]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ocfs2/aops.c
ocfs2: do not BUG if jbd2_journal_dirty_metadata fails
[mirror_ubuntu-zesty-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58 {
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131 bail:
132 brelse(bh);
133
134 return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224 {
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343 }
344
345 /*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356 {
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432 {
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
496 bail:
497 status = err ? 0 : p_blkno;
498
499 return status;
500 }
501
502 /*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 struct buffer_head *bh_result, int create)
517 {
518 int ret;
519 u32 cpos = 0;
520 int alloc_locked = 0;
521 u64 p_blkno, inode_blocks, contig_blocks;
522 unsigned int ext_flags;
523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0;
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 &contig_blocks, &ext_flags);
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
545 }
546
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
556 }
557
558 alloc_locked = 1;
559
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 if (clusters_to_alloc > contig_blocks)
564 clusters_to_alloc = contig_blocks;
565
566 /* allocate extent and insert them into the extent tree */
567 ret = ocfs2_extend_allocation(inode, cpos,
568 clusters_to_alloc, 0);
569 if (ret < 0) {
570 mlog_errno(ret);
571 goto bail;
572 }
573
574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 &contig_blocks, &ext_flags);
576 if (ret < 0) {
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
579 ret = -EIO;
580 goto bail;
581 }
582 }
583
584 /*
585 * get_more_blocks() expects us to describe a hole by clearing
586 * the mapped bit on bh_result().
587 *
588 * Consider an unwritten extent as a hole.
589 */
590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591 map_bh(bh_result, inode->i_sb, p_blkno);
592 else
593 clear_buffer_mapped(bh_result);
594
595 /* make sure we don't map more than max_blocks blocks here as
596 that's all the kernel will handle at this point. */
597 if (max_blocks < contig_blocks)
598 contig_blocks = max_blocks;
599 bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601 if (alloc_locked)
602 ocfs2_inode_unlock(inode, 1);
603 return ret;
604 }
605
606 /*
607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
609 * to protect io on one node from truncation on another.
610 */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612 loff_t offset,
613 ssize_t bytes,
614 void *private)
615 {
616 struct inode *inode = file_inode(iocb->ki_filp);
617 int level;
618
619 /* this io's submitter should not have unlocked this before we could */
620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622 if (ocfs2_iocb_is_sem_locked(iocb))
623 ocfs2_iocb_clear_sem_locked(iocb);
624
625 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629 }
630
631 ocfs2_iocb_clear_rw_locked(iocb);
632
633 level = ocfs2_iocb_rw_locked_level(iocb);
634 ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639 if (!page_has_buffers(page))
640 return 0;
641 return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 struct inode *inode, loff_t offset)
646 {
647 int ret = 0;
648 u32 v_cpos = 0;
649 u32 p_cpos = 0;
650 unsigned int num_clusters = 0;
651 unsigned int ext_flags = 0;
652
653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 &num_clusters, &ext_flags);
656 if (ret < 0) {
657 mlog_errno(ret);
658 return ret;
659 }
660
661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 return 1;
663
664 return 0;
665 }
666
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668 struct inode *inode, loff_t offset,
669 u64 zero_len, int cluster_align)
670 {
671 u32 p_cpos = 0;
672 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673 unsigned int num_clusters = 0;
674 unsigned int ext_flags = 0;
675 int ret = 0;
676
677 if (offset <= i_size_read(inode) || cluster_align)
678 return 0;
679
680 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681 &ext_flags);
682 if (ret < 0) {
683 mlog_errno(ret);
684 return ret;
685 }
686
687 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688 u64 s = i_size_read(inode);
689 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
690 (do_div(s, osb->s_clustersize) >> 9);
691
692 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693 zero_len >> 9, GFP_NOFS, false);
694 if (ret < 0)
695 mlog_errno(ret);
696 }
697
698 return ret;
699 }
700
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702 struct inode *inode, loff_t offset)
703 {
704 u64 zero_start, zero_len, total_zero_len;
705 u32 p_cpos = 0, clusters_to_add;
706 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707 unsigned int num_clusters = 0;
708 unsigned int ext_flags = 0;
709 u32 size_div, offset_div;
710 int ret = 0;
711
712 {
713 u64 o = offset;
714 u64 s = i_size_read(inode);
715
716 offset_div = do_div(o, osb->s_clustersize);
717 size_div = do_div(s, osb->s_clustersize);
718 }
719
720 if (offset <= i_size_read(inode))
721 return 0;
722
723 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725 total_zero_len = offset - i_size_read(inode);
726 if (clusters_to_add)
727 total_zero_len -= offset_div;
728
729 /* Allocate clusters to fill out holes, and this is only needed
730 * when we add more than one clusters. Otherwise the cluster will
731 * be allocated during direct IO */
732 if (clusters_to_add > 1) {
733 ret = ocfs2_extend_allocation(inode,
734 OCFS2_I(inode)->ip_clusters,
735 clusters_to_add - 1, 0);
736 if (ret) {
737 mlog_errno(ret);
738 goto out;
739 }
740 }
741
742 while (total_zero_len) {
743 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744 &ext_flags);
745 if (ret < 0) {
746 mlog_errno(ret);
747 goto out;
748 }
749
750 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751 size_div;
752 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753 size_div;
754 zero_len = min(total_zero_len, zero_len);
755
756 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758 zero_start >> 9, zero_len >> 9,
759 GFP_NOFS, false);
760 if (ret < 0) {
761 mlog_errno(ret);
762 goto out;
763 }
764 }
765
766 total_zero_len -= zero_len;
767 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768
769 /* Only at first iteration can be cluster not aligned.
770 * So set size_div to 0 for the rest */
771 size_div = 0;
772 }
773
774 out:
775 return ret;
776 }
777
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779 struct iov_iter *iter,
780 loff_t offset)
781 {
782 ssize_t ret = 0;
783 ssize_t written = 0;
784 bool orphaned = false;
785 int is_overwrite = 0;
786 struct file *file = iocb->ki_filp;
787 struct inode *inode = file_inode(file)->i_mapping->host;
788 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789 struct buffer_head *di_bh = NULL;
790 size_t count = iter->count;
791 journal_t *journal = osb->journal->j_journal;
792 u64 zero_len_head, zero_len_tail;
793 int cluster_align_head, cluster_align_tail;
794 loff_t final_size = offset + count;
795 int append_write = offset >= i_size_read(inode) ? 1 : 0;
796 unsigned int num_clusters = 0;
797 unsigned int ext_flags = 0;
798
799 {
800 u64 o = offset;
801 u64 s = i_size_read(inode);
802
803 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804 cluster_align_head = !zero_len_head;
805
806 zero_len_tail = osb->s_clustersize -
807 do_div(s, osb->s_clustersize);
808 if ((offset - i_size_read(inode)) < zero_len_tail)
809 zero_len_tail = offset - i_size_read(inode);
810 cluster_align_tail = !zero_len_tail;
811 }
812
813 /*
814 * when final_size > inode->i_size, inode->i_size will be
815 * updated after direct write, so add the inode to orphan
816 * dir first.
817 */
818 if (final_size > i_size_read(inode)) {
819 ret = ocfs2_add_inode_to_orphan(osb, inode);
820 if (ret < 0) {
821 mlog_errno(ret);
822 goto out;
823 }
824 orphaned = true;
825 }
826
827 if (append_write) {
828 ret = ocfs2_inode_lock(inode, NULL, 1);
829 if (ret < 0) {
830 mlog_errno(ret);
831 goto clean_orphan;
832 }
833
834 /* zeroing out the previously allocated cluster tail
835 * that but not zeroed */
836 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838 zero_len_tail, cluster_align_tail);
839 else
840 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841 offset);
842 if (ret < 0) {
843 mlog_errno(ret);
844 ocfs2_inode_unlock(inode, 1);
845 goto clean_orphan;
846 }
847
848 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849 if (is_overwrite < 0) {
850 mlog_errno(is_overwrite);
851 ocfs2_inode_unlock(inode, 1);
852 goto clean_orphan;
853 }
854
855 ocfs2_inode_unlock(inode, 1);
856 }
857
858 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
859 offset, ocfs2_direct_IO_get_blocks,
860 ocfs2_dio_end_io, NULL, 0);
861 if (unlikely(written < 0)) {
862 loff_t i_size = i_size_read(inode);
863
864 if (offset + count > i_size) {
865 ret = ocfs2_inode_lock(inode, &di_bh, 1);
866 if (ret < 0) {
867 mlog_errno(ret);
868 goto clean_orphan;
869 }
870
871 if (i_size == i_size_read(inode)) {
872 ret = ocfs2_truncate_file(inode, di_bh,
873 i_size);
874 if (ret < 0) {
875 if (ret != -ENOSPC)
876 mlog_errno(ret);
877
878 ocfs2_inode_unlock(inode, 1);
879 brelse(di_bh);
880 goto clean_orphan;
881 }
882 }
883
884 ocfs2_inode_unlock(inode, 1);
885 brelse(di_bh);
886
887 ret = jbd2_journal_force_commit(journal);
888 if (ret < 0)
889 mlog_errno(ret);
890 }
891 } else if (written > 0 && append_write && !is_overwrite &&
892 !cluster_align_head) {
893 /* zeroing out the allocated cluster head */
894 u32 p_cpos = 0;
895 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896
897 ret = ocfs2_inode_lock(inode, NULL, 0);
898 if (ret < 0) {
899 mlog_errno(ret);
900 goto clean_orphan;
901 }
902
903 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904 &num_clusters, &ext_flags);
905 if (ret < 0) {
906 mlog_errno(ret);
907 ocfs2_inode_unlock(inode, 0);
908 goto clean_orphan;
909 }
910
911 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912
913 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914 p_cpos << (osb->s_clustersize_bits - 9),
915 zero_len_head >> 9, GFP_NOFS, false);
916 if (ret < 0)
917 mlog_errno(ret);
918
919 ocfs2_inode_unlock(inode, 0);
920 }
921
922 clean_orphan:
923 if (orphaned) {
924 int tmp_ret;
925 int update_isize = written > 0 ? 1 : 0;
926 loff_t end = update_isize ? offset + written : 0;
927
928 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
929 if (tmp_ret < 0) {
930 ret = tmp_ret;
931 mlog_errno(ret);
932 goto out;
933 }
934
935 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
936 update_isize, end);
937 if (tmp_ret < 0) {
938 ret = tmp_ret;
939 mlog_errno(ret);
940 goto out;
941 }
942
943 ocfs2_inode_unlock(inode, 1);
944
945 tmp_ret = jbd2_journal_force_commit(journal);
946 if (tmp_ret < 0) {
947 ret = tmp_ret;
948 mlog_errno(tmp_ret);
949 }
950 }
951
952 out:
953 if (ret >= 0)
954 ret = written;
955 return ret;
956 }
957
958 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
959 loff_t offset)
960 {
961 struct file *file = iocb->ki_filp;
962 struct inode *inode = file_inode(file)->i_mapping->host;
963 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
964 int full_coherency = !(osb->s_mount_opt &
965 OCFS2_MOUNT_COHERENCY_BUFFERED);
966
967 /*
968 * Fallback to buffered I/O if we see an inode without
969 * extents.
970 */
971 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
972 return 0;
973
974 /* Fallback to buffered I/O if we are appending and
975 * concurrent O_DIRECT writes are allowed.
976 */
977 if (i_size_read(inode) <= offset && !full_coherency)
978 return 0;
979
980 if (iov_iter_rw(iter) == READ)
981 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
982 iter, offset,
983 ocfs2_direct_IO_get_blocks,
984 ocfs2_dio_end_io, NULL, 0);
985 else
986 return ocfs2_direct_IO_write(iocb, iter, offset);
987 }
988
989 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
990 u32 cpos,
991 unsigned int *start,
992 unsigned int *end)
993 {
994 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
995
996 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
997 unsigned int cpp;
998
999 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1000
1001 cluster_start = cpos % cpp;
1002 cluster_start = cluster_start << osb->s_clustersize_bits;
1003
1004 cluster_end = cluster_start + osb->s_clustersize;
1005 }
1006
1007 BUG_ON(cluster_start > PAGE_SIZE);
1008 BUG_ON(cluster_end > PAGE_SIZE);
1009
1010 if (start)
1011 *start = cluster_start;
1012 if (end)
1013 *end = cluster_end;
1014 }
1015
1016 /*
1017 * 'from' and 'to' are the region in the page to avoid zeroing.
1018 *
1019 * If pagesize > clustersize, this function will avoid zeroing outside
1020 * of the cluster boundary.
1021 *
1022 * from == to == 0 is code for "zero the entire cluster region"
1023 */
1024 static void ocfs2_clear_page_regions(struct page *page,
1025 struct ocfs2_super *osb, u32 cpos,
1026 unsigned from, unsigned to)
1027 {
1028 void *kaddr;
1029 unsigned int cluster_start, cluster_end;
1030
1031 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1032
1033 kaddr = kmap_atomic(page);
1034
1035 if (from || to) {
1036 if (from > cluster_start)
1037 memset(kaddr + cluster_start, 0, from - cluster_start);
1038 if (to < cluster_end)
1039 memset(kaddr + to, 0, cluster_end - to);
1040 } else {
1041 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1042 }
1043
1044 kunmap_atomic(kaddr);
1045 }
1046
1047 /*
1048 * Nonsparse file systems fully allocate before we get to the write
1049 * code. This prevents ocfs2_write() from tagging the write as an
1050 * allocating one, which means ocfs2_map_page_blocks() might try to
1051 * read-in the blocks at the tail of our file. Avoid reading them by
1052 * testing i_size against each block offset.
1053 */
1054 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1055 unsigned int block_start)
1056 {
1057 u64 offset = page_offset(page) + block_start;
1058
1059 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1060 return 1;
1061
1062 if (i_size_read(inode) > offset)
1063 return 1;
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * Some of this taken from __block_write_begin(). We already have our
1070 * mapping by now though, and the entire write will be allocating or
1071 * it won't, so not much need to use BH_New.
1072 *
1073 * This will also skip zeroing, which is handled externally.
1074 */
1075 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1076 struct inode *inode, unsigned int from,
1077 unsigned int to, int new)
1078 {
1079 int ret = 0;
1080 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1081 unsigned int block_end, block_start;
1082 unsigned int bsize = 1 << inode->i_blkbits;
1083
1084 if (!page_has_buffers(page))
1085 create_empty_buffers(page, bsize, 0);
1086
1087 head = page_buffers(page);
1088 for (bh = head, block_start = 0; bh != head || !block_start;
1089 bh = bh->b_this_page, block_start += bsize) {
1090 block_end = block_start + bsize;
1091
1092 clear_buffer_new(bh);
1093
1094 /*
1095 * Ignore blocks outside of our i/o range -
1096 * they may belong to unallocated clusters.
1097 */
1098 if (block_start >= to || block_end <= from) {
1099 if (PageUptodate(page))
1100 set_buffer_uptodate(bh);
1101 continue;
1102 }
1103
1104 /*
1105 * For an allocating write with cluster size >= page
1106 * size, we always write the entire page.
1107 */
1108 if (new)
1109 set_buffer_new(bh);
1110
1111 if (!buffer_mapped(bh)) {
1112 map_bh(bh, inode->i_sb, *p_blkno);
1113 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1114 }
1115
1116 if (PageUptodate(page)) {
1117 if (!buffer_uptodate(bh))
1118 set_buffer_uptodate(bh);
1119 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120 !buffer_new(bh) &&
1121 ocfs2_should_read_blk(inode, page, block_start) &&
1122 (block_start < from || block_end > to)) {
1123 ll_rw_block(READ, 1, &bh);
1124 *wait_bh++=bh;
1125 }
1126
1127 *p_blkno = *p_blkno + 1;
1128 }
1129
1130 /*
1131 * If we issued read requests - let them complete.
1132 */
1133 while(wait_bh > wait) {
1134 wait_on_buffer(*--wait_bh);
1135 if (!buffer_uptodate(*wait_bh))
1136 ret = -EIO;
1137 }
1138
1139 if (ret == 0 || !new)
1140 return ret;
1141
1142 /*
1143 * If we get -EIO above, zero out any newly allocated blocks
1144 * to avoid exposing stale data.
1145 */
1146 bh = head;
1147 block_start = 0;
1148 do {
1149 block_end = block_start + bsize;
1150 if (block_end <= from)
1151 goto next_bh;
1152 if (block_start >= to)
1153 break;
1154
1155 zero_user(page, block_start, bh->b_size);
1156 set_buffer_uptodate(bh);
1157 mark_buffer_dirty(bh);
1158
1159 next_bh:
1160 block_start = block_end;
1161 bh = bh->b_this_page;
1162 } while (bh != head);
1163
1164 return ret;
1165 }
1166
1167 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1168 #define OCFS2_MAX_CTXT_PAGES 1
1169 #else
1170 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1171 #endif
1172
1173 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1174
1175 /*
1176 * Describe the state of a single cluster to be written to.
1177 */
1178 struct ocfs2_write_cluster_desc {
1179 u32 c_cpos;
1180 u32 c_phys;
1181 /*
1182 * Give this a unique field because c_phys eventually gets
1183 * filled.
1184 */
1185 unsigned c_new;
1186 unsigned c_unwritten;
1187 unsigned c_needs_zero;
1188 };
1189
1190 struct ocfs2_write_ctxt {
1191 /* Logical cluster position / len of write */
1192 u32 w_cpos;
1193 u32 w_clen;
1194
1195 /* First cluster allocated in a nonsparse extend */
1196 u32 w_first_new_cpos;
1197
1198 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1199
1200 /*
1201 * This is true if page_size > cluster_size.
1202 *
1203 * It triggers a set of special cases during write which might
1204 * have to deal with allocating writes to partial pages.
1205 */
1206 unsigned int w_large_pages;
1207
1208 /*
1209 * Pages involved in this write.
1210 *
1211 * w_target_page is the page being written to by the user.
1212 *
1213 * w_pages is an array of pages which always contains
1214 * w_target_page, and in the case of an allocating write with
1215 * page_size < cluster size, it will contain zero'd and mapped
1216 * pages adjacent to w_target_page which need to be written
1217 * out in so that future reads from that region will get
1218 * zero's.
1219 */
1220 unsigned int w_num_pages;
1221 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1222 struct page *w_target_page;
1223
1224 /*
1225 * w_target_locked is used for page_mkwrite path indicating no unlocking
1226 * against w_target_page in ocfs2_write_end_nolock.
1227 */
1228 unsigned int w_target_locked:1;
1229
1230 /*
1231 * ocfs2_write_end() uses this to know what the real range to
1232 * write in the target should be.
1233 */
1234 unsigned int w_target_from;
1235 unsigned int w_target_to;
1236
1237 /*
1238 * We could use journal_current_handle() but this is cleaner,
1239 * IMHO -Mark
1240 */
1241 handle_t *w_handle;
1242
1243 struct buffer_head *w_di_bh;
1244
1245 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1246 };
1247
1248 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1249 {
1250 int i;
1251
1252 for(i = 0; i < num_pages; i++) {
1253 if (pages[i]) {
1254 unlock_page(pages[i]);
1255 mark_page_accessed(pages[i]);
1256 page_cache_release(pages[i]);
1257 }
1258 }
1259 }
1260
1261 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1262 {
1263 int i;
1264
1265 /*
1266 * w_target_locked is only set to true in the page_mkwrite() case.
1267 * The intent is to allow us to lock the target page from write_begin()
1268 * to write_end(). The caller must hold a ref on w_target_page.
1269 */
1270 if (wc->w_target_locked) {
1271 BUG_ON(!wc->w_target_page);
1272 for (i = 0; i < wc->w_num_pages; i++) {
1273 if (wc->w_target_page == wc->w_pages[i]) {
1274 wc->w_pages[i] = NULL;
1275 break;
1276 }
1277 }
1278 mark_page_accessed(wc->w_target_page);
1279 page_cache_release(wc->w_target_page);
1280 }
1281 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1282 }
1283
1284 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1285 {
1286 ocfs2_unlock_pages(wc);
1287 brelse(wc->w_di_bh);
1288 kfree(wc);
1289 }
1290
1291 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1292 struct ocfs2_super *osb, loff_t pos,
1293 unsigned len, struct buffer_head *di_bh)
1294 {
1295 u32 cend;
1296 struct ocfs2_write_ctxt *wc;
1297
1298 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1299 if (!wc)
1300 return -ENOMEM;
1301
1302 wc->w_cpos = pos >> osb->s_clustersize_bits;
1303 wc->w_first_new_cpos = UINT_MAX;
1304 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1305 wc->w_clen = cend - wc->w_cpos + 1;
1306 get_bh(di_bh);
1307 wc->w_di_bh = di_bh;
1308
1309 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1310 wc->w_large_pages = 1;
1311 else
1312 wc->w_large_pages = 0;
1313
1314 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1315
1316 *wcp = wc;
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * If a page has any new buffers, zero them out here, and mark them uptodate
1323 * and dirty so they'll be written out (in order to prevent uninitialised
1324 * block data from leaking). And clear the new bit.
1325 */
1326 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1327 {
1328 unsigned int block_start, block_end;
1329 struct buffer_head *head, *bh;
1330
1331 BUG_ON(!PageLocked(page));
1332 if (!page_has_buffers(page))
1333 return;
1334
1335 bh = head = page_buffers(page);
1336 block_start = 0;
1337 do {
1338 block_end = block_start + bh->b_size;
1339
1340 if (buffer_new(bh)) {
1341 if (block_end > from && block_start < to) {
1342 if (!PageUptodate(page)) {
1343 unsigned start, end;
1344
1345 start = max(from, block_start);
1346 end = min(to, block_end);
1347
1348 zero_user_segment(page, start, end);
1349 set_buffer_uptodate(bh);
1350 }
1351
1352 clear_buffer_new(bh);
1353 mark_buffer_dirty(bh);
1354 }
1355 }
1356
1357 block_start = block_end;
1358 bh = bh->b_this_page;
1359 } while (bh != head);
1360 }
1361
1362 /*
1363 * Only called when we have a failure during allocating write to write
1364 * zero's to the newly allocated region.
1365 */
1366 static void ocfs2_write_failure(struct inode *inode,
1367 struct ocfs2_write_ctxt *wc,
1368 loff_t user_pos, unsigned user_len)
1369 {
1370 int i;
1371 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1372 to = user_pos + user_len;
1373 struct page *tmppage;
1374
1375 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1376
1377 for(i = 0; i < wc->w_num_pages; i++) {
1378 tmppage = wc->w_pages[i];
1379
1380 if (page_has_buffers(tmppage)) {
1381 if (ocfs2_should_order_data(inode))
1382 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1383
1384 block_commit_write(tmppage, from, to);
1385 }
1386 }
1387 }
1388
1389 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1390 struct ocfs2_write_ctxt *wc,
1391 struct page *page, u32 cpos,
1392 loff_t user_pos, unsigned user_len,
1393 int new)
1394 {
1395 int ret;
1396 unsigned int map_from = 0, map_to = 0;
1397 unsigned int cluster_start, cluster_end;
1398 unsigned int user_data_from = 0, user_data_to = 0;
1399
1400 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1401 &cluster_start, &cluster_end);
1402
1403 /* treat the write as new if the a hole/lseek spanned across
1404 * the page boundary.
1405 */
1406 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1407 (page_offset(page) <= user_pos));
1408
1409 if (page == wc->w_target_page) {
1410 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1411 map_to = map_from + user_len;
1412
1413 if (new)
1414 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1415 cluster_start, cluster_end,
1416 new);
1417 else
1418 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1419 map_from, map_to, new);
1420 if (ret) {
1421 mlog_errno(ret);
1422 goto out;
1423 }
1424
1425 user_data_from = map_from;
1426 user_data_to = map_to;
1427 if (new) {
1428 map_from = cluster_start;
1429 map_to = cluster_end;
1430 }
1431 } else {
1432 /*
1433 * If we haven't allocated the new page yet, we
1434 * shouldn't be writing it out without copying user
1435 * data. This is likely a math error from the caller.
1436 */
1437 BUG_ON(!new);
1438
1439 map_from = cluster_start;
1440 map_to = cluster_end;
1441
1442 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1443 cluster_start, cluster_end, new);
1444 if (ret) {
1445 mlog_errno(ret);
1446 goto out;
1447 }
1448 }
1449
1450 /*
1451 * Parts of newly allocated pages need to be zero'd.
1452 *
1453 * Above, we have also rewritten 'to' and 'from' - as far as
1454 * the rest of the function is concerned, the entire cluster
1455 * range inside of a page needs to be written.
1456 *
1457 * We can skip this if the page is up to date - it's already
1458 * been zero'd from being read in as a hole.
1459 */
1460 if (new && !PageUptodate(page))
1461 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1462 cpos, user_data_from, user_data_to);
1463
1464 flush_dcache_page(page);
1465
1466 out:
1467 return ret;
1468 }
1469
1470 /*
1471 * This function will only grab one clusters worth of pages.
1472 */
1473 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1474 struct ocfs2_write_ctxt *wc,
1475 u32 cpos, loff_t user_pos,
1476 unsigned user_len, int new,
1477 struct page *mmap_page)
1478 {
1479 int ret = 0, i;
1480 unsigned long start, target_index, end_index, index;
1481 struct inode *inode = mapping->host;
1482 loff_t last_byte;
1483
1484 target_index = user_pos >> PAGE_CACHE_SHIFT;
1485
1486 /*
1487 * Figure out how many pages we'll be manipulating here. For
1488 * non allocating write, we just change the one
1489 * page. Otherwise, we'll need a whole clusters worth. If we're
1490 * writing past i_size, we only need enough pages to cover the
1491 * last page of the write.
1492 */
1493 if (new) {
1494 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1495 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1496 /*
1497 * We need the index *past* the last page we could possibly
1498 * touch. This is the page past the end of the write or
1499 * i_size, whichever is greater.
1500 */
1501 last_byte = max(user_pos + user_len, i_size_read(inode));
1502 BUG_ON(last_byte < 1);
1503 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1504 if ((start + wc->w_num_pages) > end_index)
1505 wc->w_num_pages = end_index - start;
1506 } else {
1507 wc->w_num_pages = 1;
1508 start = target_index;
1509 }
1510
1511 for(i = 0; i < wc->w_num_pages; i++) {
1512 index = start + i;
1513
1514 if (index == target_index && mmap_page) {
1515 /*
1516 * ocfs2_pagemkwrite() is a little different
1517 * and wants us to directly use the page
1518 * passed in.
1519 */
1520 lock_page(mmap_page);
1521
1522 /* Exit and let the caller retry */
1523 if (mmap_page->mapping != mapping) {
1524 WARN_ON(mmap_page->mapping);
1525 unlock_page(mmap_page);
1526 ret = -EAGAIN;
1527 goto out;
1528 }
1529
1530 page_cache_get(mmap_page);
1531 wc->w_pages[i] = mmap_page;
1532 wc->w_target_locked = true;
1533 } else {
1534 wc->w_pages[i] = find_or_create_page(mapping, index,
1535 GFP_NOFS);
1536 if (!wc->w_pages[i]) {
1537 ret = -ENOMEM;
1538 mlog_errno(ret);
1539 goto out;
1540 }
1541 }
1542 wait_for_stable_page(wc->w_pages[i]);
1543
1544 if (index == target_index)
1545 wc->w_target_page = wc->w_pages[i];
1546 }
1547 out:
1548 if (ret)
1549 wc->w_target_locked = false;
1550 return ret;
1551 }
1552
1553 /*
1554 * Prepare a single cluster for write one cluster into the file.
1555 */
1556 static int ocfs2_write_cluster(struct address_space *mapping,
1557 u32 phys, unsigned int unwritten,
1558 unsigned int should_zero,
1559 struct ocfs2_alloc_context *data_ac,
1560 struct ocfs2_alloc_context *meta_ac,
1561 struct ocfs2_write_ctxt *wc, u32 cpos,
1562 loff_t user_pos, unsigned user_len)
1563 {
1564 int ret, i, new;
1565 u64 v_blkno, p_blkno;
1566 struct inode *inode = mapping->host;
1567 struct ocfs2_extent_tree et;
1568
1569 new = phys == 0 ? 1 : 0;
1570 if (new) {
1571 u32 tmp_pos;
1572
1573 /*
1574 * This is safe to call with the page locks - it won't take
1575 * any additional semaphores or cluster locks.
1576 */
1577 tmp_pos = cpos;
1578 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1579 &tmp_pos, 1, 0, wc->w_di_bh,
1580 wc->w_handle, data_ac,
1581 meta_ac, NULL);
1582 /*
1583 * This shouldn't happen because we must have already
1584 * calculated the correct meta data allocation required. The
1585 * internal tree allocation code should know how to increase
1586 * transaction credits itself.
1587 *
1588 * If need be, we could handle -EAGAIN for a
1589 * RESTART_TRANS here.
1590 */
1591 mlog_bug_on_msg(ret == -EAGAIN,
1592 "Inode %llu: EAGAIN return during allocation.\n",
1593 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1594 if (ret < 0) {
1595 mlog_errno(ret);
1596 goto out;
1597 }
1598 } else if (unwritten) {
1599 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1600 wc->w_di_bh);
1601 ret = ocfs2_mark_extent_written(inode, &et,
1602 wc->w_handle, cpos, 1, phys,
1603 meta_ac, &wc->w_dealloc);
1604 if (ret < 0) {
1605 mlog_errno(ret);
1606 goto out;
1607 }
1608 }
1609
1610 if (should_zero)
1611 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1612 else
1613 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1614
1615 /*
1616 * The only reason this should fail is due to an inability to
1617 * find the extent added.
1618 */
1619 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1620 NULL);
1621 if (ret < 0) {
1622 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1623 "at logical block %llu",
1624 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1625 (unsigned long long)v_blkno);
1626 goto out;
1627 }
1628
1629 BUG_ON(p_blkno == 0);
1630
1631 for(i = 0; i < wc->w_num_pages; i++) {
1632 int tmpret;
1633
1634 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1635 wc->w_pages[i], cpos,
1636 user_pos, user_len,
1637 should_zero);
1638 if (tmpret) {
1639 mlog_errno(tmpret);
1640 if (ret == 0)
1641 ret = tmpret;
1642 }
1643 }
1644
1645 /*
1646 * We only have cleanup to do in case of allocating write.
1647 */
1648 if (ret && new)
1649 ocfs2_write_failure(inode, wc, user_pos, user_len);
1650
1651 out:
1652
1653 return ret;
1654 }
1655
1656 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1657 struct ocfs2_alloc_context *data_ac,
1658 struct ocfs2_alloc_context *meta_ac,
1659 struct ocfs2_write_ctxt *wc,
1660 loff_t pos, unsigned len)
1661 {
1662 int ret, i;
1663 loff_t cluster_off;
1664 unsigned int local_len = len;
1665 struct ocfs2_write_cluster_desc *desc;
1666 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1667
1668 for (i = 0; i < wc->w_clen; i++) {
1669 desc = &wc->w_desc[i];
1670
1671 /*
1672 * We have to make sure that the total write passed in
1673 * doesn't extend past a single cluster.
1674 */
1675 local_len = len;
1676 cluster_off = pos & (osb->s_clustersize - 1);
1677 if ((cluster_off + local_len) > osb->s_clustersize)
1678 local_len = osb->s_clustersize - cluster_off;
1679
1680 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1681 desc->c_unwritten,
1682 desc->c_needs_zero,
1683 data_ac, meta_ac,
1684 wc, desc->c_cpos, pos, local_len);
1685 if (ret) {
1686 mlog_errno(ret);
1687 goto out;
1688 }
1689
1690 len -= local_len;
1691 pos += local_len;
1692 }
1693
1694 ret = 0;
1695 out:
1696 return ret;
1697 }
1698
1699 /*
1700 * ocfs2_write_end() wants to know which parts of the target page it
1701 * should complete the write on. It's easiest to compute them ahead of
1702 * time when a more complete view of the write is available.
1703 */
1704 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1705 struct ocfs2_write_ctxt *wc,
1706 loff_t pos, unsigned len, int alloc)
1707 {
1708 struct ocfs2_write_cluster_desc *desc;
1709
1710 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1711 wc->w_target_to = wc->w_target_from + len;
1712
1713 if (alloc == 0)
1714 return;
1715
1716 /*
1717 * Allocating write - we may have different boundaries based
1718 * on page size and cluster size.
1719 *
1720 * NOTE: We can no longer compute one value from the other as
1721 * the actual write length and user provided length may be
1722 * different.
1723 */
1724
1725 if (wc->w_large_pages) {
1726 /*
1727 * We only care about the 1st and last cluster within
1728 * our range and whether they should be zero'd or not. Either
1729 * value may be extended out to the start/end of a
1730 * newly allocated cluster.
1731 */
1732 desc = &wc->w_desc[0];
1733 if (desc->c_needs_zero)
1734 ocfs2_figure_cluster_boundaries(osb,
1735 desc->c_cpos,
1736 &wc->w_target_from,
1737 NULL);
1738
1739 desc = &wc->w_desc[wc->w_clen - 1];
1740 if (desc->c_needs_zero)
1741 ocfs2_figure_cluster_boundaries(osb,
1742 desc->c_cpos,
1743 NULL,
1744 &wc->w_target_to);
1745 } else {
1746 wc->w_target_from = 0;
1747 wc->w_target_to = PAGE_CACHE_SIZE;
1748 }
1749 }
1750
1751 /*
1752 * Populate each single-cluster write descriptor in the write context
1753 * with information about the i/o to be done.
1754 *
1755 * Returns the number of clusters that will have to be allocated, as
1756 * well as a worst case estimate of the number of extent records that
1757 * would have to be created during a write to an unwritten region.
1758 */
1759 static int ocfs2_populate_write_desc(struct inode *inode,
1760 struct ocfs2_write_ctxt *wc,
1761 unsigned int *clusters_to_alloc,
1762 unsigned int *extents_to_split)
1763 {
1764 int ret;
1765 struct ocfs2_write_cluster_desc *desc;
1766 unsigned int num_clusters = 0;
1767 unsigned int ext_flags = 0;
1768 u32 phys = 0;
1769 int i;
1770
1771 *clusters_to_alloc = 0;
1772 *extents_to_split = 0;
1773
1774 for (i = 0; i < wc->w_clen; i++) {
1775 desc = &wc->w_desc[i];
1776 desc->c_cpos = wc->w_cpos + i;
1777
1778 if (num_clusters == 0) {
1779 /*
1780 * Need to look up the next extent record.
1781 */
1782 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1783 &num_clusters, &ext_flags);
1784 if (ret) {
1785 mlog_errno(ret);
1786 goto out;
1787 }
1788
1789 /* We should already CoW the refcountd extent. */
1790 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1791
1792 /*
1793 * Assume worst case - that we're writing in
1794 * the middle of the extent.
1795 *
1796 * We can assume that the write proceeds from
1797 * left to right, in which case the extent
1798 * insert code is smart enough to coalesce the
1799 * next splits into the previous records created.
1800 */
1801 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1802 *extents_to_split = *extents_to_split + 2;
1803 } else if (phys) {
1804 /*
1805 * Only increment phys if it doesn't describe
1806 * a hole.
1807 */
1808 phys++;
1809 }
1810
1811 /*
1812 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1813 * file that got extended. w_first_new_cpos tells us
1814 * where the newly allocated clusters are so we can
1815 * zero them.
1816 */
1817 if (desc->c_cpos >= wc->w_first_new_cpos) {
1818 BUG_ON(phys == 0);
1819 desc->c_needs_zero = 1;
1820 }
1821
1822 desc->c_phys = phys;
1823 if (phys == 0) {
1824 desc->c_new = 1;
1825 desc->c_needs_zero = 1;
1826 *clusters_to_alloc = *clusters_to_alloc + 1;
1827 }
1828
1829 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1830 desc->c_unwritten = 1;
1831 desc->c_needs_zero = 1;
1832 }
1833
1834 num_clusters--;
1835 }
1836
1837 ret = 0;
1838 out:
1839 return ret;
1840 }
1841
1842 static int ocfs2_write_begin_inline(struct address_space *mapping,
1843 struct inode *inode,
1844 struct ocfs2_write_ctxt *wc)
1845 {
1846 int ret;
1847 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1848 struct page *page;
1849 handle_t *handle;
1850 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1851
1852 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1853 if (IS_ERR(handle)) {
1854 ret = PTR_ERR(handle);
1855 mlog_errno(ret);
1856 goto out;
1857 }
1858
1859 page = find_or_create_page(mapping, 0, GFP_NOFS);
1860 if (!page) {
1861 ocfs2_commit_trans(osb, handle);
1862 ret = -ENOMEM;
1863 mlog_errno(ret);
1864 goto out;
1865 }
1866 /*
1867 * If we don't set w_num_pages then this page won't get unlocked
1868 * and freed on cleanup of the write context.
1869 */
1870 wc->w_pages[0] = wc->w_target_page = page;
1871 wc->w_num_pages = 1;
1872
1873 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1874 OCFS2_JOURNAL_ACCESS_WRITE);
1875 if (ret) {
1876 ocfs2_commit_trans(osb, handle);
1877
1878 mlog_errno(ret);
1879 goto out;
1880 }
1881
1882 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1883 ocfs2_set_inode_data_inline(inode, di);
1884
1885 if (!PageUptodate(page)) {
1886 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1887 if (ret) {
1888 ocfs2_commit_trans(osb, handle);
1889
1890 goto out;
1891 }
1892 }
1893
1894 wc->w_handle = handle;
1895 out:
1896 return ret;
1897 }
1898
1899 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1900 {
1901 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1902
1903 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1904 return 1;
1905 return 0;
1906 }
1907
1908 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1909 struct inode *inode, loff_t pos,
1910 unsigned len, struct page *mmap_page,
1911 struct ocfs2_write_ctxt *wc)
1912 {
1913 int ret, written = 0;
1914 loff_t end = pos + len;
1915 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1916 struct ocfs2_dinode *di = NULL;
1917
1918 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1919 len, (unsigned long long)pos,
1920 oi->ip_dyn_features);
1921
1922 /*
1923 * Handle inodes which already have inline data 1st.
1924 */
1925 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1926 if (mmap_page == NULL &&
1927 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1928 goto do_inline_write;
1929
1930 /*
1931 * The write won't fit - we have to give this inode an
1932 * inline extent list now.
1933 */
1934 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1935 if (ret)
1936 mlog_errno(ret);
1937 goto out;
1938 }
1939
1940 /*
1941 * Check whether the inode can accept inline data.
1942 */
1943 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1944 return 0;
1945
1946 /*
1947 * Check whether the write can fit.
1948 */
1949 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1950 if (mmap_page ||
1951 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1952 return 0;
1953
1954 do_inline_write:
1955 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1956 if (ret) {
1957 mlog_errno(ret);
1958 goto out;
1959 }
1960
1961 /*
1962 * This signals to the caller that the data can be written
1963 * inline.
1964 */
1965 written = 1;
1966 out:
1967 return written ? written : ret;
1968 }
1969
1970 /*
1971 * This function only does anything for file systems which can't
1972 * handle sparse files.
1973 *
1974 * What we want to do here is fill in any hole between the current end
1975 * of allocation and the end of our write. That way the rest of the
1976 * write path can treat it as an non-allocating write, which has no
1977 * special case code for sparse/nonsparse files.
1978 */
1979 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1980 struct buffer_head *di_bh,
1981 loff_t pos, unsigned len,
1982 struct ocfs2_write_ctxt *wc)
1983 {
1984 int ret;
1985 loff_t newsize = pos + len;
1986
1987 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1988
1989 if (newsize <= i_size_read(inode))
1990 return 0;
1991
1992 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1993 if (ret)
1994 mlog_errno(ret);
1995
1996 wc->w_first_new_cpos =
1997 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1998
1999 return ret;
2000 }
2001
2002 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2003 loff_t pos)
2004 {
2005 int ret = 0;
2006
2007 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2008 if (pos > i_size_read(inode))
2009 ret = ocfs2_zero_extend(inode, di_bh, pos);
2010
2011 return ret;
2012 }
2013
2014 /*
2015 * Try to flush truncate logs if we can free enough clusters from it.
2016 * As for return value, "< 0" means error, "0" no space and "1" means
2017 * we have freed enough spaces and let the caller try to allocate again.
2018 */
2019 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2020 unsigned int needed)
2021 {
2022 tid_t target;
2023 int ret = 0;
2024 unsigned int truncated_clusters;
2025
2026 mutex_lock(&osb->osb_tl_inode->i_mutex);
2027 truncated_clusters = osb->truncated_clusters;
2028 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2029
2030 /*
2031 * Check whether we can succeed in allocating if we free
2032 * the truncate log.
2033 */
2034 if (truncated_clusters < needed)
2035 goto out;
2036
2037 ret = ocfs2_flush_truncate_log(osb);
2038 if (ret) {
2039 mlog_errno(ret);
2040 goto out;
2041 }
2042
2043 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2044 jbd2_log_wait_commit(osb->journal->j_journal, target);
2045 ret = 1;
2046 }
2047 out:
2048 return ret;
2049 }
2050
2051 int ocfs2_write_begin_nolock(struct file *filp,
2052 struct address_space *mapping,
2053 loff_t pos, unsigned len, unsigned flags,
2054 struct page **pagep, void **fsdata,
2055 struct buffer_head *di_bh, struct page *mmap_page)
2056 {
2057 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2058 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2059 struct ocfs2_write_ctxt *wc;
2060 struct inode *inode = mapping->host;
2061 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2062 struct ocfs2_dinode *di;
2063 struct ocfs2_alloc_context *data_ac = NULL;
2064 struct ocfs2_alloc_context *meta_ac = NULL;
2065 handle_t *handle;
2066 struct ocfs2_extent_tree et;
2067 int try_free = 1, ret1;
2068
2069 try_again:
2070 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2071 if (ret) {
2072 mlog_errno(ret);
2073 return ret;
2074 }
2075
2076 if (ocfs2_supports_inline_data(osb)) {
2077 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2078 mmap_page, wc);
2079 if (ret == 1) {
2080 ret = 0;
2081 goto success;
2082 }
2083 if (ret < 0) {
2084 mlog_errno(ret);
2085 goto out;
2086 }
2087 }
2088
2089 if (ocfs2_sparse_alloc(osb))
2090 ret = ocfs2_zero_tail(inode, di_bh, pos);
2091 else
2092 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2093 wc);
2094 if (ret) {
2095 mlog_errno(ret);
2096 goto out;
2097 }
2098
2099 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2100 if (ret < 0) {
2101 mlog_errno(ret);
2102 goto out;
2103 } else if (ret == 1) {
2104 clusters_need = wc->w_clen;
2105 ret = ocfs2_refcount_cow(inode, di_bh,
2106 wc->w_cpos, wc->w_clen, UINT_MAX);
2107 if (ret) {
2108 mlog_errno(ret);
2109 goto out;
2110 }
2111 }
2112
2113 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2114 &extents_to_split);
2115 if (ret) {
2116 mlog_errno(ret);
2117 goto out;
2118 }
2119 clusters_need += clusters_to_alloc;
2120
2121 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2122
2123 trace_ocfs2_write_begin_nolock(
2124 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2125 (long long)i_size_read(inode),
2126 le32_to_cpu(di->i_clusters),
2127 pos, len, flags, mmap_page,
2128 clusters_to_alloc, extents_to_split);
2129
2130 /*
2131 * We set w_target_from, w_target_to here so that
2132 * ocfs2_write_end() knows which range in the target page to
2133 * write out. An allocation requires that we write the entire
2134 * cluster range.
2135 */
2136 if (clusters_to_alloc || extents_to_split) {
2137 /*
2138 * XXX: We are stretching the limits of
2139 * ocfs2_lock_allocators(). It greatly over-estimates
2140 * the work to be done.
2141 */
2142 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2143 wc->w_di_bh);
2144 ret = ocfs2_lock_allocators(inode, &et,
2145 clusters_to_alloc, extents_to_split,
2146 &data_ac, &meta_ac);
2147 if (ret) {
2148 mlog_errno(ret);
2149 goto out;
2150 }
2151
2152 if (data_ac)
2153 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2154
2155 credits = ocfs2_calc_extend_credits(inode->i_sb,
2156 &di->id2.i_list);
2157
2158 }
2159
2160 /*
2161 * We have to zero sparse allocated clusters, unwritten extent clusters,
2162 * and non-sparse clusters we just extended. For non-sparse writes,
2163 * we know zeros will only be needed in the first and/or last cluster.
2164 */
2165 if (clusters_to_alloc || extents_to_split ||
2166 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2167 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2168 cluster_of_pages = 1;
2169 else
2170 cluster_of_pages = 0;
2171
2172 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2173
2174 handle = ocfs2_start_trans(osb, credits);
2175 if (IS_ERR(handle)) {
2176 ret = PTR_ERR(handle);
2177 mlog_errno(ret);
2178 goto out;
2179 }
2180
2181 wc->w_handle = handle;
2182
2183 if (clusters_to_alloc) {
2184 ret = dquot_alloc_space_nodirty(inode,
2185 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2186 if (ret)
2187 goto out_commit;
2188 }
2189 /*
2190 * We don't want this to fail in ocfs2_write_end(), so do it
2191 * here.
2192 */
2193 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2194 OCFS2_JOURNAL_ACCESS_WRITE);
2195 if (ret) {
2196 mlog_errno(ret);
2197 goto out_quota;
2198 }
2199
2200 /*
2201 * Fill our page array first. That way we've grabbed enough so
2202 * that we can zero and flush if we error after adding the
2203 * extent.
2204 */
2205 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2206 cluster_of_pages, mmap_page);
2207 if (ret && ret != -EAGAIN) {
2208 mlog_errno(ret);
2209 goto out_quota;
2210 }
2211
2212 /*
2213 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2214 * the target page. In this case, we exit with no error and no target
2215 * page. This will trigger the caller, page_mkwrite(), to re-try
2216 * the operation.
2217 */
2218 if (ret == -EAGAIN) {
2219 BUG_ON(wc->w_target_page);
2220 ret = 0;
2221 goto out_quota;
2222 }
2223
2224 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2225 len);
2226 if (ret) {
2227 mlog_errno(ret);
2228 goto out_quota;
2229 }
2230
2231 if (data_ac)
2232 ocfs2_free_alloc_context(data_ac);
2233 if (meta_ac)
2234 ocfs2_free_alloc_context(meta_ac);
2235
2236 success:
2237 *pagep = wc->w_target_page;
2238 *fsdata = wc;
2239 return 0;
2240 out_quota:
2241 if (clusters_to_alloc)
2242 dquot_free_space(inode,
2243 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2244 out_commit:
2245 ocfs2_commit_trans(osb, handle);
2246
2247 out:
2248 ocfs2_free_write_ctxt(wc);
2249
2250 if (data_ac) {
2251 ocfs2_free_alloc_context(data_ac);
2252 data_ac = NULL;
2253 }
2254 if (meta_ac) {
2255 ocfs2_free_alloc_context(meta_ac);
2256 meta_ac = NULL;
2257 }
2258
2259 if (ret == -ENOSPC && try_free) {
2260 /*
2261 * Try to free some truncate log so that we can have enough
2262 * clusters to allocate.
2263 */
2264 try_free = 0;
2265
2266 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2267 if (ret1 == 1)
2268 goto try_again;
2269
2270 if (ret1 < 0)
2271 mlog_errno(ret1);
2272 }
2273
2274 return ret;
2275 }
2276
2277 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2278 loff_t pos, unsigned len, unsigned flags,
2279 struct page **pagep, void **fsdata)
2280 {
2281 int ret;
2282 struct buffer_head *di_bh = NULL;
2283 struct inode *inode = mapping->host;
2284
2285 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2286 if (ret) {
2287 mlog_errno(ret);
2288 return ret;
2289 }
2290
2291 /*
2292 * Take alloc sem here to prevent concurrent lookups. That way
2293 * the mapping, zeroing and tree manipulation within
2294 * ocfs2_write() will be safe against ->readpage(). This
2295 * should also serve to lock out allocation from a shared
2296 * writeable region.
2297 */
2298 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2299
2300 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2301 fsdata, di_bh, NULL);
2302 if (ret) {
2303 mlog_errno(ret);
2304 goto out_fail;
2305 }
2306
2307 brelse(di_bh);
2308
2309 return 0;
2310
2311 out_fail:
2312 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2313
2314 brelse(di_bh);
2315 ocfs2_inode_unlock(inode, 1);
2316
2317 return ret;
2318 }
2319
2320 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2321 unsigned len, unsigned *copied,
2322 struct ocfs2_dinode *di,
2323 struct ocfs2_write_ctxt *wc)
2324 {
2325 void *kaddr;
2326
2327 if (unlikely(*copied < len)) {
2328 if (!PageUptodate(wc->w_target_page)) {
2329 *copied = 0;
2330 return;
2331 }
2332 }
2333
2334 kaddr = kmap_atomic(wc->w_target_page);
2335 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2336 kunmap_atomic(kaddr);
2337
2338 trace_ocfs2_write_end_inline(
2339 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2340 (unsigned long long)pos, *copied,
2341 le16_to_cpu(di->id2.i_data.id_count),
2342 le16_to_cpu(di->i_dyn_features));
2343 }
2344
2345 int ocfs2_write_end_nolock(struct address_space *mapping,
2346 loff_t pos, unsigned len, unsigned copied,
2347 struct page *page, void *fsdata)
2348 {
2349 int i;
2350 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2351 struct inode *inode = mapping->host;
2352 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2353 struct ocfs2_write_ctxt *wc = fsdata;
2354 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2355 handle_t *handle = wc->w_handle;
2356 struct page *tmppage;
2357
2358 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2359 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2360 goto out_write_size;
2361 }
2362
2363 if (unlikely(copied < len)) {
2364 if (!PageUptodate(wc->w_target_page))
2365 copied = 0;
2366
2367 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2368 start+len);
2369 }
2370 flush_dcache_page(wc->w_target_page);
2371
2372 for(i = 0; i < wc->w_num_pages; i++) {
2373 tmppage = wc->w_pages[i];
2374
2375 if (tmppage == wc->w_target_page) {
2376 from = wc->w_target_from;
2377 to = wc->w_target_to;
2378
2379 BUG_ON(from > PAGE_CACHE_SIZE ||
2380 to > PAGE_CACHE_SIZE ||
2381 to < from);
2382 } else {
2383 /*
2384 * Pages adjacent to the target (if any) imply
2385 * a hole-filling write in which case we want
2386 * to flush their entire range.
2387 */
2388 from = 0;
2389 to = PAGE_CACHE_SIZE;
2390 }
2391
2392 if (page_has_buffers(tmppage)) {
2393 if (ocfs2_should_order_data(inode))
2394 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2395 block_commit_write(tmppage, from, to);
2396 }
2397 }
2398
2399 out_write_size:
2400 pos += copied;
2401 if (pos > i_size_read(inode)) {
2402 i_size_write(inode, pos);
2403 mark_inode_dirty(inode);
2404 }
2405 inode->i_blocks = ocfs2_inode_sector_count(inode);
2406 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2407 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2408 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2409 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2410 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2411 ocfs2_journal_dirty(handle, wc->w_di_bh);
2412
2413 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2414 * lock, or it will cause a deadlock since journal commit threads holds
2415 * this lock and will ask for the page lock when flushing the data.
2416 * put it here to preserve the unlock order.
2417 */
2418 ocfs2_unlock_pages(wc);
2419
2420 ocfs2_commit_trans(osb, handle);
2421
2422 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2423
2424 brelse(wc->w_di_bh);
2425 kfree(wc);
2426
2427 return copied;
2428 }
2429
2430 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2431 loff_t pos, unsigned len, unsigned copied,
2432 struct page *page, void *fsdata)
2433 {
2434 int ret;
2435 struct inode *inode = mapping->host;
2436
2437 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2438
2439 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2440 ocfs2_inode_unlock(inode, 1);
2441
2442 return ret;
2443 }
2444
2445 const struct address_space_operations ocfs2_aops = {
2446 .readpage = ocfs2_readpage,
2447 .readpages = ocfs2_readpages,
2448 .writepage = ocfs2_writepage,
2449 .write_begin = ocfs2_write_begin,
2450 .write_end = ocfs2_write_end,
2451 .bmap = ocfs2_bmap,
2452 .direct_IO = ocfs2_direct_IO,
2453 .invalidatepage = block_invalidatepage,
2454 .releasepage = ocfs2_releasepage,
2455 .migratepage = buffer_migrate_page,
2456 .is_partially_uptodate = block_is_partially_uptodate,
2457 .error_remove_page = generic_error_remove_page,
2458 };