]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/ocfs2/aops.c
kbuild: optimize headers_* targets
[mirror_ubuntu-focal-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46
47 #include "buffer_head_io.h"
48
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51 {
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 OCFS2_I(inode)->ip_blkno,
73 &bh, OCFS2_BH_CACHED, inode);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
80 if (!OCFS2_IS_VALID_DINODE(fe)) {
81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 fe->i_signature);
84 goto bail;
85 }
86
87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 le32_to_cpu(fe->i_clusters))) {
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
119 kunmap_atomic(kaddr, KM_USER0);
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130 bail:
131 if (bh)
132 brelse(bh);
133
134 mlog_exit(err);
135 return err;
136 }
137
138 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 struct buffer_head *bh_result, int create)
140 {
141 int err = 0;
142 unsigned int ext_flags;
143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 u64 p_blkno, count, past_eof;
145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 (unsigned long long)iblock, bh_result, create);
149
150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 inode, inode->i_ino);
153
154 if (S_ISLNK(inode->i_mode)) {
155 /* this always does I/O for some reason. */
156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 goto bail;
158 }
159
160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
161 &ext_flags);
162 if (err) {
163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 (unsigned long long)p_blkno);
166 goto bail;
167 }
168
169 if (max_blocks < count)
170 count = max_blocks;
171
172 /*
173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero.
177 *
178 * If we see this on a sparse file system, then a truncate has
179 * raced us and removed the cluster. In this case, we clear
180 * the buffers dirty and uptodate bits and let the buffer code
181 * ignore it as a hole.
182 */
183 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184 clear_buffer_dirty(bh_result);
185 clear_buffer_uptodate(bh_result);
186 goto bail;
187 }
188
189 /* Treat the unwritten extent as a hole for zeroing purposes. */
190 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
191 map_bh(bh_result, inode->i_sb, p_blkno);
192
193 bh_result->b_size = count << inode->i_blkbits;
194
195 if (!ocfs2_sparse_alloc(osb)) {
196 if (p_blkno == 0) {
197 err = -EIO;
198 mlog(ML_ERROR,
199 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200 (unsigned long long)iblock,
201 (unsigned long long)p_blkno,
202 (unsigned long long)OCFS2_I(inode)->ip_blkno);
203 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204 dump_stack();
205 }
206
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209 (unsigned long long)past_eof);
210
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213 }
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 mlog_exit(err);
220 return err;
221 }
222
223 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224 struct buffer_head *di_bh)
225 {
226 void *kaddr;
227 loff_t size;
228 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229
230 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno);
233 return -EROFS;
234 }
235
236 size = i_size_read(inode);
237
238 if (size > PAGE_CACHE_SIZE ||
239 size > ocfs2_max_inline_data(inode->i_sb)) {
240 ocfs2_error(inode->i_sb,
241 "Inode %llu has with inline data has bad size: %Lu",
242 (unsigned long long)OCFS2_I(inode)->ip_blkno,
243 (unsigned long long)size);
244 return -EROFS;
245 }
246
247 kaddr = kmap_atomic(page, KM_USER0);
248 if (size)
249 memcpy(kaddr, di->id2.i_data.id_data, size);
250 /* Clear the remaining part of the page */
251 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252 flush_dcache_page(page);
253 kunmap_atomic(kaddr, KM_USER0);
254
255 SetPageUptodate(page);
256
257 return 0;
258 }
259
260 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 {
262 int ret;
263 struct buffer_head *di_bh = NULL;
264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265
266 BUG_ON(!PageLocked(page));
267 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
268
269 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270 OCFS2_BH_CACHED, inode);
271 if (ret) {
272 mlog_errno(ret);
273 goto out;
274 }
275
276 ret = ocfs2_read_inline_data(inode, page, di_bh);
277 out:
278 unlock_page(page);
279
280 brelse(di_bh);
281 return ret;
282 }
283
284 static int ocfs2_readpage(struct file *file, struct page *page)
285 {
286 struct inode *inode = page->mapping->host;
287 struct ocfs2_inode_info *oi = OCFS2_I(inode);
288 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289 int ret, unlock = 1;
290
291 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292
293 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
294 if (ret != 0) {
295 if (ret == AOP_TRUNCATED_PAGE)
296 unlock = 0;
297 mlog_errno(ret);
298 goto out;
299 }
300
301 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
302 ret = AOP_TRUNCATED_PAGE;
303 goto out_inode_unlock;
304 }
305
306 /*
307 * i_size might have just been updated as we grabed the meta lock. We
308 * might now be discovering a truncate that hit on another node.
309 * block_read_full_page->get_block freaks out if it is asked to read
310 * beyond the end of a file, so we check here. Callers
311 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
312 * and notice that the page they just read isn't needed.
313 *
314 * XXX sys_readahead() seems to get that wrong?
315 */
316 if (start >= i_size_read(inode)) {
317 zero_user(page, 0, PAGE_SIZE);
318 SetPageUptodate(page);
319 ret = 0;
320 goto out_alloc;
321 }
322
323 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324 ret = ocfs2_readpage_inline(inode, page);
325 else
326 ret = block_read_full_page(page, ocfs2_get_block);
327 unlock = 0;
328
329 out_alloc:
330 up_read(&OCFS2_I(inode)->ip_alloc_sem);
331 out_inode_unlock:
332 ocfs2_inode_unlock(inode, 0);
333 out:
334 if (unlock)
335 unlock_page(page);
336 mlog_exit(ret);
337 return ret;
338 }
339
340 /*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351 {
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389 out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394 }
395
396 /* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409 int ret;
410
411 mlog_entry("(0x%p)\n", page);
412
413 ret = block_write_full_page(page, ocfs2_get_block, wbc);
414
415 mlog_exit(ret);
416
417 return ret;
418 }
419
420 /*
421 * This is called from ocfs2_write_zero_page() which has handled it's
422 * own cluster locking and has ensured allocation exists for those
423 * blocks to be written.
424 */
425 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426 unsigned from, unsigned to)
427 {
428 int ret;
429
430 ret = block_prepare_write(page, from, to, ocfs2_get_block);
431
432 return ret;
433 }
434
435 /* Taken from ext3. We don't necessarily need the full blown
436 * functionality yet, but IMHO it's better to cut and paste the whole
437 * thing so we can avoid introducing our own bugs (and easily pick up
438 * their fixes when they happen) --Mark */
439 int walk_page_buffers( handle_t *handle,
440 struct buffer_head *head,
441 unsigned from,
442 unsigned to,
443 int *partial,
444 int (*fn)( handle_t *handle,
445 struct buffer_head *bh))
446 {
447 struct buffer_head *bh;
448 unsigned block_start, block_end;
449 unsigned blocksize = head->b_size;
450 int err, ret = 0;
451 struct buffer_head *next;
452
453 for ( bh = head, block_start = 0;
454 ret == 0 && (bh != head || !block_start);
455 block_start = block_end, bh = next)
456 {
457 next = bh->b_this_page;
458 block_end = block_start + blocksize;
459 if (block_end <= from || block_start >= to) {
460 if (partial && !buffer_uptodate(bh))
461 *partial = 1;
462 continue;
463 }
464 err = (*fn)(handle, bh);
465 if (!ret)
466 ret = err;
467 }
468 return ret;
469 }
470
471 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
472 struct page *page,
473 unsigned from,
474 unsigned to)
475 {
476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
477 handle_t *handle;
478 int ret = 0;
479
480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
481 if (IS_ERR(handle)) {
482 ret = -ENOMEM;
483 mlog_errno(ret);
484 goto out;
485 }
486
487 if (ocfs2_should_order_data(inode)) {
488 ret = walk_page_buffers(handle,
489 page_buffers(page),
490 from, to, NULL,
491 ocfs2_journal_dirty_data);
492 if (ret < 0)
493 mlog_errno(ret);
494 }
495 out:
496 if (ret) {
497 if (!IS_ERR(handle))
498 ocfs2_commit_trans(osb, handle);
499 handle = ERR_PTR(ret);
500 }
501 return handle;
502 }
503
504 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
505 {
506 sector_t status;
507 u64 p_blkno = 0;
508 int err = 0;
509 struct inode *inode = mapping->host;
510
511 mlog_entry("(block = %llu)\n", (unsigned long long)block);
512
513 /* We don't need to lock journal system files, since they aren't
514 * accessed concurrently from multiple nodes.
515 */
516 if (!INODE_JOURNAL(inode)) {
517 err = ocfs2_inode_lock(inode, NULL, 0);
518 if (err) {
519 if (err != -ENOENT)
520 mlog_errno(err);
521 goto bail;
522 }
523 down_read(&OCFS2_I(inode)->ip_alloc_sem);
524 }
525
526 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
527 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528 NULL);
529
530 if (!INODE_JOURNAL(inode)) {
531 up_read(&OCFS2_I(inode)->ip_alloc_sem);
532 ocfs2_inode_unlock(inode, 0);
533 }
534
535 if (err) {
536 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
537 (unsigned long long)block);
538 mlog_errno(err);
539 goto bail;
540 }
541
542 bail:
543 status = err ? 0 : p_blkno;
544
545 mlog_exit((int)status);
546
547 return status;
548 }
549
550 /*
551 * TODO: Make this into a generic get_blocks function.
552 *
553 * From do_direct_io in direct-io.c:
554 * "So what we do is to permit the ->get_blocks function to populate
555 * bh.b_size with the size of IO which is permitted at this offset and
556 * this i_blkbits."
557 *
558 * This function is called directly from get_more_blocks in direct-io.c.
559 *
560 * called like this: dio->get_blocks(dio->inode, fs_startblk,
561 * fs_count, map_bh, dio->rw == WRITE);
562 */
563 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
564 struct buffer_head *bh_result, int create)
565 {
566 int ret;
567 u64 p_blkno, inode_blocks, contig_blocks;
568 unsigned int ext_flags;
569 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
570 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
571
572 /* This function won't even be called if the request isn't all
573 * nicely aligned and of the right size, so there's no need
574 * for us to check any of that. */
575
576 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
577
578 /*
579 * Any write past EOF is not allowed because we'd be extending.
580 */
581 if (create && (iblock + max_blocks) > inode_blocks) {
582 ret = -EIO;
583 goto bail;
584 }
585
586 /* This figures out the size of the next contiguous block, and
587 * our logical offset */
588 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
589 &contig_blocks, &ext_flags);
590 if (ret) {
591 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
592 (unsigned long long)iblock);
593 ret = -EIO;
594 goto bail;
595 }
596
597 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
598 ocfs2_error(inode->i_sb,
599 "Inode %llu has a hole at block %llu\n",
600 (unsigned long long)OCFS2_I(inode)->ip_blkno,
601 (unsigned long long)iblock);
602 ret = -EROFS;
603 goto bail;
604 }
605
606 /*
607 * get_more_blocks() expects us to describe a hole by clearing
608 * the mapped bit on bh_result().
609 *
610 * Consider an unwritten extent as a hole.
611 */
612 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
613 map_bh(bh_result, inode->i_sb, p_blkno);
614 else {
615 /*
616 * ocfs2_prepare_inode_for_write() should have caught
617 * the case where we'd be filling a hole and triggered
618 * a buffered write instead.
619 */
620 if (create) {
621 ret = -EIO;
622 mlog_errno(ret);
623 goto bail;
624 }
625
626 clear_buffer_mapped(bh_result);
627 }
628
629 /* make sure we don't map more than max_blocks blocks here as
630 that's all the kernel will handle at this point. */
631 if (max_blocks < contig_blocks)
632 contig_blocks = max_blocks;
633 bh_result->b_size = contig_blocks << blocksize_bits;
634 bail:
635 return ret;
636 }
637
638 /*
639 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
640 * particularly interested in the aio/dio case. Like the core uses
641 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642 * truncation on another.
643 */
644 static void ocfs2_dio_end_io(struct kiocb *iocb,
645 loff_t offset,
646 ssize_t bytes,
647 void *private)
648 {
649 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
650 int level;
651
652 /* this io's submitter should not have unlocked this before we could */
653 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
654
655 ocfs2_iocb_clear_rw_locked(iocb);
656
657 level = ocfs2_iocb_rw_locked_level(iocb);
658 if (!level)
659 up_read(&inode->i_alloc_sem);
660 ocfs2_rw_unlock(inode, level);
661 }
662
663 /*
664 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665 * from ext3. PageChecked() bits have been removed as OCFS2 does not
666 * do journalled data.
667 */
668 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
669 {
670 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671
672 journal_invalidatepage(journal, page, offset);
673 }
674
675 static int ocfs2_releasepage(struct page *page, gfp_t wait)
676 {
677 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
678
679 if (!page_has_buffers(page))
680 return 0;
681 return journal_try_to_free_buffers(journal, page, wait);
682 }
683
684 static ssize_t ocfs2_direct_IO(int rw,
685 struct kiocb *iocb,
686 const struct iovec *iov,
687 loff_t offset,
688 unsigned long nr_segs)
689 {
690 struct file *file = iocb->ki_filp;
691 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
692 int ret;
693
694 mlog_entry_void();
695
696 /*
697 * Fallback to buffered I/O if we see an inode without
698 * extents.
699 */
700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701 return 0;
702
703 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
704 inode->i_sb->s_bdev, iov, offset,
705 nr_segs,
706 ocfs2_direct_IO_get_blocks,
707 ocfs2_dio_end_io);
708
709 mlog_exit(ret);
710 return ret;
711 }
712
713 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
714 u32 cpos,
715 unsigned int *start,
716 unsigned int *end)
717 {
718 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
719
720 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721 unsigned int cpp;
722
723 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
724
725 cluster_start = cpos % cpp;
726 cluster_start = cluster_start << osb->s_clustersize_bits;
727
728 cluster_end = cluster_start + osb->s_clustersize;
729 }
730
731 BUG_ON(cluster_start > PAGE_SIZE);
732 BUG_ON(cluster_end > PAGE_SIZE);
733
734 if (start)
735 *start = cluster_start;
736 if (end)
737 *end = cluster_end;
738 }
739
740 /*
741 * 'from' and 'to' are the region in the page to avoid zeroing.
742 *
743 * If pagesize > clustersize, this function will avoid zeroing outside
744 * of the cluster boundary.
745 *
746 * from == to == 0 is code for "zero the entire cluster region"
747 */
748 static void ocfs2_clear_page_regions(struct page *page,
749 struct ocfs2_super *osb, u32 cpos,
750 unsigned from, unsigned to)
751 {
752 void *kaddr;
753 unsigned int cluster_start, cluster_end;
754
755 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
756
757 kaddr = kmap_atomic(page, KM_USER0);
758
759 if (from || to) {
760 if (from > cluster_start)
761 memset(kaddr + cluster_start, 0, from - cluster_start);
762 if (to < cluster_end)
763 memset(kaddr + to, 0, cluster_end - to);
764 } else {
765 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766 }
767
768 kunmap_atomic(kaddr, KM_USER0);
769 }
770
771 /*
772 * Nonsparse file systems fully allocate before we get to the write
773 * code. This prevents ocfs2_write() from tagging the write as an
774 * allocating one, which means ocfs2_map_page_blocks() might try to
775 * read-in the blocks at the tail of our file. Avoid reading them by
776 * testing i_size against each block offset.
777 */
778 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
779 unsigned int block_start)
780 {
781 u64 offset = page_offset(page) + block_start;
782
783 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784 return 1;
785
786 if (i_size_read(inode) > offset)
787 return 1;
788
789 return 0;
790 }
791
792 /*
793 * Some of this taken from block_prepare_write(). We already have our
794 * mapping by now though, and the entire write will be allocating or
795 * it won't, so not much need to use BH_New.
796 *
797 * This will also skip zeroing, which is handled externally.
798 */
799 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
800 struct inode *inode, unsigned int from,
801 unsigned int to, int new)
802 {
803 int ret = 0;
804 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
805 unsigned int block_end, block_start;
806 unsigned int bsize = 1 << inode->i_blkbits;
807
808 if (!page_has_buffers(page))
809 create_empty_buffers(page, bsize, 0);
810
811 head = page_buffers(page);
812 for (bh = head, block_start = 0; bh != head || !block_start;
813 bh = bh->b_this_page, block_start += bsize) {
814 block_end = block_start + bsize;
815
816 clear_buffer_new(bh);
817
818 /*
819 * Ignore blocks outside of our i/o range -
820 * they may belong to unallocated clusters.
821 */
822 if (block_start >= to || block_end <= from) {
823 if (PageUptodate(page))
824 set_buffer_uptodate(bh);
825 continue;
826 }
827
828 /*
829 * For an allocating write with cluster size >= page
830 * size, we always write the entire page.
831 */
832 if (new)
833 set_buffer_new(bh);
834
835 if (!buffer_mapped(bh)) {
836 map_bh(bh, inode->i_sb, *p_blkno);
837 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838 }
839
840 if (PageUptodate(page)) {
841 if (!buffer_uptodate(bh))
842 set_buffer_uptodate(bh);
843 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
844 !buffer_new(bh) &&
845 ocfs2_should_read_blk(inode, page, block_start) &&
846 (block_start < from || block_end > to)) {
847 ll_rw_block(READ, 1, &bh);
848 *wait_bh++=bh;
849 }
850
851 *p_blkno = *p_blkno + 1;
852 }
853
854 /*
855 * If we issued read requests - let them complete.
856 */
857 while(wait_bh > wait) {
858 wait_on_buffer(*--wait_bh);
859 if (!buffer_uptodate(*wait_bh))
860 ret = -EIO;
861 }
862
863 if (ret == 0 || !new)
864 return ret;
865
866 /*
867 * If we get -EIO above, zero out any newly allocated blocks
868 * to avoid exposing stale data.
869 */
870 bh = head;
871 block_start = 0;
872 do {
873 block_end = block_start + bsize;
874 if (block_end <= from)
875 goto next_bh;
876 if (block_start >= to)
877 break;
878
879 zero_user(page, block_start, bh->b_size);
880 set_buffer_uptodate(bh);
881 mark_buffer_dirty(bh);
882
883 next_bh:
884 block_start = block_end;
885 bh = bh->b_this_page;
886 } while (bh != head);
887
888 return ret;
889 }
890
891 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892 #define OCFS2_MAX_CTXT_PAGES 1
893 #else
894 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #endif
896
897 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898
899 /*
900 * Describe the state of a single cluster to be written to.
901 */
902 struct ocfs2_write_cluster_desc {
903 u32 c_cpos;
904 u32 c_phys;
905 /*
906 * Give this a unique field because c_phys eventually gets
907 * filled.
908 */
909 unsigned c_new;
910 unsigned c_unwritten;
911 };
912
913 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
914 {
915 return d->c_new || d->c_unwritten;
916 }
917
918 struct ocfs2_write_ctxt {
919 /* Logical cluster position / len of write */
920 u32 w_cpos;
921 u32 w_clen;
922
923 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
924
925 /*
926 * This is true if page_size > cluster_size.
927 *
928 * It triggers a set of special cases during write which might
929 * have to deal with allocating writes to partial pages.
930 */
931 unsigned int w_large_pages;
932
933 /*
934 * Pages involved in this write.
935 *
936 * w_target_page is the page being written to by the user.
937 *
938 * w_pages is an array of pages which always contains
939 * w_target_page, and in the case of an allocating write with
940 * page_size < cluster size, it will contain zero'd and mapped
941 * pages adjacent to w_target_page which need to be written
942 * out in so that future reads from that region will get
943 * zero's.
944 */
945 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
946 unsigned int w_num_pages;
947 struct page *w_target_page;
948
949 /*
950 * ocfs2_write_end() uses this to know what the real range to
951 * write in the target should be.
952 */
953 unsigned int w_target_from;
954 unsigned int w_target_to;
955
956 /*
957 * We could use journal_current_handle() but this is cleaner,
958 * IMHO -Mark
959 */
960 handle_t *w_handle;
961
962 struct buffer_head *w_di_bh;
963
964 struct ocfs2_cached_dealloc_ctxt w_dealloc;
965 };
966
967 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
968 {
969 int i;
970
971 for(i = 0; i < num_pages; i++) {
972 if (pages[i]) {
973 unlock_page(pages[i]);
974 mark_page_accessed(pages[i]);
975 page_cache_release(pages[i]);
976 }
977 }
978 }
979
980 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
981 {
982 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
983
984 brelse(wc->w_di_bh);
985 kfree(wc);
986 }
987
988 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
989 struct ocfs2_super *osb, loff_t pos,
990 unsigned len, struct buffer_head *di_bh)
991 {
992 u32 cend;
993 struct ocfs2_write_ctxt *wc;
994
995 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
996 if (!wc)
997 return -ENOMEM;
998
999 wc->w_cpos = pos >> osb->s_clustersize_bits;
1000 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1001 wc->w_clen = cend - wc->w_cpos + 1;
1002 get_bh(di_bh);
1003 wc->w_di_bh = di_bh;
1004
1005 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1006 wc->w_large_pages = 1;
1007 else
1008 wc->w_large_pages = 0;
1009
1010 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1011
1012 *wcp = wc;
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * If a page has any new buffers, zero them out here, and mark them uptodate
1019 * and dirty so they'll be written out (in order to prevent uninitialised
1020 * block data from leaking). And clear the new bit.
1021 */
1022 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1023 {
1024 unsigned int block_start, block_end;
1025 struct buffer_head *head, *bh;
1026
1027 BUG_ON(!PageLocked(page));
1028 if (!page_has_buffers(page))
1029 return;
1030
1031 bh = head = page_buffers(page);
1032 block_start = 0;
1033 do {
1034 block_end = block_start + bh->b_size;
1035
1036 if (buffer_new(bh)) {
1037 if (block_end > from && block_start < to) {
1038 if (!PageUptodate(page)) {
1039 unsigned start, end;
1040
1041 start = max(from, block_start);
1042 end = min(to, block_end);
1043
1044 zero_user_segment(page, start, end);
1045 set_buffer_uptodate(bh);
1046 }
1047
1048 clear_buffer_new(bh);
1049 mark_buffer_dirty(bh);
1050 }
1051 }
1052
1053 block_start = block_end;
1054 bh = bh->b_this_page;
1055 } while (bh != head);
1056 }
1057
1058 /*
1059 * Only called when we have a failure during allocating write to write
1060 * zero's to the newly allocated region.
1061 */
1062 static void ocfs2_write_failure(struct inode *inode,
1063 struct ocfs2_write_ctxt *wc,
1064 loff_t user_pos, unsigned user_len)
1065 {
1066 int i;
1067 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1068 to = user_pos + user_len;
1069 struct page *tmppage;
1070
1071 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1072
1073 for(i = 0; i < wc->w_num_pages; i++) {
1074 tmppage = wc->w_pages[i];
1075
1076 if (ocfs2_should_order_data(inode))
1077 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1078 from, to, NULL,
1079 ocfs2_journal_dirty_data);
1080
1081 block_commit_write(tmppage, from, to);
1082 }
1083 }
1084
1085 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1086 struct ocfs2_write_ctxt *wc,
1087 struct page *page, u32 cpos,
1088 loff_t user_pos, unsigned user_len,
1089 int new)
1090 {
1091 int ret;
1092 unsigned int map_from = 0, map_to = 0;
1093 unsigned int cluster_start, cluster_end;
1094 unsigned int user_data_from = 0, user_data_to = 0;
1095
1096 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1097 &cluster_start, &cluster_end);
1098
1099 if (page == wc->w_target_page) {
1100 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1101 map_to = map_from + user_len;
1102
1103 if (new)
1104 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1105 cluster_start, cluster_end,
1106 new);
1107 else
1108 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1109 map_from, map_to, new);
1110 if (ret) {
1111 mlog_errno(ret);
1112 goto out;
1113 }
1114
1115 user_data_from = map_from;
1116 user_data_to = map_to;
1117 if (new) {
1118 map_from = cluster_start;
1119 map_to = cluster_end;
1120 }
1121 } else {
1122 /*
1123 * If we haven't allocated the new page yet, we
1124 * shouldn't be writing it out without copying user
1125 * data. This is likely a math error from the caller.
1126 */
1127 BUG_ON(!new);
1128
1129 map_from = cluster_start;
1130 map_to = cluster_end;
1131
1132 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1133 cluster_start, cluster_end, new);
1134 if (ret) {
1135 mlog_errno(ret);
1136 goto out;
1137 }
1138 }
1139
1140 /*
1141 * Parts of newly allocated pages need to be zero'd.
1142 *
1143 * Above, we have also rewritten 'to' and 'from' - as far as
1144 * the rest of the function is concerned, the entire cluster
1145 * range inside of a page needs to be written.
1146 *
1147 * We can skip this if the page is up to date - it's already
1148 * been zero'd from being read in as a hole.
1149 */
1150 if (new && !PageUptodate(page))
1151 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1152 cpos, user_data_from, user_data_to);
1153
1154 flush_dcache_page(page);
1155
1156 out:
1157 return ret;
1158 }
1159
1160 /*
1161 * This function will only grab one clusters worth of pages.
1162 */
1163 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1164 struct ocfs2_write_ctxt *wc,
1165 u32 cpos, loff_t user_pos, int new,
1166 struct page *mmap_page)
1167 {
1168 int ret = 0, i;
1169 unsigned long start, target_index, index;
1170 struct inode *inode = mapping->host;
1171
1172 target_index = user_pos >> PAGE_CACHE_SHIFT;
1173
1174 /*
1175 * Figure out how many pages we'll be manipulating here. For
1176 * non allocating write, we just change the one
1177 * page. Otherwise, we'll need a whole clusters worth.
1178 */
1179 if (new) {
1180 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1181 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1182 } else {
1183 wc->w_num_pages = 1;
1184 start = target_index;
1185 }
1186
1187 for(i = 0; i < wc->w_num_pages; i++) {
1188 index = start + i;
1189
1190 if (index == target_index && mmap_page) {
1191 /*
1192 * ocfs2_pagemkwrite() is a little different
1193 * and wants us to directly use the page
1194 * passed in.
1195 */
1196 lock_page(mmap_page);
1197
1198 if (mmap_page->mapping != mapping) {
1199 unlock_page(mmap_page);
1200 /*
1201 * Sanity check - the locking in
1202 * ocfs2_pagemkwrite() should ensure
1203 * that this code doesn't trigger.
1204 */
1205 ret = -EINVAL;
1206 mlog_errno(ret);
1207 goto out;
1208 }
1209
1210 page_cache_get(mmap_page);
1211 wc->w_pages[i] = mmap_page;
1212 } else {
1213 wc->w_pages[i] = find_or_create_page(mapping, index,
1214 GFP_NOFS);
1215 if (!wc->w_pages[i]) {
1216 ret = -ENOMEM;
1217 mlog_errno(ret);
1218 goto out;
1219 }
1220 }
1221
1222 if (index == target_index)
1223 wc->w_target_page = wc->w_pages[i];
1224 }
1225 out:
1226 return ret;
1227 }
1228
1229 /*
1230 * Prepare a single cluster for write one cluster into the file.
1231 */
1232 static int ocfs2_write_cluster(struct address_space *mapping,
1233 u32 phys, unsigned int unwritten,
1234 struct ocfs2_alloc_context *data_ac,
1235 struct ocfs2_alloc_context *meta_ac,
1236 struct ocfs2_write_ctxt *wc, u32 cpos,
1237 loff_t user_pos, unsigned user_len)
1238 {
1239 int ret, i, new, should_zero = 0;
1240 u64 v_blkno, p_blkno;
1241 struct inode *inode = mapping->host;
1242
1243 new = phys == 0 ? 1 : 0;
1244 if (new || unwritten)
1245 should_zero = 1;
1246
1247 if (new) {
1248 u32 tmp_pos;
1249
1250 /*
1251 * This is safe to call with the page locks - it won't take
1252 * any additional semaphores or cluster locks.
1253 */
1254 tmp_pos = cpos;
1255 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1256 &tmp_pos, 1, 0, wc->w_di_bh,
1257 wc->w_handle, data_ac,
1258 meta_ac, NULL);
1259 /*
1260 * This shouldn't happen because we must have already
1261 * calculated the correct meta data allocation required. The
1262 * internal tree allocation code should know how to increase
1263 * transaction credits itself.
1264 *
1265 * If need be, we could handle -EAGAIN for a
1266 * RESTART_TRANS here.
1267 */
1268 mlog_bug_on_msg(ret == -EAGAIN,
1269 "Inode %llu: EAGAIN return during allocation.\n",
1270 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1271 if (ret < 0) {
1272 mlog_errno(ret);
1273 goto out;
1274 }
1275 } else if (unwritten) {
1276 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1277 wc->w_handle, cpos, 1, phys,
1278 meta_ac, &wc->w_dealloc);
1279 if (ret < 0) {
1280 mlog_errno(ret);
1281 goto out;
1282 }
1283 }
1284
1285 if (should_zero)
1286 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1287 else
1288 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1289
1290 /*
1291 * The only reason this should fail is due to an inability to
1292 * find the extent added.
1293 */
1294 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1295 NULL);
1296 if (ret < 0) {
1297 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1298 "at logical block %llu",
1299 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1300 (unsigned long long)v_blkno);
1301 goto out;
1302 }
1303
1304 BUG_ON(p_blkno == 0);
1305
1306 for(i = 0; i < wc->w_num_pages; i++) {
1307 int tmpret;
1308
1309 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1310 wc->w_pages[i], cpos,
1311 user_pos, user_len,
1312 should_zero);
1313 if (tmpret) {
1314 mlog_errno(tmpret);
1315 if (ret == 0)
1316 tmpret = ret;
1317 }
1318 }
1319
1320 /*
1321 * We only have cleanup to do in case of allocating write.
1322 */
1323 if (ret && new)
1324 ocfs2_write_failure(inode, wc, user_pos, user_len);
1325
1326 out:
1327
1328 return ret;
1329 }
1330
1331 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1332 struct ocfs2_alloc_context *data_ac,
1333 struct ocfs2_alloc_context *meta_ac,
1334 struct ocfs2_write_ctxt *wc,
1335 loff_t pos, unsigned len)
1336 {
1337 int ret, i;
1338 loff_t cluster_off;
1339 unsigned int local_len = len;
1340 struct ocfs2_write_cluster_desc *desc;
1341 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1342
1343 for (i = 0; i < wc->w_clen; i++) {
1344 desc = &wc->w_desc[i];
1345
1346 /*
1347 * We have to make sure that the total write passed in
1348 * doesn't extend past a single cluster.
1349 */
1350 local_len = len;
1351 cluster_off = pos & (osb->s_clustersize - 1);
1352 if ((cluster_off + local_len) > osb->s_clustersize)
1353 local_len = osb->s_clustersize - cluster_off;
1354
1355 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1356 desc->c_unwritten, data_ac, meta_ac,
1357 wc, desc->c_cpos, pos, local_len);
1358 if (ret) {
1359 mlog_errno(ret);
1360 goto out;
1361 }
1362
1363 len -= local_len;
1364 pos += local_len;
1365 }
1366
1367 ret = 0;
1368 out:
1369 return ret;
1370 }
1371
1372 /*
1373 * ocfs2_write_end() wants to know which parts of the target page it
1374 * should complete the write on. It's easiest to compute them ahead of
1375 * time when a more complete view of the write is available.
1376 */
1377 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1378 struct ocfs2_write_ctxt *wc,
1379 loff_t pos, unsigned len, int alloc)
1380 {
1381 struct ocfs2_write_cluster_desc *desc;
1382
1383 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1384 wc->w_target_to = wc->w_target_from + len;
1385
1386 if (alloc == 0)
1387 return;
1388
1389 /*
1390 * Allocating write - we may have different boundaries based
1391 * on page size and cluster size.
1392 *
1393 * NOTE: We can no longer compute one value from the other as
1394 * the actual write length and user provided length may be
1395 * different.
1396 */
1397
1398 if (wc->w_large_pages) {
1399 /*
1400 * We only care about the 1st and last cluster within
1401 * our range and whether they should be zero'd or not. Either
1402 * value may be extended out to the start/end of a
1403 * newly allocated cluster.
1404 */
1405 desc = &wc->w_desc[0];
1406 if (ocfs2_should_zero_cluster(desc))
1407 ocfs2_figure_cluster_boundaries(osb,
1408 desc->c_cpos,
1409 &wc->w_target_from,
1410 NULL);
1411
1412 desc = &wc->w_desc[wc->w_clen - 1];
1413 if (ocfs2_should_zero_cluster(desc))
1414 ocfs2_figure_cluster_boundaries(osb,
1415 desc->c_cpos,
1416 NULL,
1417 &wc->w_target_to);
1418 } else {
1419 wc->w_target_from = 0;
1420 wc->w_target_to = PAGE_CACHE_SIZE;
1421 }
1422 }
1423
1424 /*
1425 * Populate each single-cluster write descriptor in the write context
1426 * with information about the i/o to be done.
1427 *
1428 * Returns the number of clusters that will have to be allocated, as
1429 * well as a worst case estimate of the number of extent records that
1430 * would have to be created during a write to an unwritten region.
1431 */
1432 static int ocfs2_populate_write_desc(struct inode *inode,
1433 struct ocfs2_write_ctxt *wc,
1434 unsigned int *clusters_to_alloc,
1435 unsigned int *extents_to_split)
1436 {
1437 int ret;
1438 struct ocfs2_write_cluster_desc *desc;
1439 unsigned int num_clusters = 0;
1440 unsigned int ext_flags = 0;
1441 u32 phys = 0;
1442 int i;
1443
1444 *clusters_to_alloc = 0;
1445 *extents_to_split = 0;
1446
1447 for (i = 0; i < wc->w_clen; i++) {
1448 desc = &wc->w_desc[i];
1449 desc->c_cpos = wc->w_cpos + i;
1450
1451 if (num_clusters == 0) {
1452 /*
1453 * Need to look up the next extent record.
1454 */
1455 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1456 &num_clusters, &ext_flags);
1457 if (ret) {
1458 mlog_errno(ret);
1459 goto out;
1460 }
1461
1462 /*
1463 * Assume worst case - that we're writing in
1464 * the middle of the extent.
1465 *
1466 * We can assume that the write proceeds from
1467 * left to right, in which case the extent
1468 * insert code is smart enough to coalesce the
1469 * next splits into the previous records created.
1470 */
1471 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472 *extents_to_split = *extents_to_split + 2;
1473 } else if (phys) {
1474 /*
1475 * Only increment phys if it doesn't describe
1476 * a hole.
1477 */
1478 phys++;
1479 }
1480
1481 desc->c_phys = phys;
1482 if (phys == 0) {
1483 desc->c_new = 1;
1484 *clusters_to_alloc = *clusters_to_alloc + 1;
1485 }
1486 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1487 desc->c_unwritten = 1;
1488
1489 num_clusters--;
1490 }
1491
1492 ret = 0;
1493 out:
1494 return ret;
1495 }
1496
1497 static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 struct inode *inode,
1499 struct ocfs2_write_ctxt *wc)
1500 {
1501 int ret;
1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 struct page *page;
1504 handle_t *handle;
1505 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506
1507 page = find_or_create_page(mapping, 0, GFP_NOFS);
1508 if (!page) {
1509 ret = -ENOMEM;
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513 /*
1514 * If we don't set w_num_pages then this page won't get unlocked
1515 * and freed on cleanup of the write context.
1516 */
1517 wc->w_pages[0] = wc->w_target_page = page;
1518 wc->w_num_pages = 1;
1519
1520 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521 if (IS_ERR(handle)) {
1522 ret = PTR_ERR(handle);
1523 mlog_errno(ret);
1524 goto out;
1525 }
1526
1527 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1528 OCFS2_JOURNAL_ACCESS_WRITE);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1531
1532 mlog_errno(ret);
1533 goto out;
1534 }
1535
1536 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 ocfs2_set_inode_data_inline(inode, di);
1538
1539 if (!PageUptodate(page)) {
1540 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 if (ret) {
1542 ocfs2_commit_trans(osb, handle);
1543
1544 goto out;
1545 }
1546 }
1547
1548 wc->w_handle = handle;
1549 out:
1550 return ret;
1551 }
1552
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556
1557 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 return 1;
1559 return 0;
1560 }
1561
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 struct inode *inode, loff_t pos,
1564 unsigned len, struct page *mmap_page,
1565 struct ocfs2_write_ctxt *wc)
1566 {
1567 int ret, written = 0;
1568 loff_t end = pos + len;
1569 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570
1571 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1572 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1573 oi->ip_dyn_features);
1574
1575 /*
1576 * Handle inodes which already have inline data 1st.
1577 */
1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 if (mmap_page == NULL &&
1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 goto do_inline_write;
1582
1583 /*
1584 * The write won't fit - we have to give this inode an
1585 * inline extent list now.
1586 */
1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 if (ret)
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * Check whether the inode can accept inline data.
1595 */
1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 return 0;
1598
1599 /*
1600 * Check whether the write can fit.
1601 */
1602 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1603 return 0;
1604
1605 do_inline_write:
1606 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1607 if (ret) {
1608 mlog_errno(ret);
1609 goto out;
1610 }
1611
1612 /*
1613 * This signals to the caller that the data can be written
1614 * inline.
1615 */
1616 written = 1;
1617 out:
1618 return written ? written : ret;
1619 }
1620
1621 /*
1622 * This function only does anything for file systems which can't
1623 * handle sparse files.
1624 *
1625 * What we want to do here is fill in any hole between the current end
1626 * of allocation and the end of our write. That way the rest of the
1627 * write path can treat it as an non-allocating write, which has no
1628 * special case code for sparse/nonsparse files.
1629 */
1630 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1631 unsigned len,
1632 struct ocfs2_write_ctxt *wc)
1633 {
1634 int ret;
1635 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1636 loff_t newsize = pos + len;
1637
1638 if (ocfs2_sparse_alloc(osb))
1639 return 0;
1640
1641 if (newsize <= i_size_read(inode))
1642 return 0;
1643
1644 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1645 if (ret)
1646 mlog_errno(ret);
1647
1648 return ret;
1649 }
1650
1651 int ocfs2_write_begin_nolock(struct address_space *mapping,
1652 loff_t pos, unsigned len, unsigned flags,
1653 struct page **pagep, void **fsdata,
1654 struct buffer_head *di_bh, struct page *mmap_page)
1655 {
1656 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1657 unsigned int clusters_to_alloc, extents_to_split;
1658 struct ocfs2_write_ctxt *wc;
1659 struct inode *inode = mapping->host;
1660 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661 struct ocfs2_dinode *di;
1662 struct ocfs2_alloc_context *data_ac = NULL;
1663 struct ocfs2_alloc_context *meta_ac = NULL;
1664 handle_t *handle;
1665
1666 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1667 if (ret) {
1668 mlog_errno(ret);
1669 return ret;
1670 }
1671
1672 if (ocfs2_supports_inline_data(osb)) {
1673 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674 mmap_page, wc);
1675 if (ret == 1) {
1676 ret = 0;
1677 goto success;
1678 }
1679 if (ret < 0) {
1680 mlog_errno(ret);
1681 goto out;
1682 }
1683 }
1684
1685 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1686 if (ret) {
1687 mlog_errno(ret);
1688 goto out;
1689 }
1690
1691 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1692 &extents_to_split);
1693 if (ret) {
1694 mlog_errno(ret);
1695 goto out;
1696 }
1697
1698 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1699
1700 /*
1701 * We set w_target_from, w_target_to here so that
1702 * ocfs2_write_end() knows which range in the target page to
1703 * write out. An allocation requires that we write the entire
1704 * cluster range.
1705 */
1706 if (clusters_to_alloc || extents_to_split) {
1707 /*
1708 * XXX: We are stretching the limits of
1709 * ocfs2_lock_allocators(). It greatly over-estimates
1710 * the work to be done.
1711 */
1712 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1713 extents_to_split, &data_ac, &meta_ac);
1714 if (ret) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
1718
1719 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1720 clusters_to_alloc);
1721
1722 }
1723
1724 ocfs2_set_target_boundaries(osb, wc, pos, len,
1725 clusters_to_alloc + extents_to_split);
1726
1727 handle = ocfs2_start_trans(osb, credits);
1728 if (IS_ERR(handle)) {
1729 ret = PTR_ERR(handle);
1730 mlog_errno(ret);
1731 goto out;
1732 }
1733
1734 wc->w_handle = handle;
1735
1736 /*
1737 * We don't want this to fail in ocfs2_write_end(), so do it
1738 * here.
1739 */
1740 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1741 OCFS2_JOURNAL_ACCESS_WRITE);
1742 if (ret) {
1743 mlog_errno(ret);
1744 goto out_commit;
1745 }
1746
1747 /*
1748 * Fill our page array first. That way we've grabbed enough so
1749 * that we can zero and flush if we error after adding the
1750 * extent.
1751 */
1752 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1753 clusters_to_alloc + extents_to_split,
1754 mmap_page);
1755 if (ret) {
1756 mlog_errno(ret);
1757 goto out_commit;
1758 }
1759
1760 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1761 len);
1762 if (ret) {
1763 mlog_errno(ret);
1764 goto out_commit;
1765 }
1766
1767 if (data_ac)
1768 ocfs2_free_alloc_context(data_ac);
1769 if (meta_ac)
1770 ocfs2_free_alloc_context(meta_ac);
1771
1772 success:
1773 *pagep = wc->w_target_page;
1774 *fsdata = wc;
1775 return 0;
1776 out_commit:
1777 ocfs2_commit_trans(osb, handle);
1778
1779 out:
1780 ocfs2_free_write_ctxt(wc);
1781
1782 if (data_ac)
1783 ocfs2_free_alloc_context(data_ac);
1784 if (meta_ac)
1785 ocfs2_free_alloc_context(meta_ac);
1786 return ret;
1787 }
1788
1789 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1790 loff_t pos, unsigned len, unsigned flags,
1791 struct page **pagep, void **fsdata)
1792 {
1793 int ret;
1794 struct buffer_head *di_bh = NULL;
1795 struct inode *inode = mapping->host;
1796
1797 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1798 if (ret) {
1799 mlog_errno(ret);
1800 return ret;
1801 }
1802
1803 /*
1804 * Take alloc sem here to prevent concurrent lookups. That way
1805 * the mapping, zeroing and tree manipulation within
1806 * ocfs2_write() will be safe against ->readpage(). This
1807 * should also serve to lock out allocation from a shared
1808 * writeable region.
1809 */
1810 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1811
1812 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1813 fsdata, di_bh, NULL);
1814 if (ret) {
1815 mlog_errno(ret);
1816 goto out_fail;
1817 }
1818
1819 brelse(di_bh);
1820
1821 return 0;
1822
1823 out_fail:
1824 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1825
1826 brelse(di_bh);
1827 ocfs2_inode_unlock(inode, 1);
1828
1829 return ret;
1830 }
1831
1832 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1833 unsigned len, unsigned *copied,
1834 struct ocfs2_dinode *di,
1835 struct ocfs2_write_ctxt *wc)
1836 {
1837 void *kaddr;
1838
1839 if (unlikely(*copied < len)) {
1840 if (!PageUptodate(wc->w_target_page)) {
1841 *copied = 0;
1842 return;
1843 }
1844 }
1845
1846 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1847 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1848 kunmap_atomic(kaddr, KM_USER0);
1849
1850 mlog(0, "Data written to inode at offset %llu. "
1851 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1852 (unsigned long long)pos, *copied,
1853 le16_to_cpu(di->id2.i_data.id_count),
1854 le16_to_cpu(di->i_dyn_features));
1855 }
1856
1857 int ocfs2_write_end_nolock(struct address_space *mapping,
1858 loff_t pos, unsigned len, unsigned copied,
1859 struct page *page, void *fsdata)
1860 {
1861 int i;
1862 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1863 struct inode *inode = mapping->host;
1864 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1865 struct ocfs2_write_ctxt *wc = fsdata;
1866 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1867 handle_t *handle = wc->w_handle;
1868 struct page *tmppage;
1869
1870 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1871 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1872 goto out_write_size;
1873 }
1874
1875 if (unlikely(copied < len)) {
1876 if (!PageUptodate(wc->w_target_page))
1877 copied = 0;
1878
1879 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1880 start+len);
1881 }
1882 flush_dcache_page(wc->w_target_page);
1883
1884 for(i = 0; i < wc->w_num_pages; i++) {
1885 tmppage = wc->w_pages[i];
1886
1887 if (tmppage == wc->w_target_page) {
1888 from = wc->w_target_from;
1889 to = wc->w_target_to;
1890
1891 BUG_ON(from > PAGE_CACHE_SIZE ||
1892 to > PAGE_CACHE_SIZE ||
1893 to < from);
1894 } else {
1895 /*
1896 * Pages adjacent to the target (if any) imply
1897 * a hole-filling write in which case we want
1898 * to flush their entire range.
1899 */
1900 from = 0;
1901 to = PAGE_CACHE_SIZE;
1902 }
1903
1904 if (ocfs2_should_order_data(inode))
1905 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1906 from, to, NULL,
1907 ocfs2_journal_dirty_data);
1908
1909 block_commit_write(tmppage, from, to);
1910 }
1911
1912 out_write_size:
1913 pos += copied;
1914 if (pos > inode->i_size) {
1915 i_size_write(inode, pos);
1916 mark_inode_dirty(inode);
1917 }
1918 inode->i_blocks = ocfs2_inode_sector_count(inode);
1919 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1920 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1921 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1922 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1923 ocfs2_journal_dirty(handle, wc->w_di_bh);
1924
1925 ocfs2_commit_trans(osb, handle);
1926
1927 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1928
1929 ocfs2_free_write_ctxt(wc);
1930
1931 return copied;
1932 }
1933
1934 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1935 loff_t pos, unsigned len, unsigned copied,
1936 struct page *page, void *fsdata)
1937 {
1938 int ret;
1939 struct inode *inode = mapping->host;
1940
1941 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1942
1943 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944 ocfs2_inode_unlock(inode, 1);
1945
1946 return ret;
1947 }
1948
1949 const struct address_space_operations ocfs2_aops = {
1950 .readpage = ocfs2_readpage,
1951 .readpages = ocfs2_readpages,
1952 .writepage = ocfs2_writepage,
1953 .write_begin = ocfs2_write_begin,
1954 .write_end = ocfs2_write_end,
1955 .bmap = ocfs2_bmap,
1956 .sync_page = block_sync_page,
1957 .direct_IO = ocfs2_direct_IO,
1958 .invalidatepage = ocfs2_invalidatepage,
1959 .releasepage = ocfs2_releasepage,
1960 .migratepage = buffer_migrate_page,
1961 };