]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ntfs3/ntfs.h
Merge tag 'optee-fix-for-v5.15' of git://git.linaro.org/people/jens.wiklander/linux...
[mirror_ubuntu-jammy-kernel.git] / fs / ntfs3 / ntfs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * on-disk ntfs structs
7 */
8
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12
13 /* TODO: Check 4K MFT record and 512 bytes cluster. */
14
15 /* Activate this define to use binary search in indexes. */
16 #define NTFS3_INDEX_BINARY_SEARCH
17
18 /* Check each run for marked clusters. */
19 #define NTFS3_CHECK_FREE_CLST
20
21 #define NTFS_NAME_LEN 255
22
23 /* ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff. */
24 #define NTFS_LINK_MAX 0x400
25 //#define NTFS_LINK_MAX 0xffff
26
27 /*
28 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
29 * Logical and virtual cluster number if needed, may be
30 * redefined to use 64 bit value.
31 */
32 //#define CONFIG_NTFS3_64BIT_CLUSTER
33
34 #define NTFS_LZNT_MAX_CLUSTER 4096
35 #define NTFS_LZNT_CUNIT 4
36 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
37
38 struct GUID {
39 __le32 Data1;
40 __le16 Data2;
41 __le16 Data3;
42 u8 Data4[8];
43 };
44
45 /*
46 * This struct repeats layout of ATTR_FILE_NAME
47 * at offset 0x40.
48 * It used to store global constants NAME_MFT/NAME_MIRROR...
49 * most constant names are shorter than 10.
50 */
51 struct cpu_str {
52 u8 len;
53 u8 unused;
54 u16 name[10];
55 };
56
57 struct le_str {
58 u8 len;
59 u8 unused;
60 __le16 name[];
61 };
62
63 static_assert(SECTOR_SHIFT == 9);
64
65 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
66 typedef u64 CLST;
67 static_assert(sizeof(size_t) == 8);
68 #else
69 typedef u32 CLST;
70 #endif
71
72 #define SPARSE_LCN64 ((u64)-1)
73 #define SPARSE_LCN ((CLST)-1)
74 #define RESIDENT_LCN ((CLST)-2)
75 #define COMPRESSED_LCN ((CLST)-3)
76
77 #define COMPRESSION_UNIT 4
78 #define COMPRESS_MAX_CLUSTER 0x1000
79 #define MFT_INCREASE_CHUNK 1024
80
81 enum RECORD_NUM {
82 MFT_REC_MFT = 0,
83 MFT_REC_MIRR = 1,
84 MFT_REC_LOG = 2,
85 MFT_REC_VOL = 3,
86 MFT_REC_ATTR = 4,
87 MFT_REC_ROOT = 5,
88 MFT_REC_BITMAP = 6,
89 MFT_REC_BOOT = 7,
90 MFT_REC_BADCLUST = 8,
91 //MFT_REC_QUOTA = 9,
92 MFT_REC_SECURE = 9, // NTFS 3.0
93 MFT_REC_UPCASE = 10,
94 MFT_REC_EXTEND = 11, // NTFS 3.0
95 MFT_REC_RESERVED = 11,
96 MFT_REC_FREE = 16,
97 MFT_REC_USER = 24,
98 };
99
100 enum ATTR_TYPE {
101 ATTR_ZERO = cpu_to_le32(0x00),
102 ATTR_STD = cpu_to_le32(0x10),
103 ATTR_LIST = cpu_to_le32(0x20),
104 ATTR_NAME = cpu_to_le32(0x30),
105 // ATTR_VOLUME_VERSION on Nt4
106 ATTR_ID = cpu_to_le32(0x40),
107 ATTR_SECURE = cpu_to_le32(0x50),
108 ATTR_LABEL = cpu_to_le32(0x60),
109 ATTR_VOL_INFO = cpu_to_le32(0x70),
110 ATTR_DATA = cpu_to_le32(0x80),
111 ATTR_ROOT = cpu_to_le32(0x90),
112 ATTR_ALLOC = cpu_to_le32(0xA0),
113 ATTR_BITMAP = cpu_to_le32(0xB0),
114 // ATTR_SYMLINK on Nt4
115 ATTR_REPARSE = cpu_to_le32(0xC0),
116 ATTR_EA_INFO = cpu_to_le32(0xD0),
117 ATTR_EA = cpu_to_le32(0xE0),
118 ATTR_PROPERTYSET = cpu_to_le32(0xF0),
119 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
120 ATTR_END = cpu_to_le32(0xFFFFFFFF)
121 };
122
123 static_assert(sizeof(enum ATTR_TYPE) == 4);
124
125 enum FILE_ATTRIBUTE {
126 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
127 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
128 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
129 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
130 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
131 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
132 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
133 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
134 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
135 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
136 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
137 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
138 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
139 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
140 };
141
142 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
143
144 extern const struct cpu_str NAME_MFT;
145 extern const struct cpu_str NAME_MIRROR;
146 extern const struct cpu_str NAME_LOGFILE;
147 extern const struct cpu_str NAME_VOLUME;
148 extern const struct cpu_str NAME_ATTRDEF;
149 extern const struct cpu_str NAME_ROOT;
150 extern const struct cpu_str NAME_BITMAP;
151 extern const struct cpu_str NAME_BOOT;
152 extern const struct cpu_str NAME_BADCLUS;
153 extern const struct cpu_str NAME_QUOTA;
154 extern const struct cpu_str NAME_SECURE;
155 extern const struct cpu_str NAME_UPCASE;
156 extern const struct cpu_str NAME_EXTEND;
157 extern const struct cpu_str NAME_OBJID;
158 extern const struct cpu_str NAME_REPARSE;
159 extern const struct cpu_str NAME_USNJRNL;
160
161 extern const __le16 I30_NAME[4];
162 extern const __le16 SII_NAME[4];
163 extern const __le16 SDH_NAME[4];
164 extern const __le16 SO_NAME[2];
165 extern const __le16 SQ_NAME[2];
166 extern const __le16 SR_NAME[2];
167
168 extern const __le16 BAD_NAME[4];
169 extern const __le16 SDS_NAME[4];
170 extern const __le16 WOF_NAME[17]; /* WofCompressedData */
171
172 /* MFT record number structure. */
173 struct MFT_REF {
174 __le32 low; // The low part of the number.
175 __le16 high; // The high part of the number.
176 __le16 seq; // The sequence number of MFT record.
177 };
178
179 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
180
181 static inline CLST ino_get(const struct MFT_REF *ref)
182 {
183 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
184 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
185 #else
186 return le32_to_cpu(ref->low);
187 #endif
188 }
189
190 struct NTFS_BOOT {
191 u8 jump_code[3]; // 0x00: Jump to boot code.
192 u8 system_id[8]; // 0x03: System ID, equals "NTFS "
193
194 // NOTE: This member is not aligned(!)
195 // bytes_per_sector[0] must be 0.
196 // bytes_per_sector[1] must be multiplied by 256.
197 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
198
199 u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
200 u8 unused1[7];
201 u8 media_type; // 0x15: Media type (0xF8 - harddisk)
202 u8 unused2[2];
203 __le16 sct_per_track; // 0x18: number of sectors per track.
204 __le16 heads; // 0x1A: number of heads per cylinder.
205 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
206 u8 unused3[4];
207 u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
208 u8 unused4;
209 u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
210 u8 unused5;
211 __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
212 __le64 mft_clst; // 0x30: First cluster of $MFT
213 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr
214 s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
215 u8 unused6[3];
216 s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
217 u8 unused7[3];
218 __le64 serial_num; // 0x48: Volume serial number
219 __le32 check_sum; // 0x50: Simple additive checksum of all
220 // of the u32's which precede the 'check_sum'.
221
222 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
223 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
224 };
225
226 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
227
228 enum NTFS_SIGNATURE {
229 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
230 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
231 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
232 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
233 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
234 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
235 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
236 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
237 };
238
239 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
240
241 /* MFT Record header structure. */
242 struct NTFS_RECORD_HEADER {
243 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
244 enum NTFS_SIGNATURE sign; // 0x00:
245 __le16 fix_off; // 0x04:
246 __le16 fix_num; // 0x06:
247 __le64 lsn; // 0x08: Log file sequence number,
248 };
249
250 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
251
252 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
253 {
254 return hdr->sign == NTFS_BAAD_SIGNATURE;
255 }
256
257 /* Possible bits in struct MFT_REC.flags. */
258 enum RECORD_FLAG {
259 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
260 RECORD_FLAG_DIR = cpu_to_le16(0x0002),
261 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
262 RECORD_FLAG_UNKNOWN = cpu_to_le16(0x0008),
263 };
264
265 /* MFT Record structure. */
266 struct MFT_REC {
267 struct NTFS_RECORD_HEADER rhdr; // 'FILE'
268
269 __le16 seq; // 0x10: Sequence number for this record.
270 __le16 hard_links; // 0x12: The number of hard links to record.
271 __le16 attr_off; // 0x14: Offset to attributes.
272 __le16 flags; // 0x16: See RECORD_FLAG.
273 __le32 used; // 0x18: The size of used part.
274 __le32 total; // 0x1C: Total record size.
275
276 struct MFT_REF parent_ref; // 0x20: Parent MFT record.
277 __le16 next_attr_id; // 0x28: The next attribute Id.
278
279 __le16 res; // 0x2A: High part of MFT record?
280 __le32 mft_record; // 0x2C: Current MFT record number.
281 __le16 fixups[]; // 0x30:
282 };
283
284 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
285 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
286
287 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
288 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
289
290 static inline bool is_rec_base(const struct MFT_REC *rec)
291 {
292 const struct MFT_REF *r = &rec->parent_ref;
293
294 return !r->low && !r->high && !r->seq;
295 }
296
297 static inline bool is_mft_rec5(const struct MFT_REC *rec)
298 {
299 return le16_to_cpu(rec->rhdr.fix_off) >=
300 offsetof(struct MFT_REC, fixups);
301 }
302
303 static inline bool is_rec_inuse(const struct MFT_REC *rec)
304 {
305 return rec->flags & RECORD_FLAG_IN_USE;
306 }
307
308 static inline bool clear_rec_inuse(struct MFT_REC *rec)
309 {
310 return rec->flags &= ~RECORD_FLAG_IN_USE;
311 }
312
313 /* Possible values of ATTR_RESIDENT.flags */
314 #define RESIDENT_FLAG_INDEXED 0x01
315
316 struct ATTR_RESIDENT {
317 __le32 data_size; // 0x10: The size of data.
318 __le16 data_off; // 0x14: Offset to data.
319 u8 flags; // 0x16: Resident flags ( 1 - indexed ).
320 u8 res; // 0x17:
321 }; // sizeof() = 0x18
322
323 struct ATTR_NONRESIDENT {
324 __le64 svcn; // 0x10: Starting VCN of this segment.
325 __le64 evcn; // 0x18: End VCN of this segment.
326 __le16 run_off; // 0x20: Offset to packed runs.
327 // Unit of Compression size for this stream, expressed
328 // as a log of the cluster size.
329 //
330 // 0 means file is not compressed
331 // 1, 2, 3, and 4 are potentially legal values if the
332 // stream is compressed, however the implementation
333 // may only choose to use 4, or possibly 3. Note
334 // that 4 means cluster size time 16. If convenient
335 // the implementation may wish to accept a
336 // reasonable range of legal values here (1-5?),
337 // even if the implementation only generates
338 // a smaller set of values itself.
339 u8 c_unit; // 0x22:
340 u8 res1[5]; // 0x23:
341 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
342 // (multiple of cluster size)
343 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
344 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
345 __le64 total_size; // 0x40: The sum of the allocated clusters for a file.
346 // (present only for the first segment (0 == vcn)
347 // of compressed attribute)
348
349 }; // sizeof()=0x40 or 0x48 (if compressed)
350
351 /* Possible values of ATTRIB.flags: */
352 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
353 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
354 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
355 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
356
357 struct ATTRIB {
358 enum ATTR_TYPE type; // 0x00: The type of this attribute.
359 __le32 size; // 0x04: The size of this attribute.
360 u8 non_res; // 0x08: Is this attribute non-resident?
361 u8 name_len; // 0x09: This attribute name length.
362 __le16 name_off; // 0x0A: Offset to the attribute name.
363 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
364 __le16 id; // 0x0E: Unique id (per record).
365
366 union {
367 struct ATTR_RESIDENT res; // 0x10
368 struct ATTR_NONRESIDENT nres; // 0x10
369 };
370 };
371
372 /* Define attribute sizes. */
373 #define SIZEOF_RESIDENT 0x18
374 #define SIZEOF_NONRESIDENT_EX 0x48
375 #define SIZEOF_NONRESIDENT 0x40
376
377 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
378 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
379 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
380
381 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
382 {
383 return attr->non_res ? ((attr->flags &
384 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
385 le64_to_cpu(attr->nres.total_size) :
386 le64_to_cpu(attr->nres.alloc_size))
387 : ALIGN(le32_to_cpu(attr->res.data_size), 8);
388 }
389
390 static inline u64 attr_size(const struct ATTRIB *attr)
391 {
392 return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
393 le32_to_cpu(attr->res.data_size);
394 }
395
396 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
397 {
398 return attr->flags & ATTR_FLAG_ENCRYPTED;
399 }
400
401 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
402 {
403 return attr->flags & ATTR_FLAG_SPARSED;
404 }
405
406 static inline bool is_attr_compressed(const struct ATTRIB *attr)
407 {
408 return attr->flags & ATTR_FLAG_COMPRESSED;
409 }
410
411 static inline bool is_attr_ext(const struct ATTRIB *attr)
412 {
413 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
414 }
415
416 static inline bool is_attr_indexed(const struct ATTRIB *attr)
417 {
418 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
419 }
420
421 static inline __le16 const *attr_name(const struct ATTRIB *attr)
422 {
423 return Add2Ptr(attr, le16_to_cpu(attr->name_off));
424 }
425
426 static inline u64 attr_svcn(const struct ATTRIB *attr)
427 {
428 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
429 }
430
431 /* The size of resident attribute by its resident size. */
432 #define BYTES_PER_RESIDENT(b) (0x18 + (b))
433
434 static_assert(sizeof(struct ATTRIB) == 0x48);
435 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
436 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
437
438 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
439 {
440 u32 asize, rsize;
441 u16 off;
442
443 if (attr->non_res)
444 return NULL;
445
446 asize = le32_to_cpu(attr->size);
447 off = le16_to_cpu(attr->res.data_off);
448
449 if (asize < datasize + off)
450 return NULL;
451
452 rsize = le32_to_cpu(attr->res.data_size);
453 if (rsize < datasize)
454 return NULL;
455
456 return Add2Ptr(attr, off);
457 }
458
459 static inline void *resident_data(const struct ATTRIB *attr)
460 {
461 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
462 }
463
464 static inline void *attr_run(const struct ATTRIB *attr)
465 {
466 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
467 }
468
469 /* Standard information attribute (0x10). */
470 struct ATTR_STD_INFO {
471 __le64 cr_time; // 0x00: File creation file.
472 __le64 m_time; // 0x08: File modification time.
473 __le64 c_time; // 0x10: Last time any attribute was modified.
474 __le64 a_time; // 0x18: File last access time.
475 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
476 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
477 __le32 ver_num; // 0x28: Version Number.
478 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
479 };
480
481 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
482
483 #define SECURITY_ID_INVALID 0x00000000
484 #define SECURITY_ID_FIRST 0x00000100
485
486 struct ATTR_STD_INFO5 {
487 __le64 cr_time; // 0x00: File creation file.
488 __le64 m_time; // 0x08: File modification time.
489 __le64 c_time; // 0x10: Last time any attribute was modified.
490 __le64 a_time; // 0x18: File last access time.
491 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
492 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
493 __le32 ver_num; // 0x28: Version Number.
494 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
495
496 __le32 owner_id; // 0x30: Owner Id of the user owning the file.
497 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
498 __le64 quota_charge; // 0x38:
499 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
500 // index into the file $UsnJrnl. If zero, the USN Journal is
501 // disabled.
502 };
503
504 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
505
506 /* Attribute list entry structure (0x20) */
507 struct ATTR_LIST_ENTRY {
508 enum ATTR_TYPE type; // 0x00: The type of attribute.
509 __le16 size; // 0x04: The size of this record.
510 u8 name_len; // 0x06: The length of attribute name.
511 u8 name_off; // 0x07: The offset to attribute name.
512 __le64 vcn; // 0x08: Starting VCN of this attribute.
513 struct MFT_REF ref; // 0x10: MFT record number with attribute.
514 __le16 id; // 0x18: struct ATTRIB ID.
515 __le16 name[3]; // 0x1A: Just to align. To get real name can use bNameOffset.
516
517 }; // sizeof(0x20)
518
519 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
520
521 static inline u32 le_size(u8 name_len)
522 {
523 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
524 name_len * sizeof(short), 8);
525 }
526
527 /* Returns 0 if 'attr' has the same type and name. */
528 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
529 const struct ATTRIB *attr)
530 {
531 return le->type != attr->type || le->name_len != attr->name_len ||
532 (!le->name_len &&
533 memcmp(Add2Ptr(le, le->name_off),
534 Add2Ptr(attr, le16_to_cpu(attr->name_off)),
535 le->name_len * sizeof(short)));
536 }
537
538 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
539 {
540 return Add2Ptr(le, le->name_off);
541 }
542
543 /* File name types (the field type in struct ATTR_FILE_NAME). */
544 #define FILE_NAME_POSIX 0
545 #define FILE_NAME_UNICODE 1
546 #define FILE_NAME_DOS 2
547 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
548
549 /* Filename attribute structure (0x30). */
550 struct NTFS_DUP_INFO {
551 __le64 cr_time; // 0x00: File creation file.
552 __le64 m_time; // 0x08: File modification time.
553 __le64 c_time; // 0x10: Last time any attribute was modified.
554 __le64 a_time; // 0x18: File last access time.
555 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
556 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
557 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
558 __le16 ea_size; // 0x34: Packed EAs.
559 __le16 reparse; // 0x36: Used by Reparse.
560
561 }; // 0x38
562
563 struct ATTR_FILE_NAME {
564 struct MFT_REF home; // 0x00: MFT record for directory.
565 struct NTFS_DUP_INFO dup;// 0x08:
566 u8 name_len; // 0x40: File name length in words.
567 u8 type; // 0x41: File name type.
568 __le16 name[]; // 0x42: File name.
569 };
570
571 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
572 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
573 #define SIZEOF_ATTRIBUTE_FILENAME 0x44
574 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
575
576 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
577 {
578 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
579 }
580
581 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
582 {
583 /* Don't return struct_size(fname, name, fname->name_len); */
584 return offsetof(struct ATTR_FILE_NAME, name) +
585 fname->name_len * sizeof(short);
586 }
587
588 static inline u8 paired_name(u8 type)
589 {
590 if (type == FILE_NAME_UNICODE)
591 return FILE_NAME_DOS;
592 if (type == FILE_NAME_DOS)
593 return FILE_NAME_UNICODE;
594 return FILE_NAME_POSIX;
595 }
596
597 /* Index entry defines ( the field flags in NtfsDirEntry ). */
598 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
599 #define NTFS_IE_LAST cpu_to_le16(2)
600
601 /* Directory entry structure. */
602 struct NTFS_DE {
603 union {
604 struct MFT_REF ref; // 0x00: MFT record number with this file.
605 struct {
606 __le16 data_off; // 0x00:
607 __le16 data_size; // 0x02:
608 __le32 res; // 0x04: Must be 0.
609 } view;
610 };
611 __le16 size; // 0x08: The size of this entry.
612 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
613 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
614 __le16 res; // 0x0E:
615
616 // Here any indexed attribute can be placed.
617 // One of them is:
618 // struct ATTR_FILE_NAME AttrFileName;
619 //
620
621 // The last 8 bytes of this structure contains
622 // the VBN of subnode.
623 // !!! Note !!!
624 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
625 // __le64 vbn;
626 };
627
628 static_assert(sizeof(struct NTFS_DE) == 0x10);
629
630 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
631 {
632 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
633
634 *v = vcn;
635 }
636
637 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
638 {
639 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
640
641 *v = cpu_to_le64(vcn);
642 }
643
644 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
645 {
646 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
647 }
648
649 static inline CLST de_get_vbn(const struct NTFS_DE *e)
650 {
651 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
652
653 return le64_to_cpu(*v);
654 }
655
656 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
657 {
658 return Add2Ptr(e, le16_to_cpu(e->size));
659 }
660
661 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
662 {
663 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
664 Add2Ptr(e, sizeof(struct NTFS_DE)) :
665 NULL;
666 }
667
668 static inline bool de_is_last(const struct NTFS_DE *e)
669 {
670 return e->flags & NTFS_IE_LAST;
671 }
672
673 static inline bool de_has_vcn(const struct NTFS_DE *e)
674 {
675 return e->flags & NTFS_IE_HAS_SUBNODES;
676 }
677
678 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
679 {
680 return (e->flags & NTFS_IE_HAS_SUBNODES) &&
681 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
682 sizeof(__le64)));
683 }
684
685 #define MAX_BYTES_PER_NAME_ENTRY \
686 ALIGN(sizeof(struct NTFS_DE) + \
687 offsetof(struct ATTR_FILE_NAME, name) + \
688 NTFS_NAME_LEN * sizeof(short), 8)
689
690 struct INDEX_HDR {
691 __le32 de_off; // 0x00: The offset from the start of this structure
692 // to the first NTFS_DE.
693 __le32 used; // 0x04: The size of this structure plus all
694 // entries (quad-word aligned).
695 __le32 total; // 0x08: The allocated size of for this structure plus all entries.
696 u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
697 u8 res[3];
698
699 //
700 // de_off + used <= total
701 //
702 };
703
704 static_assert(sizeof(struct INDEX_HDR) == 0x10);
705
706 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
707 {
708 u32 de_off = le32_to_cpu(hdr->de_off);
709 u32 used = le32_to_cpu(hdr->used);
710 struct NTFS_DE *e = Add2Ptr(hdr, de_off);
711 u16 esize;
712
713 if (de_off >= used || de_off >= le32_to_cpu(hdr->total))
714 return NULL;
715
716 esize = le16_to_cpu(e->size);
717 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
718 return NULL;
719
720 return e;
721 }
722
723 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
724 const struct NTFS_DE *e)
725 {
726 size_t off = PtrOffset(hdr, e);
727 u32 used = le32_to_cpu(hdr->used);
728 u16 esize;
729
730 if (off >= used)
731 return NULL;
732
733 esize = le16_to_cpu(e->size);
734
735 if (esize < sizeof(struct NTFS_DE) ||
736 off + esize + sizeof(struct NTFS_DE) > used)
737 return NULL;
738
739 return Add2Ptr(e, esize);
740 }
741
742 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
743 {
744 return hdr->flags & 1;
745 }
746
747 struct INDEX_BUFFER {
748 struct NTFS_RECORD_HEADER rhdr; // 'INDX'
749 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
750 struct INDEX_HDR ihdr; // 0x18:
751 };
752
753 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
754
755 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
756 {
757 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
758
759 return !first || de_is_last(first);
760 }
761
762 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
763 {
764 return !(ib->ihdr.flags & 1);
765 }
766
767 /* Index root structure ( 0x90 ). */
768 enum COLLATION_RULE {
769 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
770 // $I30
771 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
772 // $SII of $Secure and $Q of Quota
773 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
774 // $O of Quota
775 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
776 // $SDH of $Secure
777 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
778 // $O of ObjId and "$R" for Reparse
779 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
780 };
781
782 static_assert(sizeof(enum COLLATION_RULE) == 4);
783
784 //
785 struct INDEX_ROOT {
786 enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
787 enum COLLATION_RULE rule; // 0x04: The rule.
788 __le32 index_block_size;// 0x08: The size of index record.
789 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
790 u8 res[3];
791 struct INDEX_HDR ihdr; // 0x10:
792 };
793
794 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
795 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
796
797 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
798 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
799
800 struct VOLUME_INFO {
801 __le64 res1; // 0x00
802 u8 major_ver; // 0x08: NTFS major version number (before .)
803 u8 minor_ver; // 0x09: NTFS minor version number (after .)
804 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
805
806 }; // sizeof=0xC
807
808 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
809
810 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
811 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
812 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
813 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
814 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
815 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
816 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
817
818 /* $AttrDef file entry. */
819 struct ATTR_DEF_ENTRY {
820 __le16 name[0x40]; // 0x00: Attr name.
821 enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
822 __le32 res; // 0x84:
823 enum COLLATION_RULE rule; // 0x88:
824 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
825 __le64 min_sz; // 0x90: Minimum attribute data size.
826 __le64 max_sz; // 0x98: Maximum attribute data size.
827 };
828
829 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
830
831 /* Object ID (0x40) */
832 struct OBJECT_ID {
833 struct GUID ObjId; // 0x00: Unique Id assigned to file.
834 struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
835 // which the Object Id was allocated. It never changes.
836 struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
837 // ever assigned to this MFT Record. I.e. If the Object Id
838 // is changed for some reason, this field will reflect the
839 // original value of the Object Id.
840 struct GUID DomainId; // 0x30: Domain Id is currently unused but it is intended to be
841 // used in a network environment where the local machine is
842 // part of a Windows 2000 Domain. This may be used in a Windows
843 // 2000 Advanced Server managed domain.
844 };
845
846 static_assert(sizeof(struct OBJECT_ID) == 0x40);
847
848 /* O Directory entry structure ( rule = 0x13 ) */
849 struct NTFS_DE_O {
850 struct NTFS_DE de;
851 struct GUID ObjId; // 0x10: Unique Id assigned to file.
852 struct MFT_REF ref; // 0x20: MFT record number with this file.
853 struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
854 // which the Object Id was allocated. It never changes.
855 struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
856 // ever assigned to this MFT Record. I.e. If the Object Id
857 // is changed for some reason, this field will reflect the
858 // original value of the Object Id.
859 // This field is valid if data_size == 0x48.
860 struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
861 // to be used in a network environment where the local
862 // machine is part of a Windows 2000 Domain. This may be
863 // used in a Windows 2000 Advanced Server managed domain.
864 };
865
866 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
867
868 #define NTFS_OBJECT_ENTRY_DATA_SIZE1 \
869 0x38 // struct NTFS_DE_O.BirthDomainId is not used
870 #define NTFS_OBJECT_ENTRY_DATA_SIZE2 \
871 0x48 // struct NTFS_DE_O.BirthDomainId is used
872
873 /* Q Directory entry structure ( rule = 0x11 ) */
874 struct NTFS_DE_Q {
875 struct NTFS_DE de;
876 __le32 owner_id; // 0x10: Unique Id assigned to file
877 __le32 Version; // 0x14: 0x02
878 __le32 flags2; // 0x18: Quota flags, see above
879 __le64 BytesUsed; // 0x1C:
880 __le64 ChangeTime; // 0x24:
881 __le64 WarningLimit; // 0x28:
882 __le64 HardLimit; // 0x34:
883 __le64 ExceededTime; // 0x3C:
884
885 // SID is placed here
886 }; // sizeof() = 0x44
887
888 #define SIZEOF_NTFS_DE_Q 0x44
889
890 #define SecurityDescriptorsBlockSize 0x40000 // 256K
891 #define SecurityDescriptorMaxSize 0x20000 // 128K
892 #define Log2OfSecurityDescriptorsBlockSize 18
893
894 struct SECURITY_KEY {
895 __le32 hash; // Hash value for descriptor
896 __le32 sec_id; // Security Id (guaranteed unique)
897 };
898
899 /* Security descriptors (the content of $Secure::SDS data stream) */
900 struct SECURITY_HDR {
901 struct SECURITY_KEY key; // 0x00: Security Key.
902 __le64 off; // 0x08: Offset of this entry in the file.
903 __le32 size; // 0x10: Size of this entry, 8 byte aligned.
904 /*
905 * Security descriptor itself is placed here.
906 * Total size is 16 byte aligned.
907 */
908 } __packed;
909
910 #define SIZEOF_SECURITY_HDR 0x14
911
912 /* SII Directory entry structure */
913 struct NTFS_DE_SII {
914 struct NTFS_DE de;
915 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
916 struct SECURITY_HDR sec_hdr; // 0x14:
917 } __packed;
918
919 #define SIZEOF_SII_DIRENTRY 0x28
920
921 /* SDH Directory entry structure */
922 struct NTFS_DE_SDH {
923 struct NTFS_DE de;
924 struct SECURITY_KEY key; // 0x10: Key
925 struct SECURITY_HDR sec_hdr; // 0x18: Data
926 __le16 magic[2]; // 0x2C: 0x00490049 "I I"
927 };
928
929 #define SIZEOF_SDH_DIRENTRY 0x30
930
931 struct REPARSE_KEY {
932 __le32 ReparseTag; // 0x00: Reparse Tag
933 struct MFT_REF ref; // 0x04: MFT record number with this file
934 }; // sizeof() = 0x0C
935
936 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
937 #define SIZEOF_REPARSE_KEY 0x0C
938
939 /* Reparse Directory entry structure */
940 struct NTFS_DE_R {
941 struct NTFS_DE de;
942 struct REPARSE_KEY key; // 0x10: Reparse Key.
943 u32 zero; // 0x1c:
944 }; // sizeof() = 0x20
945
946 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
947
948 /* CompressReparseBuffer.WofVersion */
949 #define WOF_CURRENT_VERSION cpu_to_le32(1)
950 /* CompressReparseBuffer.WofProvider */
951 #define WOF_PROVIDER_WIM cpu_to_le32(1)
952 /* CompressReparseBuffer.WofProvider */
953 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
954 /* CompressReparseBuffer.ProviderVer */
955 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
956
957 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
958 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
959 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
960 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
961
962 /*
963 * ATTR_REPARSE (0xC0)
964 *
965 * The reparse struct GUID structure is used by all 3rd party layered drivers to
966 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
967 * cannot be GUID_NULL.
968 * The constraints on reparse tags are defined below.
969 * Microsoft tags can also be used with this format of the reparse point buffer.
970 */
971 struct REPARSE_POINT {
972 __le32 ReparseTag; // 0x00:
973 __le16 ReparseDataLength;// 0x04:
974 __le16 Reserved;
975
976 struct GUID Guid; // 0x08:
977
978 //
979 // Here GenericReparseBuffer is placed
980 //
981 };
982
983 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
984
985 /* Maximum allowed size of the reparse data. */
986 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
987
988 /*
989 * The value of the following constant needs to satisfy the following
990 * conditions:
991 * (1) Be at least as large as the largest of the reserved tags.
992 * (2) Be strictly smaller than all the tags in use.
993 */
994 #define IO_REPARSE_TAG_RESERVED_RANGE 1
995
996 /*
997 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
998 *
999 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1000 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1001 * +-+-+-+-+-----------------------+-------------------------------+
1002 * |M|R|N|R| Reserved bits | Reparse Tag Value |
1003 * +-+-+-+-+-----------------------+-------------------------------+
1004 *
1005 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1006 * All ISVs must use a tag with a 0 in this position.
1007 * Note: If a Microsoft tag is used by non-Microsoft software, the
1008 * behavior is not defined.
1009 *
1010 * R is reserved. Must be zero for non-Microsoft tags.
1011 *
1012 * N is name surrogate. When set to 1, the file represents another named
1013 * entity in the system.
1014 *
1015 * The M and N bits are OR-able.
1016 * The following macros check for the M and N bit values:
1017 */
1018
1019 /*
1020 * Macro to determine whether a reparse point tag corresponds to a tag
1021 * owned by Microsoft.
1022 */
1023 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1024
1025 /* Macro to determine whether a reparse point tag is a name surrogate. */
1026 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1027
1028 /*
1029 * The following constant represents the bits that are valid to use in
1030 * reparse tags.
1031 */
1032 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
1033
1034 /*
1035 * Macro to determine whether a reparse tag is a valid tag.
1036 */
1037 #define IsReparseTagValid(_tag) \
1038 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
1039 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1040
1041 /* Microsoft tags for reparse points. */
1042
1043 enum IO_REPARSE_TAG {
1044 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
1045 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
1046 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
1047 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
1048 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
1049 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
1050 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
1051 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
1052 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
1053
1054 /*
1055 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1056 * May be published in the future.
1057 */
1058
1059 /* Microsoft reparse tag reserved for DFS */
1060 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
1061
1062 /* Microsoft reparse tag reserved for the file system filter manager. */
1063 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
1064
1065 /* Non-Microsoft tags for reparse points */
1066
1067 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1068 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1069
1070 /* Tag allocated to ARKIVIO. */
1071 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
1072
1073 /* Tag allocated to SOLUTIONSOFT. */
1074 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
1075
1076 /* Tag allocated to COMMVAULT. */
1077 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
1078
1079 /* OneDrive?? */
1080 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
1081 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
1082 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
1083 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
1084 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
1085 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
1086 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
1087 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
1088 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
1089 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
1090 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
1091 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
1092 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
1093 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
1094 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
1095 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
1096
1097 };
1098
1099 #define SYMLINK_FLAG_RELATIVE 1
1100
1101 /* Microsoft reparse buffer. (see DDK for details) */
1102 struct REPARSE_DATA_BUFFER {
1103 __le32 ReparseTag; // 0x00:
1104 __le16 ReparseDataLength; // 0x04:
1105 __le16 Reserved;
1106
1107 union {
1108 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1109 struct {
1110 __le16 SubstituteNameOffset; // 0x08
1111 __le16 SubstituteNameLength; // 0x0A
1112 __le16 PrintNameOffset; // 0x0C
1113 __le16 PrintNameLength; // 0x0E
1114 __le16 PathBuffer[]; // 0x10
1115 } MountPointReparseBuffer;
1116
1117 /*
1118 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1119 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1120 */
1121 struct {
1122 __le16 SubstituteNameOffset; // 0x08
1123 __le16 SubstituteNameLength; // 0x0A
1124 __le16 PrintNameOffset; // 0x0C
1125 __le16 PrintNameLength; // 0x0E
1126 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1127 __le32 Flags; // 0x10
1128 __le16 PathBuffer[]; // 0x14
1129 } SymbolicLinkReparseBuffer;
1130
1131 /* If ReparseTag == 0x80000017U */
1132 struct {
1133 __le32 WofVersion; // 0x08 == 1
1134 /*
1135 * 1 - WIM backing provider ("WIMBoot"),
1136 * 2 - System compressed file provider
1137 */
1138 __le32 WofProvider; // 0x0C:
1139 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1140 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1141 } CompressReparseBuffer;
1142
1143 struct {
1144 u8 DataBuffer[1]; // 0x08:
1145 } GenericReparseBuffer;
1146 };
1147 };
1148
1149 /* ATTR_EA_INFO (0xD0) */
1150
1151 #define FILE_NEED_EA 0x80 // See ntifs.h
1152 /*
1153 *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1154 * interpreted without understanding the associated extended attributes.
1155 */
1156 struct EA_INFO {
1157 __le16 size_pack; // 0x00: Size of buffer to hold in packed form.
1158 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
1159 __le32 size; // 0x04: Size of buffer to hold in unpacked form.
1160 };
1161
1162 static_assert(sizeof(struct EA_INFO) == 8);
1163
1164 /* ATTR_EA (0xE0) */
1165 struct EA_FULL {
1166 __le32 size; // 0x00: (not in packed)
1167 u8 flags; // 0x04:
1168 u8 name_len; // 0x05:
1169 __le16 elength; // 0x06:
1170 u8 name[]; // 0x08:
1171 };
1172
1173 static_assert(offsetof(struct EA_FULL, name) == 8);
1174
1175 #define ACL_REVISION 2
1176 #define ACL_REVISION_DS 4
1177
1178 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1179
1180 struct SECURITY_DESCRIPTOR_RELATIVE {
1181 u8 Revision;
1182 u8 Sbz1;
1183 __le16 Control;
1184 __le32 Owner;
1185 __le32 Group;
1186 __le32 Sacl;
1187 __le32 Dacl;
1188 };
1189 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1190
1191 struct ACE_HEADER {
1192 u8 AceType;
1193 u8 AceFlags;
1194 __le16 AceSize;
1195 };
1196 static_assert(sizeof(struct ACE_HEADER) == 4);
1197
1198 struct ACL {
1199 u8 AclRevision;
1200 u8 Sbz1;
1201 __le16 AclSize;
1202 __le16 AceCount;
1203 __le16 Sbz2;
1204 };
1205 static_assert(sizeof(struct ACL) == 8);
1206
1207 struct SID {
1208 u8 Revision;
1209 u8 SubAuthorityCount;
1210 u8 IdentifierAuthority[6];
1211 __le32 SubAuthority[];
1212 };
1213 static_assert(offsetof(struct SID, SubAuthority) == 8);
1214
1215 #endif /* _LINUX_NTFS3_NTFS_H */
1216 // clang-format on