]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ocfs2/alloc.c
Merge tag 'for-linus-5.10b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / ocfs2 / alloc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * alloc.c
6 *
7 * Extent allocs and frees
8 *
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/swap.h>
17 #include <linux/quotaops.h>
18 #include <linux/blkdev.h>
19 #include <linux/sched/signal.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "aops.h"
27 #include "blockcheck.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "suballoc.h"
34 #include "sysfile.h"
35 #include "file.h"
36 #include "super.h"
37 #include "uptodate.h"
38 #include "xattr.h"
39 #include "refcounttree.h"
40 #include "ocfs2_trace.h"
41
42 #include "buffer_head_io.h"
43
44 enum ocfs2_contig_type {
45 CONTIG_NONE = 0,
46 CONTIG_LEFT,
47 CONTIG_RIGHT,
48 CONTIG_LEFTRIGHT,
49 };
50
51 static enum ocfs2_contig_type
52 ocfs2_extent_rec_contig(struct super_block *sb,
53 struct ocfs2_extent_rec *ext,
54 struct ocfs2_extent_rec *insert_rec);
55 /*
56 * Operations for a specific extent tree type.
57 *
58 * To implement an on-disk btree (extent tree) type in ocfs2, add
59 * an ocfs2_extent_tree_operations structure and the matching
60 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
61 * for the allocation portion of the extent tree.
62 */
63 struct ocfs2_extent_tree_operations {
64 /*
65 * last_eb_blk is the block number of the right most leaf extent
66 * block. Most on-disk structures containing an extent tree store
67 * this value for fast access. The ->eo_set_last_eb_blk() and
68 * ->eo_get_last_eb_blk() operations access this value. They are
69 * both required.
70 */
71 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
72 u64 blkno);
73 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74
75 /*
76 * The on-disk structure usually keeps track of how many total
77 * clusters are stored in this extent tree. This function updates
78 * that value. new_clusters is the delta, and must be
79 * added to the total. Required.
80 */
81 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
82 u32 new_clusters);
83
84 /*
85 * If this extent tree is supported by an extent map, insert
86 * a record into the map.
87 */
88 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
89 struct ocfs2_extent_rec *rec);
90
91 /*
92 * If this extent tree is supported by an extent map, truncate the
93 * map to clusters,
94 */
95 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
96 u32 clusters);
97
98 /*
99 * If ->eo_insert_check() exists, it is called before rec is
100 * inserted into the extent tree. It is optional.
101 */
102 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
103 struct ocfs2_extent_rec *rec);
104 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
105
106 /*
107 * --------------------------------------------------------------
108 * The remaining are internal to ocfs2_extent_tree and don't have
109 * accessor functions
110 */
111
112 /*
113 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
114 * It is required.
115 */
116 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
117
118 /*
119 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
120 * it exists. If it does not, et->et_max_leaf_clusters is set
121 * to 0 (unlimited). Optional.
122 */
123 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
124
125 /*
126 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
127 * are contiguous or not. Optional. Don't need to set it if use
128 * ocfs2_extent_rec as the tree leaf.
129 */
130 enum ocfs2_contig_type
131 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
132 struct ocfs2_extent_rec *ext,
133 struct ocfs2_extent_rec *insert_rec);
134 };
135
136
137 /*
138 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
139 * in the methods.
140 */
141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 u64 blkno);
144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
145 u32 clusters);
146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
147 struct ocfs2_extent_rec *rec);
148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
149 u32 clusters);
150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
151 struct ocfs2_extent_rec *rec);
152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
154
155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
156 struct ocfs2_extent_tree *et,
157 struct buffer_head **new_eb_bh,
158 int blk_wanted, int *blk_given);
159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
160
161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
162 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
163 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
164 .eo_update_clusters = ocfs2_dinode_update_clusters,
165 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
166 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
167 .eo_insert_check = ocfs2_dinode_insert_check,
168 .eo_sanity_check = ocfs2_dinode_sanity_check,
169 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
170 };
171
172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
173 u64 blkno)
174 {
175 struct ocfs2_dinode *di = et->et_object;
176
177 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
178 di->i_last_eb_blk = cpu_to_le64(blkno);
179 }
180
181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
182 {
183 struct ocfs2_dinode *di = et->et_object;
184
185 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
186 return le64_to_cpu(di->i_last_eb_blk);
187 }
188
189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
190 u32 clusters)
191 {
192 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
193 struct ocfs2_dinode *di = et->et_object;
194
195 le32_add_cpu(&di->i_clusters, clusters);
196 spin_lock(&oi->ip_lock);
197 oi->ip_clusters = le32_to_cpu(di->i_clusters);
198 spin_unlock(&oi->ip_lock);
199 }
200
201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
202 struct ocfs2_extent_rec *rec)
203 {
204 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
205
206 ocfs2_extent_map_insert_rec(inode, rec);
207 }
208
209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
210 u32 clusters)
211 {
212 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
213
214 ocfs2_extent_map_trunc(inode, clusters);
215 }
216
217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
218 struct ocfs2_extent_rec *rec)
219 {
220 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
221 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
222
223 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
224 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
225 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
226 "Device %s, asking for sparse allocation: inode %llu, "
227 "cpos %u, clusters %u\n",
228 osb->dev_str,
229 (unsigned long long)oi->ip_blkno,
230 rec->e_cpos, oi->ip_clusters);
231
232 return 0;
233 }
234
235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
236 {
237 struct ocfs2_dinode *di = et->et_object;
238
239 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
240 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
241
242 return 0;
243 }
244
245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
246 {
247 struct ocfs2_dinode *di = et->et_object;
248
249 et->et_root_el = &di->id2.i_list;
250 }
251
252
253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
254 {
255 struct ocfs2_xattr_value_buf *vb = et->et_object;
256
257 et->et_root_el = &vb->vb_xv->xr_list;
258 }
259
260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
261 u64 blkno)
262 {
263 struct ocfs2_xattr_value_buf *vb = et->et_object;
264
265 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
266 }
267
268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
269 {
270 struct ocfs2_xattr_value_buf *vb = et->et_object;
271
272 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
273 }
274
275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
276 u32 clusters)
277 {
278 struct ocfs2_xattr_value_buf *vb = et->et_object;
279
280 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
281 }
282
283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
284 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
285 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
286 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
287 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
288 };
289
290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
291 {
292 struct ocfs2_xattr_block *xb = et->et_object;
293
294 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
295 }
296
297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
298 {
299 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
300 et->et_max_leaf_clusters =
301 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
302 }
303
304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
305 u64 blkno)
306 {
307 struct ocfs2_xattr_block *xb = et->et_object;
308 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
309
310 xt->xt_last_eb_blk = cpu_to_le64(blkno);
311 }
312
313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
314 {
315 struct ocfs2_xattr_block *xb = et->et_object;
316 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
317
318 return le64_to_cpu(xt->xt_last_eb_blk);
319 }
320
321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
322 u32 clusters)
323 {
324 struct ocfs2_xattr_block *xb = et->et_object;
325
326 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
327 }
328
329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
330 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
331 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
332 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
333 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
334 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
335 };
336
337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
338 u64 blkno)
339 {
340 struct ocfs2_dx_root_block *dx_root = et->et_object;
341
342 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
343 }
344
345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
346 {
347 struct ocfs2_dx_root_block *dx_root = et->et_object;
348
349 return le64_to_cpu(dx_root->dr_last_eb_blk);
350 }
351
352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
353 u32 clusters)
354 {
355 struct ocfs2_dx_root_block *dx_root = et->et_object;
356
357 le32_add_cpu(&dx_root->dr_clusters, clusters);
358 }
359
360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
361 {
362 struct ocfs2_dx_root_block *dx_root = et->et_object;
363
364 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
365
366 return 0;
367 }
368
369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
370 {
371 struct ocfs2_dx_root_block *dx_root = et->et_object;
372
373 et->et_root_el = &dx_root->dr_list;
374 }
375
376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
377 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
378 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
379 .eo_update_clusters = ocfs2_dx_root_update_clusters,
380 .eo_sanity_check = ocfs2_dx_root_sanity_check,
381 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
382 };
383
384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
385 {
386 struct ocfs2_refcount_block *rb = et->et_object;
387
388 et->et_root_el = &rb->rf_list;
389 }
390
391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
392 u64 blkno)
393 {
394 struct ocfs2_refcount_block *rb = et->et_object;
395
396 rb->rf_last_eb_blk = cpu_to_le64(blkno);
397 }
398
399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
400 {
401 struct ocfs2_refcount_block *rb = et->et_object;
402
403 return le64_to_cpu(rb->rf_last_eb_blk);
404 }
405
406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
407 u32 clusters)
408 {
409 struct ocfs2_refcount_block *rb = et->et_object;
410
411 le32_add_cpu(&rb->rf_clusters, clusters);
412 }
413
414 static enum ocfs2_contig_type
415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
416 struct ocfs2_extent_rec *ext,
417 struct ocfs2_extent_rec *insert_rec)
418 {
419 return CONTIG_NONE;
420 }
421
422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
423 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
424 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
425 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
426 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
427 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
428 };
429
430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
431 struct ocfs2_caching_info *ci,
432 struct buffer_head *bh,
433 ocfs2_journal_access_func access,
434 void *obj,
435 const struct ocfs2_extent_tree_operations *ops)
436 {
437 et->et_ops = ops;
438 et->et_root_bh = bh;
439 et->et_ci = ci;
440 et->et_root_journal_access = access;
441 if (!obj)
442 obj = (void *)bh->b_data;
443 et->et_object = obj;
444 et->et_dealloc = NULL;
445
446 et->et_ops->eo_fill_root_el(et);
447 if (!et->et_ops->eo_fill_max_leaf_clusters)
448 et->et_max_leaf_clusters = 0;
449 else
450 et->et_ops->eo_fill_max_leaf_clusters(et);
451 }
452
453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
454 struct ocfs2_caching_info *ci,
455 struct buffer_head *bh)
456 {
457 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
458 NULL, &ocfs2_dinode_et_ops);
459 }
460
461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
462 struct ocfs2_caching_info *ci,
463 struct buffer_head *bh)
464 {
465 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
466 NULL, &ocfs2_xattr_tree_et_ops);
467 }
468
469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
470 struct ocfs2_caching_info *ci,
471 struct ocfs2_xattr_value_buf *vb)
472 {
473 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
474 &ocfs2_xattr_value_et_ops);
475 }
476
477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
478 struct ocfs2_caching_info *ci,
479 struct buffer_head *bh)
480 {
481 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
482 NULL, &ocfs2_dx_root_et_ops);
483 }
484
485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
486 struct ocfs2_caching_info *ci,
487 struct buffer_head *bh)
488 {
489 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
490 NULL, &ocfs2_refcount_tree_et_ops);
491 }
492
493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
494 u64 new_last_eb_blk)
495 {
496 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
497 }
498
499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
500 {
501 return et->et_ops->eo_get_last_eb_blk(et);
502 }
503
504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
505 u32 clusters)
506 {
507 et->et_ops->eo_update_clusters(et, clusters);
508 }
509
510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
511 struct ocfs2_extent_rec *rec)
512 {
513 if (et->et_ops->eo_extent_map_insert)
514 et->et_ops->eo_extent_map_insert(et, rec);
515 }
516
517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
518 u32 clusters)
519 {
520 if (et->et_ops->eo_extent_map_truncate)
521 et->et_ops->eo_extent_map_truncate(et, clusters);
522 }
523
524 static inline int ocfs2_et_root_journal_access(handle_t *handle,
525 struct ocfs2_extent_tree *et,
526 int type)
527 {
528 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
529 type);
530 }
531
532 static inline enum ocfs2_contig_type
533 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
534 struct ocfs2_extent_rec *rec,
535 struct ocfs2_extent_rec *insert_rec)
536 {
537 if (et->et_ops->eo_extent_contig)
538 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
539
540 return ocfs2_extent_rec_contig(
541 ocfs2_metadata_cache_get_super(et->et_ci),
542 rec, insert_rec);
543 }
544
545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
546 struct ocfs2_extent_rec *rec)
547 {
548 int ret = 0;
549
550 if (et->et_ops->eo_insert_check)
551 ret = et->et_ops->eo_insert_check(et, rec);
552 return ret;
553 }
554
555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
556 {
557 int ret = 0;
558
559 if (et->et_ops->eo_sanity_check)
560 ret = et->et_ops->eo_sanity_check(et);
561 return ret;
562 }
563
564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
565 struct ocfs2_extent_block *eb);
566 static void ocfs2_adjust_rightmost_records(handle_t *handle,
567 struct ocfs2_extent_tree *et,
568 struct ocfs2_path *path,
569 struct ocfs2_extent_rec *insert_rec);
570 /*
571 * Reset the actual path elements so that we can re-use the structure
572 * to build another path. Generally, this involves freeing the buffer
573 * heads.
574 */
575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
576 {
577 int i, start = 0, depth = 0;
578 struct ocfs2_path_item *node;
579
580 if (keep_root)
581 start = 1;
582
583 for(i = start; i < path_num_items(path); i++) {
584 node = &path->p_node[i];
585
586 brelse(node->bh);
587 node->bh = NULL;
588 node->el = NULL;
589 }
590
591 /*
592 * Tree depth may change during truncate, or insert. If we're
593 * keeping the root extent list, then make sure that our path
594 * structure reflects the proper depth.
595 */
596 if (keep_root)
597 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
598 else
599 path_root_access(path) = NULL;
600
601 path->p_tree_depth = depth;
602 }
603
604 void ocfs2_free_path(struct ocfs2_path *path)
605 {
606 if (path) {
607 ocfs2_reinit_path(path, 0);
608 kfree(path);
609 }
610 }
611
612 /*
613 * All the elements of src into dest. After this call, src could be freed
614 * without affecting dest.
615 *
616 * Both paths should have the same root. Any non-root elements of dest
617 * will be freed.
618 */
619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
620 {
621 int i;
622
623 BUG_ON(path_root_bh(dest) != path_root_bh(src));
624 BUG_ON(path_root_el(dest) != path_root_el(src));
625 BUG_ON(path_root_access(dest) != path_root_access(src));
626
627 ocfs2_reinit_path(dest, 1);
628
629 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
630 dest->p_node[i].bh = src->p_node[i].bh;
631 dest->p_node[i].el = src->p_node[i].el;
632
633 if (dest->p_node[i].bh)
634 get_bh(dest->p_node[i].bh);
635 }
636 }
637
638 /*
639 * Make the *dest path the same as src and re-initialize src path to
640 * have a root only.
641 */
642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
643 {
644 int i;
645
646 BUG_ON(path_root_bh(dest) != path_root_bh(src));
647 BUG_ON(path_root_access(dest) != path_root_access(src));
648
649 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
650 brelse(dest->p_node[i].bh);
651
652 dest->p_node[i].bh = src->p_node[i].bh;
653 dest->p_node[i].el = src->p_node[i].el;
654
655 src->p_node[i].bh = NULL;
656 src->p_node[i].el = NULL;
657 }
658 }
659
660 /*
661 * Insert an extent block at given index.
662 *
663 * This will not take an additional reference on eb_bh.
664 */
665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
666 struct buffer_head *eb_bh)
667 {
668 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
669
670 /*
671 * Right now, no root bh is an extent block, so this helps
672 * catch code errors with dinode trees. The assertion can be
673 * safely removed if we ever need to insert extent block
674 * structures at the root.
675 */
676 BUG_ON(index == 0);
677
678 path->p_node[index].bh = eb_bh;
679 path->p_node[index].el = &eb->h_list;
680 }
681
682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
683 struct ocfs2_extent_list *root_el,
684 ocfs2_journal_access_func access)
685 {
686 struct ocfs2_path *path;
687
688 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
689
690 path = kzalloc(sizeof(*path), GFP_NOFS);
691 if (path) {
692 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
693 get_bh(root_bh);
694 path_root_bh(path) = root_bh;
695 path_root_el(path) = root_el;
696 path_root_access(path) = access;
697 }
698
699 return path;
700 }
701
702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
703 {
704 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
705 path_root_access(path));
706 }
707
708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
709 {
710 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
711 et->et_root_journal_access);
712 }
713
714 /*
715 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
716 * otherwise it's the root_access function.
717 *
718 * I don't like the way this function's name looks next to
719 * ocfs2_journal_access_path(), but I don't have a better one.
720 */
721 int ocfs2_path_bh_journal_access(handle_t *handle,
722 struct ocfs2_caching_info *ci,
723 struct ocfs2_path *path,
724 int idx)
725 {
726 ocfs2_journal_access_func access = path_root_access(path);
727
728 if (!access)
729 access = ocfs2_journal_access;
730
731 if (idx)
732 access = ocfs2_journal_access_eb;
733
734 return access(handle, ci, path->p_node[idx].bh,
735 OCFS2_JOURNAL_ACCESS_WRITE);
736 }
737
738 /*
739 * Convenience function to journal all components in a path.
740 */
741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
742 handle_t *handle,
743 struct ocfs2_path *path)
744 {
745 int i, ret = 0;
746
747 if (!path)
748 goto out;
749
750 for(i = 0; i < path_num_items(path); i++) {
751 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
752 if (ret < 0) {
753 mlog_errno(ret);
754 goto out;
755 }
756 }
757
758 out:
759 return ret;
760 }
761
762 /*
763 * Return the index of the extent record which contains cluster #v_cluster.
764 * -1 is returned if it was not found.
765 *
766 * Should work fine on interior and exterior nodes.
767 */
768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
769 {
770 int ret = -1;
771 int i;
772 struct ocfs2_extent_rec *rec;
773 u32 rec_end, rec_start, clusters;
774
775 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
776 rec = &el->l_recs[i];
777
778 rec_start = le32_to_cpu(rec->e_cpos);
779 clusters = ocfs2_rec_clusters(el, rec);
780
781 rec_end = rec_start + clusters;
782
783 if (v_cluster >= rec_start && v_cluster < rec_end) {
784 ret = i;
785 break;
786 }
787 }
788
789 return ret;
790 }
791
792 /*
793 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
794 * ocfs2_extent_rec_contig only work properly against leaf nodes!
795 */
796 static int ocfs2_block_extent_contig(struct super_block *sb,
797 struct ocfs2_extent_rec *ext,
798 u64 blkno)
799 {
800 u64 blk_end = le64_to_cpu(ext->e_blkno);
801
802 blk_end += ocfs2_clusters_to_blocks(sb,
803 le16_to_cpu(ext->e_leaf_clusters));
804
805 return blkno == blk_end;
806 }
807
808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
809 struct ocfs2_extent_rec *right)
810 {
811 u32 left_range;
812
813 left_range = le32_to_cpu(left->e_cpos) +
814 le16_to_cpu(left->e_leaf_clusters);
815
816 return (left_range == le32_to_cpu(right->e_cpos));
817 }
818
819 static enum ocfs2_contig_type
820 ocfs2_extent_rec_contig(struct super_block *sb,
821 struct ocfs2_extent_rec *ext,
822 struct ocfs2_extent_rec *insert_rec)
823 {
824 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
825
826 /*
827 * Refuse to coalesce extent records with different flag
828 * fields - we don't want to mix unwritten extents with user
829 * data.
830 */
831 if (ext->e_flags != insert_rec->e_flags)
832 return CONTIG_NONE;
833
834 if (ocfs2_extents_adjacent(ext, insert_rec) &&
835 ocfs2_block_extent_contig(sb, ext, blkno))
836 return CONTIG_RIGHT;
837
838 blkno = le64_to_cpu(ext->e_blkno);
839 if (ocfs2_extents_adjacent(insert_rec, ext) &&
840 ocfs2_block_extent_contig(sb, insert_rec, blkno))
841 return CONTIG_LEFT;
842
843 return CONTIG_NONE;
844 }
845
846 /*
847 * NOTE: We can have pretty much any combination of contiguousness and
848 * appending.
849 *
850 * The usefulness of APPEND_TAIL is more in that it lets us know that
851 * we'll have to update the path to that leaf.
852 */
853 enum ocfs2_append_type {
854 APPEND_NONE = 0,
855 APPEND_TAIL,
856 };
857
858 enum ocfs2_split_type {
859 SPLIT_NONE = 0,
860 SPLIT_LEFT,
861 SPLIT_RIGHT,
862 };
863
864 struct ocfs2_insert_type {
865 enum ocfs2_split_type ins_split;
866 enum ocfs2_append_type ins_appending;
867 enum ocfs2_contig_type ins_contig;
868 int ins_contig_index;
869 int ins_tree_depth;
870 };
871
872 struct ocfs2_merge_ctxt {
873 enum ocfs2_contig_type c_contig_type;
874 int c_has_empty_extent;
875 int c_split_covers_rec;
876 };
877
878 static int ocfs2_validate_extent_block(struct super_block *sb,
879 struct buffer_head *bh)
880 {
881 int rc;
882 struct ocfs2_extent_block *eb =
883 (struct ocfs2_extent_block *)bh->b_data;
884
885 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
886
887 BUG_ON(!buffer_uptodate(bh));
888
889 /*
890 * If the ecc fails, we return the error but otherwise
891 * leave the filesystem running. We know any error is
892 * local to this block.
893 */
894 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
895 if (rc) {
896 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
897 (unsigned long long)bh->b_blocknr);
898 return rc;
899 }
900
901 /*
902 * Errors after here are fatal.
903 */
904
905 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
906 rc = ocfs2_error(sb,
907 "Extent block #%llu has bad signature %.*s\n",
908 (unsigned long long)bh->b_blocknr, 7,
909 eb->h_signature);
910 goto bail;
911 }
912
913 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
914 rc = ocfs2_error(sb,
915 "Extent block #%llu has an invalid h_blkno of %llu\n",
916 (unsigned long long)bh->b_blocknr,
917 (unsigned long long)le64_to_cpu(eb->h_blkno));
918 goto bail;
919 }
920
921 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
922 rc = ocfs2_error(sb,
923 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
924 (unsigned long long)bh->b_blocknr,
925 le32_to_cpu(eb->h_fs_generation));
926 bail:
927 return rc;
928 }
929
930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
931 struct buffer_head **bh)
932 {
933 int rc;
934 struct buffer_head *tmp = *bh;
935
936 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
937 ocfs2_validate_extent_block);
938
939 /* If ocfs2_read_block() got us a new bh, pass it up. */
940 if (!rc && !*bh)
941 *bh = tmp;
942
943 return rc;
944 }
945
946
947 /*
948 * How many free extents have we got before we need more meta data?
949 */
950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
951 {
952 int retval;
953 struct ocfs2_extent_list *el = NULL;
954 struct ocfs2_extent_block *eb;
955 struct buffer_head *eb_bh = NULL;
956 u64 last_eb_blk = 0;
957
958 el = et->et_root_el;
959 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
960
961 if (last_eb_blk) {
962 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
963 &eb_bh);
964 if (retval < 0) {
965 mlog_errno(retval);
966 goto bail;
967 }
968 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
969 el = &eb->h_list;
970 }
971
972 BUG_ON(el->l_tree_depth != 0);
973
974 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
975 bail:
976 brelse(eb_bh);
977
978 trace_ocfs2_num_free_extents(retval);
979 return retval;
980 }
981
982 /* expects array to already be allocated
983 *
984 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
985 * l_count for you
986 */
987 static int ocfs2_create_new_meta_bhs(handle_t *handle,
988 struct ocfs2_extent_tree *et,
989 int wanted,
990 struct ocfs2_alloc_context *meta_ac,
991 struct buffer_head *bhs[])
992 {
993 int count, status, i;
994 u16 suballoc_bit_start;
995 u32 num_got;
996 u64 suballoc_loc, first_blkno;
997 struct ocfs2_super *osb =
998 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
999 struct ocfs2_extent_block *eb;
1000
1001 count = 0;
1002 while (count < wanted) {
1003 status = ocfs2_claim_metadata(handle,
1004 meta_ac,
1005 wanted - count,
1006 &suballoc_loc,
1007 &suballoc_bit_start,
1008 &num_got,
1009 &first_blkno);
1010 if (status < 0) {
1011 mlog_errno(status);
1012 goto bail;
1013 }
1014
1015 for(i = count; i < (num_got + count); i++) {
1016 bhs[i] = sb_getblk(osb->sb, first_blkno);
1017 if (bhs[i] == NULL) {
1018 status = -ENOMEM;
1019 mlog_errno(status);
1020 goto bail;
1021 }
1022 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1023
1024 status = ocfs2_journal_access_eb(handle, et->et_ci,
1025 bhs[i],
1026 OCFS2_JOURNAL_ACCESS_CREATE);
1027 if (status < 0) {
1028 mlog_errno(status);
1029 goto bail;
1030 }
1031
1032 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1033 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1034 /* Ok, setup the minimal stuff here. */
1035 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1036 eb->h_blkno = cpu_to_le64(first_blkno);
1037 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1038 eb->h_suballoc_slot =
1039 cpu_to_le16(meta_ac->ac_alloc_slot);
1040 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1041 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1042 eb->h_list.l_count =
1043 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1044
1045 suballoc_bit_start++;
1046 first_blkno++;
1047
1048 /* We'll also be dirtied by the caller, so
1049 * this isn't absolutely necessary. */
1050 ocfs2_journal_dirty(handle, bhs[i]);
1051 }
1052
1053 count += num_got;
1054 }
1055
1056 status = 0;
1057 bail:
1058 if (status < 0) {
1059 for(i = 0; i < wanted; i++) {
1060 brelse(bhs[i]);
1061 bhs[i] = NULL;
1062 }
1063 }
1064 return status;
1065 }
1066
1067 /*
1068 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1069 *
1070 * Returns the sum of the rightmost extent rec logical offset and
1071 * cluster count.
1072 *
1073 * ocfs2_add_branch() uses this to determine what logical cluster
1074 * value should be populated into the leftmost new branch records.
1075 *
1076 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1077 * value for the new topmost tree record.
1078 */
1079 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1080 {
1081 int i;
1082
1083 i = le16_to_cpu(el->l_next_free_rec) - 1;
1084
1085 return le32_to_cpu(el->l_recs[i].e_cpos) +
1086 ocfs2_rec_clusters(el, &el->l_recs[i]);
1087 }
1088
1089 /*
1090 * Change range of the branches in the right most path according to the leaf
1091 * extent block's rightmost record.
1092 */
1093 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1094 struct ocfs2_extent_tree *et)
1095 {
1096 int status;
1097 struct ocfs2_path *path = NULL;
1098 struct ocfs2_extent_list *el;
1099 struct ocfs2_extent_rec *rec;
1100
1101 path = ocfs2_new_path_from_et(et);
1102 if (!path) {
1103 status = -ENOMEM;
1104 return status;
1105 }
1106
1107 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1108 if (status < 0) {
1109 mlog_errno(status);
1110 goto out;
1111 }
1112
1113 status = ocfs2_extend_trans(handle, path_num_items(path));
1114 if (status < 0) {
1115 mlog_errno(status);
1116 goto out;
1117 }
1118
1119 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1120 if (status < 0) {
1121 mlog_errno(status);
1122 goto out;
1123 }
1124
1125 el = path_leaf_el(path);
1126 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1127
1128 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1129
1130 out:
1131 ocfs2_free_path(path);
1132 return status;
1133 }
1134
1135 /*
1136 * Add an entire tree branch to our inode. eb_bh is the extent block
1137 * to start at, if we don't want to start the branch at the root
1138 * structure.
1139 *
1140 * last_eb_bh is required as we have to update it's next_leaf pointer
1141 * for the new last extent block.
1142 *
1143 * the new branch will be 'empty' in the sense that every block will
1144 * contain a single record with cluster count == 0.
1145 */
1146 static int ocfs2_add_branch(handle_t *handle,
1147 struct ocfs2_extent_tree *et,
1148 struct buffer_head *eb_bh,
1149 struct buffer_head **last_eb_bh,
1150 struct ocfs2_alloc_context *meta_ac)
1151 {
1152 int status, new_blocks, i, block_given = 0;
1153 u64 next_blkno, new_last_eb_blk;
1154 struct buffer_head *bh;
1155 struct buffer_head **new_eb_bhs = NULL;
1156 struct ocfs2_extent_block *eb;
1157 struct ocfs2_extent_list *eb_el;
1158 struct ocfs2_extent_list *el;
1159 u32 new_cpos, root_end;
1160
1161 BUG_ON(!last_eb_bh || !*last_eb_bh);
1162
1163 if (eb_bh) {
1164 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1165 el = &eb->h_list;
1166 } else
1167 el = et->et_root_el;
1168
1169 /* we never add a branch to a leaf. */
1170 BUG_ON(!el->l_tree_depth);
1171
1172 new_blocks = le16_to_cpu(el->l_tree_depth);
1173
1174 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1175 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1176 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1177
1178 /*
1179 * If there is a gap before the root end and the real end
1180 * of the righmost leaf block, we need to remove the gap
1181 * between new_cpos and root_end first so that the tree
1182 * is consistent after we add a new branch(it will start
1183 * from new_cpos).
1184 */
1185 if (root_end > new_cpos) {
1186 trace_ocfs2_adjust_rightmost_branch(
1187 (unsigned long long)
1188 ocfs2_metadata_cache_owner(et->et_ci),
1189 root_end, new_cpos);
1190
1191 status = ocfs2_adjust_rightmost_branch(handle, et);
1192 if (status) {
1193 mlog_errno(status);
1194 goto bail;
1195 }
1196 }
1197
1198 /* allocate the number of new eb blocks we need */
1199 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1200 GFP_KERNEL);
1201 if (!new_eb_bhs) {
1202 status = -ENOMEM;
1203 mlog_errno(status);
1204 goto bail;
1205 }
1206
1207 /* Firstyly, try to reuse dealloc since we have already estimated how
1208 * many extent blocks we may use.
1209 */
1210 if (!ocfs2_is_dealloc_empty(et)) {
1211 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1212 new_eb_bhs, new_blocks,
1213 &block_given);
1214 if (status < 0) {
1215 mlog_errno(status);
1216 goto bail;
1217 }
1218 }
1219
1220 BUG_ON(block_given > new_blocks);
1221
1222 if (block_given < new_blocks) {
1223 BUG_ON(!meta_ac);
1224 status = ocfs2_create_new_meta_bhs(handle, et,
1225 new_blocks - block_given,
1226 meta_ac,
1227 &new_eb_bhs[block_given]);
1228 if (status < 0) {
1229 mlog_errno(status);
1230 goto bail;
1231 }
1232 }
1233
1234 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1235 * linked with the rest of the tree.
1236 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1237 *
1238 * when we leave the loop, new_last_eb_blk will point to the
1239 * newest leaf, and next_blkno will point to the topmost extent
1240 * block. */
1241 next_blkno = new_last_eb_blk = 0;
1242 for(i = 0; i < new_blocks; i++) {
1243 bh = new_eb_bhs[i];
1244 eb = (struct ocfs2_extent_block *) bh->b_data;
1245 /* ocfs2_create_new_meta_bhs() should create it right! */
1246 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1247 eb_el = &eb->h_list;
1248
1249 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1250 OCFS2_JOURNAL_ACCESS_CREATE);
1251 if (status < 0) {
1252 mlog_errno(status);
1253 goto bail;
1254 }
1255
1256 eb->h_next_leaf_blk = 0;
1257 eb_el->l_tree_depth = cpu_to_le16(i);
1258 eb_el->l_next_free_rec = cpu_to_le16(1);
1259 /*
1260 * This actually counts as an empty extent as
1261 * c_clusters == 0
1262 */
1263 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1264 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1265 /*
1266 * eb_el isn't always an interior node, but even leaf
1267 * nodes want a zero'd flags and reserved field so
1268 * this gets the whole 32 bits regardless of use.
1269 */
1270 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1271 if (!eb_el->l_tree_depth)
1272 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1273
1274 ocfs2_journal_dirty(handle, bh);
1275 next_blkno = le64_to_cpu(eb->h_blkno);
1276 }
1277
1278 /* This is a bit hairy. We want to update up to three blocks
1279 * here without leaving any of them in an inconsistent state
1280 * in case of error. We don't have to worry about
1281 * journal_dirty erroring as it won't unless we've aborted the
1282 * handle (in which case we would never be here) so reserving
1283 * the write with journal_access is all we need to do. */
1284 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1285 OCFS2_JOURNAL_ACCESS_WRITE);
1286 if (status < 0) {
1287 mlog_errno(status);
1288 goto bail;
1289 }
1290 status = ocfs2_et_root_journal_access(handle, et,
1291 OCFS2_JOURNAL_ACCESS_WRITE);
1292 if (status < 0) {
1293 mlog_errno(status);
1294 goto bail;
1295 }
1296 if (eb_bh) {
1297 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1298 OCFS2_JOURNAL_ACCESS_WRITE);
1299 if (status < 0) {
1300 mlog_errno(status);
1301 goto bail;
1302 }
1303 }
1304
1305 /* Link the new branch into the rest of the tree (el will
1306 * either be on the root_bh, or the extent block passed in. */
1307 i = le16_to_cpu(el->l_next_free_rec);
1308 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1309 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1310 el->l_recs[i].e_int_clusters = 0;
1311 le16_add_cpu(&el->l_next_free_rec, 1);
1312
1313 /* fe needs a new last extent block pointer, as does the
1314 * next_leaf on the previously last-extent-block. */
1315 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1316
1317 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1318 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1319
1320 ocfs2_journal_dirty(handle, *last_eb_bh);
1321 ocfs2_journal_dirty(handle, et->et_root_bh);
1322 if (eb_bh)
1323 ocfs2_journal_dirty(handle, eb_bh);
1324
1325 /*
1326 * Some callers want to track the rightmost leaf so pass it
1327 * back here.
1328 */
1329 brelse(*last_eb_bh);
1330 get_bh(new_eb_bhs[0]);
1331 *last_eb_bh = new_eb_bhs[0];
1332
1333 status = 0;
1334 bail:
1335 if (new_eb_bhs) {
1336 for (i = 0; i < new_blocks; i++)
1337 brelse(new_eb_bhs[i]);
1338 kfree(new_eb_bhs);
1339 }
1340
1341 return status;
1342 }
1343
1344 /*
1345 * adds another level to the allocation tree.
1346 * returns back the new extent block so you can add a branch to it
1347 * after this call.
1348 */
1349 static int ocfs2_shift_tree_depth(handle_t *handle,
1350 struct ocfs2_extent_tree *et,
1351 struct ocfs2_alloc_context *meta_ac,
1352 struct buffer_head **ret_new_eb_bh)
1353 {
1354 int status, i, block_given = 0;
1355 u32 new_clusters;
1356 struct buffer_head *new_eb_bh = NULL;
1357 struct ocfs2_extent_block *eb;
1358 struct ocfs2_extent_list *root_el;
1359 struct ocfs2_extent_list *eb_el;
1360
1361 if (!ocfs2_is_dealloc_empty(et)) {
1362 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1363 &new_eb_bh, 1,
1364 &block_given);
1365 } else if (meta_ac) {
1366 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1367 &new_eb_bh);
1368
1369 } else {
1370 BUG();
1371 }
1372
1373 if (status < 0) {
1374 mlog_errno(status);
1375 goto bail;
1376 }
1377
1378 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1379 /* ocfs2_create_new_meta_bhs() should create it right! */
1380 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1381
1382 eb_el = &eb->h_list;
1383 root_el = et->et_root_el;
1384
1385 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1386 OCFS2_JOURNAL_ACCESS_CREATE);
1387 if (status < 0) {
1388 mlog_errno(status);
1389 goto bail;
1390 }
1391
1392 /* copy the root extent list data into the new extent block */
1393 eb_el->l_tree_depth = root_el->l_tree_depth;
1394 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1395 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 eb_el->l_recs[i] = root_el->l_recs[i];
1397
1398 ocfs2_journal_dirty(handle, new_eb_bh);
1399
1400 status = ocfs2_et_root_journal_access(handle, et,
1401 OCFS2_JOURNAL_ACCESS_WRITE);
1402 if (status < 0) {
1403 mlog_errno(status);
1404 goto bail;
1405 }
1406
1407 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1408
1409 /* update root_bh now */
1410 le16_add_cpu(&root_el->l_tree_depth, 1);
1411 root_el->l_recs[0].e_cpos = 0;
1412 root_el->l_recs[0].e_blkno = eb->h_blkno;
1413 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1414 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1415 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1416 root_el->l_next_free_rec = cpu_to_le16(1);
1417
1418 /* If this is our 1st tree depth shift, then last_eb_blk
1419 * becomes the allocated extent block */
1420 if (root_el->l_tree_depth == cpu_to_le16(1))
1421 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1422
1423 ocfs2_journal_dirty(handle, et->et_root_bh);
1424
1425 *ret_new_eb_bh = new_eb_bh;
1426 new_eb_bh = NULL;
1427 status = 0;
1428 bail:
1429 brelse(new_eb_bh);
1430
1431 return status;
1432 }
1433
1434 /*
1435 * Should only be called when there is no space left in any of the
1436 * leaf nodes. What we want to do is find the lowest tree depth
1437 * non-leaf extent block with room for new records. There are three
1438 * valid results of this search:
1439 *
1440 * 1) a lowest extent block is found, then we pass it back in
1441 * *lowest_eb_bh and return '0'
1442 *
1443 * 2) the search fails to find anything, but the root_el has room. We
1444 * pass NULL back in *lowest_eb_bh, but still return '0'
1445 *
1446 * 3) the search fails to find anything AND the root_el is full, in
1447 * which case we return > 0
1448 *
1449 * return status < 0 indicates an error.
1450 */
1451 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1452 struct buffer_head **target_bh)
1453 {
1454 int status = 0, i;
1455 u64 blkno;
1456 struct ocfs2_extent_block *eb;
1457 struct ocfs2_extent_list *el;
1458 struct buffer_head *bh = NULL;
1459 struct buffer_head *lowest_bh = NULL;
1460
1461 *target_bh = NULL;
1462
1463 el = et->et_root_el;
1464
1465 while(le16_to_cpu(el->l_tree_depth) > 1) {
1466 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1467 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1468 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1469 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1470 goto bail;
1471 }
1472 i = le16_to_cpu(el->l_next_free_rec) - 1;
1473 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1474 if (!blkno) {
1475 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1476 "Owner %llu has extent list where extent # %d has no physical block start\n",
1477 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1478 goto bail;
1479 }
1480
1481 brelse(bh);
1482 bh = NULL;
1483
1484 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1485 if (status < 0) {
1486 mlog_errno(status);
1487 goto bail;
1488 }
1489
1490 eb = (struct ocfs2_extent_block *) bh->b_data;
1491 el = &eb->h_list;
1492
1493 if (le16_to_cpu(el->l_next_free_rec) <
1494 le16_to_cpu(el->l_count)) {
1495 brelse(lowest_bh);
1496 lowest_bh = bh;
1497 get_bh(lowest_bh);
1498 }
1499 }
1500
1501 /* If we didn't find one and the fe doesn't have any room,
1502 * then return '1' */
1503 el = et->et_root_el;
1504 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1505 status = 1;
1506
1507 *target_bh = lowest_bh;
1508 bail:
1509 brelse(bh);
1510
1511 return status;
1512 }
1513
1514 /*
1515 * Grow a b-tree so that it has more records.
1516 *
1517 * We might shift the tree depth in which case existing paths should
1518 * be considered invalid.
1519 *
1520 * Tree depth after the grow is returned via *final_depth.
1521 *
1522 * *last_eb_bh will be updated by ocfs2_add_branch().
1523 */
1524 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1525 int *final_depth, struct buffer_head **last_eb_bh,
1526 struct ocfs2_alloc_context *meta_ac)
1527 {
1528 int ret, shift;
1529 struct ocfs2_extent_list *el = et->et_root_el;
1530 int depth = le16_to_cpu(el->l_tree_depth);
1531 struct buffer_head *bh = NULL;
1532
1533 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1534
1535 shift = ocfs2_find_branch_target(et, &bh);
1536 if (shift < 0) {
1537 ret = shift;
1538 mlog_errno(ret);
1539 goto out;
1540 }
1541
1542 /* We traveled all the way to the bottom of the allocation tree
1543 * and didn't find room for any more extents - we need to add
1544 * another tree level */
1545 if (shift) {
1546 BUG_ON(bh);
1547 trace_ocfs2_grow_tree(
1548 (unsigned long long)
1549 ocfs2_metadata_cache_owner(et->et_ci),
1550 depth);
1551
1552 /* ocfs2_shift_tree_depth will return us a buffer with
1553 * the new extent block (so we can pass that to
1554 * ocfs2_add_branch). */
1555 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1556 if (ret < 0) {
1557 mlog_errno(ret);
1558 goto out;
1559 }
1560 depth++;
1561 if (depth == 1) {
1562 /*
1563 * Special case: we have room now if we shifted from
1564 * tree_depth 0, so no more work needs to be done.
1565 *
1566 * We won't be calling add_branch, so pass
1567 * back *last_eb_bh as the new leaf. At depth
1568 * zero, it should always be null so there's
1569 * no reason to brelse.
1570 */
1571 BUG_ON(*last_eb_bh);
1572 get_bh(bh);
1573 *last_eb_bh = bh;
1574 goto out;
1575 }
1576 }
1577
1578 /* call ocfs2_add_branch to add the final part of the tree with
1579 * the new data. */
1580 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1581 meta_ac);
1582 if (ret < 0)
1583 mlog_errno(ret);
1584
1585 out:
1586 if (final_depth)
1587 *final_depth = depth;
1588 brelse(bh);
1589 return ret;
1590 }
1591
1592 /*
1593 * This function will discard the rightmost extent record.
1594 */
1595 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1596 {
1597 int next_free = le16_to_cpu(el->l_next_free_rec);
1598 int count = le16_to_cpu(el->l_count);
1599 unsigned int num_bytes;
1600
1601 BUG_ON(!next_free);
1602 /* This will cause us to go off the end of our extent list. */
1603 BUG_ON(next_free >= count);
1604
1605 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1606
1607 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1608 }
1609
1610 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1611 struct ocfs2_extent_rec *insert_rec)
1612 {
1613 int i, insert_index, next_free, has_empty, num_bytes;
1614 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1615 struct ocfs2_extent_rec *rec;
1616
1617 next_free = le16_to_cpu(el->l_next_free_rec);
1618 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1619
1620 BUG_ON(!next_free);
1621
1622 /* The tree code before us didn't allow enough room in the leaf. */
1623 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1624
1625 /*
1626 * The easiest way to approach this is to just remove the
1627 * empty extent and temporarily decrement next_free.
1628 */
1629 if (has_empty) {
1630 /*
1631 * If next_free was 1 (only an empty extent), this
1632 * loop won't execute, which is fine. We still want
1633 * the decrement above to happen.
1634 */
1635 for(i = 0; i < (next_free - 1); i++)
1636 el->l_recs[i] = el->l_recs[i+1];
1637
1638 next_free--;
1639 }
1640
1641 /*
1642 * Figure out what the new record index should be.
1643 */
1644 for(i = 0; i < next_free; i++) {
1645 rec = &el->l_recs[i];
1646
1647 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1648 break;
1649 }
1650 insert_index = i;
1651
1652 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1653 has_empty, next_free,
1654 le16_to_cpu(el->l_count));
1655
1656 BUG_ON(insert_index < 0);
1657 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1658 BUG_ON(insert_index > next_free);
1659
1660 /*
1661 * No need to memmove if we're just adding to the tail.
1662 */
1663 if (insert_index != next_free) {
1664 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1665
1666 num_bytes = next_free - insert_index;
1667 num_bytes *= sizeof(struct ocfs2_extent_rec);
1668 memmove(&el->l_recs[insert_index + 1],
1669 &el->l_recs[insert_index],
1670 num_bytes);
1671 }
1672
1673 /*
1674 * Either we had an empty extent, and need to re-increment or
1675 * there was no empty extent on a non full rightmost leaf node,
1676 * in which case we still need to increment.
1677 */
1678 next_free++;
1679 el->l_next_free_rec = cpu_to_le16(next_free);
1680 /*
1681 * Make sure none of the math above just messed up our tree.
1682 */
1683 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1684
1685 el->l_recs[insert_index] = *insert_rec;
1686
1687 }
1688
1689 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1690 {
1691 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1692
1693 BUG_ON(num_recs == 0);
1694
1695 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1696 num_recs--;
1697 size = num_recs * sizeof(struct ocfs2_extent_rec);
1698 memmove(&el->l_recs[0], &el->l_recs[1], size);
1699 memset(&el->l_recs[num_recs], 0,
1700 sizeof(struct ocfs2_extent_rec));
1701 el->l_next_free_rec = cpu_to_le16(num_recs);
1702 }
1703 }
1704
1705 /*
1706 * Create an empty extent record .
1707 *
1708 * l_next_free_rec may be updated.
1709 *
1710 * If an empty extent already exists do nothing.
1711 */
1712 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1713 {
1714 int next_free = le16_to_cpu(el->l_next_free_rec);
1715
1716 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1717
1718 if (next_free == 0)
1719 goto set_and_inc;
1720
1721 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1722 return;
1723
1724 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1725 "Asked to create an empty extent in a full list:\n"
1726 "count = %u, tree depth = %u",
1727 le16_to_cpu(el->l_count),
1728 le16_to_cpu(el->l_tree_depth));
1729
1730 ocfs2_shift_records_right(el);
1731
1732 set_and_inc:
1733 le16_add_cpu(&el->l_next_free_rec, 1);
1734 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1735 }
1736
1737 /*
1738 * For a rotation which involves two leaf nodes, the "root node" is
1739 * the lowest level tree node which contains a path to both leafs. This
1740 * resulting set of information can be used to form a complete "subtree"
1741 *
1742 * This function is passed two full paths from the dinode down to a
1743 * pair of adjacent leaves. It's task is to figure out which path
1744 * index contains the subtree root - this can be the root index itself
1745 * in a worst-case rotation.
1746 *
1747 * The array index of the subtree root is passed back.
1748 */
1749 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1750 struct ocfs2_path *left,
1751 struct ocfs2_path *right)
1752 {
1753 int i = 0;
1754
1755 /*
1756 * Check that the caller passed in two paths from the same tree.
1757 */
1758 BUG_ON(path_root_bh(left) != path_root_bh(right));
1759
1760 do {
1761 i++;
1762
1763 /*
1764 * The caller didn't pass two adjacent paths.
1765 */
1766 mlog_bug_on_msg(i > left->p_tree_depth,
1767 "Owner %llu, left depth %u, right depth %u\n"
1768 "left leaf blk %llu, right leaf blk %llu\n",
1769 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1770 left->p_tree_depth, right->p_tree_depth,
1771 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1772 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1773 } while (left->p_node[i].bh->b_blocknr ==
1774 right->p_node[i].bh->b_blocknr);
1775
1776 return i - 1;
1777 }
1778
1779 typedef void (path_insert_t)(void *, struct buffer_head *);
1780
1781 /*
1782 * Traverse a btree path in search of cpos, starting at root_el.
1783 *
1784 * This code can be called with a cpos larger than the tree, in which
1785 * case it will return the rightmost path.
1786 */
1787 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1788 struct ocfs2_extent_list *root_el, u32 cpos,
1789 path_insert_t *func, void *data)
1790 {
1791 int i, ret = 0;
1792 u32 range;
1793 u64 blkno;
1794 struct buffer_head *bh = NULL;
1795 struct ocfs2_extent_block *eb;
1796 struct ocfs2_extent_list *el;
1797 struct ocfs2_extent_rec *rec;
1798
1799 el = root_el;
1800 while (el->l_tree_depth) {
1801 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1802 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1803 "Owner %llu has empty extent list at depth %u\n",
1804 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1805 le16_to_cpu(el->l_tree_depth));
1806 ret = -EROFS;
1807 goto out;
1808
1809 }
1810
1811 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1812 rec = &el->l_recs[i];
1813
1814 /*
1815 * In the case that cpos is off the allocation
1816 * tree, this should just wind up returning the
1817 * rightmost record.
1818 */
1819 range = le32_to_cpu(rec->e_cpos) +
1820 ocfs2_rec_clusters(el, rec);
1821 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1822 break;
1823 }
1824
1825 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1826 if (blkno == 0) {
1827 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1828 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1829 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1830 le16_to_cpu(el->l_tree_depth), i);
1831 ret = -EROFS;
1832 goto out;
1833 }
1834
1835 brelse(bh);
1836 bh = NULL;
1837 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1838 if (ret) {
1839 mlog_errno(ret);
1840 goto out;
1841 }
1842
1843 eb = (struct ocfs2_extent_block *) bh->b_data;
1844 el = &eb->h_list;
1845
1846 if (le16_to_cpu(el->l_next_free_rec) >
1847 le16_to_cpu(el->l_count)) {
1848 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1849 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1850 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 (unsigned long long)bh->b_blocknr,
1852 le16_to_cpu(el->l_next_free_rec),
1853 le16_to_cpu(el->l_count));
1854 ret = -EROFS;
1855 goto out;
1856 }
1857
1858 if (func)
1859 func(data, bh);
1860 }
1861
1862 out:
1863 /*
1864 * Catch any trailing bh that the loop didn't handle.
1865 */
1866 brelse(bh);
1867
1868 return ret;
1869 }
1870
1871 /*
1872 * Given an initialized path (that is, it has a valid root extent
1873 * list), this function will traverse the btree in search of the path
1874 * which would contain cpos.
1875 *
1876 * The path traveled is recorded in the path structure.
1877 *
1878 * Note that this will not do any comparisons on leaf node extent
1879 * records, so it will work fine in the case that we just added a tree
1880 * branch.
1881 */
1882 struct find_path_data {
1883 int index;
1884 struct ocfs2_path *path;
1885 };
1886 static void find_path_ins(void *data, struct buffer_head *bh)
1887 {
1888 struct find_path_data *fp = data;
1889
1890 get_bh(bh);
1891 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1892 fp->index++;
1893 }
1894 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1895 struct ocfs2_path *path, u32 cpos)
1896 {
1897 struct find_path_data data;
1898
1899 data.index = 1;
1900 data.path = path;
1901 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1902 find_path_ins, &data);
1903 }
1904
1905 static void find_leaf_ins(void *data, struct buffer_head *bh)
1906 {
1907 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1908 struct ocfs2_extent_list *el = &eb->h_list;
1909 struct buffer_head **ret = data;
1910
1911 /* We want to retain only the leaf block. */
1912 if (le16_to_cpu(el->l_tree_depth) == 0) {
1913 get_bh(bh);
1914 *ret = bh;
1915 }
1916 }
1917 /*
1918 * Find the leaf block in the tree which would contain cpos. No
1919 * checking of the actual leaf is done.
1920 *
1921 * Some paths want to call this instead of allocating a path structure
1922 * and calling ocfs2_find_path().
1923 *
1924 * This function doesn't handle non btree extent lists.
1925 */
1926 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1927 struct ocfs2_extent_list *root_el, u32 cpos,
1928 struct buffer_head **leaf_bh)
1929 {
1930 int ret;
1931 struct buffer_head *bh = NULL;
1932
1933 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1934 if (ret) {
1935 mlog_errno(ret);
1936 goto out;
1937 }
1938
1939 *leaf_bh = bh;
1940 out:
1941 return ret;
1942 }
1943
1944 /*
1945 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1946 *
1947 * Basically, we've moved stuff around at the bottom of the tree and
1948 * we need to fix up the extent records above the changes to reflect
1949 * the new changes.
1950 *
1951 * left_rec: the record on the left.
1952 * right_rec: the record to the right of left_rec
1953 * right_child_el: is the child list pointed to by right_rec
1954 *
1955 * By definition, this only works on interior nodes.
1956 */
1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1958 struct ocfs2_extent_rec *right_rec,
1959 struct ocfs2_extent_list *right_child_el)
1960 {
1961 u32 left_clusters, right_end;
1962
1963 /*
1964 * Interior nodes never have holes. Their cpos is the cpos of
1965 * the leftmost record in their child list. Their cluster
1966 * count covers the full theoretical range of their child list
1967 * - the range between their cpos and the cpos of the record
1968 * immediately to their right.
1969 */
1970 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1971 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1972 BUG_ON(right_child_el->l_tree_depth);
1973 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1974 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1975 }
1976 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1977 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1978
1979 /*
1980 * Calculate the rightmost cluster count boundary before
1981 * moving cpos - we will need to adjust clusters after
1982 * updating e_cpos to keep the same highest cluster count.
1983 */
1984 right_end = le32_to_cpu(right_rec->e_cpos);
1985 right_end += le32_to_cpu(right_rec->e_int_clusters);
1986
1987 right_rec->e_cpos = left_rec->e_cpos;
1988 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1989
1990 right_end -= le32_to_cpu(right_rec->e_cpos);
1991 right_rec->e_int_clusters = cpu_to_le32(right_end);
1992 }
1993
1994 /*
1995 * Adjust the adjacent root node records involved in a
1996 * rotation. left_el_blkno is passed in as a key so that we can easily
1997 * find it's index in the root list.
1998 */
1999 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2000 struct ocfs2_extent_list *left_el,
2001 struct ocfs2_extent_list *right_el,
2002 u64 left_el_blkno)
2003 {
2004 int i;
2005
2006 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2007 le16_to_cpu(left_el->l_tree_depth));
2008
2009 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2010 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2011 break;
2012 }
2013
2014 /*
2015 * The path walking code should have never returned a root and
2016 * two paths which are not adjacent.
2017 */
2018 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2019
2020 ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2021 &root_el->l_recs[i + 1], right_el);
2022 }
2023
2024 /*
2025 * We've changed a leaf block (in right_path) and need to reflect that
2026 * change back up the subtree.
2027 *
2028 * This happens in multiple places:
2029 * - When we've moved an extent record from the left path leaf to the right
2030 * path leaf to make room for an empty extent in the left path leaf.
2031 * - When our insert into the right path leaf is at the leftmost edge
2032 * and requires an update of the path immediately to it's left. This
2033 * can occur at the end of some types of rotation and appending inserts.
2034 * - When we've adjusted the last extent record in the left path leaf and the
2035 * 1st extent record in the right path leaf during cross extent block merge.
2036 */
2037 static void ocfs2_complete_edge_insert(handle_t *handle,
2038 struct ocfs2_path *left_path,
2039 struct ocfs2_path *right_path,
2040 int subtree_index)
2041 {
2042 int i, idx;
2043 struct ocfs2_extent_list *el, *left_el, *right_el;
2044 struct ocfs2_extent_rec *left_rec, *right_rec;
2045 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2046
2047 /*
2048 * Update the counts and position values within all the
2049 * interior nodes to reflect the leaf rotation we just did.
2050 *
2051 * The root node is handled below the loop.
2052 *
2053 * We begin the loop with right_el and left_el pointing to the
2054 * leaf lists and work our way up.
2055 *
2056 * NOTE: within this loop, left_el and right_el always refer
2057 * to the *child* lists.
2058 */
2059 left_el = path_leaf_el(left_path);
2060 right_el = path_leaf_el(right_path);
2061 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2062 trace_ocfs2_complete_edge_insert(i);
2063
2064 /*
2065 * One nice property of knowing that all of these
2066 * nodes are below the root is that we only deal with
2067 * the leftmost right node record and the rightmost
2068 * left node record.
2069 */
2070 el = left_path->p_node[i].el;
2071 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2072 left_rec = &el->l_recs[idx];
2073
2074 el = right_path->p_node[i].el;
2075 right_rec = &el->l_recs[0];
2076
2077 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2078
2079 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2080 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2081
2082 /*
2083 * Setup our list pointers now so that the current
2084 * parents become children in the next iteration.
2085 */
2086 left_el = left_path->p_node[i].el;
2087 right_el = right_path->p_node[i].el;
2088 }
2089
2090 /*
2091 * At the root node, adjust the two adjacent records which
2092 * begin our path to the leaves.
2093 */
2094
2095 el = left_path->p_node[subtree_index].el;
2096 left_el = left_path->p_node[subtree_index + 1].el;
2097 right_el = right_path->p_node[subtree_index + 1].el;
2098
2099 ocfs2_adjust_root_records(el, left_el, right_el,
2100 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2101
2102 root_bh = left_path->p_node[subtree_index].bh;
2103
2104 ocfs2_journal_dirty(handle, root_bh);
2105 }
2106
2107 static int ocfs2_rotate_subtree_right(handle_t *handle,
2108 struct ocfs2_extent_tree *et,
2109 struct ocfs2_path *left_path,
2110 struct ocfs2_path *right_path,
2111 int subtree_index)
2112 {
2113 int ret, i;
2114 struct buffer_head *right_leaf_bh;
2115 struct buffer_head *left_leaf_bh = NULL;
2116 struct buffer_head *root_bh;
2117 struct ocfs2_extent_list *right_el, *left_el;
2118 struct ocfs2_extent_rec move_rec;
2119
2120 left_leaf_bh = path_leaf_bh(left_path);
2121 left_el = path_leaf_el(left_path);
2122
2123 if (left_el->l_next_free_rec != left_el->l_count) {
2124 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2125 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2126 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2127 (unsigned long long)left_leaf_bh->b_blocknr,
2128 le16_to_cpu(left_el->l_next_free_rec));
2129 return -EROFS;
2130 }
2131
2132 /*
2133 * This extent block may already have an empty record, so we
2134 * return early if so.
2135 */
2136 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2137 return 0;
2138
2139 root_bh = left_path->p_node[subtree_index].bh;
2140 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2141
2142 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2143 subtree_index);
2144 if (ret) {
2145 mlog_errno(ret);
2146 goto out;
2147 }
2148
2149 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2150 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2151 right_path, i);
2152 if (ret) {
2153 mlog_errno(ret);
2154 goto out;
2155 }
2156
2157 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2158 left_path, i);
2159 if (ret) {
2160 mlog_errno(ret);
2161 goto out;
2162 }
2163 }
2164
2165 right_leaf_bh = path_leaf_bh(right_path);
2166 right_el = path_leaf_el(right_path);
2167
2168 /* This is a code error, not a disk corruption. */
2169 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2170 "because rightmost leaf block %llu is empty\n",
2171 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2172 (unsigned long long)right_leaf_bh->b_blocknr);
2173
2174 ocfs2_create_empty_extent(right_el);
2175
2176 ocfs2_journal_dirty(handle, right_leaf_bh);
2177
2178 /* Do the copy now. */
2179 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2180 move_rec = left_el->l_recs[i];
2181 right_el->l_recs[0] = move_rec;
2182
2183 /*
2184 * Clear out the record we just copied and shift everything
2185 * over, leaving an empty extent in the left leaf.
2186 *
2187 * We temporarily subtract from next_free_rec so that the
2188 * shift will lose the tail record (which is now defunct).
2189 */
2190 le16_add_cpu(&left_el->l_next_free_rec, -1);
2191 ocfs2_shift_records_right(left_el);
2192 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2193 le16_add_cpu(&left_el->l_next_free_rec, 1);
2194
2195 ocfs2_journal_dirty(handle, left_leaf_bh);
2196
2197 ocfs2_complete_edge_insert(handle, left_path, right_path,
2198 subtree_index);
2199
2200 out:
2201 return ret;
2202 }
2203
2204 /*
2205 * Given a full path, determine what cpos value would return us a path
2206 * containing the leaf immediately to the left of the current one.
2207 *
2208 * Will return zero if the path passed in is already the leftmost path.
2209 */
2210 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2211 struct ocfs2_path *path, u32 *cpos)
2212 {
2213 int i, j, ret = 0;
2214 u64 blkno;
2215 struct ocfs2_extent_list *el;
2216
2217 BUG_ON(path->p_tree_depth == 0);
2218
2219 *cpos = 0;
2220
2221 blkno = path_leaf_bh(path)->b_blocknr;
2222
2223 /* Start at the tree node just above the leaf and work our way up. */
2224 i = path->p_tree_depth - 1;
2225 while (i >= 0) {
2226 el = path->p_node[i].el;
2227
2228 /*
2229 * Find the extent record just before the one in our
2230 * path.
2231 */
2232 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2233 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2234 if (j == 0) {
2235 if (i == 0) {
2236 /*
2237 * We've determined that the
2238 * path specified is already
2239 * the leftmost one - return a
2240 * cpos of zero.
2241 */
2242 goto out;
2243 }
2244 /*
2245 * The leftmost record points to our
2246 * leaf - we need to travel up the
2247 * tree one level.
2248 */
2249 goto next_node;
2250 }
2251
2252 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2253 *cpos = *cpos + ocfs2_rec_clusters(el,
2254 &el->l_recs[j - 1]);
2255 *cpos = *cpos - 1;
2256 goto out;
2257 }
2258 }
2259
2260 /*
2261 * If we got here, we never found a valid node where
2262 * the tree indicated one should be.
2263 */
2264 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2265 (unsigned long long)blkno);
2266 ret = -EROFS;
2267 goto out;
2268
2269 next_node:
2270 blkno = path->p_node[i].bh->b_blocknr;
2271 i--;
2272 }
2273
2274 out:
2275 return ret;
2276 }
2277
2278 /*
2279 * Extend the transaction by enough credits to complete the rotation,
2280 * and still leave at least the original number of credits allocated
2281 * to this transaction.
2282 */
2283 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2284 int op_credits,
2285 struct ocfs2_path *path)
2286 {
2287 int ret = 0;
2288 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2289
2290 if (jbd2_handle_buffer_credits(handle) < credits)
2291 ret = ocfs2_extend_trans(handle,
2292 credits - jbd2_handle_buffer_credits(handle));
2293
2294 return ret;
2295 }
2296
2297 /*
2298 * Trap the case where we're inserting into the theoretical range past
2299 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2300 * whose cpos is less than ours into the right leaf.
2301 *
2302 * It's only necessary to look at the rightmost record of the left
2303 * leaf because the logic that calls us should ensure that the
2304 * theoretical ranges in the path components above the leaves are
2305 * correct.
2306 */
2307 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2308 u32 insert_cpos)
2309 {
2310 struct ocfs2_extent_list *left_el;
2311 struct ocfs2_extent_rec *rec;
2312 int next_free;
2313
2314 left_el = path_leaf_el(left_path);
2315 next_free = le16_to_cpu(left_el->l_next_free_rec);
2316 rec = &left_el->l_recs[next_free - 1];
2317
2318 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2319 return 1;
2320 return 0;
2321 }
2322
2323 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2324 {
2325 int next_free = le16_to_cpu(el->l_next_free_rec);
2326 unsigned int range;
2327 struct ocfs2_extent_rec *rec;
2328
2329 if (next_free == 0)
2330 return 0;
2331
2332 rec = &el->l_recs[0];
2333 if (ocfs2_is_empty_extent(rec)) {
2334 /* Empty list. */
2335 if (next_free == 1)
2336 return 0;
2337 rec = &el->l_recs[1];
2338 }
2339
2340 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2341 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2342 return 1;
2343 return 0;
2344 }
2345
2346 /*
2347 * Rotate all the records in a btree right one record, starting at insert_cpos.
2348 *
2349 * The path to the rightmost leaf should be passed in.
2350 *
2351 * The array is assumed to be large enough to hold an entire path (tree depth).
2352 *
2353 * Upon successful return from this function:
2354 *
2355 * - The 'right_path' array will contain a path to the leaf block
2356 * whose range contains e_cpos.
2357 * - That leaf block will have a single empty extent in list index 0.
2358 * - In the case that the rotation requires a post-insert update,
2359 * *ret_left_path will contain a valid path which can be passed to
2360 * ocfs2_insert_path().
2361 */
2362 static int ocfs2_rotate_tree_right(handle_t *handle,
2363 struct ocfs2_extent_tree *et,
2364 enum ocfs2_split_type split,
2365 u32 insert_cpos,
2366 struct ocfs2_path *right_path,
2367 struct ocfs2_path **ret_left_path)
2368 {
2369 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle);
2370 u32 cpos;
2371 struct ocfs2_path *left_path = NULL;
2372 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2373
2374 *ret_left_path = NULL;
2375
2376 left_path = ocfs2_new_path_from_path(right_path);
2377 if (!left_path) {
2378 ret = -ENOMEM;
2379 mlog_errno(ret);
2380 goto out;
2381 }
2382
2383 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2384 if (ret) {
2385 mlog_errno(ret);
2386 goto out;
2387 }
2388
2389 trace_ocfs2_rotate_tree_right(
2390 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2391 insert_cpos, cpos);
2392
2393 /*
2394 * What we want to do here is:
2395 *
2396 * 1) Start with the rightmost path.
2397 *
2398 * 2) Determine a path to the leaf block directly to the left
2399 * of that leaf.
2400 *
2401 * 3) Determine the 'subtree root' - the lowest level tree node
2402 * which contains a path to both leaves.
2403 *
2404 * 4) Rotate the subtree.
2405 *
2406 * 5) Find the next subtree by considering the left path to be
2407 * the new right path.
2408 *
2409 * The check at the top of this while loop also accepts
2410 * insert_cpos == cpos because cpos is only a _theoretical_
2411 * value to get us the left path - insert_cpos might very well
2412 * be filling that hole.
2413 *
2414 * Stop at a cpos of '0' because we either started at the
2415 * leftmost branch (i.e., a tree with one branch and a
2416 * rotation inside of it), or we've gone as far as we can in
2417 * rotating subtrees.
2418 */
2419 while (cpos && insert_cpos <= cpos) {
2420 trace_ocfs2_rotate_tree_right(
2421 (unsigned long long)
2422 ocfs2_metadata_cache_owner(et->et_ci),
2423 insert_cpos, cpos);
2424
2425 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2426 if (ret) {
2427 mlog_errno(ret);
2428 goto out;
2429 }
2430
2431 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2432 path_leaf_bh(right_path),
2433 "Owner %llu: error during insert of %u "
2434 "(left path cpos %u) results in two identical "
2435 "paths ending at %llu\n",
2436 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2437 insert_cpos, cpos,
2438 (unsigned long long)
2439 path_leaf_bh(left_path)->b_blocknr);
2440
2441 if (split == SPLIT_NONE &&
2442 ocfs2_rotate_requires_path_adjustment(left_path,
2443 insert_cpos)) {
2444
2445 /*
2446 * We've rotated the tree as much as we
2447 * should. The rest is up to
2448 * ocfs2_insert_path() to complete, after the
2449 * record insertion. We indicate this
2450 * situation by returning the left path.
2451 *
2452 * The reason we don't adjust the records here
2453 * before the record insert is that an error
2454 * later might break the rule where a parent
2455 * record e_cpos will reflect the actual
2456 * e_cpos of the 1st nonempty record of the
2457 * child list.
2458 */
2459 *ret_left_path = left_path;
2460 goto out_ret_path;
2461 }
2462
2463 start = ocfs2_find_subtree_root(et, left_path, right_path);
2464
2465 trace_ocfs2_rotate_subtree(start,
2466 (unsigned long long)
2467 right_path->p_node[start].bh->b_blocknr,
2468 right_path->p_tree_depth);
2469
2470 ret = ocfs2_extend_rotate_transaction(handle, start,
2471 orig_credits, right_path);
2472 if (ret) {
2473 mlog_errno(ret);
2474 goto out;
2475 }
2476
2477 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2478 right_path, start);
2479 if (ret) {
2480 mlog_errno(ret);
2481 goto out;
2482 }
2483
2484 if (split != SPLIT_NONE &&
2485 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2486 insert_cpos)) {
2487 /*
2488 * A rotate moves the rightmost left leaf
2489 * record over to the leftmost right leaf
2490 * slot. If we're doing an extent split
2491 * instead of a real insert, then we have to
2492 * check that the extent to be split wasn't
2493 * just moved over. If it was, then we can
2494 * exit here, passing left_path back -
2495 * ocfs2_split_extent() is smart enough to
2496 * search both leaves.
2497 */
2498 *ret_left_path = left_path;
2499 goto out_ret_path;
2500 }
2501
2502 /*
2503 * There is no need to re-read the next right path
2504 * as we know that it'll be our current left
2505 * path. Optimize by copying values instead.
2506 */
2507 ocfs2_mv_path(right_path, left_path);
2508
2509 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2510 if (ret) {
2511 mlog_errno(ret);
2512 goto out;
2513 }
2514 }
2515
2516 out:
2517 ocfs2_free_path(left_path);
2518
2519 out_ret_path:
2520 return ret;
2521 }
2522
2523 static int ocfs2_update_edge_lengths(handle_t *handle,
2524 struct ocfs2_extent_tree *et,
2525 struct ocfs2_path *path)
2526 {
2527 int i, idx, ret;
2528 struct ocfs2_extent_rec *rec;
2529 struct ocfs2_extent_list *el;
2530 struct ocfs2_extent_block *eb;
2531 u32 range;
2532
2533 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2534 if (ret) {
2535 mlog_errno(ret);
2536 goto out;
2537 }
2538
2539 /* Path should always be rightmost. */
2540 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2541 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2542
2543 el = &eb->h_list;
2544 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2545 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2546 rec = &el->l_recs[idx];
2547 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2548
2549 for (i = 0; i < path->p_tree_depth; i++) {
2550 el = path->p_node[i].el;
2551 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2552 rec = &el->l_recs[idx];
2553
2554 rec->e_int_clusters = cpu_to_le32(range);
2555 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2556
2557 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2558 }
2559 out:
2560 return ret;
2561 }
2562
2563 static void ocfs2_unlink_path(handle_t *handle,
2564 struct ocfs2_extent_tree *et,
2565 struct ocfs2_cached_dealloc_ctxt *dealloc,
2566 struct ocfs2_path *path, int unlink_start)
2567 {
2568 int ret, i;
2569 struct ocfs2_extent_block *eb;
2570 struct ocfs2_extent_list *el;
2571 struct buffer_head *bh;
2572
2573 for(i = unlink_start; i < path_num_items(path); i++) {
2574 bh = path->p_node[i].bh;
2575
2576 eb = (struct ocfs2_extent_block *)bh->b_data;
2577 /*
2578 * Not all nodes might have had their final count
2579 * decremented by the caller - handle this here.
2580 */
2581 el = &eb->h_list;
2582 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2583 mlog(ML_ERROR,
2584 "Inode %llu, attempted to remove extent block "
2585 "%llu with %u records\n",
2586 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2587 (unsigned long long)le64_to_cpu(eb->h_blkno),
2588 le16_to_cpu(el->l_next_free_rec));
2589
2590 ocfs2_journal_dirty(handle, bh);
2591 ocfs2_remove_from_cache(et->et_ci, bh);
2592 continue;
2593 }
2594
2595 el->l_next_free_rec = 0;
2596 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2597
2598 ocfs2_journal_dirty(handle, bh);
2599
2600 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2601 if (ret)
2602 mlog_errno(ret);
2603
2604 ocfs2_remove_from_cache(et->et_ci, bh);
2605 }
2606 }
2607
2608 static void ocfs2_unlink_subtree(handle_t *handle,
2609 struct ocfs2_extent_tree *et,
2610 struct ocfs2_path *left_path,
2611 struct ocfs2_path *right_path,
2612 int subtree_index,
2613 struct ocfs2_cached_dealloc_ctxt *dealloc)
2614 {
2615 int i;
2616 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2617 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2618 struct ocfs2_extent_block *eb;
2619
2620 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2621
2622 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2623 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2624 break;
2625
2626 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2627
2628 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2629 le16_add_cpu(&root_el->l_next_free_rec, -1);
2630
2631 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2632 eb->h_next_leaf_blk = 0;
2633
2634 ocfs2_journal_dirty(handle, root_bh);
2635 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2636
2637 ocfs2_unlink_path(handle, et, dealloc, right_path,
2638 subtree_index + 1);
2639 }
2640
2641 static int ocfs2_rotate_subtree_left(handle_t *handle,
2642 struct ocfs2_extent_tree *et,
2643 struct ocfs2_path *left_path,
2644 struct ocfs2_path *right_path,
2645 int subtree_index,
2646 struct ocfs2_cached_dealloc_ctxt *dealloc,
2647 int *deleted)
2648 {
2649 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2650 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2651 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2652 struct ocfs2_extent_block *eb;
2653
2654 *deleted = 0;
2655
2656 right_leaf_el = path_leaf_el(right_path);
2657 left_leaf_el = path_leaf_el(left_path);
2658 root_bh = left_path->p_node[subtree_index].bh;
2659 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2660
2661 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2662 return 0;
2663
2664 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2665 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2666 /*
2667 * It's legal for us to proceed if the right leaf is
2668 * the rightmost one and it has an empty extent. There
2669 * are two cases to handle - whether the leaf will be
2670 * empty after removal or not. If the leaf isn't empty
2671 * then just remove the empty extent up front. The
2672 * next block will handle empty leaves by flagging
2673 * them for unlink.
2674 *
2675 * Non rightmost leaves will throw -EAGAIN and the
2676 * caller can manually move the subtree and retry.
2677 */
2678
2679 if (eb->h_next_leaf_blk != 0ULL)
2680 return -EAGAIN;
2681
2682 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2683 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2684 path_leaf_bh(right_path),
2685 OCFS2_JOURNAL_ACCESS_WRITE);
2686 if (ret) {
2687 mlog_errno(ret);
2688 goto out;
2689 }
2690
2691 ocfs2_remove_empty_extent(right_leaf_el);
2692 } else
2693 right_has_empty = 1;
2694 }
2695
2696 if (eb->h_next_leaf_blk == 0ULL &&
2697 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2698 /*
2699 * We have to update i_last_eb_blk during the meta
2700 * data delete.
2701 */
2702 ret = ocfs2_et_root_journal_access(handle, et,
2703 OCFS2_JOURNAL_ACCESS_WRITE);
2704 if (ret) {
2705 mlog_errno(ret);
2706 goto out;
2707 }
2708
2709 del_right_subtree = 1;
2710 }
2711
2712 /*
2713 * Getting here with an empty extent in the right path implies
2714 * that it's the rightmost path and will be deleted.
2715 */
2716 BUG_ON(right_has_empty && !del_right_subtree);
2717
2718 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2719 subtree_index);
2720 if (ret) {
2721 mlog_errno(ret);
2722 goto out;
2723 }
2724
2725 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2726 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2727 right_path, i);
2728 if (ret) {
2729 mlog_errno(ret);
2730 goto out;
2731 }
2732
2733 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2734 left_path, i);
2735 if (ret) {
2736 mlog_errno(ret);
2737 goto out;
2738 }
2739 }
2740
2741 if (!right_has_empty) {
2742 /*
2743 * Only do this if we're moving a real
2744 * record. Otherwise, the action is delayed until
2745 * after removal of the right path in which case we
2746 * can do a simple shift to remove the empty extent.
2747 */
2748 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2749 memset(&right_leaf_el->l_recs[0], 0,
2750 sizeof(struct ocfs2_extent_rec));
2751 }
2752 if (eb->h_next_leaf_blk == 0ULL) {
2753 /*
2754 * Move recs over to get rid of empty extent, decrease
2755 * next_free. This is allowed to remove the last
2756 * extent in our leaf (setting l_next_free_rec to
2757 * zero) - the delete code below won't care.
2758 */
2759 ocfs2_remove_empty_extent(right_leaf_el);
2760 }
2761
2762 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2763 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2764
2765 if (del_right_subtree) {
2766 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2767 subtree_index, dealloc);
2768 ret = ocfs2_update_edge_lengths(handle, et, left_path);
2769 if (ret) {
2770 mlog_errno(ret);
2771 goto out;
2772 }
2773
2774 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2775 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2776
2777 /*
2778 * Removal of the extent in the left leaf was skipped
2779 * above so we could delete the right path
2780 * 1st.
2781 */
2782 if (right_has_empty)
2783 ocfs2_remove_empty_extent(left_leaf_el);
2784
2785 ocfs2_journal_dirty(handle, et_root_bh);
2786
2787 *deleted = 1;
2788 } else
2789 ocfs2_complete_edge_insert(handle, left_path, right_path,
2790 subtree_index);
2791
2792 out:
2793 return ret;
2794 }
2795
2796 /*
2797 * Given a full path, determine what cpos value would return us a path
2798 * containing the leaf immediately to the right of the current one.
2799 *
2800 * Will return zero if the path passed in is already the rightmost path.
2801 *
2802 * This looks similar, but is subtly different to
2803 * ocfs2_find_cpos_for_left_leaf().
2804 */
2805 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2806 struct ocfs2_path *path, u32 *cpos)
2807 {
2808 int i, j, ret = 0;
2809 u64 blkno;
2810 struct ocfs2_extent_list *el;
2811
2812 *cpos = 0;
2813
2814 if (path->p_tree_depth == 0)
2815 return 0;
2816
2817 blkno = path_leaf_bh(path)->b_blocknr;
2818
2819 /* Start at the tree node just above the leaf and work our way up. */
2820 i = path->p_tree_depth - 1;
2821 while (i >= 0) {
2822 int next_free;
2823
2824 el = path->p_node[i].el;
2825
2826 /*
2827 * Find the extent record just after the one in our
2828 * path.
2829 */
2830 next_free = le16_to_cpu(el->l_next_free_rec);
2831 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2832 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2833 if (j == (next_free - 1)) {
2834 if (i == 0) {
2835 /*
2836 * We've determined that the
2837 * path specified is already
2838 * the rightmost one - return a
2839 * cpos of zero.
2840 */
2841 goto out;
2842 }
2843 /*
2844 * The rightmost record points to our
2845 * leaf - we need to travel up the
2846 * tree one level.
2847 */
2848 goto next_node;
2849 }
2850
2851 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2852 goto out;
2853 }
2854 }
2855
2856 /*
2857 * If we got here, we never found a valid node where
2858 * the tree indicated one should be.
2859 */
2860 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2861 (unsigned long long)blkno);
2862 ret = -EROFS;
2863 goto out;
2864
2865 next_node:
2866 blkno = path->p_node[i].bh->b_blocknr;
2867 i--;
2868 }
2869
2870 out:
2871 return ret;
2872 }
2873
2874 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2875 struct ocfs2_extent_tree *et,
2876 struct ocfs2_path *path)
2877 {
2878 int ret;
2879 struct buffer_head *bh = path_leaf_bh(path);
2880 struct ocfs2_extent_list *el = path_leaf_el(path);
2881
2882 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2883 return 0;
2884
2885 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2886 path_num_items(path) - 1);
2887 if (ret) {
2888 mlog_errno(ret);
2889 goto out;
2890 }
2891
2892 ocfs2_remove_empty_extent(el);
2893 ocfs2_journal_dirty(handle, bh);
2894
2895 out:
2896 return ret;
2897 }
2898
2899 static int __ocfs2_rotate_tree_left(handle_t *handle,
2900 struct ocfs2_extent_tree *et,
2901 int orig_credits,
2902 struct ocfs2_path *path,
2903 struct ocfs2_cached_dealloc_ctxt *dealloc,
2904 struct ocfs2_path **empty_extent_path)
2905 {
2906 int ret, subtree_root, deleted;
2907 u32 right_cpos;
2908 struct ocfs2_path *left_path = NULL;
2909 struct ocfs2_path *right_path = NULL;
2910 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2911
2912 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2913 return 0;
2914
2915 *empty_extent_path = NULL;
2916
2917 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2918 if (ret) {
2919 mlog_errno(ret);
2920 goto out;
2921 }
2922
2923 left_path = ocfs2_new_path_from_path(path);
2924 if (!left_path) {
2925 ret = -ENOMEM;
2926 mlog_errno(ret);
2927 goto out;
2928 }
2929
2930 ocfs2_cp_path(left_path, path);
2931
2932 right_path = ocfs2_new_path_from_path(path);
2933 if (!right_path) {
2934 ret = -ENOMEM;
2935 mlog_errno(ret);
2936 goto out;
2937 }
2938
2939 while (right_cpos) {
2940 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2941 if (ret) {
2942 mlog_errno(ret);
2943 goto out;
2944 }
2945
2946 subtree_root = ocfs2_find_subtree_root(et, left_path,
2947 right_path);
2948
2949 trace_ocfs2_rotate_subtree(subtree_root,
2950 (unsigned long long)
2951 right_path->p_node[subtree_root].bh->b_blocknr,
2952 right_path->p_tree_depth);
2953
2954 ret = ocfs2_extend_rotate_transaction(handle, 0,
2955 orig_credits, left_path);
2956 if (ret) {
2957 mlog_errno(ret);
2958 goto out;
2959 }
2960
2961 /*
2962 * Caller might still want to make changes to the
2963 * tree root, so re-add it to the journal here.
2964 */
2965 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2966 left_path, 0);
2967 if (ret) {
2968 mlog_errno(ret);
2969 goto out;
2970 }
2971
2972 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2973 right_path, subtree_root,
2974 dealloc, &deleted);
2975 if (ret == -EAGAIN) {
2976 /*
2977 * The rotation has to temporarily stop due to
2978 * the right subtree having an empty
2979 * extent. Pass it back to the caller for a
2980 * fixup.
2981 */
2982 *empty_extent_path = right_path;
2983 right_path = NULL;
2984 goto out;
2985 }
2986 if (ret) {
2987 mlog_errno(ret);
2988 goto out;
2989 }
2990
2991 /*
2992 * The subtree rotate might have removed records on
2993 * the rightmost edge. If so, then rotation is
2994 * complete.
2995 */
2996 if (deleted)
2997 break;
2998
2999 ocfs2_mv_path(left_path, right_path);
3000
3001 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3002 &right_cpos);
3003 if (ret) {
3004 mlog_errno(ret);
3005 goto out;
3006 }
3007 }
3008
3009 out:
3010 ocfs2_free_path(right_path);
3011 ocfs2_free_path(left_path);
3012
3013 return ret;
3014 }
3015
3016 static int ocfs2_remove_rightmost_path(handle_t *handle,
3017 struct ocfs2_extent_tree *et,
3018 struct ocfs2_path *path,
3019 struct ocfs2_cached_dealloc_ctxt *dealloc)
3020 {
3021 int ret, subtree_index;
3022 u32 cpos;
3023 struct ocfs2_path *left_path = NULL;
3024 struct ocfs2_extent_block *eb;
3025 struct ocfs2_extent_list *el;
3026
3027 ret = ocfs2_et_sanity_check(et);
3028 if (ret)
3029 goto out;
3030
3031 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3032 if (ret) {
3033 mlog_errno(ret);
3034 goto out;
3035 }
3036
3037 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3038 path, &cpos);
3039 if (ret) {
3040 mlog_errno(ret);
3041 goto out;
3042 }
3043
3044 if (cpos) {
3045 /*
3046 * We have a path to the left of this one - it needs
3047 * an update too.
3048 */
3049 left_path = ocfs2_new_path_from_path(path);
3050 if (!left_path) {
3051 ret = -ENOMEM;
3052 mlog_errno(ret);
3053 goto out;
3054 }
3055
3056 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3057 if (ret) {
3058 mlog_errno(ret);
3059 goto out;
3060 }
3061
3062 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3063 if (ret) {
3064 mlog_errno(ret);
3065 goto out;
3066 }
3067
3068 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3069
3070 ocfs2_unlink_subtree(handle, et, left_path, path,
3071 subtree_index, dealloc);
3072 ret = ocfs2_update_edge_lengths(handle, et, left_path);
3073 if (ret) {
3074 mlog_errno(ret);
3075 goto out;
3076 }
3077
3078 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3079 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3080 } else {
3081 /*
3082 * 'path' is also the leftmost path which
3083 * means it must be the only one. This gets
3084 * handled differently because we want to
3085 * revert the root back to having extents
3086 * in-line.
3087 */
3088 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3089
3090 el = et->et_root_el;
3091 el->l_tree_depth = 0;
3092 el->l_next_free_rec = 0;
3093 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3094
3095 ocfs2_et_set_last_eb_blk(et, 0);
3096 }
3097
3098 ocfs2_journal_dirty(handle, path_root_bh(path));
3099
3100 out:
3101 ocfs2_free_path(left_path);
3102 return ret;
3103 }
3104
3105 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3106 struct ocfs2_extent_tree *et,
3107 struct ocfs2_path *path,
3108 struct ocfs2_cached_dealloc_ctxt *dealloc)
3109 {
3110 handle_t *handle;
3111 int ret;
3112 int credits = path->p_tree_depth * 2 + 1;
3113
3114 handle = ocfs2_start_trans(osb, credits);
3115 if (IS_ERR(handle)) {
3116 ret = PTR_ERR(handle);
3117 mlog_errno(ret);
3118 return ret;
3119 }
3120
3121 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3122 if (ret)
3123 mlog_errno(ret);
3124
3125 ocfs2_commit_trans(osb, handle);
3126 return ret;
3127 }
3128
3129 /*
3130 * Left rotation of btree records.
3131 *
3132 * In many ways, this is (unsurprisingly) the opposite of right
3133 * rotation. We start at some non-rightmost path containing an empty
3134 * extent in the leaf block. The code works its way to the rightmost
3135 * path by rotating records to the left in every subtree.
3136 *
3137 * This is used by any code which reduces the number of extent records
3138 * in a leaf. After removal, an empty record should be placed in the
3139 * leftmost list position.
3140 *
3141 * This won't handle a length update of the rightmost path records if
3142 * the rightmost tree leaf record is removed so the caller is
3143 * responsible for detecting and correcting that.
3144 */
3145 static int ocfs2_rotate_tree_left(handle_t *handle,
3146 struct ocfs2_extent_tree *et,
3147 struct ocfs2_path *path,
3148 struct ocfs2_cached_dealloc_ctxt *dealloc)
3149 {
3150 int ret, orig_credits = jbd2_handle_buffer_credits(handle);
3151 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3152 struct ocfs2_extent_block *eb;
3153 struct ocfs2_extent_list *el;
3154
3155 el = path_leaf_el(path);
3156 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3157 return 0;
3158
3159 if (path->p_tree_depth == 0) {
3160 rightmost_no_delete:
3161 /*
3162 * Inline extents. This is trivially handled, so do
3163 * it up front.
3164 */
3165 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3166 if (ret)
3167 mlog_errno(ret);
3168 goto out;
3169 }
3170
3171 /*
3172 * Handle rightmost branch now. There's several cases:
3173 * 1) simple rotation leaving records in there. That's trivial.
3174 * 2) rotation requiring a branch delete - there's no more
3175 * records left. Two cases of this:
3176 * a) There are branches to the left.
3177 * b) This is also the leftmost (the only) branch.
3178 *
3179 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3180 * 2a) we need the left branch so that we can update it with the unlink
3181 * 2b) we need to bring the root back to inline extents.
3182 */
3183
3184 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3185 el = &eb->h_list;
3186 if (eb->h_next_leaf_blk == 0) {
3187 /*
3188 * This gets a bit tricky if we're going to delete the
3189 * rightmost path. Get the other cases out of the way
3190 * 1st.
3191 */
3192 if (le16_to_cpu(el->l_next_free_rec) > 1)
3193 goto rightmost_no_delete;
3194
3195 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3196 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3197 "Owner %llu has empty extent block at %llu\n",
3198 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3199 (unsigned long long)le64_to_cpu(eb->h_blkno));
3200 goto out;
3201 }
3202
3203 /*
3204 * XXX: The caller can not trust "path" any more after
3205 * this as it will have been deleted. What do we do?
3206 *
3207 * In theory the rotate-for-merge code will never get
3208 * here because it'll always ask for a rotate in a
3209 * nonempty list.
3210 */
3211
3212 ret = ocfs2_remove_rightmost_path(handle, et, path,
3213 dealloc);
3214 if (ret)
3215 mlog_errno(ret);
3216 goto out;
3217 }
3218
3219 /*
3220 * Now we can loop, remembering the path we get from -EAGAIN
3221 * and restarting from there.
3222 */
3223 try_rotate:
3224 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3225 dealloc, &restart_path);
3226 if (ret && ret != -EAGAIN) {
3227 mlog_errno(ret);
3228 goto out;
3229 }
3230
3231 while (ret == -EAGAIN) {
3232 tmp_path = restart_path;
3233 restart_path = NULL;
3234
3235 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3236 tmp_path, dealloc,
3237 &restart_path);
3238 if (ret && ret != -EAGAIN) {
3239 mlog_errno(ret);
3240 goto out;
3241 }
3242
3243 ocfs2_free_path(tmp_path);
3244 tmp_path = NULL;
3245
3246 if (ret == 0)
3247 goto try_rotate;
3248 }
3249
3250 out:
3251 ocfs2_free_path(tmp_path);
3252 ocfs2_free_path(restart_path);
3253 return ret;
3254 }
3255
3256 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3257 int index)
3258 {
3259 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3260 unsigned int size;
3261
3262 if (rec->e_leaf_clusters == 0) {
3263 /*
3264 * We consumed all of the merged-from record. An empty
3265 * extent cannot exist anywhere but the 1st array
3266 * position, so move things over if the merged-from
3267 * record doesn't occupy that position.
3268 *
3269 * This creates a new empty extent so the caller
3270 * should be smart enough to have removed any existing
3271 * ones.
3272 */
3273 if (index > 0) {
3274 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3275 size = index * sizeof(struct ocfs2_extent_rec);
3276 memmove(&el->l_recs[1], &el->l_recs[0], size);
3277 }
3278
3279 /*
3280 * Always memset - the caller doesn't check whether it
3281 * created an empty extent, so there could be junk in
3282 * the other fields.
3283 */
3284 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3285 }
3286 }
3287
3288 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3289 struct ocfs2_path *left_path,
3290 struct ocfs2_path **ret_right_path)
3291 {
3292 int ret;
3293 u32 right_cpos;
3294 struct ocfs2_path *right_path = NULL;
3295 struct ocfs2_extent_list *left_el;
3296
3297 *ret_right_path = NULL;
3298
3299 /* This function shouldn't be called for non-trees. */
3300 BUG_ON(left_path->p_tree_depth == 0);
3301
3302 left_el = path_leaf_el(left_path);
3303 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3304
3305 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3306 left_path, &right_cpos);
3307 if (ret) {
3308 mlog_errno(ret);
3309 goto out;
3310 }
3311
3312 /* This function shouldn't be called for the rightmost leaf. */
3313 BUG_ON(right_cpos == 0);
3314
3315 right_path = ocfs2_new_path_from_path(left_path);
3316 if (!right_path) {
3317 ret = -ENOMEM;
3318 mlog_errno(ret);
3319 goto out;
3320 }
3321
3322 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3323 if (ret) {
3324 mlog_errno(ret);
3325 goto out;
3326 }
3327
3328 *ret_right_path = right_path;
3329 out:
3330 if (ret)
3331 ocfs2_free_path(right_path);
3332 return ret;
3333 }
3334
3335 /*
3336 * Remove split_rec clusters from the record at index and merge them
3337 * onto the beginning of the record "next" to it.
3338 * For index < l_count - 1, the next means the extent rec at index + 1.
3339 * For index == l_count - 1, the "next" means the 1st extent rec of the
3340 * next extent block.
3341 */
3342 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3343 handle_t *handle,
3344 struct ocfs2_extent_tree *et,
3345 struct ocfs2_extent_rec *split_rec,
3346 int index)
3347 {
3348 int ret, next_free, i;
3349 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3350 struct ocfs2_extent_rec *left_rec;
3351 struct ocfs2_extent_rec *right_rec;
3352 struct ocfs2_extent_list *right_el;
3353 struct ocfs2_path *right_path = NULL;
3354 int subtree_index = 0;
3355 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3356 struct buffer_head *bh = path_leaf_bh(left_path);
3357 struct buffer_head *root_bh = NULL;
3358
3359 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3360 left_rec = &el->l_recs[index];
3361
3362 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3363 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3364 /* we meet with a cross extent block merge. */
3365 ret = ocfs2_get_right_path(et, left_path, &right_path);
3366 if (ret) {
3367 mlog_errno(ret);
3368 return ret;
3369 }
3370
3371 right_el = path_leaf_el(right_path);
3372 next_free = le16_to_cpu(right_el->l_next_free_rec);
3373 BUG_ON(next_free <= 0);
3374 right_rec = &right_el->l_recs[0];
3375 if (ocfs2_is_empty_extent(right_rec)) {
3376 BUG_ON(next_free <= 1);
3377 right_rec = &right_el->l_recs[1];
3378 }
3379
3380 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3381 le16_to_cpu(left_rec->e_leaf_clusters) !=
3382 le32_to_cpu(right_rec->e_cpos));
3383
3384 subtree_index = ocfs2_find_subtree_root(et, left_path,
3385 right_path);
3386
3387 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3388 jbd2_handle_buffer_credits(handle),
3389 right_path);
3390 if (ret) {
3391 mlog_errno(ret);
3392 goto out;
3393 }
3394
3395 root_bh = left_path->p_node[subtree_index].bh;
3396 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3397
3398 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3399 subtree_index);
3400 if (ret) {
3401 mlog_errno(ret);
3402 goto out;
3403 }
3404
3405 for (i = subtree_index + 1;
3406 i < path_num_items(right_path); i++) {
3407 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3408 right_path, i);
3409 if (ret) {
3410 mlog_errno(ret);
3411 goto out;
3412 }
3413
3414 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3415 left_path, i);
3416 if (ret) {
3417 mlog_errno(ret);
3418 goto out;
3419 }
3420 }
3421
3422 } else {
3423 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3424 right_rec = &el->l_recs[index + 1];
3425 }
3426
3427 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3428 path_num_items(left_path) - 1);
3429 if (ret) {
3430 mlog_errno(ret);
3431 goto out;
3432 }
3433
3434 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3435
3436 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3437 le64_add_cpu(&right_rec->e_blkno,
3438 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3439 split_clusters));
3440 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3441
3442 ocfs2_cleanup_merge(el, index);
3443
3444 ocfs2_journal_dirty(handle, bh);
3445 if (right_path) {
3446 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3447 ocfs2_complete_edge_insert(handle, left_path, right_path,
3448 subtree_index);
3449 }
3450 out:
3451 ocfs2_free_path(right_path);
3452 return ret;
3453 }
3454
3455 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3456 struct ocfs2_path *right_path,
3457 struct ocfs2_path **ret_left_path)
3458 {
3459 int ret;
3460 u32 left_cpos;
3461 struct ocfs2_path *left_path = NULL;
3462
3463 *ret_left_path = NULL;
3464
3465 /* This function shouldn't be called for non-trees. */
3466 BUG_ON(right_path->p_tree_depth == 0);
3467
3468 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3469 right_path, &left_cpos);
3470 if (ret) {
3471 mlog_errno(ret);
3472 goto out;
3473 }
3474
3475 /* This function shouldn't be called for the leftmost leaf. */
3476 BUG_ON(left_cpos == 0);
3477
3478 left_path = ocfs2_new_path_from_path(right_path);
3479 if (!left_path) {
3480 ret = -ENOMEM;
3481 mlog_errno(ret);
3482 goto out;
3483 }
3484
3485 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3486 if (ret) {
3487 mlog_errno(ret);
3488 goto out;
3489 }
3490
3491 *ret_left_path = left_path;
3492 out:
3493 if (ret)
3494 ocfs2_free_path(left_path);
3495 return ret;
3496 }
3497
3498 /*
3499 * Remove split_rec clusters from the record at index and merge them
3500 * onto the tail of the record "before" it.
3501 * For index > 0, the "before" means the extent rec at index - 1.
3502 *
3503 * For index == 0, the "before" means the last record of the previous
3504 * extent block. And there is also a situation that we may need to
3505 * remove the rightmost leaf extent block in the right_path and change
3506 * the right path to indicate the new rightmost path.
3507 */
3508 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3509 handle_t *handle,
3510 struct ocfs2_extent_tree *et,
3511 struct ocfs2_extent_rec *split_rec,
3512 struct ocfs2_cached_dealloc_ctxt *dealloc,
3513 int index)
3514 {
3515 int ret, i, subtree_index = 0, has_empty_extent = 0;
3516 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3517 struct ocfs2_extent_rec *left_rec;
3518 struct ocfs2_extent_rec *right_rec;
3519 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3520 struct buffer_head *bh = path_leaf_bh(right_path);
3521 struct buffer_head *root_bh = NULL;
3522 struct ocfs2_path *left_path = NULL;
3523 struct ocfs2_extent_list *left_el;
3524
3525 BUG_ON(index < 0);
3526
3527 right_rec = &el->l_recs[index];
3528 if (index == 0) {
3529 /* we meet with a cross extent block merge. */
3530 ret = ocfs2_get_left_path(et, right_path, &left_path);
3531 if (ret) {
3532 mlog_errno(ret);
3533 return ret;
3534 }
3535
3536 left_el = path_leaf_el(left_path);
3537 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3538 le16_to_cpu(left_el->l_count));
3539
3540 left_rec = &left_el->l_recs[
3541 le16_to_cpu(left_el->l_next_free_rec) - 1];
3542 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3543 le16_to_cpu(left_rec->e_leaf_clusters) !=
3544 le32_to_cpu(split_rec->e_cpos));
3545
3546 subtree_index = ocfs2_find_subtree_root(et, left_path,
3547 right_path);
3548
3549 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3550 jbd2_handle_buffer_credits(handle),
3551 left_path);
3552 if (ret) {
3553 mlog_errno(ret);
3554 goto out;
3555 }
3556
3557 root_bh = left_path->p_node[subtree_index].bh;
3558 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3559
3560 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3561 subtree_index);
3562 if (ret) {
3563 mlog_errno(ret);
3564 goto out;
3565 }
3566
3567 for (i = subtree_index + 1;
3568 i < path_num_items(right_path); i++) {
3569 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3570 right_path, i);
3571 if (ret) {
3572 mlog_errno(ret);
3573 goto out;
3574 }
3575
3576 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3577 left_path, i);
3578 if (ret) {
3579 mlog_errno(ret);
3580 goto out;
3581 }
3582 }
3583 } else {
3584 left_rec = &el->l_recs[index - 1];
3585 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3586 has_empty_extent = 1;
3587 }
3588
3589 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3590 path_num_items(right_path) - 1);
3591 if (ret) {
3592 mlog_errno(ret);
3593 goto out;
3594 }
3595
3596 if (has_empty_extent && index == 1) {
3597 /*
3598 * The easy case - we can just plop the record right in.
3599 */
3600 *left_rec = *split_rec;
3601 } else
3602 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3603
3604 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3605 le64_add_cpu(&right_rec->e_blkno,
3606 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3607 split_clusters));
3608 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3609
3610 ocfs2_cleanup_merge(el, index);
3611
3612 ocfs2_journal_dirty(handle, bh);
3613 if (left_path) {
3614 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3615
3616 /*
3617 * In the situation that the right_rec is empty and the extent
3618 * block is empty also, ocfs2_complete_edge_insert can't handle
3619 * it and we need to delete the right extent block.
3620 */
3621 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3622 le16_to_cpu(el->l_next_free_rec) == 1) {
3623 /* extend credit for ocfs2_remove_rightmost_path */
3624 ret = ocfs2_extend_rotate_transaction(handle, 0,
3625 jbd2_handle_buffer_credits(handle),
3626 right_path);
3627 if (ret) {
3628 mlog_errno(ret);
3629 goto out;
3630 }
3631
3632 ret = ocfs2_remove_rightmost_path(handle, et,
3633 right_path,
3634 dealloc);
3635 if (ret) {
3636 mlog_errno(ret);
3637 goto out;
3638 }
3639
3640 /* Now the rightmost extent block has been deleted.
3641 * So we use the new rightmost path.
3642 */
3643 ocfs2_mv_path(right_path, left_path);
3644 left_path = NULL;
3645 } else
3646 ocfs2_complete_edge_insert(handle, left_path,
3647 right_path, subtree_index);
3648 }
3649 out:
3650 ocfs2_free_path(left_path);
3651 return ret;
3652 }
3653
3654 static int ocfs2_try_to_merge_extent(handle_t *handle,
3655 struct ocfs2_extent_tree *et,
3656 struct ocfs2_path *path,
3657 int split_index,
3658 struct ocfs2_extent_rec *split_rec,
3659 struct ocfs2_cached_dealloc_ctxt *dealloc,
3660 struct ocfs2_merge_ctxt *ctxt)
3661 {
3662 int ret = 0;
3663 struct ocfs2_extent_list *el = path_leaf_el(path);
3664 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3665
3666 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3667
3668 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3669 /* extend credit for ocfs2_remove_rightmost_path */
3670 ret = ocfs2_extend_rotate_transaction(handle, 0,
3671 jbd2_handle_buffer_credits(handle),
3672 path);
3673 if (ret) {
3674 mlog_errno(ret);
3675 goto out;
3676 }
3677 /*
3678 * The merge code will need to create an empty
3679 * extent to take the place of the newly
3680 * emptied slot. Remove any pre-existing empty
3681 * extents - having more than one in a leaf is
3682 * illegal.
3683 */
3684 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3685 if (ret) {
3686 mlog_errno(ret);
3687 goto out;
3688 }
3689 split_index--;
3690 rec = &el->l_recs[split_index];
3691 }
3692
3693 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3694 /*
3695 * Left-right contig implies this.
3696 */
3697 BUG_ON(!ctxt->c_split_covers_rec);
3698
3699 /*
3700 * Since the leftright insert always covers the entire
3701 * extent, this call will delete the insert record
3702 * entirely, resulting in an empty extent record added to
3703 * the extent block.
3704 *
3705 * Since the adding of an empty extent shifts
3706 * everything back to the right, there's no need to
3707 * update split_index here.
3708 *
3709 * When the split_index is zero, we need to merge it to the
3710 * prevoius extent block. It is more efficient and easier
3711 * if we do merge_right first and merge_left later.
3712 */
3713 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3714 split_index);
3715 if (ret) {
3716 mlog_errno(ret);
3717 goto out;
3718 }
3719
3720 /*
3721 * We can only get this from logic error above.
3722 */
3723 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3724
3725 /* extend credit for ocfs2_remove_rightmost_path */
3726 ret = ocfs2_extend_rotate_transaction(handle, 0,
3727 jbd2_handle_buffer_credits(handle),
3728 path);
3729 if (ret) {
3730 mlog_errno(ret);
3731 goto out;
3732 }
3733
3734 /* The merge left us with an empty extent, remove it. */
3735 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3736 if (ret) {
3737 mlog_errno(ret);
3738 goto out;
3739 }
3740
3741 rec = &el->l_recs[split_index];
3742
3743 /*
3744 * Note that we don't pass split_rec here on purpose -
3745 * we've merged it into the rec already.
3746 */
3747 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3748 dealloc, split_index);
3749
3750 if (ret) {
3751 mlog_errno(ret);
3752 goto out;
3753 }
3754
3755 /* extend credit for ocfs2_remove_rightmost_path */
3756 ret = ocfs2_extend_rotate_transaction(handle, 0,
3757 jbd2_handle_buffer_credits(handle),
3758 path);
3759 if (ret) {
3760 mlog_errno(ret);
3761 goto out;
3762 }
3763
3764 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3765 /*
3766 * Error from this last rotate is not critical, so
3767 * print but don't bubble it up.
3768 */
3769 if (ret)
3770 mlog_errno(ret);
3771 ret = 0;
3772 } else {
3773 /*
3774 * Merge a record to the left or right.
3775 *
3776 * 'contig_type' is relative to the existing record,
3777 * so for example, if we're "right contig", it's to
3778 * the record on the left (hence the left merge).
3779 */
3780 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3781 ret = ocfs2_merge_rec_left(path, handle, et,
3782 split_rec, dealloc,
3783 split_index);
3784 if (ret) {
3785 mlog_errno(ret);
3786 goto out;
3787 }
3788 } else {
3789 ret = ocfs2_merge_rec_right(path, handle,
3790 et, split_rec,
3791 split_index);
3792 if (ret) {
3793 mlog_errno(ret);
3794 goto out;
3795 }
3796 }
3797
3798 if (ctxt->c_split_covers_rec) {
3799 /* extend credit for ocfs2_remove_rightmost_path */
3800 ret = ocfs2_extend_rotate_transaction(handle, 0,
3801 jbd2_handle_buffer_credits(handle),
3802 path);
3803 if (ret) {
3804 mlog_errno(ret);
3805 ret = 0;
3806 goto out;
3807 }
3808
3809 /*
3810 * The merge may have left an empty extent in
3811 * our leaf. Try to rotate it away.
3812 */
3813 ret = ocfs2_rotate_tree_left(handle, et, path,
3814 dealloc);
3815 if (ret)
3816 mlog_errno(ret);
3817 ret = 0;
3818 }
3819 }
3820
3821 out:
3822 return ret;
3823 }
3824
3825 static void ocfs2_subtract_from_rec(struct super_block *sb,
3826 enum ocfs2_split_type split,
3827 struct ocfs2_extent_rec *rec,
3828 struct ocfs2_extent_rec *split_rec)
3829 {
3830 u64 len_blocks;
3831
3832 len_blocks = ocfs2_clusters_to_blocks(sb,
3833 le16_to_cpu(split_rec->e_leaf_clusters));
3834
3835 if (split == SPLIT_LEFT) {
3836 /*
3837 * Region is on the left edge of the existing
3838 * record.
3839 */
3840 le32_add_cpu(&rec->e_cpos,
3841 le16_to_cpu(split_rec->e_leaf_clusters));
3842 le64_add_cpu(&rec->e_blkno, len_blocks);
3843 le16_add_cpu(&rec->e_leaf_clusters,
3844 -le16_to_cpu(split_rec->e_leaf_clusters));
3845 } else {
3846 /*
3847 * Region is on the right edge of the existing
3848 * record.
3849 */
3850 le16_add_cpu(&rec->e_leaf_clusters,
3851 -le16_to_cpu(split_rec->e_leaf_clusters));
3852 }
3853 }
3854
3855 /*
3856 * Do the final bits of extent record insertion at the target leaf
3857 * list. If this leaf is part of an allocation tree, it is assumed
3858 * that the tree above has been prepared.
3859 */
3860 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3861 struct ocfs2_extent_rec *insert_rec,
3862 struct ocfs2_extent_list *el,
3863 struct ocfs2_insert_type *insert)
3864 {
3865 int i = insert->ins_contig_index;
3866 unsigned int range;
3867 struct ocfs2_extent_rec *rec;
3868
3869 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3870
3871 if (insert->ins_split != SPLIT_NONE) {
3872 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3873 BUG_ON(i == -1);
3874 rec = &el->l_recs[i];
3875 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3876 insert->ins_split, rec,
3877 insert_rec);
3878 goto rotate;
3879 }
3880
3881 /*
3882 * Contiguous insert - either left or right.
3883 */
3884 if (insert->ins_contig != CONTIG_NONE) {
3885 rec = &el->l_recs[i];
3886 if (insert->ins_contig == CONTIG_LEFT) {
3887 rec->e_blkno = insert_rec->e_blkno;
3888 rec->e_cpos = insert_rec->e_cpos;
3889 }
3890 le16_add_cpu(&rec->e_leaf_clusters,
3891 le16_to_cpu(insert_rec->e_leaf_clusters));
3892 return;
3893 }
3894
3895 /*
3896 * Handle insert into an empty leaf.
3897 */
3898 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3899 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3900 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3901 el->l_recs[0] = *insert_rec;
3902 el->l_next_free_rec = cpu_to_le16(1);
3903 return;
3904 }
3905
3906 /*
3907 * Appending insert.
3908 */
3909 if (insert->ins_appending == APPEND_TAIL) {
3910 i = le16_to_cpu(el->l_next_free_rec) - 1;
3911 rec = &el->l_recs[i];
3912 range = le32_to_cpu(rec->e_cpos)
3913 + le16_to_cpu(rec->e_leaf_clusters);
3914 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3915
3916 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3917 le16_to_cpu(el->l_count),
3918 "owner %llu, depth %u, count %u, next free %u, "
3919 "rec.cpos %u, rec.clusters %u, "
3920 "insert.cpos %u, insert.clusters %u\n",
3921 ocfs2_metadata_cache_owner(et->et_ci),
3922 le16_to_cpu(el->l_tree_depth),
3923 le16_to_cpu(el->l_count),
3924 le16_to_cpu(el->l_next_free_rec),
3925 le32_to_cpu(el->l_recs[i].e_cpos),
3926 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3927 le32_to_cpu(insert_rec->e_cpos),
3928 le16_to_cpu(insert_rec->e_leaf_clusters));
3929 i++;
3930 el->l_recs[i] = *insert_rec;
3931 le16_add_cpu(&el->l_next_free_rec, 1);
3932 return;
3933 }
3934
3935 rotate:
3936 /*
3937 * Ok, we have to rotate.
3938 *
3939 * At this point, it is safe to assume that inserting into an
3940 * empty leaf and appending to a leaf have both been handled
3941 * above.
3942 *
3943 * This leaf needs to have space, either by the empty 1st
3944 * extent record, or by virtue of an l_next_free_rec < l_count.
3945 */
3946 ocfs2_rotate_leaf(el, insert_rec);
3947 }
3948
3949 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3950 struct ocfs2_extent_tree *et,
3951 struct ocfs2_path *path,
3952 struct ocfs2_extent_rec *insert_rec)
3953 {
3954 int i, next_free;
3955 struct buffer_head *bh;
3956 struct ocfs2_extent_list *el;
3957 struct ocfs2_extent_rec *rec;
3958
3959 /*
3960 * Update everything except the leaf block.
3961 */
3962 for (i = 0; i < path->p_tree_depth; i++) {
3963 bh = path->p_node[i].bh;
3964 el = path->p_node[i].el;
3965
3966 next_free = le16_to_cpu(el->l_next_free_rec);
3967 if (next_free == 0) {
3968 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3969 "Owner %llu has a bad extent list\n",
3970 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3971 return;
3972 }
3973
3974 rec = &el->l_recs[next_free - 1];
3975
3976 rec->e_int_clusters = insert_rec->e_cpos;
3977 le32_add_cpu(&rec->e_int_clusters,
3978 le16_to_cpu(insert_rec->e_leaf_clusters));
3979 le32_add_cpu(&rec->e_int_clusters,
3980 -le32_to_cpu(rec->e_cpos));
3981
3982 ocfs2_journal_dirty(handle, bh);
3983 }
3984 }
3985
3986 static int ocfs2_append_rec_to_path(handle_t *handle,
3987 struct ocfs2_extent_tree *et,
3988 struct ocfs2_extent_rec *insert_rec,
3989 struct ocfs2_path *right_path,
3990 struct ocfs2_path **ret_left_path)
3991 {
3992 int ret, next_free;
3993 struct ocfs2_extent_list *el;
3994 struct ocfs2_path *left_path = NULL;
3995
3996 *ret_left_path = NULL;
3997
3998 /*
3999 * This shouldn't happen for non-trees. The extent rec cluster
4000 * count manipulation below only works for interior nodes.
4001 */
4002 BUG_ON(right_path->p_tree_depth == 0);
4003
4004 /*
4005 * If our appending insert is at the leftmost edge of a leaf,
4006 * then we might need to update the rightmost records of the
4007 * neighboring path.
4008 */
4009 el = path_leaf_el(right_path);
4010 next_free = le16_to_cpu(el->l_next_free_rec);
4011 if (next_free == 0 ||
4012 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4013 u32 left_cpos;
4014
4015 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4016 right_path, &left_cpos);
4017 if (ret) {
4018 mlog_errno(ret);
4019 goto out;
4020 }
4021
4022 trace_ocfs2_append_rec_to_path(
4023 (unsigned long long)
4024 ocfs2_metadata_cache_owner(et->et_ci),
4025 le32_to_cpu(insert_rec->e_cpos),
4026 left_cpos);
4027
4028 /*
4029 * No need to worry if the append is already in the
4030 * leftmost leaf.
4031 */
4032 if (left_cpos) {
4033 left_path = ocfs2_new_path_from_path(right_path);
4034 if (!left_path) {
4035 ret = -ENOMEM;
4036 mlog_errno(ret);
4037 goto out;
4038 }
4039
4040 ret = ocfs2_find_path(et->et_ci, left_path,
4041 left_cpos);
4042 if (ret) {
4043 mlog_errno(ret);
4044 goto out;
4045 }
4046
4047 /*
4048 * ocfs2_insert_path() will pass the left_path to the
4049 * journal for us.
4050 */
4051 }
4052 }
4053
4054 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4055 if (ret) {
4056 mlog_errno(ret);
4057 goto out;
4058 }
4059
4060 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4061
4062 *ret_left_path = left_path;
4063 ret = 0;
4064 out:
4065 if (ret != 0)
4066 ocfs2_free_path(left_path);
4067
4068 return ret;
4069 }
4070
4071 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4072 struct ocfs2_path *left_path,
4073 struct ocfs2_path *right_path,
4074 struct ocfs2_extent_rec *split_rec,
4075 enum ocfs2_split_type split)
4076 {
4077 int index;
4078 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4079 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4080 struct ocfs2_extent_rec *rec, *tmprec;
4081
4082 right_el = path_leaf_el(right_path);
4083 if (left_path)
4084 left_el = path_leaf_el(left_path);
4085
4086 el = right_el;
4087 insert_el = right_el;
4088 index = ocfs2_search_extent_list(el, cpos);
4089 if (index != -1) {
4090 if (index == 0 && left_path) {
4091 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4092
4093 /*
4094 * This typically means that the record
4095 * started in the left path but moved to the
4096 * right as a result of rotation. We either
4097 * move the existing record to the left, or we
4098 * do the later insert there.
4099 *
4100 * In this case, the left path should always
4101 * exist as the rotate code will have passed
4102 * it back for a post-insert update.
4103 */
4104
4105 if (split == SPLIT_LEFT) {
4106 /*
4107 * It's a left split. Since we know
4108 * that the rotate code gave us an
4109 * empty extent in the left path, we
4110 * can just do the insert there.
4111 */
4112 insert_el = left_el;
4113 } else {
4114 /*
4115 * Right split - we have to move the
4116 * existing record over to the left
4117 * leaf. The insert will be into the
4118 * newly created empty extent in the
4119 * right leaf.
4120 */
4121 tmprec = &right_el->l_recs[index];
4122 ocfs2_rotate_leaf(left_el, tmprec);
4123 el = left_el;
4124
4125 memset(tmprec, 0, sizeof(*tmprec));
4126 index = ocfs2_search_extent_list(left_el, cpos);
4127 BUG_ON(index == -1);
4128 }
4129 }
4130 } else {
4131 BUG_ON(!left_path);
4132 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4133 /*
4134 * Left path is easy - we can just allow the insert to
4135 * happen.
4136 */
4137 el = left_el;
4138 insert_el = left_el;
4139 index = ocfs2_search_extent_list(el, cpos);
4140 BUG_ON(index == -1);
4141 }
4142
4143 rec = &el->l_recs[index];
4144 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4145 split, rec, split_rec);
4146 ocfs2_rotate_leaf(insert_el, split_rec);
4147 }
4148
4149 /*
4150 * This function only does inserts on an allocation b-tree. For tree
4151 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4152 *
4153 * right_path is the path we want to do the actual insert
4154 * in. left_path should only be passed in if we need to update that
4155 * portion of the tree after an edge insert.
4156 */
4157 static int ocfs2_insert_path(handle_t *handle,
4158 struct ocfs2_extent_tree *et,
4159 struct ocfs2_path *left_path,
4160 struct ocfs2_path *right_path,
4161 struct ocfs2_extent_rec *insert_rec,
4162 struct ocfs2_insert_type *insert)
4163 {
4164 int ret, subtree_index;
4165 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4166
4167 if (left_path) {
4168 /*
4169 * There's a chance that left_path got passed back to
4170 * us without being accounted for in the
4171 * journal. Extend our transaction here to be sure we
4172 * can change those blocks.
4173 */
4174 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4175 if (ret < 0) {
4176 mlog_errno(ret);
4177 goto out;
4178 }
4179
4180 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4181 if (ret < 0) {
4182 mlog_errno(ret);
4183 goto out;
4184 }
4185 }
4186
4187 /*
4188 * Pass both paths to the journal. The majority of inserts
4189 * will be touching all components anyway.
4190 */
4191 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4192 if (ret < 0) {
4193 mlog_errno(ret);
4194 goto out;
4195 }
4196
4197 if (insert->ins_split != SPLIT_NONE) {
4198 /*
4199 * We could call ocfs2_insert_at_leaf() for some types
4200 * of splits, but it's easier to just let one separate
4201 * function sort it all out.
4202 */
4203 ocfs2_split_record(et, left_path, right_path,
4204 insert_rec, insert->ins_split);
4205
4206 /*
4207 * Split might have modified either leaf and we don't
4208 * have a guarantee that the later edge insert will
4209 * dirty this for us.
4210 */
4211 if (left_path)
4212 ocfs2_journal_dirty(handle,
4213 path_leaf_bh(left_path));
4214 } else
4215 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4216 insert);
4217
4218 ocfs2_journal_dirty(handle, leaf_bh);
4219
4220 if (left_path) {
4221 /*
4222 * The rotate code has indicated that we need to fix
4223 * up portions of the tree after the insert.
4224 *
4225 * XXX: Should we extend the transaction here?
4226 */
4227 subtree_index = ocfs2_find_subtree_root(et, left_path,
4228 right_path);
4229 ocfs2_complete_edge_insert(handle, left_path, right_path,
4230 subtree_index);
4231 }
4232
4233 ret = 0;
4234 out:
4235 return ret;
4236 }
4237
4238 static int ocfs2_do_insert_extent(handle_t *handle,
4239 struct ocfs2_extent_tree *et,
4240 struct ocfs2_extent_rec *insert_rec,
4241 struct ocfs2_insert_type *type)
4242 {
4243 int ret, rotate = 0;
4244 u32 cpos;
4245 struct ocfs2_path *right_path = NULL;
4246 struct ocfs2_path *left_path = NULL;
4247 struct ocfs2_extent_list *el;
4248
4249 el = et->et_root_el;
4250
4251 ret = ocfs2_et_root_journal_access(handle, et,
4252 OCFS2_JOURNAL_ACCESS_WRITE);
4253 if (ret) {
4254 mlog_errno(ret);
4255 goto out;
4256 }
4257
4258 if (le16_to_cpu(el->l_tree_depth) == 0) {
4259 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4260 goto out_update_clusters;
4261 }
4262
4263 right_path = ocfs2_new_path_from_et(et);
4264 if (!right_path) {
4265 ret = -ENOMEM;
4266 mlog_errno(ret);
4267 goto out;
4268 }
4269
4270 /*
4271 * Determine the path to start with. Rotations need the
4272 * rightmost path, everything else can go directly to the
4273 * target leaf.
4274 */
4275 cpos = le32_to_cpu(insert_rec->e_cpos);
4276 if (type->ins_appending == APPEND_NONE &&
4277 type->ins_contig == CONTIG_NONE) {
4278 rotate = 1;
4279 cpos = UINT_MAX;
4280 }
4281
4282 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4283 if (ret) {
4284 mlog_errno(ret);
4285 goto out;
4286 }
4287
4288 /*
4289 * Rotations and appends need special treatment - they modify
4290 * parts of the tree's above them.
4291 *
4292 * Both might pass back a path immediate to the left of the
4293 * one being inserted to. This will be cause
4294 * ocfs2_insert_path() to modify the rightmost records of
4295 * left_path to account for an edge insert.
4296 *
4297 * XXX: When modifying this code, keep in mind that an insert
4298 * can wind up skipping both of these two special cases...
4299 */
4300 if (rotate) {
4301 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4302 le32_to_cpu(insert_rec->e_cpos),
4303 right_path, &left_path);
4304 if (ret) {
4305 mlog_errno(ret);
4306 goto out;
4307 }
4308
4309 /*
4310 * ocfs2_rotate_tree_right() might have extended the
4311 * transaction without re-journaling our tree root.
4312 */
4313 ret = ocfs2_et_root_journal_access(handle, et,
4314 OCFS2_JOURNAL_ACCESS_WRITE);
4315 if (ret) {
4316 mlog_errno(ret);
4317 goto out;
4318 }
4319 } else if (type->ins_appending == APPEND_TAIL
4320 && type->ins_contig != CONTIG_LEFT) {
4321 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4322 right_path, &left_path);
4323 if (ret) {
4324 mlog_errno(ret);
4325 goto out;
4326 }
4327 }
4328
4329 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4330 insert_rec, type);
4331 if (ret) {
4332 mlog_errno(ret);
4333 goto out;
4334 }
4335
4336 out_update_clusters:
4337 if (type->ins_split == SPLIT_NONE)
4338 ocfs2_et_update_clusters(et,
4339 le16_to_cpu(insert_rec->e_leaf_clusters));
4340
4341 ocfs2_journal_dirty(handle, et->et_root_bh);
4342
4343 out:
4344 ocfs2_free_path(left_path);
4345 ocfs2_free_path(right_path);
4346
4347 return ret;
4348 }
4349
4350 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4351 struct ocfs2_path *path,
4352 struct ocfs2_extent_list *el, int index,
4353 struct ocfs2_extent_rec *split_rec,
4354 struct ocfs2_merge_ctxt *ctxt)
4355 {
4356 int status = 0;
4357 enum ocfs2_contig_type ret = CONTIG_NONE;
4358 u32 left_cpos, right_cpos;
4359 struct ocfs2_extent_rec *rec = NULL;
4360 struct ocfs2_extent_list *new_el;
4361 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4362 struct buffer_head *bh;
4363 struct ocfs2_extent_block *eb;
4364 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4365
4366 if (index > 0) {
4367 rec = &el->l_recs[index - 1];
4368 } else if (path->p_tree_depth > 0) {
4369 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4370 if (status)
4371 goto exit;
4372
4373 if (left_cpos != 0) {
4374 left_path = ocfs2_new_path_from_path(path);
4375 if (!left_path) {
4376 status = -ENOMEM;
4377 mlog_errno(status);
4378 goto exit;
4379 }
4380
4381 status = ocfs2_find_path(et->et_ci, left_path,
4382 left_cpos);
4383 if (status)
4384 goto free_left_path;
4385
4386 new_el = path_leaf_el(left_path);
4387
4388 if (le16_to_cpu(new_el->l_next_free_rec) !=
4389 le16_to_cpu(new_el->l_count)) {
4390 bh = path_leaf_bh(left_path);
4391 eb = (struct ocfs2_extent_block *)bh->b_data;
4392 status = ocfs2_error(sb,
4393 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4394 (unsigned long long)le64_to_cpu(eb->h_blkno),
4395 le16_to_cpu(new_el->l_next_free_rec),
4396 le16_to_cpu(new_el->l_count));
4397 goto free_left_path;
4398 }
4399 rec = &new_el->l_recs[
4400 le16_to_cpu(new_el->l_next_free_rec) - 1];
4401 }
4402 }
4403
4404 /*
4405 * We're careful to check for an empty extent record here -
4406 * the merge code will know what to do if it sees one.
4407 */
4408 if (rec) {
4409 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4410 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4411 ret = CONTIG_RIGHT;
4412 } else {
4413 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4414 }
4415 }
4416
4417 rec = NULL;
4418 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4419 rec = &el->l_recs[index + 1];
4420 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4421 path->p_tree_depth > 0) {
4422 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4423 if (status)
4424 goto free_left_path;
4425
4426 if (right_cpos == 0)
4427 goto free_left_path;
4428
4429 right_path = ocfs2_new_path_from_path(path);
4430 if (!right_path) {
4431 status = -ENOMEM;
4432 mlog_errno(status);
4433 goto free_left_path;
4434 }
4435
4436 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4437 if (status)
4438 goto free_right_path;
4439
4440 new_el = path_leaf_el(right_path);
4441 rec = &new_el->l_recs[0];
4442 if (ocfs2_is_empty_extent(rec)) {
4443 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4444 bh = path_leaf_bh(right_path);
4445 eb = (struct ocfs2_extent_block *)bh->b_data;
4446 status = ocfs2_error(sb,
4447 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4448 (unsigned long long)le64_to_cpu(eb->h_blkno),
4449 le16_to_cpu(new_el->l_next_free_rec));
4450 goto free_right_path;
4451 }
4452 rec = &new_el->l_recs[1];
4453 }
4454 }
4455
4456 if (rec) {
4457 enum ocfs2_contig_type contig_type;
4458
4459 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4460
4461 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4462 ret = CONTIG_LEFTRIGHT;
4463 else if (ret == CONTIG_NONE)
4464 ret = contig_type;
4465 }
4466
4467 free_right_path:
4468 ocfs2_free_path(right_path);
4469 free_left_path:
4470 ocfs2_free_path(left_path);
4471 exit:
4472 if (status == 0)
4473 ctxt->c_contig_type = ret;
4474
4475 return status;
4476 }
4477
4478 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4479 struct ocfs2_insert_type *insert,
4480 struct ocfs2_extent_list *el,
4481 struct ocfs2_extent_rec *insert_rec)
4482 {
4483 int i;
4484 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4485
4486 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4487
4488 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4489 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4490 insert_rec);
4491 if (contig_type != CONTIG_NONE) {
4492 insert->ins_contig_index = i;
4493 break;
4494 }
4495 }
4496 insert->ins_contig = contig_type;
4497
4498 if (insert->ins_contig != CONTIG_NONE) {
4499 struct ocfs2_extent_rec *rec =
4500 &el->l_recs[insert->ins_contig_index];
4501 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4502 le16_to_cpu(insert_rec->e_leaf_clusters);
4503
4504 /*
4505 * Caller might want us to limit the size of extents, don't
4506 * calculate contiguousness if we might exceed that limit.
4507 */
4508 if (et->et_max_leaf_clusters &&
4509 (len > et->et_max_leaf_clusters))
4510 insert->ins_contig = CONTIG_NONE;
4511 }
4512 }
4513
4514 /*
4515 * This should only be called against the righmost leaf extent list.
4516 *
4517 * ocfs2_figure_appending_type() will figure out whether we'll have to
4518 * insert at the tail of the rightmost leaf.
4519 *
4520 * This should also work against the root extent list for tree's with 0
4521 * depth. If we consider the root extent list to be the rightmost leaf node
4522 * then the logic here makes sense.
4523 */
4524 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4525 struct ocfs2_extent_list *el,
4526 struct ocfs2_extent_rec *insert_rec)
4527 {
4528 int i;
4529 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4530 struct ocfs2_extent_rec *rec;
4531
4532 insert->ins_appending = APPEND_NONE;
4533
4534 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4535
4536 if (!el->l_next_free_rec)
4537 goto set_tail_append;
4538
4539 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4540 /* Were all records empty? */
4541 if (le16_to_cpu(el->l_next_free_rec) == 1)
4542 goto set_tail_append;
4543 }
4544
4545 i = le16_to_cpu(el->l_next_free_rec) - 1;
4546 rec = &el->l_recs[i];
4547
4548 if (cpos >=
4549 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4550 goto set_tail_append;
4551
4552 return;
4553
4554 set_tail_append:
4555 insert->ins_appending = APPEND_TAIL;
4556 }
4557
4558 /*
4559 * Helper function called at the beginning of an insert.
4560 *
4561 * This computes a few things that are commonly used in the process of
4562 * inserting into the btree:
4563 * - Whether the new extent is contiguous with an existing one.
4564 * - The current tree depth.
4565 * - Whether the insert is an appending one.
4566 * - The total # of free records in the tree.
4567 *
4568 * All of the information is stored on the ocfs2_insert_type
4569 * structure.
4570 */
4571 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4572 struct buffer_head **last_eb_bh,
4573 struct ocfs2_extent_rec *insert_rec,
4574 int *free_records,
4575 struct ocfs2_insert_type *insert)
4576 {
4577 int ret;
4578 struct ocfs2_extent_block *eb;
4579 struct ocfs2_extent_list *el;
4580 struct ocfs2_path *path = NULL;
4581 struct buffer_head *bh = NULL;
4582
4583 insert->ins_split = SPLIT_NONE;
4584
4585 el = et->et_root_el;
4586 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4587
4588 if (el->l_tree_depth) {
4589 /*
4590 * If we have tree depth, we read in the
4591 * rightmost extent block ahead of time as
4592 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4593 * may want it later.
4594 */
4595 ret = ocfs2_read_extent_block(et->et_ci,
4596 ocfs2_et_get_last_eb_blk(et),
4597 &bh);
4598 if (ret) {
4599 mlog_errno(ret);
4600 goto out;
4601 }
4602 eb = (struct ocfs2_extent_block *) bh->b_data;
4603 el = &eb->h_list;
4604 }
4605
4606 /*
4607 * Unless we have a contiguous insert, we'll need to know if
4608 * there is room left in our allocation tree for another
4609 * extent record.
4610 *
4611 * XXX: This test is simplistic, we can search for empty
4612 * extent records too.
4613 */
4614 *free_records = le16_to_cpu(el->l_count) -
4615 le16_to_cpu(el->l_next_free_rec);
4616
4617 if (!insert->ins_tree_depth) {
4618 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4619 ocfs2_figure_appending_type(insert, el, insert_rec);
4620 return 0;
4621 }
4622
4623 path = ocfs2_new_path_from_et(et);
4624 if (!path) {
4625 ret = -ENOMEM;
4626 mlog_errno(ret);
4627 goto out;
4628 }
4629
4630 /*
4631 * In the case that we're inserting past what the tree
4632 * currently accounts for, ocfs2_find_path() will return for
4633 * us the rightmost tree path. This is accounted for below in
4634 * the appending code.
4635 */
4636 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4637 if (ret) {
4638 mlog_errno(ret);
4639 goto out;
4640 }
4641
4642 el = path_leaf_el(path);
4643
4644 /*
4645 * Now that we have the path, there's two things we want to determine:
4646 * 1) Contiguousness (also set contig_index if this is so)
4647 *
4648 * 2) Are we doing an append? We can trivially break this up
4649 * into two types of appends: simple record append, or a
4650 * rotate inside the tail leaf.
4651 */
4652 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4653
4654 /*
4655 * The insert code isn't quite ready to deal with all cases of
4656 * left contiguousness. Specifically, if it's an insert into
4657 * the 1st record in a leaf, it will require the adjustment of
4658 * cluster count on the last record of the path directly to it's
4659 * left. For now, just catch that case and fool the layers
4660 * above us. This works just fine for tree_depth == 0, which
4661 * is why we allow that above.
4662 */
4663 if (insert->ins_contig == CONTIG_LEFT &&
4664 insert->ins_contig_index == 0)
4665 insert->ins_contig = CONTIG_NONE;
4666
4667 /*
4668 * Ok, so we can simply compare against last_eb to figure out
4669 * whether the path doesn't exist. This will only happen in
4670 * the case that we're doing a tail append, so maybe we can
4671 * take advantage of that information somehow.
4672 */
4673 if (ocfs2_et_get_last_eb_blk(et) ==
4674 path_leaf_bh(path)->b_blocknr) {
4675 /*
4676 * Ok, ocfs2_find_path() returned us the rightmost
4677 * tree path. This might be an appending insert. There are
4678 * two cases:
4679 * 1) We're doing a true append at the tail:
4680 * -This might even be off the end of the leaf
4681 * 2) We're "appending" by rotating in the tail
4682 */
4683 ocfs2_figure_appending_type(insert, el, insert_rec);
4684 }
4685
4686 out:
4687 ocfs2_free_path(path);
4688
4689 if (ret == 0)
4690 *last_eb_bh = bh;
4691 else
4692 brelse(bh);
4693 return ret;
4694 }
4695
4696 /*
4697 * Insert an extent into a btree.
4698 *
4699 * The caller needs to update the owning btree's cluster count.
4700 */
4701 int ocfs2_insert_extent(handle_t *handle,
4702 struct ocfs2_extent_tree *et,
4703 u32 cpos,
4704 u64 start_blk,
4705 u32 new_clusters,
4706 u8 flags,
4707 struct ocfs2_alloc_context *meta_ac)
4708 {
4709 int status;
4710 int free_records;
4711 struct buffer_head *last_eb_bh = NULL;
4712 struct ocfs2_insert_type insert = {0, };
4713 struct ocfs2_extent_rec rec;
4714
4715 trace_ocfs2_insert_extent_start(
4716 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4717 cpos, new_clusters);
4718
4719 memset(&rec, 0, sizeof(rec));
4720 rec.e_cpos = cpu_to_le32(cpos);
4721 rec.e_blkno = cpu_to_le64(start_blk);
4722 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4723 rec.e_flags = flags;
4724 status = ocfs2_et_insert_check(et, &rec);
4725 if (status) {
4726 mlog_errno(status);
4727 goto bail;
4728 }
4729
4730 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4731 &free_records, &insert);
4732 if (status < 0) {
4733 mlog_errno(status);
4734 goto bail;
4735 }
4736
4737 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4738 insert.ins_contig_index, free_records,
4739 insert.ins_tree_depth);
4740
4741 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4742 status = ocfs2_grow_tree(handle, et,
4743 &insert.ins_tree_depth, &last_eb_bh,
4744 meta_ac);
4745 if (status) {
4746 mlog_errno(status);
4747 goto bail;
4748 }
4749 }
4750
4751 /* Finally, we can add clusters. This might rotate the tree for us. */
4752 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4753 if (status < 0)
4754 mlog_errno(status);
4755 else
4756 ocfs2_et_extent_map_insert(et, &rec);
4757
4758 bail:
4759 brelse(last_eb_bh);
4760
4761 return status;
4762 }
4763
4764 /*
4765 * Allcate and add clusters into the extent b-tree.
4766 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4767 * The extent b-tree's root is specified by et, and
4768 * it is not limited to the file storage. Any extent tree can use this
4769 * function if it implements the proper ocfs2_extent_tree.
4770 */
4771 int ocfs2_add_clusters_in_btree(handle_t *handle,
4772 struct ocfs2_extent_tree *et,
4773 u32 *logical_offset,
4774 u32 clusters_to_add,
4775 int mark_unwritten,
4776 struct ocfs2_alloc_context *data_ac,
4777 struct ocfs2_alloc_context *meta_ac,
4778 enum ocfs2_alloc_restarted *reason_ret)
4779 {
4780 int status = 0, err = 0;
4781 int need_free = 0;
4782 int free_extents;
4783 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4784 u32 bit_off, num_bits;
4785 u64 block;
4786 u8 flags = 0;
4787 struct ocfs2_super *osb =
4788 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4789
4790 BUG_ON(!clusters_to_add);
4791
4792 if (mark_unwritten)
4793 flags = OCFS2_EXT_UNWRITTEN;
4794
4795 free_extents = ocfs2_num_free_extents(et);
4796 if (free_extents < 0) {
4797 status = free_extents;
4798 mlog_errno(status);
4799 goto leave;
4800 }
4801
4802 /* there are two cases which could cause us to EAGAIN in the
4803 * we-need-more-metadata case:
4804 * 1) we haven't reserved *any*
4805 * 2) we are so fragmented, we've needed to add metadata too
4806 * many times. */
4807 if (!free_extents && !meta_ac) {
4808 err = -1;
4809 status = -EAGAIN;
4810 reason = RESTART_META;
4811 goto leave;
4812 } else if ((!free_extents)
4813 && (ocfs2_alloc_context_bits_left(meta_ac)
4814 < ocfs2_extend_meta_needed(et->et_root_el))) {
4815 err = -2;
4816 status = -EAGAIN;
4817 reason = RESTART_META;
4818 goto leave;
4819 }
4820
4821 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4822 clusters_to_add, &bit_off, &num_bits);
4823 if (status < 0) {
4824 if (status != -ENOSPC)
4825 mlog_errno(status);
4826 goto leave;
4827 }
4828
4829 BUG_ON(num_bits > clusters_to_add);
4830
4831 /* reserve our write early -- insert_extent may update the tree root */
4832 status = ocfs2_et_root_journal_access(handle, et,
4833 OCFS2_JOURNAL_ACCESS_WRITE);
4834 if (status < 0) {
4835 mlog_errno(status);
4836 need_free = 1;
4837 goto bail;
4838 }
4839
4840 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4841 trace_ocfs2_add_clusters_in_btree(
4842 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4843 bit_off, num_bits);
4844 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4845 num_bits, flags, meta_ac);
4846 if (status < 0) {
4847 mlog_errno(status);
4848 need_free = 1;
4849 goto bail;
4850 }
4851
4852 ocfs2_journal_dirty(handle, et->et_root_bh);
4853
4854 clusters_to_add -= num_bits;
4855 *logical_offset += num_bits;
4856
4857 if (clusters_to_add) {
4858 err = clusters_to_add;
4859 status = -EAGAIN;
4860 reason = RESTART_TRANS;
4861 }
4862
4863 bail:
4864 if (need_free) {
4865 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4866 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4867 bit_off, num_bits);
4868 else
4869 ocfs2_free_clusters(handle,
4870 data_ac->ac_inode,
4871 data_ac->ac_bh,
4872 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4873 num_bits);
4874 }
4875
4876 leave:
4877 if (reason_ret)
4878 *reason_ret = reason;
4879 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4880 return status;
4881 }
4882
4883 static void ocfs2_make_right_split_rec(struct super_block *sb,
4884 struct ocfs2_extent_rec *split_rec,
4885 u32 cpos,
4886 struct ocfs2_extent_rec *rec)
4887 {
4888 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4889 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4890
4891 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4892
4893 split_rec->e_cpos = cpu_to_le32(cpos);
4894 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4895
4896 split_rec->e_blkno = rec->e_blkno;
4897 le64_add_cpu(&split_rec->e_blkno,
4898 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4899
4900 split_rec->e_flags = rec->e_flags;
4901 }
4902
4903 static int ocfs2_split_and_insert(handle_t *handle,
4904 struct ocfs2_extent_tree *et,
4905 struct ocfs2_path *path,
4906 struct buffer_head **last_eb_bh,
4907 int split_index,
4908 struct ocfs2_extent_rec *orig_split_rec,
4909 struct ocfs2_alloc_context *meta_ac)
4910 {
4911 int ret = 0, depth;
4912 unsigned int insert_range, rec_range, do_leftright = 0;
4913 struct ocfs2_extent_rec tmprec;
4914 struct ocfs2_extent_list *rightmost_el;
4915 struct ocfs2_extent_rec rec;
4916 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4917 struct ocfs2_insert_type insert;
4918 struct ocfs2_extent_block *eb;
4919
4920 leftright:
4921 /*
4922 * Store a copy of the record on the stack - it might move
4923 * around as the tree is manipulated below.
4924 */
4925 rec = path_leaf_el(path)->l_recs[split_index];
4926
4927 rightmost_el = et->et_root_el;
4928
4929 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4930 if (depth) {
4931 BUG_ON(!(*last_eb_bh));
4932 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4933 rightmost_el = &eb->h_list;
4934 }
4935
4936 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4937 le16_to_cpu(rightmost_el->l_count)) {
4938 ret = ocfs2_grow_tree(handle, et,
4939 &depth, last_eb_bh, meta_ac);
4940 if (ret) {
4941 mlog_errno(ret);
4942 goto out;
4943 }
4944 }
4945
4946 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4947 insert.ins_appending = APPEND_NONE;
4948 insert.ins_contig = CONTIG_NONE;
4949 insert.ins_tree_depth = depth;
4950
4951 insert_range = le32_to_cpu(split_rec.e_cpos) +
4952 le16_to_cpu(split_rec.e_leaf_clusters);
4953 rec_range = le32_to_cpu(rec.e_cpos) +
4954 le16_to_cpu(rec.e_leaf_clusters);
4955
4956 if (split_rec.e_cpos == rec.e_cpos) {
4957 insert.ins_split = SPLIT_LEFT;
4958 } else if (insert_range == rec_range) {
4959 insert.ins_split = SPLIT_RIGHT;
4960 } else {
4961 /*
4962 * Left/right split. We fake this as a right split
4963 * first and then make a second pass as a left split.
4964 */
4965 insert.ins_split = SPLIT_RIGHT;
4966
4967 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4968 &tmprec, insert_range, &rec);
4969
4970 split_rec = tmprec;
4971
4972 BUG_ON(do_leftright);
4973 do_leftright = 1;
4974 }
4975
4976 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4977 if (ret) {
4978 mlog_errno(ret);
4979 goto out;
4980 }
4981
4982 if (do_leftright == 1) {
4983 u32 cpos;
4984 struct ocfs2_extent_list *el;
4985
4986 do_leftright++;
4987 split_rec = *orig_split_rec;
4988
4989 ocfs2_reinit_path(path, 1);
4990
4991 cpos = le32_to_cpu(split_rec.e_cpos);
4992 ret = ocfs2_find_path(et->et_ci, path, cpos);
4993 if (ret) {
4994 mlog_errno(ret);
4995 goto out;
4996 }
4997
4998 el = path_leaf_el(path);
4999 split_index = ocfs2_search_extent_list(el, cpos);
5000 if (split_index == -1) {
5001 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5002 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5003 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5004 cpos);
5005 ret = -EROFS;
5006 goto out;
5007 }
5008 goto leftright;
5009 }
5010 out:
5011
5012 return ret;
5013 }
5014
5015 static int ocfs2_replace_extent_rec(handle_t *handle,
5016 struct ocfs2_extent_tree *et,
5017 struct ocfs2_path *path,
5018 struct ocfs2_extent_list *el,
5019 int split_index,
5020 struct ocfs2_extent_rec *split_rec)
5021 {
5022 int ret;
5023
5024 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5025 path_num_items(path) - 1);
5026 if (ret) {
5027 mlog_errno(ret);
5028 goto out;
5029 }
5030
5031 el->l_recs[split_index] = *split_rec;
5032
5033 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5034 out:
5035 return ret;
5036 }
5037
5038 /*
5039 * Split part or all of the extent record at split_index in the leaf
5040 * pointed to by path. Merge with the contiguous extent record if needed.
5041 *
5042 * Care is taken to handle contiguousness so as to not grow the tree.
5043 *
5044 * meta_ac is not strictly necessary - we only truly need it if growth
5045 * of the tree is required. All other cases will degrade into a less
5046 * optimal tree layout.
5047 *
5048 * last_eb_bh should be the rightmost leaf block for any extent
5049 * btree. Since a split may grow the tree or a merge might shrink it,
5050 * the caller cannot trust the contents of that buffer after this call.
5051 *
5052 * This code is optimized for readability - several passes might be
5053 * made over certain portions of the tree. All of those blocks will
5054 * have been brought into cache (and pinned via the journal), so the
5055 * extra overhead is not expressed in terms of disk reads.
5056 */
5057 int ocfs2_split_extent(handle_t *handle,
5058 struct ocfs2_extent_tree *et,
5059 struct ocfs2_path *path,
5060 int split_index,
5061 struct ocfs2_extent_rec *split_rec,
5062 struct ocfs2_alloc_context *meta_ac,
5063 struct ocfs2_cached_dealloc_ctxt *dealloc)
5064 {
5065 int ret = 0;
5066 struct ocfs2_extent_list *el = path_leaf_el(path);
5067 struct buffer_head *last_eb_bh = NULL;
5068 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5069 struct ocfs2_merge_ctxt ctxt;
5070
5071 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5072 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5073 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5074 ret = -EIO;
5075 mlog_errno(ret);
5076 goto out;
5077 }
5078
5079 ret = ocfs2_figure_merge_contig_type(et, path, el,
5080 split_index,
5081 split_rec,
5082 &ctxt);
5083 if (ret) {
5084 mlog_errno(ret);
5085 goto out;
5086 }
5087
5088 /*
5089 * The core merge / split code wants to know how much room is
5090 * left in this allocation tree, so we pass the
5091 * rightmost extent list.
5092 */
5093 if (path->p_tree_depth) {
5094 ret = ocfs2_read_extent_block(et->et_ci,
5095 ocfs2_et_get_last_eb_blk(et),
5096 &last_eb_bh);
5097 if (ret) {
5098 mlog_errno(ret);
5099 goto out;
5100 }
5101 }
5102
5103 if (rec->e_cpos == split_rec->e_cpos &&
5104 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5105 ctxt.c_split_covers_rec = 1;
5106 else
5107 ctxt.c_split_covers_rec = 0;
5108
5109 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5110
5111 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5112 ctxt.c_has_empty_extent,
5113 ctxt.c_split_covers_rec);
5114
5115 if (ctxt.c_contig_type == CONTIG_NONE) {
5116 if (ctxt.c_split_covers_rec)
5117 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5118 split_index, split_rec);
5119 else
5120 ret = ocfs2_split_and_insert(handle, et, path,
5121 &last_eb_bh, split_index,
5122 split_rec, meta_ac);
5123 if (ret)
5124 mlog_errno(ret);
5125 } else {
5126 ret = ocfs2_try_to_merge_extent(handle, et, path,
5127 split_index, split_rec,
5128 dealloc, &ctxt);
5129 if (ret)
5130 mlog_errno(ret);
5131 }
5132
5133 out:
5134 brelse(last_eb_bh);
5135 return ret;
5136 }
5137
5138 /*
5139 * Change the flags of the already-existing extent at cpos for len clusters.
5140 *
5141 * new_flags: the flags we want to set.
5142 * clear_flags: the flags we want to clear.
5143 * phys: the new physical offset we want this new extent starts from.
5144 *
5145 * If the existing extent is larger than the request, initiate a
5146 * split. An attempt will be made at merging with adjacent extents.
5147 *
5148 * The caller is responsible for passing down meta_ac if we'll need it.
5149 */
5150 int ocfs2_change_extent_flag(handle_t *handle,
5151 struct ocfs2_extent_tree *et,
5152 u32 cpos, u32 len, u32 phys,
5153 struct ocfs2_alloc_context *meta_ac,
5154 struct ocfs2_cached_dealloc_ctxt *dealloc,
5155 int new_flags, int clear_flags)
5156 {
5157 int ret, index;
5158 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5159 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5160 struct ocfs2_extent_rec split_rec;
5161 struct ocfs2_path *left_path = NULL;
5162 struct ocfs2_extent_list *el;
5163 struct ocfs2_extent_rec *rec;
5164
5165 left_path = ocfs2_new_path_from_et(et);
5166 if (!left_path) {
5167 ret = -ENOMEM;
5168 mlog_errno(ret);
5169 goto out;
5170 }
5171
5172 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5173 if (ret) {
5174 mlog_errno(ret);
5175 goto out;
5176 }
5177 el = path_leaf_el(left_path);
5178
5179 index = ocfs2_search_extent_list(el, cpos);
5180 if (index == -1) {
5181 ocfs2_error(sb,
5182 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5183 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5184 cpos);
5185 ret = -EROFS;
5186 goto out;
5187 }
5188
5189 ret = -EIO;
5190 rec = &el->l_recs[index];
5191 if (new_flags && (rec->e_flags & new_flags)) {
5192 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5193 "extent that already had them\n",
5194 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5195 new_flags);
5196 goto out;
5197 }
5198
5199 if (clear_flags && !(rec->e_flags & clear_flags)) {
5200 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5201 "extent that didn't have them\n",
5202 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5203 clear_flags);
5204 goto out;
5205 }
5206
5207 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5208 split_rec.e_cpos = cpu_to_le32(cpos);
5209 split_rec.e_leaf_clusters = cpu_to_le16(len);
5210 split_rec.e_blkno = cpu_to_le64(start_blkno);
5211 split_rec.e_flags = rec->e_flags;
5212 if (new_flags)
5213 split_rec.e_flags |= new_flags;
5214 if (clear_flags)
5215 split_rec.e_flags &= ~clear_flags;
5216
5217 ret = ocfs2_split_extent(handle, et, left_path,
5218 index, &split_rec, meta_ac,
5219 dealloc);
5220 if (ret)
5221 mlog_errno(ret);
5222
5223 out:
5224 ocfs2_free_path(left_path);
5225 return ret;
5226
5227 }
5228
5229 /*
5230 * Mark the already-existing extent at cpos as written for len clusters.
5231 * This removes the unwritten extent flag.
5232 *
5233 * If the existing extent is larger than the request, initiate a
5234 * split. An attempt will be made at merging with adjacent extents.
5235 *
5236 * The caller is responsible for passing down meta_ac if we'll need it.
5237 */
5238 int ocfs2_mark_extent_written(struct inode *inode,
5239 struct ocfs2_extent_tree *et,
5240 handle_t *handle, u32 cpos, u32 len, u32 phys,
5241 struct ocfs2_alloc_context *meta_ac,
5242 struct ocfs2_cached_dealloc_ctxt *dealloc)
5243 {
5244 int ret;
5245
5246 trace_ocfs2_mark_extent_written(
5247 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5248 cpos, len, phys);
5249
5250 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5251 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5252 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5253 ret = -EROFS;
5254 goto out;
5255 }
5256
5257 /*
5258 * XXX: This should be fixed up so that we just re-insert the
5259 * next extent records.
5260 */
5261 ocfs2_et_extent_map_truncate(et, 0);
5262
5263 ret = ocfs2_change_extent_flag(handle, et, cpos,
5264 len, phys, meta_ac, dealloc,
5265 0, OCFS2_EXT_UNWRITTEN);
5266 if (ret)
5267 mlog_errno(ret);
5268
5269 out:
5270 return ret;
5271 }
5272
5273 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5274 struct ocfs2_path *path,
5275 int index, u32 new_range,
5276 struct ocfs2_alloc_context *meta_ac)
5277 {
5278 int ret, depth, credits;
5279 struct buffer_head *last_eb_bh = NULL;
5280 struct ocfs2_extent_block *eb;
5281 struct ocfs2_extent_list *rightmost_el, *el;
5282 struct ocfs2_extent_rec split_rec;
5283 struct ocfs2_extent_rec *rec;
5284 struct ocfs2_insert_type insert;
5285
5286 /*
5287 * Setup the record to split before we grow the tree.
5288 */
5289 el = path_leaf_el(path);
5290 rec = &el->l_recs[index];
5291 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5292 &split_rec, new_range, rec);
5293
5294 depth = path->p_tree_depth;
5295 if (depth > 0) {
5296 ret = ocfs2_read_extent_block(et->et_ci,
5297 ocfs2_et_get_last_eb_blk(et),
5298 &last_eb_bh);
5299 if (ret < 0) {
5300 mlog_errno(ret);
5301 goto out;
5302 }
5303
5304 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5305 rightmost_el = &eb->h_list;
5306 } else
5307 rightmost_el = path_leaf_el(path);
5308
5309 credits = path->p_tree_depth +
5310 ocfs2_extend_meta_needed(et->et_root_el);
5311 ret = ocfs2_extend_trans(handle, credits);
5312 if (ret) {
5313 mlog_errno(ret);
5314 goto out;
5315 }
5316
5317 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5318 le16_to_cpu(rightmost_el->l_count)) {
5319 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5320 meta_ac);
5321 if (ret) {
5322 mlog_errno(ret);
5323 goto out;
5324 }
5325 }
5326
5327 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5328 insert.ins_appending = APPEND_NONE;
5329 insert.ins_contig = CONTIG_NONE;
5330 insert.ins_split = SPLIT_RIGHT;
5331 insert.ins_tree_depth = depth;
5332
5333 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5334 if (ret)
5335 mlog_errno(ret);
5336
5337 out:
5338 brelse(last_eb_bh);
5339 return ret;
5340 }
5341
5342 static int ocfs2_truncate_rec(handle_t *handle,
5343 struct ocfs2_extent_tree *et,
5344 struct ocfs2_path *path, int index,
5345 struct ocfs2_cached_dealloc_ctxt *dealloc,
5346 u32 cpos, u32 len)
5347 {
5348 int ret;
5349 u32 left_cpos, rec_range, trunc_range;
5350 int is_rightmost_tree_rec = 0;
5351 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5352 struct ocfs2_path *left_path = NULL;
5353 struct ocfs2_extent_list *el = path_leaf_el(path);
5354 struct ocfs2_extent_rec *rec;
5355 struct ocfs2_extent_block *eb;
5356
5357 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5358 /* extend credit for ocfs2_remove_rightmost_path */
5359 ret = ocfs2_extend_rotate_transaction(handle, 0,
5360 jbd2_handle_buffer_credits(handle),
5361 path);
5362 if (ret) {
5363 mlog_errno(ret);
5364 goto out;
5365 }
5366
5367 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5368 if (ret) {
5369 mlog_errno(ret);
5370 goto out;
5371 }
5372
5373 index--;
5374 }
5375
5376 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5377 path->p_tree_depth) {
5378 /*
5379 * Check whether this is the rightmost tree record. If
5380 * we remove all of this record or part of its right
5381 * edge then an update of the record lengths above it
5382 * will be required.
5383 */
5384 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5385 if (eb->h_next_leaf_blk == 0)
5386 is_rightmost_tree_rec = 1;
5387 }
5388
5389 rec = &el->l_recs[index];
5390 if (index == 0 && path->p_tree_depth &&
5391 le32_to_cpu(rec->e_cpos) == cpos) {
5392 /*
5393 * Changing the leftmost offset (via partial or whole
5394 * record truncate) of an interior (or rightmost) path
5395 * means we have to update the subtree that is formed
5396 * by this leaf and the one to it's left.
5397 *
5398 * There are two cases we can skip:
5399 * 1) Path is the leftmost one in our btree.
5400 * 2) The leaf is rightmost and will be empty after
5401 * we remove the extent record - the rotate code
5402 * knows how to update the newly formed edge.
5403 */
5404
5405 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5406 if (ret) {
5407 mlog_errno(ret);
5408 goto out;
5409 }
5410
5411 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5412 left_path = ocfs2_new_path_from_path(path);
5413 if (!left_path) {
5414 ret = -ENOMEM;
5415 mlog_errno(ret);
5416 goto out;
5417 }
5418
5419 ret = ocfs2_find_path(et->et_ci, left_path,
5420 left_cpos);
5421 if (ret) {
5422 mlog_errno(ret);
5423 goto out;
5424 }
5425 }
5426 }
5427
5428 ret = ocfs2_extend_rotate_transaction(handle, 0,
5429 jbd2_handle_buffer_credits(handle),
5430 path);
5431 if (ret) {
5432 mlog_errno(ret);
5433 goto out;
5434 }
5435
5436 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5437 if (ret) {
5438 mlog_errno(ret);
5439 goto out;
5440 }
5441
5442 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5443 if (ret) {
5444 mlog_errno(ret);
5445 goto out;
5446 }
5447
5448 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5449 trunc_range = cpos + len;
5450
5451 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5452 int next_free;
5453
5454 memset(rec, 0, sizeof(*rec));
5455 ocfs2_cleanup_merge(el, index);
5456
5457 next_free = le16_to_cpu(el->l_next_free_rec);
5458 if (is_rightmost_tree_rec && next_free > 1) {
5459 /*
5460 * We skip the edge update if this path will
5461 * be deleted by the rotate code.
5462 */
5463 rec = &el->l_recs[next_free - 1];
5464 ocfs2_adjust_rightmost_records(handle, et, path,
5465 rec);
5466 }
5467 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5468 /* Remove leftmost portion of the record. */
5469 le32_add_cpu(&rec->e_cpos, len);
5470 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5471 le16_add_cpu(&rec->e_leaf_clusters, -len);
5472 } else if (rec_range == trunc_range) {
5473 /* Remove rightmost portion of the record */
5474 le16_add_cpu(&rec->e_leaf_clusters, -len);
5475 if (is_rightmost_tree_rec)
5476 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5477 } else {
5478 /* Caller should have trapped this. */
5479 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5480 "(%u, %u)\n",
5481 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5482 le32_to_cpu(rec->e_cpos),
5483 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5484 BUG();
5485 }
5486
5487 if (left_path) {
5488 int subtree_index;
5489
5490 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5491 ocfs2_complete_edge_insert(handle, left_path, path,
5492 subtree_index);
5493 }
5494
5495 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5496
5497 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5498 if (ret)
5499 mlog_errno(ret);
5500
5501 out:
5502 ocfs2_free_path(left_path);
5503 return ret;
5504 }
5505
5506 int ocfs2_remove_extent(handle_t *handle,
5507 struct ocfs2_extent_tree *et,
5508 u32 cpos, u32 len,
5509 struct ocfs2_alloc_context *meta_ac,
5510 struct ocfs2_cached_dealloc_ctxt *dealloc)
5511 {
5512 int ret, index;
5513 u32 rec_range, trunc_range;
5514 struct ocfs2_extent_rec *rec;
5515 struct ocfs2_extent_list *el;
5516 struct ocfs2_path *path = NULL;
5517
5518 /*
5519 * XXX: Why are we truncating to 0 instead of wherever this
5520 * affects us?
5521 */
5522 ocfs2_et_extent_map_truncate(et, 0);
5523
5524 path = ocfs2_new_path_from_et(et);
5525 if (!path) {
5526 ret = -ENOMEM;
5527 mlog_errno(ret);
5528 goto out;
5529 }
5530
5531 ret = ocfs2_find_path(et->et_ci, path, cpos);
5532 if (ret) {
5533 mlog_errno(ret);
5534 goto out;
5535 }
5536
5537 el = path_leaf_el(path);
5538 index = ocfs2_search_extent_list(el, cpos);
5539 if (index == -1) {
5540 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5541 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5542 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5543 cpos);
5544 ret = -EROFS;
5545 goto out;
5546 }
5547
5548 /*
5549 * We have 3 cases of extent removal:
5550 * 1) Range covers the entire extent rec
5551 * 2) Range begins or ends on one edge of the extent rec
5552 * 3) Range is in the middle of the extent rec (no shared edges)
5553 *
5554 * For case 1 we remove the extent rec and left rotate to
5555 * fill the hole.
5556 *
5557 * For case 2 we just shrink the existing extent rec, with a
5558 * tree update if the shrinking edge is also the edge of an
5559 * extent block.
5560 *
5561 * For case 3 we do a right split to turn the extent rec into
5562 * something case 2 can handle.
5563 */
5564 rec = &el->l_recs[index];
5565 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5566 trunc_range = cpos + len;
5567
5568 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5569
5570 trace_ocfs2_remove_extent(
5571 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5572 cpos, len, index, le32_to_cpu(rec->e_cpos),
5573 ocfs2_rec_clusters(el, rec));
5574
5575 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5576 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5577 cpos, len);
5578 if (ret) {
5579 mlog_errno(ret);
5580 goto out;
5581 }
5582 } else {
5583 ret = ocfs2_split_tree(handle, et, path, index,
5584 trunc_range, meta_ac);
5585 if (ret) {
5586 mlog_errno(ret);
5587 goto out;
5588 }
5589
5590 /*
5591 * The split could have manipulated the tree enough to
5592 * move the record location, so we have to look for it again.
5593 */
5594 ocfs2_reinit_path(path, 1);
5595
5596 ret = ocfs2_find_path(et->et_ci, path, cpos);
5597 if (ret) {
5598 mlog_errno(ret);
5599 goto out;
5600 }
5601
5602 el = path_leaf_el(path);
5603 index = ocfs2_search_extent_list(el, cpos);
5604 if (index == -1) {
5605 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5606 "Owner %llu: split at cpos %u lost record\n",
5607 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5608 cpos);
5609 ret = -EROFS;
5610 goto out;
5611 }
5612
5613 /*
5614 * Double check our values here. If anything is fishy,
5615 * it's easier to catch it at the top level.
5616 */
5617 rec = &el->l_recs[index];
5618 rec_range = le32_to_cpu(rec->e_cpos) +
5619 ocfs2_rec_clusters(el, rec);
5620 if (rec_range != trunc_range) {
5621 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5622 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5623 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5624 cpos, len, le32_to_cpu(rec->e_cpos),
5625 ocfs2_rec_clusters(el, rec));
5626 ret = -EROFS;
5627 goto out;
5628 }
5629
5630 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5631 cpos, len);
5632 if (ret)
5633 mlog_errno(ret);
5634 }
5635
5636 out:
5637 ocfs2_free_path(path);
5638 return ret;
5639 }
5640
5641 /*
5642 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5643 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5644 * number to reserve some extra blocks, and it only handles meta
5645 * data allocations.
5646 *
5647 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5648 * and punching holes.
5649 */
5650 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5651 struct ocfs2_extent_tree *et,
5652 u32 extents_to_split,
5653 struct ocfs2_alloc_context **ac,
5654 int extra_blocks)
5655 {
5656 int ret = 0, num_free_extents;
5657 unsigned int max_recs_needed = 2 * extents_to_split;
5658 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5659
5660 *ac = NULL;
5661
5662 num_free_extents = ocfs2_num_free_extents(et);
5663 if (num_free_extents < 0) {
5664 ret = num_free_extents;
5665 mlog_errno(ret);
5666 goto out;
5667 }
5668
5669 if (!num_free_extents ||
5670 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5671 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5672
5673 if (extra_blocks) {
5674 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5675 if (ret < 0) {
5676 if (ret != -ENOSPC)
5677 mlog_errno(ret);
5678 }
5679 }
5680
5681 out:
5682 if (ret) {
5683 if (*ac) {
5684 ocfs2_free_alloc_context(*ac);
5685 *ac = NULL;
5686 }
5687 }
5688
5689 return ret;
5690 }
5691
5692 int ocfs2_remove_btree_range(struct inode *inode,
5693 struct ocfs2_extent_tree *et,
5694 u32 cpos, u32 phys_cpos, u32 len, int flags,
5695 struct ocfs2_cached_dealloc_ctxt *dealloc,
5696 u64 refcount_loc, bool refcount_tree_locked)
5697 {
5698 int ret, credits = 0, extra_blocks = 0;
5699 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5700 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5701 struct inode *tl_inode = osb->osb_tl_inode;
5702 handle_t *handle;
5703 struct ocfs2_alloc_context *meta_ac = NULL;
5704 struct ocfs2_refcount_tree *ref_tree = NULL;
5705
5706 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5707 BUG_ON(!ocfs2_is_refcount_inode(inode));
5708
5709 if (!refcount_tree_locked) {
5710 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5711 &ref_tree, NULL);
5712 if (ret) {
5713 mlog_errno(ret);
5714 goto bail;
5715 }
5716 }
5717
5718 ret = ocfs2_prepare_refcount_change_for_del(inode,
5719 refcount_loc,
5720 phys_blkno,
5721 len,
5722 &credits,
5723 &extra_blocks);
5724 if (ret < 0) {
5725 mlog_errno(ret);
5726 goto bail;
5727 }
5728 }
5729
5730 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5731 extra_blocks);
5732 if (ret) {
5733 mlog_errno(ret);
5734 goto bail;
5735 }
5736
5737 inode_lock(tl_inode);
5738
5739 if (ocfs2_truncate_log_needs_flush(osb)) {
5740 ret = __ocfs2_flush_truncate_log(osb);
5741 if (ret < 0) {
5742 mlog_errno(ret);
5743 goto out;
5744 }
5745 }
5746
5747 handle = ocfs2_start_trans(osb,
5748 ocfs2_remove_extent_credits(osb->sb) + credits);
5749 if (IS_ERR(handle)) {
5750 ret = PTR_ERR(handle);
5751 mlog_errno(ret);
5752 goto out;
5753 }
5754
5755 ret = ocfs2_et_root_journal_access(handle, et,
5756 OCFS2_JOURNAL_ACCESS_WRITE);
5757 if (ret) {
5758 mlog_errno(ret);
5759 goto out_commit;
5760 }
5761
5762 dquot_free_space_nodirty(inode,
5763 ocfs2_clusters_to_bytes(inode->i_sb, len));
5764
5765 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5766 if (ret) {
5767 mlog_errno(ret);
5768 goto out_commit;
5769 }
5770
5771 ocfs2_et_update_clusters(et, -len);
5772 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5773
5774 ocfs2_journal_dirty(handle, et->et_root_bh);
5775
5776 if (phys_blkno) {
5777 if (flags & OCFS2_EXT_REFCOUNTED)
5778 ret = ocfs2_decrease_refcount(inode, handle,
5779 ocfs2_blocks_to_clusters(osb->sb,
5780 phys_blkno),
5781 len, meta_ac,
5782 dealloc, 1);
5783 else
5784 ret = ocfs2_truncate_log_append(osb, handle,
5785 phys_blkno, len);
5786 if (ret)
5787 mlog_errno(ret);
5788
5789 }
5790
5791 out_commit:
5792 ocfs2_commit_trans(osb, handle);
5793 out:
5794 inode_unlock(tl_inode);
5795 bail:
5796 if (meta_ac)
5797 ocfs2_free_alloc_context(meta_ac);
5798
5799 if (ref_tree)
5800 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5801
5802 return ret;
5803 }
5804
5805 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5806 {
5807 struct buffer_head *tl_bh = osb->osb_tl_bh;
5808 struct ocfs2_dinode *di;
5809 struct ocfs2_truncate_log *tl;
5810
5811 di = (struct ocfs2_dinode *) tl_bh->b_data;
5812 tl = &di->id2.i_dealloc;
5813
5814 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5815 "slot %d, invalid truncate log parameters: used = "
5816 "%u, count = %u\n", osb->slot_num,
5817 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5818 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5819 }
5820
5821 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5822 unsigned int new_start)
5823 {
5824 unsigned int tail_index;
5825 unsigned int current_tail;
5826
5827 /* No records, nothing to coalesce */
5828 if (!le16_to_cpu(tl->tl_used))
5829 return 0;
5830
5831 tail_index = le16_to_cpu(tl->tl_used) - 1;
5832 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5833 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5834
5835 return current_tail == new_start;
5836 }
5837
5838 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5839 handle_t *handle,
5840 u64 start_blk,
5841 unsigned int num_clusters)
5842 {
5843 int status, index;
5844 unsigned int start_cluster, tl_count;
5845 struct inode *tl_inode = osb->osb_tl_inode;
5846 struct buffer_head *tl_bh = osb->osb_tl_bh;
5847 struct ocfs2_dinode *di;
5848 struct ocfs2_truncate_log *tl;
5849
5850 BUG_ON(inode_trylock(tl_inode));
5851
5852 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5853
5854 di = (struct ocfs2_dinode *) tl_bh->b_data;
5855
5856 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5857 * by the underlying call to ocfs2_read_inode_block(), so any
5858 * corruption is a code bug */
5859 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5860
5861 tl = &di->id2.i_dealloc;
5862 tl_count = le16_to_cpu(tl->tl_count);
5863 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5864 tl_count == 0,
5865 "Truncate record count on #%llu invalid "
5866 "wanted %u, actual %u\n",
5867 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5868 ocfs2_truncate_recs_per_inode(osb->sb),
5869 le16_to_cpu(tl->tl_count));
5870
5871 /* Caller should have known to flush before calling us. */
5872 index = le16_to_cpu(tl->tl_used);
5873 if (index >= tl_count) {
5874 status = -ENOSPC;
5875 mlog_errno(status);
5876 goto bail;
5877 }
5878
5879 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5880 OCFS2_JOURNAL_ACCESS_WRITE);
5881 if (status < 0) {
5882 mlog_errno(status);
5883 goto bail;
5884 }
5885
5886 trace_ocfs2_truncate_log_append(
5887 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5888 start_cluster, num_clusters);
5889 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5890 /*
5891 * Move index back to the record we are coalescing with.
5892 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5893 */
5894 index--;
5895
5896 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5897 trace_ocfs2_truncate_log_append(
5898 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5899 index, le32_to_cpu(tl->tl_recs[index].t_start),
5900 num_clusters);
5901 } else {
5902 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5903 tl->tl_used = cpu_to_le16(index + 1);
5904 }
5905 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5906
5907 ocfs2_journal_dirty(handle, tl_bh);
5908
5909 osb->truncated_clusters += num_clusters;
5910 bail:
5911 return status;
5912 }
5913
5914 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5915 struct inode *data_alloc_inode,
5916 struct buffer_head *data_alloc_bh)
5917 {
5918 int status = 0;
5919 int i;
5920 unsigned int num_clusters;
5921 u64 start_blk;
5922 struct ocfs2_truncate_rec rec;
5923 struct ocfs2_dinode *di;
5924 struct ocfs2_truncate_log *tl;
5925 struct inode *tl_inode = osb->osb_tl_inode;
5926 struct buffer_head *tl_bh = osb->osb_tl_bh;
5927 handle_t *handle;
5928
5929 di = (struct ocfs2_dinode *) tl_bh->b_data;
5930 tl = &di->id2.i_dealloc;
5931 i = le16_to_cpu(tl->tl_used) - 1;
5932 while (i >= 0) {
5933 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5934 if (IS_ERR(handle)) {
5935 status = PTR_ERR(handle);
5936 mlog_errno(status);
5937 goto bail;
5938 }
5939
5940 /* Caller has given us at least enough credits to
5941 * update the truncate log dinode */
5942 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5943 OCFS2_JOURNAL_ACCESS_WRITE);
5944 if (status < 0) {
5945 mlog_errno(status);
5946 goto bail;
5947 }
5948
5949 tl->tl_used = cpu_to_le16(i);
5950
5951 ocfs2_journal_dirty(handle, tl_bh);
5952
5953 rec = tl->tl_recs[i];
5954 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5955 le32_to_cpu(rec.t_start));
5956 num_clusters = le32_to_cpu(rec.t_clusters);
5957
5958 /* if start_blk is not set, we ignore the record as
5959 * invalid. */
5960 if (start_blk) {
5961 trace_ocfs2_replay_truncate_records(
5962 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5963 i, le32_to_cpu(rec.t_start), num_clusters);
5964
5965 status = ocfs2_free_clusters(handle, data_alloc_inode,
5966 data_alloc_bh, start_blk,
5967 num_clusters);
5968 if (status < 0) {
5969 mlog_errno(status);
5970 goto bail;
5971 }
5972 }
5973
5974 ocfs2_commit_trans(osb, handle);
5975 i--;
5976 }
5977
5978 osb->truncated_clusters = 0;
5979
5980 bail:
5981 return status;
5982 }
5983
5984 /* Expects you to already be holding tl_inode->i_mutex */
5985 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5986 {
5987 int status;
5988 unsigned int num_to_flush;
5989 struct inode *tl_inode = osb->osb_tl_inode;
5990 struct inode *data_alloc_inode = NULL;
5991 struct buffer_head *tl_bh = osb->osb_tl_bh;
5992 struct buffer_head *data_alloc_bh = NULL;
5993 struct ocfs2_dinode *di;
5994 struct ocfs2_truncate_log *tl;
5995 struct ocfs2_journal *journal = osb->journal;
5996
5997 BUG_ON(inode_trylock(tl_inode));
5998
5999 di = (struct ocfs2_dinode *) tl_bh->b_data;
6000
6001 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6002 * by the underlying call to ocfs2_read_inode_block(), so any
6003 * corruption is a code bug */
6004 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6005
6006 tl = &di->id2.i_dealloc;
6007 num_to_flush = le16_to_cpu(tl->tl_used);
6008 trace_ocfs2_flush_truncate_log(
6009 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6010 num_to_flush);
6011 if (!num_to_flush) {
6012 status = 0;
6013 goto out;
6014 }
6015
6016 /* Appending truncate log(TA) and flushing truncate log(TF) are
6017 * two separated transactions. They can be both committed but not
6018 * checkpointed. If crash occurs then, both two transaction will be
6019 * replayed with several already released to global bitmap clusters.
6020 * Then truncate log will be replayed resulting in cluster double free.
6021 */
6022 jbd2_journal_lock_updates(journal->j_journal);
6023 status = jbd2_journal_flush(journal->j_journal);
6024 jbd2_journal_unlock_updates(journal->j_journal);
6025 if (status < 0) {
6026 mlog_errno(status);
6027 goto out;
6028 }
6029
6030 data_alloc_inode = ocfs2_get_system_file_inode(osb,
6031 GLOBAL_BITMAP_SYSTEM_INODE,
6032 OCFS2_INVALID_SLOT);
6033 if (!data_alloc_inode) {
6034 status = -EINVAL;
6035 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6036 goto out;
6037 }
6038
6039 inode_lock(data_alloc_inode);
6040
6041 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6042 if (status < 0) {
6043 mlog_errno(status);
6044 goto out_mutex;
6045 }
6046
6047 status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6048 data_alloc_bh);
6049 if (status < 0)
6050 mlog_errno(status);
6051
6052 brelse(data_alloc_bh);
6053 ocfs2_inode_unlock(data_alloc_inode, 1);
6054
6055 out_mutex:
6056 inode_unlock(data_alloc_inode);
6057 iput(data_alloc_inode);
6058
6059 out:
6060 return status;
6061 }
6062
6063 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6064 {
6065 int status;
6066 struct inode *tl_inode = osb->osb_tl_inode;
6067
6068 inode_lock(tl_inode);
6069 status = __ocfs2_flush_truncate_log(osb);
6070 inode_unlock(tl_inode);
6071
6072 return status;
6073 }
6074
6075 static void ocfs2_truncate_log_worker(struct work_struct *work)
6076 {
6077 int status;
6078 struct ocfs2_super *osb =
6079 container_of(work, struct ocfs2_super,
6080 osb_truncate_log_wq.work);
6081
6082 status = ocfs2_flush_truncate_log(osb);
6083 if (status < 0)
6084 mlog_errno(status);
6085 else
6086 ocfs2_init_steal_slots(osb);
6087 }
6088
6089 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6090 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6091 int cancel)
6092 {
6093 if (osb->osb_tl_inode &&
6094 atomic_read(&osb->osb_tl_disable) == 0) {
6095 /* We want to push off log flushes while truncates are
6096 * still running. */
6097 if (cancel)
6098 cancel_delayed_work(&osb->osb_truncate_log_wq);
6099
6100 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6101 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6102 }
6103 }
6104
6105 /*
6106 * Try to flush truncate logs if we can free enough clusters from it.
6107 * As for return value, "< 0" means error, "0" no space and "1" means
6108 * we have freed enough spaces and let the caller try to allocate again.
6109 */
6110 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6111 unsigned int needed)
6112 {
6113 tid_t target;
6114 int ret = 0;
6115 unsigned int truncated_clusters;
6116
6117 inode_lock(osb->osb_tl_inode);
6118 truncated_clusters = osb->truncated_clusters;
6119 inode_unlock(osb->osb_tl_inode);
6120
6121 /*
6122 * Check whether we can succeed in allocating if we free
6123 * the truncate log.
6124 */
6125 if (truncated_clusters < needed)
6126 goto out;
6127
6128 ret = ocfs2_flush_truncate_log(osb);
6129 if (ret) {
6130 mlog_errno(ret);
6131 goto out;
6132 }
6133
6134 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6135 jbd2_log_wait_commit(osb->journal->j_journal, target);
6136 ret = 1;
6137 }
6138 out:
6139 return ret;
6140 }
6141
6142 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6143 int slot_num,
6144 struct inode **tl_inode,
6145 struct buffer_head **tl_bh)
6146 {
6147 int status;
6148 struct inode *inode = NULL;
6149 struct buffer_head *bh = NULL;
6150
6151 inode = ocfs2_get_system_file_inode(osb,
6152 TRUNCATE_LOG_SYSTEM_INODE,
6153 slot_num);
6154 if (!inode) {
6155 status = -EINVAL;
6156 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6157 goto bail;
6158 }
6159
6160 status = ocfs2_read_inode_block(inode, &bh);
6161 if (status < 0) {
6162 iput(inode);
6163 mlog_errno(status);
6164 goto bail;
6165 }
6166
6167 *tl_inode = inode;
6168 *tl_bh = bh;
6169 bail:
6170 return status;
6171 }
6172
6173 /* called during the 1st stage of node recovery. we stamp a clean
6174 * truncate log and pass back a copy for processing later. if the
6175 * truncate log does not require processing, a *tl_copy is set to
6176 * NULL. */
6177 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6178 int slot_num,
6179 struct ocfs2_dinode **tl_copy)
6180 {
6181 int status;
6182 struct inode *tl_inode = NULL;
6183 struct buffer_head *tl_bh = NULL;
6184 struct ocfs2_dinode *di;
6185 struct ocfs2_truncate_log *tl;
6186
6187 *tl_copy = NULL;
6188
6189 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6190
6191 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6192 if (status < 0) {
6193 mlog_errno(status);
6194 goto bail;
6195 }
6196
6197 di = (struct ocfs2_dinode *) tl_bh->b_data;
6198
6199 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6200 * validated by the underlying call to ocfs2_read_inode_block(),
6201 * so any corruption is a code bug */
6202 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6203
6204 tl = &di->id2.i_dealloc;
6205 if (le16_to_cpu(tl->tl_used)) {
6206 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6207
6208 /*
6209 * Assuming the write-out below goes well, this copy will be
6210 * passed back to recovery for processing.
6211 */
6212 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6213 if (!(*tl_copy)) {
6214 status = -ENOMEM;
6215 mlog_errno(status);
6216 goto bail;
6217 }
6218
6219 /* All we need to do to clear the truncate log is set
6220 * tl_used. */
6221 tl->tl_used = 0;
6222
6223 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6224 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6225 if (status < 0) {
6226 mlog_errno(status);
6227 goto bail;
6228 }
6229 }
6230
6231 bail:
6232 iput(tl_inode);
6233 brelse(tl_bh);
6234
6235 if (status < 0) {
6236 kfree(*tl_copy);
6237 *tl_copy = NULL;
6238 mlog_errno(status);
6239 }
6240
6241 return status;
6242 }
6243
6244 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6245 struct ocfs2_dinode *tl_copy)
6246 {
6247 int status = 0;
6248 int i;
6249 unsigned int clusters, num_recs, start_cluster;
6250 u64 start_blk;
6251 handle_t *handle;
6252 struct inode *tl_inode = osb->osb_tl_inode;
6253 struct ocfs2_truncate_log *tl;
6254
6255 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6256 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6257 return -EINVAL;
6258 }
6259
6260 tl = &tl_copy->id2.i_dealloc;
6261 num_recs = le16_to_cpu(tl->tl_used);
6262 trace_ocfs2_complete_truncate_log_recovery(
6263 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6264 num_recs);
6265
6266 inode_lock(tl_inode);
6267 for(i = 0; i < num_recs; i++) {
6268 if (ocfs2_truncate_log_needs_flush(osb)) {
6269 status = __ocfs2_flush_truncate_log(osb);
6270 if (status < 0) {
6271 mlog_errno(status);
6272 goto bail_up;
6273 }
6274 }
6275
6276 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6277 if (IS_ERR(handle)) {
6278 status = PTR_ERR(handle);
6279 mlog_errno(status);
6280 goto bail_up;
6281 }
6282
6283 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6284 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6285 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6286
6287 status = ocfs2_truncate_log_append(osb, handle,
6288 start_blk, clusters);
6289 ocfs2_commit_trans(osb, handle);
6290 if (status < 0) {
6291 mlog_errno(status);
6292 goto bail_up;
6293 }
6294 }
6295
6296 bail_up:
6297 inode_unlock(tl_inode);
6298
6299 return status;
6300 }
6301
6302 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6303 {
6304 int status;
6305 struct inode *tl_inode = osb->osb_tl_inode;
6306
6307 atomic_set(&osb->osb_tl_disable, 1);
6308
6309 if (tl_inode) {
6310 cancel_delayed_work(&osb->osb_truncate_log_wq);
6311 flush_workqueue(osb->ocfs2_wq);
6312
6313 status = ocfs2_flush_truncate_log(osb);
6314 if (status < 0)
6315 mlog_errno(status);
6316
6317 brelse(osb->osb_tl_bh);
6318 iput(osb->osb_tl_inode);
6319 }
6320 }
6321
6322 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6323 {
6324 int status;
6325 struct inode *tl_inode = NULL;
6326 struct buffer_head *tl_bh = NULL;
6327
6328 status = ocfs2_get_truncate_log_info(osb,
6329 osb->slot_num,
6330 &tl_inode,
6331 &tl_bh);
6332 if (status < 0)
6333 mlog_errno(status);
6334
6335 /* ocfs2_truncate_log_shutdown keys on the existence of
6336 * osb->osb_tl_inode so we don't set any of the osb variables
6337 * until we're sure all is well. */
6338 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6339 ocfs2_truncate_log_worker);
6340 atomic_set(&osb->osb_tl_disable, 0);
6341 osb->osb_tl_bh = tl_bh;
6342 osb->osb_tl_inode = tl_inode;
6343
6344 return status;
6345 }
6346
6347 /*
6348 * Delayed de-allocation of suballocator blocks.
6349 *
6350 * Some sets of block de-allocations might involve multiple suballocator inodes.
6351 *
6352 * The locking for this can get extremely complicated, especially when
6353 * the suballocator inodes to delete from aren't known until deep
6354 * within an unrelated codepath.
6355 *
6356 * ocfs2_extent_block structures are a good example of this - an inode
6357 * btree could have been grown by any number of nodes each allocating
6358 * out of their own suballoc inode.
6359 *
6360 * These structures allow the delay of block de-allocation until a
6361 * later time, when locking of multiple cluster inodes won't cause
6362 * deadlock.
6363 */
6364
6365 /*
6366 * Describe a single bit freed from a suballocator. For the block
6367 * suballocators, it represents one block. For the global cluster
6368 * allocator, it represents some clusters and free_bit indicates
6369 * clusters number.
6370 */
6371 struct ocfs2_cached_block_free {
6372 struct ocfs2_cached_block_free *free_next;
6373 u64 free_bg;
6374 u64 free_blk;
6375 unsigned int free_bit;
6376 };
6377
6378 struct ocfs2_per_slot_free_list {
6379 struct ocfs2_per_slot_free_list *f_next_suballocator;
6380 int f_inode_type;
6381 int f_slot;
6382 struct ocfs2_cached_block_free *f_first;
6383 };
6384
6385 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6386 int sysfile_type,
6387 int slot,
6388 struct ocfs2_cached_block_free *head)
6389 {
6390 int ret;
6391 u64 bg_blkno;
6392 handle_t *handle;
6393 struct inode *inode;
6394 struct buffer_head *di_bh = NULL;
6395 struct ocfs2_cached_block_free *tmp;
6396
6397 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6398 if (!inode) {
6399 ret = -EINVAL;
6400 mlog_errno(ret);
6401 goto out;
6402 }
6403
6404 inode_lock(inode);
6405
6406 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6407 if (ret) {
6408 mlog_errno(ret);
6409 goto out_mutex;
6410 }
6411
6412 while (head) {
6413 if (head->free_bg)
6414 bg_blkno = head->free_bg;
6415 else
6416 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6417 head->free_bit);
6418 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6419 if (IS_ERR(handle)) {
6420 ret = PTR_ERR(handle);
6421 mlog_errno(ret);
6422 goto out_unlock;
6423 }
6424
6425 trace_ocfs2_free_cached_blocks(
6426 (unsigned long long)head->free_blk, head->free_bit);
6427
6428 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6429 head->free_bit, bg_blkno, 1);
6430 if (ret)
6431 mlog_errno(ret);
6432
6433 ocfs2_commit_trans(osb, handle);
6434
6435 tmp = head;
6436 head = head->free_next;
6437 kfree(tmp);
6438 }
6439
6440 out_unlock:
6441 ocfs2_inode_unlock(inode, 1);
6442 brelse(di_bh);
6443 out_mutex:
6444 inode_unlock(inode);
6445 iput(inode);
6446 out:
6447 while(head) {
6448 /* Premature exit may have left some dangling items. */
6449 tmp = head;
6450 head = head->free_next;
6451 kfree(tmp);
6452 }
6453
6454 return ret;
6455 }
6456
6457 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6458 u64 blkno, unsigned int bit)
6459 {
6460 int ret = 0;
6461 struct ocfs2_cached_block_free *item;
6462
6463 item = kzalloc(sizeof(*item), GFP_NOFS);
6464 if (item == NULL) {
6465 ret = -ENOMEM;
6466 mlog_errno(ret);
6467 return ret;
6468 }
6469
6470 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6471
6472 item->free_blk = blkno;
6473 item->free_bit = bit;
6474 item->free_next = ctxt->c_global_allocator;
6475
6476 ctxt->c_global_allocator = item;
6477 return ret;
6478 }
6479
6480 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6481 struct ocfs2_cached_block_free *head)
6482 {
6483 struct ocfs2_cached_block_free *tmp;
6484 struct inode *tl_inode = osb->osb_tl_inode;
6485 handle_t *handle;
6486 int ret = 0;
6487
6488 inode_lock(tl_inode);
6489
6490 while (head) {
6491 if (ocfs2_truncate_log_needs_flush(osb)) {
6492 ret = __ocfs2_flush_truncate_log(osb);
6493 if (ret < 0) {
6494 mlog_errno(ret);
6495 break;
6496 }
6497 }
6498
6499 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6500 if (IS_ERR(handle)) {
6501 ret = PTR_ERR(handle);
6502 mlog_errno(ret);
6503 break;
6504 }
6505
6506 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6507 head->free_bit);
6508
6509 ocfs2_commit_trans(osb, handle);
6510 tmp = head;
6511 head = head->free_next;
6512 kfree(tmp);
6513
6514 if (ret < 0) {
6515 mlog_errno(ret);
6516 break;
6517 }
6518 }
6519
6520 inode_unlock(tl_inode);
6521
6522 while (head) {
6523 /* Premature exit may have left some dangling items. */
6524 tmp = head;
6525 head = head->free_next;
6526 kfree(tmp);
6527 }
6528
6529 return ret;
6530 }
6531
6532 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6533 struct ocfs2_cached_dealloc_ctxt *ctxt)
6534 {
6535 int ret = 0, ret2;
6536 struct ocfs2_per_slot_free_list *fl;
6537
6538 if (!ctxt)
6539 return 0;
6540
6541 while (ctxt->c_first_suballocator) {
6542 fl = ctxt->c_first_suballocator;
6543
6544 if (fl->f_first) {
6545 trace_ocfs2_run_deallocs(fl->f_inode_type,
6546 fl->f_slot);
6547 ret2 = ocfs2_free_cached_blocks(osb,
6548 fl->f_inode_type,
6549 fl->f_slot,
6550 fl->f_first);
6551 if (ret2)
6552 mlog_errno(ret2);
6553 if (!ret)
6554 ret = ret2;
6555 }
6556
6557 ctxt->c_first_suballocator = fl->f_next_suballocator;
6558 kfree(fl);
6559 }
6560
6561 if (ctxt->c_global_allocator) {
6562 ret2 = ocfs2_free_cached_clusters(osb,
6563 ctxt->c_global_allocator);
6564 if (ret2)
6565 mlog_errno(ret2);
6566 if (!ret)
6567 ret = ret2;
6568
6569 ctxt->c_global_allocator = NULL;
6570 }
6571
6572 return ret;
6573 }
6574
6575 static struct ocfs2_per_slot_free_list *
6576 ocfs2_find_per_slot_free_list(int type,
6577 int slot,
6578 struct ocfs2_cached_dealloc_ctxt *ctxt)
6579 {
6580 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6581
6582 while (fl) {
6583 if (fl->f_inode_type == type && fl->f_slot == slot)
6584 return fl;
6585
6586 fl = fl->f_next_suballocator;
6587 }
6588
6589 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6590 if (fl) {
6591 fl->f_inode_type = type;
6592 fl->f_slot = slot;
6593 fl->f_first = NULL;
6594 fl->f_next_suballocator = ctxt->c_first_suballocator;
6595
6596 ctxt->c_first_suballocator = fl;
6597 }
6598 return fl;
6599 }
6600
6601 static struct ocfs2_per_slot_free_list *
6602 ocfs2_find_preferred_free_list(int type,
6603 int preferred_slot,
6604 int *real_slot,
6605 struct ocfs2_cached_dealloc_ctxt *ctxt)
6606 {
6607 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6608
6609 while (fl) {
6610 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6611 *real_slot = fl->f_slot;
6612 return fl;
6613 }
6614
6615 fl = fl->f_next_suballocator;
6616 }
6617
6618 /* If we can't find any free list matching preferred slot, just use
6619 * the first one.
6620 */
6621 fl = ctxt->c_first_suballocator;
6622 *real_slot = fl->f_slot;
6623
6624 return fl;
6625 }
6626
6627 /* Return Value 1 indicates empty */
6628 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6629 {
6630 struct ocfs2_per_slot_free_list *fl = NULL;
6631
6632 if (!et->et_dealloc)
6633 return 1;
6634
6635 fl = et->et_dealloc->c_first_suballocator;
6636 if (!fl)
6637 return 1;
6638
6639 if (!fl->f_first)
6640 return 1;
6641
6642 return 0;
6643 }
6644
6645 /* If extent was deleted from tree due to extent rotation and merging, and
6646 * no metadata is reserved ahead of time. Try to reuse some extents
6647 * just deleted. This is only used to reuse extent blocks.
6648 * It is supposed to find enough extent blocks in dealloc if our estimation
6649 * on metadata is accurate.
6650 */
6651 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6652 struct ocfs2_extent_tree *et,
6653 struct buffer_head **new_eb_bh,
6654 int blk_wanted, int *blk_given)
6655 {
6656 int i, status = 0, real_slot;
6657 struct ocfs2_cached_dealloc_ctxt *dealloc;
6658 struct ocfs2_per_slot_free_list *fl;
6659 struct ocfs2_cached_block_free *bf;
6660 struct ocfs2_extent_block *eb;
6661 struct ocfs2_super *osb =
6662 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6663
6664 *blk_given = 0;
6665
6666 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6667 * tell upper caller dealloc can't provide any block and it should
6668 * ask for alloc to claim more space.
6669 */
6670 dealloc = et->et_dealloc;
6671 if (!dealloc)
6672 goto bail;
6673
6674 for (i = 0; i < blk_wanted; i++) {
6675 /* Prefer to use local slot */
6676 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6677 osb->slot_num, &real_slot,
6678 dealloc);
6679 /* If no more block can be reused, we should claim more
6680 * from alloc. Just return here normally.
6681 */
6682 if (!fl) {
6683 status = 0;
6684 break;
6685 }
6686
6687 bf = fl->f_first;
6688 fl->f_first = bf->free_next;
6689
6690 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6691 if (new_eb_bh[i] == NULL) {
6692 status = -ENOMEM;
6693 mlog_errno(status);
6694 goto bail;
6695 }
6696
6697 mlog(0, "Reusing block(%llu) from "
6698 "dealloc(local slot:%d, real slot:%d)\n",
6699 bf->free_blk, osb->slot_num, real_slot);
6700
6701 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6702
6703 status = ocfs2_journal_access_eb(handle, et->et_ci,
6704 new_eb_bh[i],
6705 OCFS2_JOURNAL_ACCESS_CREATE);
6706 if (status < 0) {
6707 mlog_errno(status);
6708 goto bail;
6709 }
6710
6711 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6712 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6713
6714 /* We can't guarantee that buffer head is still cached, so
6715 * polutlate the extent block again.
6716 */
6717 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6718 eb->h_blkno = cpu_to_le64(bf->free_blk);
6719 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6720 eb->h_suballoc_slot = cpu_to_le16(real_slot);
6721 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6722 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6723 eb->h_list.l_count =
6724 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6725
6726 /* We'll also be dirtied by the caller, so
6727 * this isn't absolutely necessary.
6728 */
6729 ocfs2_journal_dirty(handle, new_eb_bh[i]);
6730
6731 if (!fl->f_first) {
6732 dealloc->c_first_suballocator = fl->f_next_suballocator;
6733 kfree(fl);
6734 }
6735 kfree(bf);
6736 }
6737
6738 *blk_given = i;
6739
6740 bail:
6741 if (unlikely(status < 0)) {
6742 for (i = 0; i < blk_wanted; i++)
6743 brelse(new_eb_bh[i]);
6744 }
6745
6746 return status;
6747 }
6748
6749 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6750 int type, int slot, u64 suballoc,
6751 u64 blkno, unsigned int bit)
6752 {
6753 int ret;
6754 struct ocfs2_per_slot_free_list *fl;
6755 struct ocfs2_cached_block_free *item;
6756
6757 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6758 if (fl == NULL) {
6759 ret = -ENOMEM;
6760 mlog_errno(ret);
6761 goto out;
6762 }
6763
6764 item = kzalloc(sizeof(*item), GFP_NOFS);
6765 if (item == NULL) {
6766 ret = -ENOMEM;
6767 mlog_errno(ret);
6768 goto out;
6769 }
6770
6771 trace_ocfs2_cache_block_dealloc(type, slot,
6772 (unsigned long long)suballoc,
6773 (unsigned long long)blkno, bit);
6774
6775 item->free_bg = suballoc;
6776 item->free_blk = blkno;
6777 item->free_bit = bit;
6778 item->free_next = fl->f_first;
6779
6780 fl->f_first = item;
6781
6782 ret = 0;
6783 out:
6784 return ret;
6785 }
6786
6787 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6788 struct ocfs2_extent_block *eb)
6789 {
6790 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6791 le16_to_cpu(eb->h_suballoc_slot),
6792 le64_to_cpu(eb->h_suballoc_loc),
6793 le64_to_cpu(eb->h_blkno),
6794 le16_to_cpu(eb->h_suballoc_bit));
6795 }
6796
6797 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6798 {
6799 set_buffer_uptodate(bh);
6800 mark_buffer_dirty(bh);
6801 return 0;
6802 }
6803
6804 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6805 unsigned int from, unsigned int to,
6806 struct page *page, int zero, u64 *phys)
6807 {
6808 int ret, partial = 0;
6809 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6810 loff_t length = to - from;
6811
6812 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6813 if (ret)
6814 mlog_errno(ret);
6815
6816 if (zero)
6817 zero_user_segment(page, from, to);
6818
6819 /*
6820 * Need to set the buffers we zero'd into uptodate
6821 * here if they aren't - ocfs2_map_page_blocks()
6822 * might've skipped some
6823 */
6824 ret = walk_page_buffers(handle, page_buffers(page),
6825 from, to, &partial,
6826 ocfs2_zero_func);
6827 if (ret < 0)
6828 mlog_errno(ret);
6829 else if (ocfs2_should_order_data(inode)) {
6830 ret = ocfs2_jbd2_inode_add_write(handle, inode,
6831 start_byte, length);
6832 if (ret < 0)
6833 mlog_errno(ret);
6834 }
6835
6836 if (!partial)
6837 SetPageUptodate(page);
6838
6839 flush_dcache_page(page);
6840 }
6841
6842 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6843 loff_t end, struct page **pages,
6844 int numpages, u64 phys, handle_t *handle)
6845 {
6846 int i;
6847 struct page *page;
6848 unsigned int from, to = PAGE_SIZE;
6849 struct super_block *sb = inode->i_sb;
6850
6851 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6852
6853 if (numpages == 0)
6854 goto out;
6855
6856 to = PAGE_SIZE;
6857 for(i = 0; i < numpages; i++) {
6858 page = pages[i];
6859
6860 from = start & (PAGE_SIZE - 1);
6861 if ((end >> PAGE_SHIFT) == page->index)
6862 to = end & (PAGE_SIZE - 1);
6863
6864 BUG_ON(from > PAGE_SIZE);
6865 BUG_ON(to > PAGE_SIZE);
6866
6867 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6868 &phys);
6869
6870 start = (page->index + 1) << PAGE_SHIFT;
6871 }
6872 out:
6873 if (pages)
6874 ocfs2_unlock_and_free_pages(pages, numpages);
6875 }
6876
6877 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6878 struct page **pages, int *num)
6879 {
6880 int numpages, ret = 0;
6881 struct address_space *mapping = inode->i_mapping;
6882 unsigned long index;
6883 loff_t last_page_bytes;
6884
6885 BUG_ON(start > end);
6886
6887 numpages = 0;
6888 last_page_bytes = PAGE_ALIGN(end);
6889 index = start >> PAGE_SHIFT;
6890 do {
6891 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6892 if (!pages[numpages]) {
6893 ret = -ENOMEM;
6894 mlog_errno(ret);
6895 goto out;
6896 }
6897
6898 numpages++;
6899 index++;
6900 } while (index < (last_page_bytes >> PAGE_SHIFT));
6901
6902 out:
6903 if (ret != 0) {
6904 if (pages)
6905 ocfs2_unlock_and_free_pages(pages, numpages);
6906 numpages = 0;
6907 }
6908
6909 *num = numpages;
6910
6911 return ret;
6912 }
6913
6914 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6915 struct page **pages, int *num)
6916 {
6917 struct super_block *sb = inode->i_sb;
6918
6919 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6920 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6921
6922 return ocfs2_grab_pages(inode, start, end, pages, num);
6923 }
6924
6925 /*
6926 * Zero the area past i_size but still within an allocated
6927 * cluster. This avoids exposing nonzero data on subsequent file
6928 * extends.
6929 *
6930 * We need to call this before i_size is updated on the inode because
6931 * otherwise block_write_full_page() will skip writeout of pages past
6932 * i_size. The new_i_size parameter is passed for this reason.
6933 */
6934 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6935 u64 range_start, u64 range_end)
6936 {
6937 int ret = 0, numpages;
6938 struct page **pages = NULL;
6939 u64 phys;
6940 unsigned int ext_flags;
6941 struct super_block *sb = inode->i_sb;
6942
6943 /*
6944 * File systems which don't support sparse files zero on every
6945 * extend.
6946 */
6947 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6948 return 0;
6949
6950 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6951 sizeof(struct page *), GFP_NOFS);
6952 if (pages == NULL) {
6953 ret = -ENOMEM;
6954 mlog_errno(ret);
6955 goto out;
6956 }
6957
6958 if (range_start == range_end)
6959 goto out;
6960
6961 ret = ocfs2_extent_map_get_blocks(inode,
6962 range_start >> sb->s_blocksize_bits,
6963 &phys, NULL, &ext_flags);
6964 if (ret) {
6965 mlog_errno(ret);
6966 goto out;
6967 }
6968
6969 /*
6970 * Tail is a hole, or is marked unwritten. In either case, we
6971 * can count on read and write to return/push zero's.
6972 */
6973 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6974 goto out;
6975
6976 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6977 &numpages);
6978 if (ret) {
6979 mlog_errno(ret);
6980 goto out;
6981 }
6982
6983 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6984 numpages, phys, handle);
6985
6986 /*
6987 * Initiate writeout of the pages we zero'd here. We don't
6988 * wait on them - the truncate_inode_pages() call later will
6989 * do that for us.
6990 */
6991 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6992 range_end - 1);
6993 if (ret)
6994 mlog_errno(ret);
6995
6996 out:
6997 kfree(pages);
6998
6999 return ret;
7000 }
7001
7002 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7003 struct ocfs2_dinode *di)
7004 {
7005 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7006 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7007
7008 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7009 memset(&di->id2, 0, blocksize -
7010 offsetof(struct ocfs2_dinode, id2) -
7011 xattrsize);
7012 else
7013 memset(&di->id2, 0, blocksize -
7014 offsetof(struct ocfs2_dinode, id2));
7015 }
7016
7017 void ocfs2_dinode_new_extent_list(struct inode *inode,
7018 struct ocfs2_dinode *di)
7019 {
7020 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7021 di->id2.i_list.l_tree_depth = 0;
7022 di->id2.i_list.l_next_free_rec = 0;
7023 di->id2.i_list.l_count = cpu_to_le16(
7024 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7025 }
7026
7027 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7028 {
7029 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7030 struct ocfs2_inline_data *idata = &di->id2.i_data;
7031
7032 spin_lock(&oi->ip_lock);
7033 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7034 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7035 spin_unlock(&oi->ip_lock);
7036
7037 /*
7038 * We clear the entire i_data structure here so that all
7039 * fields can be properly initialized.
7040 */
7041 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7042
7043 idata->id_count = cpu_to_le16(
7044 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7045 }
7046
7047 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7048 struct buffer_head *di_bh)
7049 {
7050 int ret, i, has_data, num_pages = 0;
7051 int need_free = 0;
7052 u32 bit_off, num;
7053 handle_t *handle;
7054 u64 block;
7055 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7056 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7057 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7058 struct ocfs2_alloc_context *data_ac = NULL;
7059 struct page **pages = NULL;
7060 loff_t end = osb->s_clustersize;
7061 struct ocfs2_extent_tree et;
7062 int did_quota = 0;
7063
7064 has_data = i_size_read(inode) ? 1 : 0;
7065
7066 if (has_data) {
7067 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7068 sizeof(struct page *), GFP_NOFS);
7069 if (pages == NULL) {
7070 ret = -ENOMEM;
7071 mlog_errno(ret);
7072 return ret;
7073 }
7074
7075 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7076 if (ret) {
7077 mlog_errno(ret);
7078 goto free_pages;
7079 }
7080 }
7081
7082 handle = ocfs2_start_trans(osb,
7083 ocfs2_inline_to_extents_credits(osb->sb));
7084 if (IS_ERR(handle)) {
7085 ret = PTR_ERR(handle);
7086 mlog_errno(ret);
7087 goto out;
7088 }
7089
7090 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7091 OCFS2_JOURNAL_ACCESS_WRITE);
7092 if (ret) {
7093 mlog_errno(ret);
7094 goto out_commit;
7095 }
7096
7097 if (has_data) {
7098 unsigned int page_end;
7099 u64 phys;
7100
7101 ret = dquot_alloc_space_nodirty(inode,
7102 ocfs2_clusters_to_bytes(osb->sb, 1));
7103 if (ret)
7104 goto out_commit;
7105 did_quota = 1;
7106
7107 data_ac->ac_resv = &oi->ip_la_data_resv;
7108
7109 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7110 &num);
7111 if (ret) {
7112 mlog_errno(ret);
7113 goto out_commit;
7114 }
7115
7116 /*
7117 * Save two copies, one for insert, and one that can
7118 * be changed by ocfs2_map_and_dirty_page() below.
7119 */
7120 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7121
7122 /*
7123 * Non sparse file systems zero on extend, so no need
7124 * to do that now.
7125 */
7126 if (!ocfs2_sparse_alloc(osb) &&
7127 PAGE_SIZE < osb->s_clustersize)
7128 end = PAGE_SIZE;
7129
7130 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7131 if (ret) {
7132 mlog_errno(ret);
7133 need_free = 1;
7134 goto out_commit;
7135 }
7136
7137 /*
7138 * This should populate the 1st page for us and mark
7139 * it up to date.
7140 */
7141 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7142 if (ret) {
7143 mlog_errno(ret);
7144 need_free = 1;
7145 goto out_unlock;
7146 }
7147
7148 page_end = PAGE_SIZE;
7149 if (PAGE_SIZE > osb->s_clustersize)
7150 page_end = osb->s_clustersize;
7151
7152 for (i = 0; i < num_pages; i++)
7153 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7154 pages[i], i > 0, &phys);
7155 }
7156
7157 spin_lock(&oi->ip_lock);
7158 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7159 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7160 spin_unlock(&oi->ip_lock);
7161
7162 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7163 ocfs2_dinode_new_extent_list(inode, di);
7164
7165 ocfs2_journal_dirty(handle, di_bh);
7166
7167 if (has_data) {
7168 /*
7169 * An error at this point should be extremely rare. If
7170 * this proves to be false, we could always re-build
7171 * the in-inode data from our pages.
7172 */
7173 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7174 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7175 if (ret) {
7176 mlog_errno(ret);
7177 need_free = 1;
7178 goto out_unlock;
7179 }
7180
7181 inode->i_blocks = ocfs2_inode_sector_count(inode);
7182 }
7183
7184 out_unlock:
7185 if (pages)
7186 ocfs2_unlock_and_free_pages(pages, num_pages);
7187
7188 out_commit:
7189 if (ret < 0 && did_quota)
7190 dquot_free_space_nodirty(inode,
7191 ocfs2_clusters_to_bytes(osb->sb, 1));
7192
7193 if (need_free) {
7194 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7195 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7196 bit_off, num);
7197 else
7198 ocfs2_free_clusters(handle,
7199 data_ac->ac_inode,
7200 data_ac->ac_bh,
7201 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7202 num);
7203 }
7204
7205 ocfs2_commit_trans(osb, handle);
7206
7207 out:
7208 if (data_ac)
7209 ocfs2_free_alloc_context(data_ac);
7210 free_pages:
7211 kfree(pages);
7212 return ret;
7213 }
7214
7215 /*
7216 * It is expected, that by the time you call this function,
7217 * inode->i_size and fe->i_size have been adjusted.
7218 *
7219 * WARNING: This will kfree the truncate context
7220 */
7221 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7222 struct inode *inode,
7223 struct buffer_head *di_bh)
7224 {
7225 int status = 0, i, flags = 0;
7226 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7227 u64 blkno = 0;
7228 struct ocfs2_extent_list *el;
7229 struct ocfs2_extent_rec *rec;
7230 struct ocfs2_path *path = NULL;
7231 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7232 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7233 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7234 struct ocfs2_extent_tree et;
7235 struct ocfs2_cached_dealloc_ctxt dealloc;
7236 struct ocfs2_refcount_tree *ref_tree = NULL;
7237
7238 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7239 ocfs2_init_dealloc_ctxt(&dealloc);
7240
7241 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7242 i_size_read(inode));
7243
7244 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7245 ocfs2_journal_access_di);
7246 if (!path) {
7247 status = -ENOMEM;
7248 mlog_errno(status);
7249 goto bail;
7250 }
7251
7252 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7253
7254 start:
7255 /*
7256 * Check that we still have allocation to delete.
7257 */
7258 if (OCFS2_I(inode)->ip_clusters == 0) {
7259 status = 0;
7260 goto bail;
7261 }
7262
7263 /*
7264 * Truncate always works against the rightmost tree branch.
7265 */
7266 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7267 if (status) {
7268 mlog_errno(status);
7269 goto bail;
7270 }
7271
7272 trace_ocfs2_commit_truncate(
7273 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7274 new_highest_cpos,
7275 OCFS2_I(inode)->ip_clusters,
7276 path->p_tree_depth);
7277
7278 /*
7279 * By now, el will point to the extent list on the bottom most
7280 * portion of this tree. Only the tail record is considered in
7281 * each pass.
7282 *
7283 * We handle the following cases, in order:
7284 * - empty extent: delete the remaining branch
7285 * - remove the entire record
7286 * - remove a partial record
7287 * - no record needs to be removed (truncate has completed)
7288 */
7289 el = path_leaf_el(path);
7290 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7291 ocfs2_error(inode->i_sb,
7292 "Inode %llu has empty extent block at %llu\n",
7293 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7294 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7295 status = -EROFS;
7296 goto bail;
7297 }
7298
7299 i = le16_to_cpu(el->l_next_free_rec) - 1;
7300 rec = &el->l_recs[i];
7301 flags = rec->e_flags;
7302 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7303
7304 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7305 /*
7306 * Lower levels depend on this never happening, but it's best
7307 * to check it up here before changing the tree.
7308 */
7309 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7310 mlog(ML_ERROR, "Inode %lu has an empty "
7311 "extent record, depth %u\n", inode->i_ino,
7312 le16_to_cpu(root_el->l_tree_depth));
7313 status = ocfs2_remove_rightmost_empty_extent(osb,
7314 &et, path, &dealloc);
7315 if (status) {
7316 mlog_errno(status);
7317 goto bail;
7318 }
7319
7320 ocfs2_reinit_path(path, 1);
7321 goto start;
7322 } else {
7323 trunc_cpos = le32_to_cpu(rec->e_cpos);
7324 trunc_len = 0;
7325 blkno = 0;
7326 }
7327 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7328 /*
7329 * Truncate entire record.
7330 */
7331 trunc_cpos = le32_to_cpu(rec->e_cpos);
7332 trunc_len = ocfs2_rec_clusters(el, rec);
7333 blkno = le64_to_cpu(rec->e_blkno);
7334 } else if (range > new_highest_cpos) {
7335 /*
7336 * Partial truncate. it also should be
7337 * the last truncate we're doing.
7338 */
7339 trunc_cpos = new_highest_cpos;
7340 trunc_len = range - new_highest_cpos;
7341 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7342 blkno = le64_to_cpu(rec->e_blkno) +
7343 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7344 } else {
7345 /*
7346 * Truncate completed, leave happily.
7347 */
7348 status = 0;
7349 goto bail;
7350 }
7351
7352 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7353
7354 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7355 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7356 &ref_tree, NULL);
7357 if (status) {
7358 mlog_errno(status);
7359 goto bail;
7360 }
7361 }
7362
7363 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7364 phys_cpos, trunc_len, flags, &dealloc,
7365 refcount_loc, true);
7366 if (status < 0) {
7367 mlog_errno(status);
7368 goto bail;
7369 }
7370
7371 ocfs2_reinit_path(path, 1);
7372
7373 /*
7374 * The check above will catch the case where we've truncated
7375 * away all allocation.
7376 */
7377 goto start;
7378
7379 bail:
7380 if (ref_tree)
7381 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7382
7383 ocfs2_schedule_truncate_log_flush(osb, 1);
7384
7385 ocfs2_run_deallocs(osb, &dealloc);
7386
7387 ocfs2_free_path(path);
7388
7389 return status;
7390 }
7391
7392 /*
7393 * 'start' is inclusive, 'end' is not.
7394 */
7395 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7396 unsigned int start, unsigned int end, int trunc)
7397 {
7398 int ret;
7399 unsigned int numbytes;
7400 handle_t *handle;
7401 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7402 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7403 struct ocfs2_inline_data *idata = &di->id2.i_data;
7404
7405 /* No need to punch hole beyond i_size. */
7406 if (start >= i_size_read(inode))
7407 return 0;
7408
7409 if (end > i_size_read(inode))
7410 end = i_size_read(inode);
7411
7412 BUG_ON(start > end);
7413
7414 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7415 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7416 !ocfs2_supports_inline_data(osb)) {
7417 ocfs2_error(inode->i_sb,
7418 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7419 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7420 le16_to_cpu(di->i_dyn_features),
7421 OCFS2_I(inode)->ip_dyn_features,
7422 osb->s_feature_incompat);
7423 ret = -EROFS;
7424 goto out;
7425 }
7426
7427 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7428 if (IS_ERR(handle)) {
7429 ret = PTR_ERR(handle);
7430 mlog_errno(ret);
7431 goto out;
7432 }
7433
7434 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7435 OCFS2_JOURNAL_ACCESS_WRITE);
7436 if (ret) {
7437 mlog_errno(ret);
7438 goto out_commit;
7439 }
7440
7441 numbytes = end - start;
7442 memset(idata->id_data + start, 0, numbytes);
7443
7444 /*
7445 * No need to worry about the data page here - it's been
7446 * truncated already and inline data doesn't need it for
7447 * pushing zero's to disk, so we'll let readpage pick it up
7448 * later.
7449 */
7450 if (trunc) {
7451 i_size_write(inode, start);
7452 di->i_size = cpu_to_le64(start);
7453 }
7454
7455 inode->i_blocks = ocfs2_inode_sector_count(inode);
7456 inode->i_ctime = inode->i_mtime = current_time(inode);
7457
7458 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7459 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7460
7461 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7462 ocfs2_journal_dirty(handle, di_bh);
7463
7464 out_commit:
7465 ocfs2_commit_trans(osb, handle);
7466
7467 out:
7468 return ret;
7469 }
7470
7471 static int ocfs2_trim_extent(struct super_block *sb,
7472 struct ocfs2_group_desc *gd,
7473 u64 group, u32 start, u32 count)
7474 {
7475 u64 discard, bcount;
7476 struct ocfs2_super *osb = OCFS2_SB(sb);
7477
7478 bcount = ocfs2_clusters_to_blocks(sb, count);
7479 discard = ocfs2_clusters_to_blocks(sb, start);
7480
7481 /*
7482 * For the first cluster group, the gd->bg_blkno is not at the start
7483 * of the group, but at an offset from the start. If we add it while
7484 * calculating discard for first group, we will wrongly start fstrim a
7485 * few blocks after the desried start block and the range can cross
7486 * over into the next cluster group. So, add it only if this is not
7487 * the first cluster group.
7488 */
7489 if (group != osb->first_cluster_group_blkno)
7490 discard += le64_to_cpu(gd->bg_blkno);
7491
7492 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7493
7494 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7495 }
7496
7497 static int ocfs2_trim_group(struct super_block *sb,
7498 struct ocfs2_group_desc *gd, u64 group,
7499 u32 start, u32 max, u32 minbits)
7500 {
7501 int ret = 0, count = 0, next;
7502 void *bitmap = gd->bg_bitmap;
7503
7504 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7505 return 0;
7506
7507 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7508 start, max, minbits);
7509
7510 while (start < max) {
7511 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7512 if (start >= max)
7513 break;
7514 next = ocfs2_find_next_bit(bitmap, max, start);
7515
7516 if ((next - start) >= minbits) {
7517 ret = ocfs2_trim_extent(sb, gd, group,
7518 start, next - start);
7519 if (ret < 0) {
7520 mlog_errno(ret);
7521 break;
7522 }
7523 count += next - start;
7524 }
7525 start = next + 1;
7526
7527 if (fatal_signal_pending(current)) {
7528 count = -ERESTARTSYS;
7529 break;
7530 }
7531
7532 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7533 break;
7534 }
7535
7536 if (ret < 0)
7537 count = ret;
7538
7539 return count;
7540 }
7541
7542 static
7543 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7544 {
7545 struct ocfs2_super *osb = OCFS2_SB(sb);
7546 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7547 int ret, cnt;
7548 u32 first_bit, last_bit, minlen;
7549 struct buffer_head *main_bm_bh = NULL;
7550 struct inode *main_bm_inode = NULL;
7551 struct buffer_head *gd_bh = NULL;
7552 struct ocfs2_dinode *main_bm;
7553 struct ocfs2_group_desc *gd = NULL;
7554
7555 start = range->start >> osb->s_clustersize_bits;
7556 len = range->len >> osb->s_clustersize_bits;
7557 minlen = range->minlen >> osb->s_clustersize_bits;
7558
7559 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7560 return -EINVAL;
7561
7562 trace_ocfs2_trim_mainbm(start, len, minlen);
7563
7564 next_group:
7565 main_bm_inode = ocfs2_get_system_file_inode(osb,
7566 GLOBAL_BITMAP_SYSTEM_INODE,
7567 OCFS2_INVALID_SLOT);
7568 if (!main_bm_inode) {
7569 ret = -EIO;
7570 mlog_errno(ret);
7571 goto out;
7572 }
7573
7574 inode_lock(main_bm_inode);
7575
7576 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7577 if (ret < 0) {
7578 mlog_errno(ret);
7579 goto out_mutex;
7580 }
7581 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7582
7583 /*
7584 * Do some check before trim the first group.
7585 */
7586 if (!group) {
7587 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7588 ret = -EINVAL;
7589 goto out_unlock;
7590 }
7591
7592 if (start + len > le32_to_cpu(main_bm->i_clusters))
7593 len = le32_to_cpu(main_bm->i_clusters) - start;
7594
7595 /*
7596 * Determine first and last group to examine based on
7597 * start and len
7598 */
7599 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7600 if (first_group == osb->first_cluster_group_blkno)
7601 first_bit = start;
7602 else
7603 first_bit = start - ocfs2_blocks_to_clusters(sb,
7604 first_group);
7605 last_group = ocfs2_which_cluster_group(main_bm_inode,
7606 start + len - 1);
7607 group = first_group;
7608 }
7609
7610 do {
7611 if (first_bit + len >= osb->bitmap_cpg)
7612 last_bit = osb->bitmap_cpg;
7613 else
7614 last_bit = first_bit + len;
7615
7616 ret = ocfs2_read_group_descriptor(main_bm_inode,
7617 main_bm, group,
7618 &gd_bh);
7619 if (ret < 0) {
7620 mlog_errno(ret);
7621 break;
7622 }
7623
7624 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7625 cnt = ocfs2_trim_group(sb, gd, group,
7626 first_bit, last_bit, minlen);
7627 brelse(gd_bh);
7628 gd_bh = NULL;
7629 if (cnt < 0) {
7630 ret = cnt;
7631 mlog_errno(ret);
7632 break;
7633 }
7634
7635 trimmed += cnt;
7636 len -= osb->bitmap_cpg - first_bit;
7637 first_bit = 0;
7638 if (group == osb->first_cluster_group_blkno)
7639 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7640 else
7641 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7642 } while (0);
7643
7644 out_unlock:
7645 ocfs2_inode_unlock(main_bm_inode, 0);
7646 brelse(main_bm_bh);
7647 main_bm_bh = NULL;
7648 out_mutex:
7649 inode_unlock(main_bm_inode);
7650 iput(main_bm_inode);
7651
7652 /*
7653 * If all the groups trim are not done or failed, but we should release
7654 * main_bm related locks for avoiding the current IO starve, then go to
7655 * trim the next group
7656 */
7657 if (ret >= 0 && group <= last_group) {
7658 cond_resched();
7659 goto next_group;
7660 }
7661 out:
7662 range->len = trimmed * sb->s_blocksize;
7663 return ret;
7664 }
7665
7666 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7667 {
7668 int ret;
7669 struct ocfs2_super *osb = OCFS2_SB(sb);
7670 struct ocfs2_trim_fs_info info, *pinfo = NULL;
7671
7672 ocfs2_trim_fs_lock_res_init(osb);
7673
7674 trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7675
7676 ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7677 if (ret < 0) {
7678 if (ret != -EAGAIN) {
7679 mlog_errno(ret);
7680 ocfs2_trim_fs_lock_res_uninit(osb);
7681 return ret;
7682 }
7683
7684 mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7685 "finish, which is running from another node.\n",
7686 osb->dev_str);
7687 ret = ocfs2_trim_fs_lock(osb, &info, 0);
7688 if (ret < 0) {
7689 mlog_errno(ret);
7690 ocfs2_trim_fs_lock_res_uninit(osb);
7691 return ret;
7692 }
7693
7694 if (info.tf_valid && info.tf_success &&
7695 info.tf_start == range->start &&
7696 info.tf_len == range->len &&
7697 info.tf_minlen == range->minlen) {
7698 /* Avoid sending duplicated trim to a shared device */
7699 mlog(ML_NOTICE, "The same trim on device (%s) was "
7700 "just done from node (%u), return.\n",
7701 osb->dev_str, info.tf_nodenum);
7702 range->len = info.tf_trimlen;
7703 goto out;
7704 }
7705 }
7706
7707 info.tf_nodenum = osb->node_num;
7708 info.tf_start = range->start;
7709 info.tf_len = range->len;
7710 info.tf_minlen = range->minlen;
7711
7712 ret = ocfs2_trim_mainbm(sb, range);
7713
7714 info.tf_trimlen = range->len;
7715 info.tf_success = (ret < 0 ? 0 : 1);
7716 pinfo = &info;
7717 out:
7718 ocfs2_trim_fs_unlock(osb, pinfo);
7719 ocfs2_trim_fs_lock_res_uninit(osb);
7720 return ret;
7721 }