 if (off >= used || esize < sizeof(struct NTFS_DE) ||
866 bytes < sizeof(struct NTFS_DE))
867 return NULL;
868
869 hdr->used = cpu_to_le32(used - esize);
870 memmove(re, Add2Ptr(re, esize), bytes);
871
872 return re;
873 }
874
875 void indx_clear(struct ntfs_index *indx)
876 {
877 run_close(&indx->alloc_run);
878 run_close(&indx->bitmap_run);
879 }
880
881 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
882 const struct ATTRIB *attr, enum index_mutex_classed type)
883 {
884 u32 t32;
885 const struct INDEX_ROOT *root = resident_data(attr);
886
887 /* Check root fields. */
888 if (!root->index_block_clst)
889 return -EINVAL;
890
891 indx->type = type;
892 indx->idx2vbn_bits = __ffs(root->index_block_clst);
893
894 t32 = le32_to_cpu(root->index_block_size);
895 indx->index_bits = blksize_bits(t32);
896
897 /* Check index record size. */
898 if (t32 < sbi->cluster_size) {
899 /* Index record is smaller than a cluster, use 512 blocks. */
900 if (t32 != root->index_block_clst * SECTOR_SIZE)
901 return -EINVAL;
902
903 /* Check alignment to a cluster. */
904 if ((sbi->cluster_size >> SECTOR_SHIFT) &
905 (root->index_block_clst - 1)) {
906 return -EINVAL;
907 }
908
909 indx->vbn2vbo_bits = SECTOR_SHIFT;
910 } else {
911 /* Index record must be a multiple of cluster size. */
912 if (t32 != root->index_block_clst << sbi->cluster_bits)
913 return -EINVAL;
914
915 indx->vbn2vbo_bits = sbi->cluster_bits;
916 }
917
918 init_rwsem(&indx->run_lock);
919
920 indx->cmp = get_cmp_func(root);
921 return indx->cmp ? 0 : -EINVAL;
922 }
923
924 static struct indx_node *indx_new(struct ntfs_index *indx,
925 struct ntfs_inode *ni, CLST vbn,
926 const __le64 *sub_vbn)
927 {
928 int err;
929 struct NTFS_DE *e;
930 struct indx_node *r;
931 struct INDEX_HDR *hdr;
932 struct INDEX_BUFFER *index;
933 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
934 u32 bytes = 1u << indx->index_bits;
935 u16 fn;
936 u32 eo;
937
938 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
939 if (!r)
940 return ERR_PTR(-ENOMEM);
941
942 index = kzalloc(bytes, GFP_NOFS);
943 if (!index) {
944 kfree(r);
945 return ERR_PTR(-ENOMEM);
946 }
947
948 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
949
950 if (err) {
951 kfree(index);
952 kfree(r);
953 return ERR_PTR(err);
954 }
955
956 /* Create header. */
957 index->rhdr.sign = NTFS_INDX_SIGNATURE;
958 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
959 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
960 index->rhdr.fix_num = cpu_to_le16(fn);
961 index->vbn = cpu_to_le64(vbn);
962 hdr = &index->ihdr;
963 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
964 hdr->de_off = cpu_to_le32(eo);
965
966 e = Add2Ptr(hdr, eo);
967
968 if (sub_vbn) {
969 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
970 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
971 hdr->used =
972 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
973 de_set_vbn_le(e, *sub_vbn);
974 hdr->flags = 1;
975 } else {
976 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
977 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
978 e->flags = NTFS_IE_LAST;
979 }
980
981 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
982
983 r->index = index;
984 return r;
985 }
986
987 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
988 struct ATTRIB **attr, struct mft_inode **mi)
989 {
990 struct ATTR_LIST_ENTRY *le = NULL;
991 struct ATTRIB *a;
992 const struct INDEX_NAMES *in = &s_index_names[indx->type];
993
994 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
995 mi);
996 if (!a)
997 return NULL;
998
999 if (attr)
1000 *attr = a;
1001
1002 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
1003 }
1004
1005 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1006 struct indx_node *node, int sync)
1007 {
1008 struct INDEX_BUFFER *ib = node->index;
1009
1010 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1011 }
1012
1013 /*
1014 * indx_read
1015 *
1016 * If ntfs_readdir calls this function
1017 * inode is shared locked and no ni_lock.
1018 * Use rw_semaphore for read/write access to alloc_run.
1019 */
1020 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1021 struct indx_node **node)
1022 {
1023 int err;
1024 struct INDEX_BUFFER *ib;
1025 struct runs_tree *run = &indx->alloc_run;
1026 struct rw_semaphore *lock = &indx->run_lock;
1027 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1028 u32 bytes = 1u << indx->index_bits;
1029 struct indx_node *in = *node;
1030 const struct INDEX_NAMES *name;
1031
1032 if (!in) {
1033 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1034 if (!in)
1035 return -ENOMEM;
1036 } else {
1037 nb_put(&in->nb);
1038 }
1039
1040 ib = in->index;
1041 if (!ib) {
1042 ib = kmalloc(bytes, GFP_NOFS);
1043 if (!ib) {
1044 err = -ENOMEM;
1045 goto out;
1046 }
1047 }
1048
1049 down_read(lock);
1050 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1051 up_read(lock);
1052 if (!err)
1053 goto ok;
1054
1055 if (err == -E_NTFS_FIXUP)
1056 goto ok;
1057
1058 if (err != -ENOENT)
1059 goto out;
1060
1061 name = &s_index_names[indx->type];
1062 down_write(lock);
1063 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1064 run, vbo, vbo + bytes);
1065 up_write(lock);
1066 if (err)
1067 goto out;
1068
1069 down_read(lock);
1070 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1071 up_read(lock);
1072 if (err == -E_NTFS_FIXUP)
1073 goto ok;
1074
1075 if (err)
1076 goto out;
1077
1078 ok:
1079 if (err == -E_NTFS_FIXUP) {
1080 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1081 err = 0;
1082 }
1083
1084 in->index = ib;
1085 *node = in;
1086
1087 out:
1088 if (ib != in->index)
1089 kfree(ib);
1090
1091 if (*node != in) {
1092 nb_put(&in->nb);
1093 kfree(in);
1094 }
1095
1096 return err;
1097 }
1098
1099 /*
1100 * indx_find - Scan NTFS directory for given entry.
1101 */
1102 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1103 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1104 const void *ctx, int *diff, struct NTFS_DE **entry,
1105 struct ntfs_fnd *fnd)
1106 {
1107 int err;
1108 struct NTFS_DE *e;
1109 const struct INDEX_HDR *hdr;
1110 struct indx_node *node;
1111
1112 if (!root)
1113 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1114
1115 if (!root) {
1116 err = -EINVAL;
1117 goto out;
1118 }
1119
1120 hdr = &root->ihdr;
1121
1122 /* Check cache. */
1123 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1124 if (e && !de_is_last(e) &&
1125 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1126 *entry = e;
1127 *diff = 0;
1128 return 0;
1129 }
1130
1131 /* Soft finder reset. */
1132 fnd_clear(fnd);
1133
1134 /* Lookup entry that is <= to the search value. */
1135 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1136 if (!e)
1137 return -EINVAL;
1138
1139 if (fnd)
1140 fnd->root_de = e;
1141
1142 err = 0;
1143
1144 for (;;) {
1145 node = NULL;
1146 if (*diff >= 0 || !de_has_vcn_ex(e)) {
1147 *entry = e;
1148 goto out;
1149 }
1150
1151 /* Read next level. */
1152 err = indx_read(indx, ni, de_get_vbn(e), &node);
1153 if (err)
1154 goto out;
1155
1156 /* Lookup entry that is <= to the search value. */
1157 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1158 diff);
1159 if (!e) {
1160 err = -EINVAL;
1161 put_indx_node(node);
1162 goto out;
1163 }
1164
1165 fnd_push(fnd, node, e);
1166 }
1167
1168 out:
1169 return err;
1170 }
1171
1172 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1173 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1174 struct ntfs_fnd *fnd)
1175 {
1176 int err;
1177 struct indx_node *n = NULL;
1178 struct NTFS_DE *e;
1179 size_t iter = 0;
1180 int level = fnd->level;
1181
1182 if (!*entry) {
1183 /* Start find. */
1184 e = hdr_first_de(&root->ihdr);
1185 if (!e)
1186 return 0;
1187 fnd_clear(fnd);
1188 fnd->root_de = e;
1189 } else if (!level) {
1190 if (de_is_last(fnd->root_de)) {
1191 *entry = NULL;
1192 return 0;
1193 }
1194
1195 e = hdr_next_de(&root->ihdr, fnd->root_de);
1196 if (!e)
1197 return -EINVAL;
1198 fnd->root_de = e;
1199 } else {
1200 n = fnd->nodes[level - 1];
1201 e = fnd->de[level - 1];
1202
1203 if (de_is_last(e))
1204 goto pop_level;
1205
1206 e = hdr_next_de(&n->index->ihdr, e);
1207 if (!e)
1208 return -EINVAL;
1209
1210 fnd->de[level - 1] = e;
1211 }
1212
1213 /* Just to avoid tree cycle. */
1214 next_iter:
1215 if (iter++ >= 1000)
1216 return -EINVAL;
1217
1218 while (de_has_vcn_ex(e)) {
1219 if (le16_to_cpu(e->size) <
1220 sizeof(struct NTFS_DE) + sizeof(u64)) {
1221 if (n) {
1222 fnd_pop(fnd);
1223 kfree(n);
1224 }
1225 return -EINVAL;
1226 }
1227
1228 /* Read next level. */
1229 err = indx_read(indx, ni, de_get_vbn(e), &n);
1230 if (err)
1231 return err;
1232
1233 /* Try next level. */
1234 e = hdr_first_de(&n->index->ihdr);
1235 if (!e) {
1236 kfree(n);
1237 return -EINVAL;
1238 }
1239
1240 fnd_push(fnd, n, e);
1241 }
1242
1243 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1244 *entry = e;
1245 return 0;
1246 }
1247
1248 pop_level:
1249 for (;;) {
1250 if (!de_is_last(e))
1251 goto next_iter;
1252
1253 /* Pop one level. */
1254 if (n) {
1255 fnd_pop(fnd);
1256 kfree(n);
1257 }
1258
1259 level = fnd->level;
1260
1261 if (level) {
1262 n = fnd->nodes[level - 1];
1263 e = fnd->de[level - 1];
1264 } else if (fnd->root_de) {
1265 n = NULL;
1266 e = fnd->root_de;
1267 fnd->root_de = NULL;
1268 } else {
1269 *entry = NULL;
1270 return 0;
1271 }
1272
1273 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 *entry = e;
1275 if (!fnd->root_de)
1276 fnd->root_de = e;
1277 return 0;
1278 }
1279 }
1280 }
1281
1282 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1283 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1284 size_t *off, struct ntfs_fnd *fnd)
1285 {
1286 int err;
1287 struct indx_node *n = NULL;
1288 struct NTFS_DE *e = NULL;
1289 struct NTFS_DE *e2;
1290 size_t bit;
1291 CLST next_used_vbn;
1292 CLST next_vbn;
1293 u32 record_size = ni->mi.sbi->record_size;
1294
1295 /* Use non sorted algorithm. */
1296 if (!*entry) {
1297 /* This is the first call. */
1298 e = hdr_first_de(&root->ihdr);
1299 if (!e)
1300 return 0;
1301 fnd_clear(fnd);
1302 fnd->root_de = e;
1303
1304 /* The first call with setup of initial element. */
1305 if (*off >= record_size) {
1306 next_vbn = (((*off - record_size) >> indx->index_bits))
1307 << indx->idx2vbn_bits;
1308 /* Jump inside cycle 'for'. */
1309 goto next;
1310 }
1311
1312 /* Start enumeration from root. */
1313 *off = 0;
1314 } else if (!fnd->root_de)
1315 return -EINVAL;
1316
1317 for (;;) {
1318 /* Check if current entry can be used. */
1319 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1320 goto ok;
1321
1322 if (!fnd->level) {
1323 /* Continue to enumerate root. */
1324 if (!de_is_last(fnd->root_de)) {
1325 e = hdr_next_de(&root->ihdr, fnd->root_de);
1326 if (!e)
1327 return -EINVAL;
1328 fnd->root_de = e;
1329 continue;
1330 }
1331
1332 /* Start to enumerate indexes from 0. */
1333 next_vbn = 0;
1334 } else {
1335 /* Continue to enumerate indexes. */
1336 e2 = fnd->de[fnd->level - 1];
1337
1338 n = fnd->nodes[fnd->level - 1];
1339
1340 if (!de_is_last(e2)) {
1341 e = hdr_next_de(&n->index->ihdr, e2);
1342 if (!e)
1343 return -EINVAL;
1344 fnd->de[fnd->level - 1] = e;
1345 continue;
1346 }
1347
1348 /* Continue with next index. */
1349 next_vbn = le64_to_cpu(n->index->vbn) +
1350 root->index_block_clst;
1351 }
1352
1353 next:
1354 /* Release current index. */
1355 if (n) {
1356 fnd_pop(fnd);
1357 put_indx_node(n);
1358 n = NULL;
1359 }
1360
1361 /* Skip all free indexes. */
1362 bit = next_vbn >> indx->idx2vbn_bits;
1363 err = indx_used_bit(indx, ni, &bit);
1364 if (err == -ENOENT || bit == MINUS_ONE_T) {
1365 /* No used indexes. */
1366 *entry = NULL;
1367 return 0;
1368 }
1369
1370 next_used_vbn = bit << indx->idx2vbn_bits;
1371
1372 /* Read buffer into memory. */
1373 err = indx_read(indx, ni, next_used_vbn, &n);
1374 if (err)
1375 return err;
1376
1377 e = hdr_first_de(&n->index->ihdr);
1378 fnd_push(fnd, n, e);
1379 if (!e)
1380 return -EINVAL;
1381 }
1382
1383 ok:
1384 /* Return offset to restore enumerator if necessary. */
1385 if (!n) {
1386 /* 'e' points in root, */
1387 *off = PtrOffset(&root->ihdr, e);
1388 } else {
1389 /* 'e' points in index, */
1390 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1391 record_size + PtrOffset(&n->index->ihdr, e);
1392 }
1393
1394 *entry = e;
1395 return 0;
1396 }
1397
1398 /*
1399 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1400 */
1401 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1402 CLST *vbn)
1403 {
1404 int err = -ENOMEM;
1405 struct ntfs_sb_info *sbi = ni->mi.sbi;
1406 struct ATTRIB *bitmap;
1407 struct ATTRIB *alloc;
1408 u32 data_size = 1u << indx->index_bits;
1409 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1410 CLST len = alloc_size >> sbi->cluster_bits;
1411 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1412 CLST alen;
1413 struct runs_tree run;
1414
1415 run_init(&run);
1416
1417 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1418 NULL);
1419 if (err)
1420 goto out;
1421
1422 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1423 &run, 0, len, 0, &alloc, NULL);
1424 if (err)
1425 goto out1;
1426
1427 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1428
1429 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1430 in->name_len, &bitmap, NULL, NULL);
1431 if (err)
1432 goto out2;
1433
1434 if (in->name == I30_NAME) {
1435 ni->vfs_inode.i_size = data_size;
1436 inode_set_bytes(&ni->vfs_inode, alloc_size);
1437 }
1438
1439 memcpy(&indx->alloc_run, &run, sizeof(run));
1440
1441 *vbn = 0;
1442
1443 return 0;
1444
1445 out2:
1446 mi_remove_attr(NULL, &ni->mi, alloc);
1447
1448 out1:
1449 run_deallocate(sbi, &run, false);
1450
1451 out:
1452 return err;
1453 }
1454
1455 /*
1456 * indx_add_allocate - Add clusters to index.
1457 */
1458 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1459 CLST *vbn)
1460 {
1461 int err;
1462 size_t bit;
1463 u64 data_size;
1464 u64 bmp_size, bmp_size_v;
1465 struct ATTRIB *bmp, *alloc;
1466 struct mft_inode *mi;
1467 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1468
1469 err = indx_find_free(indx, ni, &bit, &bmp);
1470 if (err)
1471 goto out1;
1472
1473 if (bit != MINUS_ONE_T) {
1474 bmp = NULL;
1475 } else {
1476 if (bmp->non_res) {
1477 bmp_size = le64_to_cpu(bmp->nres.data_size);
1478 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1479 } else {
1480 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1481 }
1482
1483 bit = bmp_size << 3;
1484 }
1485
1486 data_size = (u64)(bit + 1) << indx->index_bits;
1487
1488 if (bmp) {
1489 /* Increase bitmap. */
1490 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1491 &indx->bitmap_run, bitmap_size(bit + 1),
1492 NULL, true, NULL);
1493 if (err)
1494 goto out1;
1495 }
1496
1497 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1498 NULL, &mi);
1499 if (!alloc) {
1500 err = -EINVAL;
1501 if (bmp)
1502 goto out2;
1503 goto out1;
1504 }
1505
1506 /* Increase allocation. */
1507 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1508 &indx->alloc_run, data_size, &data_size, true,
1509 NULL);
1510 if (err) {
1511 if (bmp)
1512 goto out2;
1513 goto out1;
1514 }
1515
1516 *vbn = bit << indx->idx2vbn_bits;
1517
1518 return 0;
1519
1520 out2:
1521 /* Ops. No space? */
1522 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1523 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1524
1525 out1:
1526 return err;
1527 }
1528
1529 /*
1530 * indx_insert_into_root - Attempt to insert an entry into the index root.
1531 *
1532 * @undo - True if we undoing previous remove.
1533 * If necessary, it will twiddle the index b-tree.
1534 */
1535 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1536 const struct NTFS_DE *new_de,
1537 struct NTFS_DE *root_de, const void *ctx,
1538 struct ntfs_fnd *fnd, bool undo)
1539 {
1540 int err = 0;
1541 struct NTFS_DE *e, *e0, *re;
1542 struct mft_inode *mi;
1543 struct ATTRIB *attr;
1544 struct INDEX_HDR *hdr;
1545 struct indx_node *n;
1546 CLST new_vbn;
1547 __le64 *sub_vbn, t_vbn;
1548 u16 new_de_size;
1549 u32 hdr_used, hdr_total, asize, to_move;
1550 u32 root_size, new_root_size;
1551 struct ntfs_sb_info *sbi;
1552 int ds_root;
1553 struct INDEX_ROOT *root, *a_root;
1554
1555 /* Get the record this root placed in. */
1556 root = indx_get_root(indx, ni, &attr, &mi);
1557 if (!root)
1558 return -EINVAL;
1559
1560 /*
1561 * Try easy case:
1562 * hdr_insert_de will succeed if there's
1563 * room the root for the new entry.
1564 */
1565 hdr = &root->ihdr;
1566 sbi = ni->mi.sbi;
1567 new_de_size = le16_to_cpu(new_de->size);
1568 hdr_used = le32_to_cpu(hdr->used);
1569 hdr_total = le32_to_cpu(hdr->total);
1570 asize = le32_to_cpu(attr->size);
1571 root_size = le32_to_cpu(attr->res.data_size);
1572
1573 ds_root = new_de_size + hdr_used - hdr_total;
1574
1575 /* If 'undo' is set then reduce requirements. */
1576 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1577 mi_resize_attr(mi, attr, ds_root)) {
1578 hdr->total = cpu_to_le32(hdr_total + ds_root);
1579 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1580 WARN_ON(!e);
1581 fnd_clear(fnd);
1582 fnd->root_de = e;
1583
1584 return 0;
1585 }
1586
1587 /* Make a copy of root attribute to restore if error. */
1588 a_root = kmemdup(attr, asize, GFP_NOFS);
1589 if (!a_root)
1590 return -ENOMEM;
1591
1592 /*
1593 * Copy all the non-end entries from
1594 * the index root to the new buffer.
1595 */
1596 to_move = 0;
1597 e0 = hdr_first_de(hdr);
1598
1599 /* Calculate the size to copy. */
1600 for (e = e0;; e = hdr_next_de(hdr, e)) {
1601 if (!e) {
1602 err = -EINVAL;
1603 goto out_free_root;
1604 }
1605
1606 if (de_is_last(e))
1607 break;
1608 to_move += le16_to_cpu(e->size);
1609 }
1610
1611 if (!to_move) {
1612 re = NULL;
1613 } else {
1614 re = kmemdup(e0, to_move, GFP_NOFS);
1615 if (!re) {
1616 err = -ENOMEM;
1617 goto out_free_root;
1618 }
1619 }
1620
1621 sub_vbn = NULL;
1622 if (de_has_vcn(e)) {
1623 t_vbn = de_get_vbn_le(e);
1624 sub_vbn = &t_vbn;
1625 }
1626
1627 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1628 sizeof(u64);
1629 ds_root = new_root_size - root_size;
1630
1631 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1632 /* Make root external. */
1633 err = -EOPNOTSUPP;
1634 goto out_free_re;
1635 }
1636
1637 if (ds_root)
1638 mi_resize_attr(mi, attr, ds_root);
1639
1640 /* Fill first entry (vcn will be set later). */
1641 e = (struct NTFS_DE *)(root + 1);
1642 memset(e, 0, sizeof(struct NTFS_DE));
1643 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1644 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1645
1646 hdr->flags = 1;
1647 hdr->used = hdr->total =
1648 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1649
1650 fnd->root_de = hdr_first_de(hdr);
1651 mi->dirty = true;
1652
1653 /* Create alloc and bitmap attributes (if not). */
1654 err = run_is_empty(&indx->alloc_run)
1655 ? indx_create_allocate(indx, ni, &new_vbn)
1656 : indx_add_allocate(indx, ni, &new_vbn);
1657
1658 /* Layout of record may be changed, so rescan root. */
1659 root = indx_get_root(indx, ni, &attr, &mi);
1660 if (!root) {
1661 /* Bug? */
1662 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1663 err = -EINVAL;
1664 goto out_free_re;
1665 }
1666
1667 if (err) {
1668 /* Restore root. */
1669 if (mi_resize_attr(mi, attr, -ds_root))
1670 memcpy(attr, a_root, asize);
1671 else {
1672 /* Bug? */
1673 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1674 }
1675 goto out_free_re;
1676 }
1677
1678 e = (struct NTFS_DE *)(root + 1);
1679 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1680 mi->dirty = true;
1681
1682 /* Now we can create/format the new buffer and copy the entries into. */
1683 n = indx_new(indx, ni, new_vbn, sub_vbn);
1684 if (IS_ERR(n)) {
1685 err = PTR_ERR(n);
1686 goto out_free_re;
1687 }
1688
1689 hdr = &n->index->ihdr;
1690 hdr_used = le32_to_cpu(hdr->used);
1691 hdr_total = le32_to_cpu(hdr->total);
1692
1693 /* Copy root entries into new buffer. */
1694 hdr_insert_head(hdr, re, to_move);
1695
1696 /* Update bitmap attribute. */
1697 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1698
1699 /* Check if we can insert new entry new index buffer. */
1700 if (hdr_used + new_de_size > hdr_total) {
1701 /*
1702 * This occurs if MFT record is the same or bigger than index
1703 * buffer. Move all root new index and have no space to add
1704 * new entry classic case when MFT record is 1K and index
1705 * buffer 4K the problem should not occurs.
1706 */
1707 kfree(re);
1708 indx_write(indx, ni, n, 0);
1709
1710 put_indx_node(n);
1711 fnd_clear(fnd);
1712 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1713 goto out_free_root;
1714 }
1715
1716 /*
1717 * Now root is a parent for new index buffer.
1718 * Insert NewEntry a new buffer.
1719 */
1720 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1721 if (!e) {
1722 err = -EINVAL;
1723 goto out_put_n;
1724 }
1725 fnd_push(fnd, n, e);
1726
1727 /* Just write updates index into disk. */
1728 indx_write(indx, ni, n, 0);
1729
1730 n = NULL;
1731
1732 out_put_n:
1733 put_indx_node(n);
1734 out_free_re:
1735 kfree(re);
1736 out_free_root:
1737 kfree(a_root);
1738 return err;
1739 }
1740
1741 /*
1742 * indx_insert_into_buffer
1743 *
1744 * Attempt to insert an entry into an Index Allocation Buffer.
1745 * If necessary, it will split the buffer.
1746 */
1747 static int
1748 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1749 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1750 const void *ctx, int level, struct ntfs_fnd *fnd)
1751 {
1752 int err;
1753 const struct NTFS_DE *sp;
1754 struct NTFS_DE *e, *de_t, *up_e = NULL;
1755 struct indx_node *n2 = NULL;
1756 struct indx_node *n1 = fnd->nodes[level];
1757 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1758 struct INDEX_HDR *hdr2;
1759 u32 to_copy, used;
1760 CLST new_vbn;
1761 __le64 t_vbn, *sub_vbn;
1762 u16 sp_size;
1763
1764 /* Try the most easy case. */
1765 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1766 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1767 fnd->de[level] = e;
1768 if (e) {
1769 /* Just write updated index into disk. */
1770 indx_write(indx, ni, n1, 0);
1771 return 0;
1772 }
1773
1774 /*
1775 * No space to insert into buffer. Split it.
1776 * To split we:
1777 * - Save split point ('cause index buffers will be changed)
1778 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1779 * - Remove all entries (sp including) from TargetBuffer
1780 * - Insert NewEntry into left or right buffer (depending on sp <=>
1781 * NewEntry)
1782 * - Insert sp into parent buffer (or root)
1783 * - Make sp a parent for new buffer
1784 */
1785 sp = hdr_find_split(hdr1);
1786 if (!sp)
1787 return -EINVAL;
1788
1789 sp_size = le16_to_cpu(sp->size);
1790 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1791 if (!up_e)
1792 return -ENOMEM;
1793 memcpy(up_e, sp, sp_size);
1794
1795 if (!hdr1->flags) {
1796 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1797 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1798 sub_vbn = NULL;
1799 } else {
1800 t_vbn = de_get_vbn_le(up_e);
1801 sub_vbn = &t_vbn;
1802 }
1803
1804 /* Allocate on disk a new index allocation buffer. */
1805 err = indx_add_allocate(indx, ni, &new_vbn);
1806 if (err)
1807 goto out;
1808
1809 /* Allocate and format memory a new index buffer. */
1810 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1811 if (IS_ERR(n2)) {
1812 err = PTR_ERR(n2);
1813 goto out;
1814 }
1815
1816 hdr2 = &n2->index->ihdr;
1817
1818 /* Make sp a parent for new buffer. */
1819 de_set_vbn(up_e, new_vbn);
1820
1821 /* Copy all the entries <= sp into the new buffer. */
1822 de_t = hdr_first_de(hdr1);
1823 to_copy = PtrOffset(de_t, sp);
1824 hdr_insert_head(hdr2, de_t, to_copy);
1825
1826 /* Remove all entries (sp including) from hdr1. */
1827 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1828 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1829 hdr1->used = cpu_to_le32(used);
1830
1831 /*
1832 * Insert new entry into left or right buffer
1833 * (depending on sp <=> new_de).
1834 */
1835 hdr_insert_de(indx,
1836 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1837 up_e + 1, le16_to_cpu(up_e->key_size),
1838 ctx) < 0
1839 ? hdr2
1840 : hdr1,
1841 new_de, NULL, ctx);
1842
1843 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1844
1845 indx_write(indx, ni, n1, 0);
1846 indx_write(indx, ni, n2, 0);
1847
1848 put_indx_node(n2);
1849
1850 /*
1851 * We've finished splitting everybody, so we are ready to
1852 * insert the promoted entry into the parent.
1853 */
1854 if (!level) {
1855 /* Insert in root. */
1856 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1857 if (err)
1858 goto out;
1859 } else {
1860 /*
1861 * The target buffer's parent is another index buffer.
1862 * TODO: Remove recursion.
1863 */
1864 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1865 level - 1, fnd);
1866 if (err)
1867 goto out;
1868 }
1869
1870 out:
1871 kfree(up_e);
1872
1873 return err;
1874 }
1875
1876 /*
1877 * indx_insert_entry - Insert new entry into index.
1878 *
1879 * @undo - True if we undoing previous remove.
1880 */
1881 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1882 const struct NTFS_DE *new_de, const void *ctx,
1883 struct ntfs_fnd *fnd, bool undo)
1884 {
1885 int err;
1886 int diff;
1887 struct NTFS_DE *e;
1888 struct ntfs_fnd *fnd_a = NULL;
1889 struct INDEX_ROOT *root;
1890
1891 if (!fnd) {
1892 fnd_a = fnd_get();
1893 if (!fnd_a) {
1894 err = -ENOMEM;
1895 goto out1;
1896 }
1897 fnd = fnd_a;
1898 }
1899
1900 root = indx_get_root(indx, ni, NULL, NULL);
1901 if (!root) {
1902 err = -EINVAL;
1903 goto out;
1904 }
1905
1906 if (fnd_is_empty(fnd)) {
1907 /*
1908 * Find the spot the tree where we want to
1909 * insert the new entry.
1910 */
1911 err = indx_find(indx, ni, root, new_de + 1,
1912 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1913 fnd);
1914 if (err)
1915 goto out;
1916
1917 if (!diff) {
1918 err = -EEXIST;
1919 goto out;
1920 }
1921 }
1922
1923 if (!fnd->level) {
1924 /*
1925 * The root is also a leaf, so we'll insert the
1926 * new entry into it.
1927 */
1928 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1929 fnd, undo);
1930 if (err)
1931 goto out;
1932 } else {
1933 /*
1934 * Found a leaf buffer, so we'll insert the new entry into it.
1935 */
1936 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1937 fnd->level - 1, fnd);
1938 if (err)
1939 goto out;
1940 }
1941
1942 out:
1943 fnd_put(fnd_a);
1944 out1:
1945 return err;
1946 }
1947
1948 /*
1949 * indx_find_buffer - Locate a buffer from the tree.
1950 */
1951 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1952 struct ntfs_inode *ni,
1953 const struct INDEX_ROOT *root,
1954 __le64 vbn, struct indx_node *n)
1955 {
1956 int err;
1957 const struct NTFS_DE *e;
1958 struct indx_node *r;
1959 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1960
1961 /* Step 1: Scan one level. */
1962 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1963 if (!e)
1964 return ERR_PTR(-EINVAL);
1965
1966 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1967 return n;
1968
1969 if (de_is_last(e))
1970 break;
1971 }
1972
1973 /* Step2: Do recursion. */
1974 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1975 for (;;) {
1976 if (de_has_vcn_ex(e)) {
1977 err = indx_read(indx, ni, de_get_vbn(e), &n);
1978 if (err)
1979 return ERR_PTR(err);
1980
1981 r = indx_find_buffer(indx, ni, root, vbn, n);
1982 if (r)
1983 return r;
1984 }
1985
1986 if (de_is_last(e))
1987 break;
1988
1989 e = Add2Ptr(e, le16_to_cpu(e->size));
1990 }
1991
1992 return NULL;
1993 }
1994
1995 /*
1996 * indx_shrink - Deallocate unused tail indexes.
1997 */
1998 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1999 size_t bit)
2000 {
2001 int err = 0;
2002 u64 bpb, new_data;
2003 size_t nbits;
2004 struct ATTRIB *b;
2005 struct ATTR_LIST_ENTRY *le = NULL;
2006 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2007
2008 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2009 NULL, NULL);
2010
2011 if (!b)
2012 return -ENOENT;
2013
2014 if (!b->non_res) {
2015 unsigned long pos;
2016 const unsigned long *bm = resident_data(b);
2017
2018 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2019
2020 if (bit >= nbits)
2021 return 0;
2022
2023 pos = find_next_bit(bm, nbits, bit);
2024 if (pos < nbits)
2025 return 0;
2026 } else {
2027 size_t used = MINUS_ONE_T;
2028
2029 nbits = le64_to_cpu(b->nres.data_size) * 8;
2030
2031 if (bit >= nbits)
2032 return 0;
2033
2034 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2035 if (err)
2036 return err;
2037
2038 if (used != MINUS_ONE_T)
2039 return 0;
2040 }
2041
2042 new_data = (u64)bit << indx->index_bits;
2043
2044 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2045 &indx->alloc_run, new_data, &new_data, false, NULL);
2046 if (err)
2047 return err;
2048
2049 bpb = bitmap_size(bit);
2050 if (bpb * 8 == nbits)
2051 return 0;
2052
2053 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2054 &indx->bitmap_run, bpb, &bpb, false, NULL);
2055
2056 return err;
2057 }
2058
2059 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2060 const struct NTFS_DE *e, bool trim)
2061 {
2062 int err;
2063 struct indx_node *n;
2064 struct INDEX_HDR *hdr;
2065 CLST vbn = de_get_vbn(e);
2066 size_t i;
2067
2068 err = indx_read(indx, ni, vbn, &n);
2069 if (err)
2070 return err;
2071
2072 hdr = &n->index->ihdr;
2073 /* First, recurse into the children, if any. */
2074 if (hdr_has_subnode(hdr)) {
2075 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2076 indx_free_children(indx, ni, e, false);
2077 if (de_is_last(e))
2078 break;
2079 }
2080 }
2081
2082 put_indx_node(n);
2083
2084 i = vbn >> indx->idx2vbn_bits;
2085 /*
2086 * We've gotten rid of the children; add this buffer to the free list.
2087 */
2088 indx_mark_free(indx, ni, i);
2089
2090 if (!trim)
2091 return 0;
2092
2093 /*
2094 * If there are no used indexes after current free index
2095 * then we can truncate allocation and bitmap.
2096 * Use bitmap to estimate the case.
2097 */
2098 indx_shrink(indx, ni, i + 1);
2099 return 0;
2100 }
2101
2102 /*
2103 * indx_get_entry_to_replace
2104 *
2105 * Find a replacement entry for a deleted entry.
2106 * Always returns a node entry:
2107 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2108 */
2109 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2110 struct ntfs_inode *ni,
2111 const struct NTFS_DE *de_next,
2112 struct NTFS_DE **de_to_replace,
2113 struct ntfs_fnd *fnd)
2114 {
2115 int err;
2116 int level = -1;
2117 CLST vbn;
2118 struct NTFS_DE *e, *te, *re;
2119 struct indx_node *n;
2120 struct INDEX_BUFFER *ib;
2121
2122 *de_to_replace = NULL;
2123
2124 /* Find first leaf entry down from de_next. */
2125 vbn = de_get_vbn(de_next);
2126 for (;;) {
2127 n = NULL;
2128 err = indx_read(indx, ni, vbn, &n);
2129 if (err)
2130 goto out;
2131
2132 e = hdr_first_de(&n->index->ihdr);
2133 fnd_push(fnd, n, e);
2134
2135 if (!de_is_last(e)) {
2136 /*
2137 * This buffer is non-empty, so its first entry
2138 * could be used as the replacement entry.
2139 */
2140 level = fnd->level - 1;
2141 }
2142
2143 if (!de_has_vcn(e))
2144 break;
2145
2146 /* This buffer is a node. Continue to go down. */
2147 vbn = de_get_vbn(e);
2148 }
2149
2150 if (level == -1)
2151 goto out;
2152
2153 n = fnd->nodes[level];
2154 te = hdr_first_de(&n->index->ihdr);
2155 /* Copy the candidate entry into the replacement entry buffer. */
2156 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2157 if (!re) {
2158 err = -ENOMEM;
2159 goto out;
2160 }
2161
2162 *de_to_replace = re;
2163 memcpy(re, te, le16_to_cpu(te->size));
2164
2165 if (!de_has_vcn(re)) {
2166 /*
2167 * The replacement entry we found doesn't have a sub_vcn.
2168 * increase its size to hold one.
2169 */
2170 le16_add_cpu(&re->size, sizeof(u64));
2171 re->flags |= NTFS_IE_HAS_SUBNODES;
2172 } else {
2173 /*
2174 * The replacement entry we found was a node entry, which
2175 * means that all its child buffers are empty. Return them
2176 * to the free pool.
2177 */
2178 indx_free_children(indx, ni, te, true);
2179 }
2180
2181 /*
2182 * Expunge the replacement entry from its former location,
2183 * and then write that buffer.
2184 */
2185 ib = n->index;
2186 e = hdr_delete_de(&ib->ihdr, te);
2187
2188 fnd->de[level] = e;
2189 indx_write(indx, ni, n, 0);
2190
2191 /* Check to see if this action created an empty leaf. */
2192 if (ib_is_leaf(ib) && ib_is_empty(ib))
2193 return 0;
2194
2195 out:
2196 fnd_clear(fnd);
2197 return err;
2198 }
2199
2200 /*
2201 * indx_delete_entry - Delete an entry from the index.
2202 */
2203 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2204 const void *key, u32 key_len, const void *ctx)
2205 {
2206 int err, diff;
2207 struct INDEX_ROOT *root;
2208 struct INDEX_HDR *hdr;
2209 struct ntfs_fnd *fnd, *fnd2;
2210 struct INDEX_BUFFER *ib;
2211 struct NTFS_DE *e, *re, *next, *prev, *me;
2212 struct indx_node *n, *n2d = NULL;
2213 __le64 sub_vbn;
2214 int level, level2;
2215 struct ATTRIB *attr;
2216 struct mft_inode *mi;
2217 u32 e_size, root_size, new_root_size;
2218 size_t trim_bit;
2219 const struct INDEX_NAMES *in;
2220
2221 fnd = fnd_get();
2222 if (!fnd) {
2223 err = -ENOMEM;
2224 goto out2;
2225 }
2226
2227 fnd2 = fnd_get();
2228 if (!fnd2) {
2229 err = -ENOMEM;
2230 goto out1;
2231 }
2232
2233 root = indx_get_root(indx, ni, &attr, &mi);
2234 if (!root) {
2235 err = -EINVAL;
2236 goto out;
2237 }
2238
2239 /* Locate the entry to remove. */
2240 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2241 if (err)
2242 goto out;
2243
2244 if (!e || diff) {
2245 err = -ENOENT;
2246 goto out;
2247 }
2248
2249 level = fnd->level;
2250
2251 if (level) {
2252 n = fnd->nodes[level - 1];
2253 e = fnd->de[level - 1];
2254 ib = n->index;
2255 hdr = &ib->ihdr;
2256 } else {
2257 hdr = &root->ihdr;
2258 e = fnd->root_de;
2259 n = NULL;
2260 }
2261
2262 e_size = le16_to_cpu(e->size);
2263
2264 if (!de_has_vcn_ex(e)) {
2265 /* The entry to delete is a leaf, so we can just rip it out. */
2266 hdr_delete_de(hdr, e);
2267
2268 if (!level) {
2269 hdr->total = hdr->used;
2270
2271 /* Shrink resident root attribute. */
2272 mi_resize_attr(mi, attr, 0 - e_size);
2273 goto out;
2274 }
2275
2276 indx_write(indx, ni, n, 0);
2277
2278 /*
2279 * Check to see if removing that entry made
2280 * the leaf empty.
2281 */
2282 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2283 fnd_pop(fnd);
2284 fnd_push(fnd2, n, e);
2285 }
2286 } else {
2287 /*
2288 * The entry we wish to delete is a node buffer, so we
2289 * have to find a replacement for it.
2290 */
2291 next = de_get_next(e);
2292
2293 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2294 if (err)
2295 goto out;
2296
2297 if (re) {
2298 de_set_vbn_le(re, de_get_vbn_le(e));
2299 hdr_delete_de(hdr, e);
2300
2301 err = level ? indx_insert_into_buffer(indx, ni, root,
2302 re, ctx,
2303 fnd->level - 1,
2304 fnd)
2305 : indx_insert_into_root(indx, ni, re, e,
2306 ctx, fnd, 0);
2307 kfree(re);
2308
2309 if (err)
2310 goto out;
2311 } else {
2312 /*
2313 * There is no replacement for the current entry.
2314 * This means that the subtree rooted at its node
2315 * is empty, and can be deleted, which turn means
2316 * that the node can just inherit the deleted
2317 * entry sub_vcn.
2318 */
2319 indx_free_children(indx, ni, next, true);
2320
2321 de_set_vbn_le(next, de_get_vbn_le(e));
2322 hdr_delete_de(hdr, e);
2323 if (level) {
2324 indx_write(indx, ni, n, 0);
2325 } else {
2326 hdr->total = hdr->used;
2327
2328 /* Shrink resident root attribute. */
2329 mi_resize_attr(mi, attr, 0 - e_size);
2330 }
2331 }
2332 }
2333
2334 /* Delete a branch of tree. */
2335 if (!fnd2 || !fnd2->level)
2336 goto out;
2337
2338 /* Reinit root 'cause it can be changed. */
2339 root = indx_get_root(indx, ni, &attr, &mi);
2340 if (!root) {
2341 err = -EINVAL;
2342 goto out;
2343 }
2344
2345 n2d = NULL;
2346 sub_vbn = fnd2->nodes[0]->index->vbn;
2347 level2 = 0;
2348 level = fnd->level;
2349
2350 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2351
2352 /* Scan current level. */
2353 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2354 if (!e) {
2355 err = -EINVAL;
2356 goto out;
2357 }
2358
2359 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2360 break;
2361
2362 if (de_is_last(e)) {
2363 e = NULL;
2364 break;
2365 }
2366 }
2367
2368 if (!e) {
2369 /* Do slow search from root. */
2370 struct indx_node *in;
2371
2372 fnd_clear(fnd);
2373
2374 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2375 if (IS_ERR(in)) {
2376 err = PTR_ERR(in);
2377 goto out;
2378 }
2379
2380 if (in)
2381 fnd_push(fnd, in, NULL);
2382 }
2383
2384 /* Merge fnd2 -> fnd. */
2385 for (level = 0; level < fnd2->level; level++) {
2386 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2387 fnd2->nodes[level] = NULL;
2388 }
2389 fnd2->level = 0;
2390
2391 hdr = NULL;
2392 for (level = fnd->level; level; level--) {
2393 struct indx_node *in = fnd->nodes[level - 1];
2394
2395 ib = in->index;
2396 if (ib_is_empty(ib)) {
2397 sub_vbn = ib->vbn;
2398 } else {
2399 hdr = &ib->ihdr;
2400 n2d = in;
2401 level2 = level;
2402 break;
2403 }
2404 }
2405
2406 if (!hdr)
2407 hdr = &root->ihdr;
2408
2409 e = hdr_first_de(hdr);
2410 if (!e) {
2411 err = -EINVAL;
2412 goto out;
2413 }
2414
2415 if (hdr != &root->ihdr || !de_is_last(e)) {
2416 prev = NULL;
2417 while (!de_is_last(e)) {
2418 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2419 break;
2420 prev = e;
2421 e = hdr_next_de(hdr, e);
2422 if (!e) {
2423 err = -EINVAL;
2424 goto out;
2425 }
2426 }
2427
2428 if (sub_vbn != de_get_vbn_le(e)) {
2429 /*
2430 * Didn't find the parent entry, although this buffer
2431 * is the parent trail. Something is corrupt.
2432 */
2433 err = -EINVAL;
2434 goto out;
2435 }
2436
2437 if (de_is_last(e)) {
2438 /*
2439 * Since we can't remove the end entry, we'll remove
2440 * its predecessor instead. This means we have to
2441 * transfer the predecessor's sub_vcn to the end entry.
2442 * Note: This index block is not empty, so the
2443 * predecessor must exist.
2444 */
2445 if (!prev) {
2446 err = -EINVAL;
2447 goto out;
2448 }
2449
2450 if (de_has_vcn(prev)) {
2451 de_set_vbn_le(e, de_get_vbn_le(prev));
2452 } else if (de_has_vcn(e)) {
2453 le16_sub_cpu(&e->size, sizeof(u64));
2454 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2455 le32_sub_cpu(&hdr->used, sizeof(u64));
2456 }
2457 e = prev;
2458 }
2459
2460 /*
2461 * Copy the current entry into a temporary buffer (stripping
2462 * off its down-pointer, if any) and delete it from the current
2463 * buffer or root, as appropriate.
2464 */
2465 e_size = le16_to_cpu(e->size);
2466 me = kmemdup(e, e_size, GFP_NOFS);
2467 if (!me) {
2468 err = -ENOMEM;
2469 goto out;
2470 }
2471
2472 if (de_has_vcn(me)) {
2473 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2474 le16_sub_cpu(&me->size, sizeof(u64));
2475 }
2476
2477 hdr_delete_de(hdr, e);
2478
2479 if (hdr == &root->ihdr) {
2480 level = 0;
2481 hdr->total = hdr->used;
2482
2483 /* Shrink resident root attribute. */
2484 mi_resize_attr(mi, attr, 0 - e_size);
2485 } else {
2486 indx_write(indx, ni, n2d, 0);
2487 level = level2;
2488 }
2489
2490 /* Mark unused buffers as free. */
2491 trim_bit = -1;
2492 for (; level < fnd->level; level++) {
2493 ib = fnd->nodes[level]->index;
2494 if (ib_is_empty(ib)) {
2495 size_t k = le64_to_cpu(ib->vbn) >>
2496 indx->idx2vbn_bits;
2497
2498 indx_mark_free(indx, ni, k);
2499 if (k < trim_bit)
2500 trim_bit = k;
2501 }
2502 }
2503
2504 fnd_clear(fnd);
2505 /*fnd->root_de = NULL;*/
2506
2507 /*
2508 * Re-insert the entry into the tree.
2509 * Find the spot the tree where we want to insert the new entry.
2510 */
2511 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2512 kfree(me);
2513 if (err)
2514 goto out;
2515
2516 if (trim_bit != -1)
2517 indx_shrink(indx, ni, trim_bit);
2518 } else {
2519 /*
2520 * This tree needs to be collapsed down to an empty root.
2521 * Recreate the index root as an empty leaf and free all
2522 * the bits the index allocation bitmap.
2523 */
2524 fnd_clear(fnd);
2525 fnd_clear(fnd2);
2526
2527 in = &s_index_names[indx->type];
2528
2529 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2530 &indx->alloc_run, 0, NULL, false, NULL);
2531 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2532 false, NULL);
2533 run_close(&indx->alloc_run);
2534
2535 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2536 &indx->bitmap_run, 0, NULL, false, NULL);
2537 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2538 false, NULL);
2539 run_close(&indx->bitmap_run);
2540
2541 root = indx_get_root(indx, ni, &attr, &mi);
2542 if (!root) {
2543 err = -EINVAL;
2544 goto out;
2545 }
2546
2547 root_size = le32_to_cpu(attr->res.data_size);
2548 new_root_size =
2549 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2550
2551 if (new_root_size != root_size &&
2552 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2553 err = -EINVAL;
2554 goto out;
2555 }
2556
2557 /* Fill first entry. */
2558 e = (struct NTFS_DE *)(root + 1);
2559 e->ref.low = 0;
2560 e->ref.high = 0;
2561 e->ref.seq = 0;
2562 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2563 e->flags = NTFS_IE_LAST; // 0x02
2564 e->key_size = 0;
2565 e->res = 0;
2566
2567 hdr = &root->ihdr;
2568 hdr->flags = 0;
2569 hdr->used = hdr->total = cpu_to_le32(
2570 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2571 mi->dirty = true;
2572 }
2573
2574 out:
2575 fnd_put(fnd2);
2576 out1:
2577 fnd_put(fnd);
2578 out2:
2579 return err;
2580 }
2581
2582 /*
2583 * Update duplicated information in directory entry
2584 * 'dup' - info from MFT record
2585 */
2586 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2587 const struct ATTR_FILE_NAME *fname,
2588 const struct NTFS_DUP_INFO *dup, int sync)
2589 {
2590 int err, diff;
2591 struct NTFS_DE *e = NULL;
2592 struct ATTR_FILE_NAME *e_fname;
2593 struct ntfs_fnd *fnd;
2594 struct INDEX_ROOT *root;
2595 struct mft_inode *mi;
2596 struct ntfs_index *indx = &ni->dir;
2597
2598 fnd = fnd_get();
2599 if (!fnd)
2600 return -ENOMEM;
2601
2602 root = indx_get_root(indx, ni, NULL, &mi);
2603 if (!root) {
2604 err = -EINVAL;
2605 goto out;
2606 }
2607
2608 /* Find entry in directory. */
2609 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2610 &diff, &e, fnd);
2611 if (err)
2612 goto out;
2613
2614 if (!e) {
2615 err = -EINVAL;
2616 goto out;
2617 }
2618
2619 if (diff) {
2620 err = -EINVAL;
2621 goto out;
2622 }
2623
2624 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2625
2626 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2627 /*
2628 * Nothing to update in index! Try to avoid this call.
2629 */
2630 goto out;
2631 }
2632
2633 memcpy(&e_fname->dup, dup, sizeof(*dup));
2634
2635 if (fnd->level) {
2636 /* Directory entry in index. */
2637 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2638 } else {
2639 /* Directory entry in directory MFT record. */
2640 mi->dirty = true;
2641 if (sync)
2642 err = mi_write(mi, 1);
2643 else
2644 mark_inode_dirty(&ni->vfs_inode);
2645 }
2646
2647 out:
2648 fnd_put(fnd);
2649 return err;
2650 }