]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ocfs2/aops.c
ocfs2: rework ocfs2_buffered_write_cluster()
[mirror_ubuntu-jammy-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32
33 #include "ocfs2.h"
34
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45
46 #include "buffer_head_io.h"
47
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50 {
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 fe->i_signature);
83 goto bail;
84 }
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 goto bail;
102 }
103
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 if (!kaddr) {
112 mlog(ML_ERROR, "couldn't kmap!\n");
113 goto bail;
114 }
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
117 bh_result->b_size);
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
120 }
121 brelse(buffer_cache_bh);
122 }
123
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127 err = 0;
128
129 bail:
130 if (bh)
131 brelse(bh);
132
133 mlog_exit(err);
134 return err;
135 }
136
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 p_blkno, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 &ext_flags);
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
164 goto bail;
165 }
166
167 /*
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
172 */
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
176
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 map_bh(bh_result, inode->i_sb, p_blkno);
180
181 if (!ocfs2_sparse_alloc(osb)) {
182 if (p_blkno == 0) {
183 err = -EIO;
184 mlog(ML_ERROR,
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 dump_stack();
191 }
192
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
196
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
199 }
200
201 bail:
202 if (err < 0)
203 err = -EIO;
204
205 mlog_exit(err);
206 return err;
207 }
208
209 static int ocfs2_readpage(struct file *file, struct page *page)
210 {
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 int ret, unlock = 1;
214
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218 if (ret != 0) {
219 if (ret == AOP_TRUNCATED_PAGE)
220 unlock = 0;
221 mlog_errno(ret);
222 goto out;
223 }
224
225 if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 ret = AOP_TRUNCATED_PAGE;
227 goto out_meta_unlock;
228 }
229
230 /*
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
235 * (generic_file_read, fault->nopage) are clever enough to check i_size
236 * and notice that the page they just read isn't needed.
237 *
238 * XXX sys_readahead() seems to get that wrong?
239 */
240 if (start >= i_size_read(inode)) {
241 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 SetPageUptodate(page);
243 ret = 0;
244 goto out_alloc;
245 }
246
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
248 if (ret != 0) {
249 if (ret == AOP_TRUNCATED_PAGE)
250 unlock = 0;
251 mlog_errno(ret);
252 goto out_alloc;
253 }
254
255 ret = block_read_full_page(page, ocfs2_get_block);
256 unlock = 0;
257
258 ocfs2_data_unlock(inode, 0);
259 out_alloc:
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 out_meta_unlock:
262 ocfs2_meta_unlock(inode, 0);
263 out:
264 if (unlock)
265 unlock_page(page);
266 mlog_exit(ret);
267 return ret;
268 }
269
270 /* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
274 *
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
280 */
281 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282 {
283 int ret;
284
285 mlog_entry("(0x%p)\n", page);
286
287 ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289 mlog_exit(ret);
290
291 return ret;
292 }
293
294 /*
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
298 */
299 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 unsigned from, unsigned to)
301 {
302 int ret;
303
304 down_read(&OCFS2_I(inode)->ip_alloc_sem);
305
306 ret = block_prepare_write(page, from, to, ocfs2_get_block);
307
308 up_read(&OCFS2_I(inode)->ip_alloc_sem);
309
310 return ret;
311 }
312
313 /* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317 int walk_page_buffers( handle_t *handle,
318 struct buffer_head *head,
319 unsigned from,
320 unsigned to,
321 int *partial,
322 int (*fn)( handle_t *handle,
323 struct buffer_head *bh))
324 {
325 struct buffer_head *bh;
326 unsigned block_start, block_end;
327 unsigned blocksize = head->b_size;
328 int err, ret = 0;
329 struct buffer_head *next;
330
331 for ( bh = head, block_start = 0;
332 ret == 0 && (bh != head || !block_start);
333 block_start = block_end, bh = next)
334 {
335 next = bh->b_this_page;
336 block_end = block_start + blocksize;
337 if (block_end <= from || block_start >= to) {
338 if (partial && !buffer_uptodate(bh))
339 *partial = 1;
340 continue;
341 }
342 err = (*fn)(handle, bh);
343 if (!ret)
344 ret = err;
345 }
346 return ret;
347 }
348
349 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350 struct page *page,
351 unsigned from,
352 unsigned to)
353 {
354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355 handle_t *handle = NULL;
356 int ret = 0;
357
358 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359 if (!handle) {
360 ret = -ENOMEM;
361 mlog_errno(ret);
362 goto out;
363 }
364
365 if (ocfs2_should_order_data(inode)) {
366 ret = walk_page_buffers(handle,
367 page_buffers(page),
368 from, to, NULL,
369 ocfs2_journal_dirty_data);
370 if (ret < 0)
371 mlog_errno(ret);
372 }
373 out:
374 if (ret) {
375 if (handle)
376 ocfs2_commit_trans(osb, handle);
377 handle = ERR_PTR(ret);
378 }
379 return handle;
380 }
381
382 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383 {
384 sector_t status;
385 u64 p_blkno = 0;
386 int err = 0;
387 struct inode *inode = mapping->host;
388
389 mlog_entry("(block = %llu)\n", (unsigned long long)block);
390
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
393 */
394 if (!INODE_JOURNAL(inode)) {
395 err = ocfs2_meta_lock(inode, NULL, 0);
396 if (err) {
397 if (err != -ENOENT)
398 mlog_errno(err);
399 goto bail;
400 }
401 down_read(&OCFS2_I(inode)->ip_alloc_sem);
402 }
403
404 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405
406 if (!INODE_JOURNAL(inode)) {
407 up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 ocfs2_meta_unlock(inode, 0);
409 }
410
411 if (err) {
412 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block);
414 mlog_errno(err);
415 goto bail;
416 }
417
418
419 bail:
420 status = err ? 0 : p_blkno;
421
422 mlog_exit((int)status);
423
424 return status;
425 }
426
427 /*
428 * TODO: Make this into a generic get_blocks function.
429 *
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
433 * this i_blkbits."
434 *
435 * This function is called directly from get_more_blocks in direct-io.c.
436 *
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
439 */
440 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
441 struct buffer_head *bh_result, int create)
442 {
443 int ret;
444 u64 p_blkno, inode_blocks, contig_blocks;
445 unsigned int ext_flags;
446 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
452
453 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454
455 /*
456 * Any write past EOF is not allowed because we'd be extending.
457 */
458 if (create && (iblock + max_blocks) > inode_blocks) {
459 ret = -EIO;
460 goto bail;
461 }
462
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
465 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466 &contig_blocks, &ext_flags);
467 if (ret) {
468 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock);
470 ret = -EIO;
471 goto bail;
472 }
473
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 ocfs2_error(inode->i_sb,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)iblock);
479 ret = -EROFS;
480 goto bail;
481 }
482
483 /*
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
486 *
487 * Consider an unwritten extent as a hole.
488 */
489 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 map_bh(bh_result, inode->i_sb, p_blkno);
491 else {
492 /*
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
496 */
497 if (create) {
498 ret = -EIO;
499 mlog_errno(ret);
500 goto bail;
501 }
502
503 clear_buffer_mapped(bh_result);
504 }
505
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks < contig_blocks)
509 contig_blocks = max_blocks;
510 bh_result->b_size = contig_blocks << blocksize_bits;
511 bail:
512 return ret;
513 }
514
515 /*
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
520 */
521 static void ocfs2_dio_end_io(struct kiocb *iocb,
522 loff_t offset,
523 ssize_t bytes,
524 void *private)
525 {
526 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527 int level;
528
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531
532 ocfs2_iocb_clear_rw_locked(iocb);
533
534 level = ocfs2_iocb_rw_locked_level(iocb);
535 if (!level)
536 up_read(&inode->i_alloc_sem);
537 ocfs2_rw_unlock(inode, level);
538 }
539
540 /*
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
544 */
545 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546 {
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549 journal_invalidatepage(journal, page, offset);
550 }
551
552 static int ocfs2_releasepage(struct page *page, gfp_t wait)
553 {
554 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555
556 if (!page_has_buffers(page))
557 return 0;
558 return journal_try_to_free_buffers(journal, page, wait);
559 }
560
561 static ssize_t ocfs2_direct_IO(int rw,
562 struct kiocb *iocb,
563 const struct iovec *iov,
564 loff_t offset,
565 unsigned long nr_segs)
566 {
567 struct file *file = iocb->ki_filp;
568 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569 int ret;
570
571 mlog_entry_void();
572
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 /*
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
585 * proceeding.
586 */
587 ret = ocfs2_data_lock(inode, 0);
588 if (ret < 0) {
589 mlog_errno(ret);
590 goto out;
591 }
592 ocfs2_data_unlock(inode, 0);
593 }
594
595 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 inode->i_sb->s_bdev, iov, offset,
597 nr_segs,
598 ocfs2_direct_IO_get_blocks,
599 ocfs2_dio_end_io);
600 out:
601 mlog_exit(ret);
602 return ret;
603 }
604
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 u32 cpos,
607 unsigned int *start,
608 unsigned int *end)
609 {
610 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611
612 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 unsigned int cpp;
614
615 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616
617 cluster_start = cpos % cpp;
618 cluster_start = cluster_start << osb->s_clustersize_bits;
619
620 cluster_end = cluster_start + osb->s_clustersize;
621 }
622
623 BUG_ON(cluster_start > PAGE_SIZE);
624 BUG_ON(cluster_end > PAGE_SIZE);
625
626 if (start)
627 *start = cluster_start;
628 if (end)
629 *end = cluster_end;
630 }
631
632 /*
633 * 'from' and 'to' are the region in the page to avoid zeroing.
634 *
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
637 *
638 * from == to == 0 is code for "zero the entire cluster region"
639 */
640 static void ocfs2_clear_page_regions(struct page *page,
641 struct ocfs2_super *osb, u32 cpos,
642 unsigned from, unsigned to)
643 {
644 void *kaddr;
645 unsigned int cluster_start, cluster_end;
646
647 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648
649 kaddr = kmap_atomic(page, KM_USER0);
650
651 if (from || to) {
652 if (from > cluster_start)
653 memset(kaddr + cluster_start, 0, from - cluster_start);
654 if (to < cluster_end)
655 memset(kaddr + to, 0, cluster_end - to);
656 } else {
657 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658 }
659
660 kunmap_atomic(kaddr, KM_USER0);
661 }
662
663 /*
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
667 *
668 * This will also skip zeroing, which is handled externally.
669 */
670 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 struct inode *inode, unsigned int from,
672 unsigned int to, int new)
673 {
674 int ret = 0;
675 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 unsigned int block_end, block_start;
677 unsigned int bsize = 1 << inode->i_blkbits;
678
679 if (!page_has_buffers(page))
680 create_empty_buffers(page, bsize, 0);
681
682 head = page_buffers(page);
683 for (bh = head, block_start = 0; bh != head || !block_start;
684 bh = bh->b_this_page, block_start += bsize) {
685 block_end = block_start + bsize;
686
687 clear_buffer_new(bh);
688
689 /*
690 * Ignore blocks outside of our i/o range -
691 * they may belong to unallocated clusters.
692 */
693 if (block_start >= to || block_end <= from) {
694 if (PageUptodate(page))
695 set_buffer_uptodate(bh);
696 continue;
697 }
698
699 /*
700 * For an allocating write with cluster size >= page
701 * size, we always write the entire page.
702 */
703 if (new)
704 set_buffer_new(bh);
705
706 if (!buffer_mapped(bh)) {
707 map_bh(bh, inode->i_sb, *p_blkno);
708 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709 }
710
711 if (PageUptodate(page)) {
712 if (!buffer_uptodate(bh))
713 set_buffer_uptodate(bh);
714 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
715 (block_start < from || block_end > to)) {
716 ll_rw_block(READ, 1, &bh);
717 *wait_bh++=bh;
718 }
719
720 *p_blkno = *p_blkno + 1;
721 }
722
723 /*
724 * If we issued read requests - let them complete.
725 */
726 while(wait_bh > wait) {
727 wait_on_buffer(*--wait_bh);
728 if (!buffer_uptodate(*wait_bh))
729 ret = -EIO;
730 }
731
732 if (ret == 0 || !new)
733 return ret;
734
735 /*
736 * If we get -EIO above, zero out any newly allocated blocks
737 * to avoid exposing stale data.
738 */
739 bh = head;
740 block_start = 0;
741 do {
742 void *kaddr;
743
744 block_end = block_start + bsize;
745 if (block_end <= from)
746 goto next_bh;
747 if (block_start >= to)
748 break;
749
750 kaddr = kmap_atomic(page, KM_USER0);
751 memset(kaddr+block_start, 0, bh->b_size);
752 flush_dcache_page(page);
753 kunmap_atomic(kaddr, KM_USER0);
754 set_buffer_uptodate(bh);
755 mark_buffer_dirty(bh);
756
757 next_bh:
758 block_start = block_end;
759 bh = bh->b_this_page;
760 } while (bh != head);
761
762 return ret;
763 }
764
765 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
766 #define OCFS2_MAX_CTXT_PAGES 1
767 #else
768 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
769 #endif
770
771 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
772
773 /*
774 * Describe the state of a single cluster to be written to.
775 */
776 struct ocfs2_write_cluster_desc {
777 u32 c_cpos;
778 u32 c_phys;
779 /*
780 * Give this a unique field because c_phys eventually gets
781 * filled.
782 */
783 unsigned c_new;
784 };
785
786 struct ocfs2_write_ctxt {
787 /* Logical cluster position / len of write */
788 u32 w_cpos;
789 u32 w_clen;
790
791 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
792
793 /*
794 * This is true if page_size > cluster_size.
795 *
796 * It triggers a set of special cases during write which might
797 * have to deal with allocating writes to partial pages.
798 */
799 unsigned int w_large_pages;
800
801 /*
802 * Pages involved in this write.
803 *
804 * w_target_page is the page being written to by the user.
805 *
806 * w_pages is an array of pages which always contains
807 * w_target_page, and in the case of an allocating write with
808 * page_size < cluster size, it will contain zero'd and mapped
809 * pages adjacent to w_target_page which need to be written
810 * out in so that future reads from that region will get
811 * zero's.
812 */
813 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
814 unsigned int w_num_pages;
815 struct page *w_target_page;
816
817 /*
818 * ocfs2_write_end() uses this to know what the real range to
819 * write in the target should be.
820 */
821 unsigned int w_target_from;
822 unsigned int w_target_to;
823
824 /*
825 * We could use journal_current_handle() but this is cleaner,
826 * IMHO -Mark
827 */
828 handle_t *w_handle;
829
830 struct buffer_head *w_di_bh;
831 };
832
833 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
834 {
835 int i;
836
837 for(i = 0; i < wc->w_num_pages; i++) {
838 if (wc->w_pages[i] == NULL)
839 continue;
840
841 unlock_page(wc->w_pages[i]);
842 mark_page_accessed(wc->w_pages[i]);
843 page_cache_release(wc->w_pages[i]);
844 }
845
846 brelse(wc->w_di_bh);
847 kfree(wc);
848 }
849
850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851 struct ocfs2_super *osb, loff_t pos,
852 unsigned len)
853 {
854 struct ocfs2_write_ctxt *wc;
855
856 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
857 if (!wc)
858 return -ENOMEM;
859
860 wc->w_cpos = pos >> osb->s_clustersize_bits;
861 wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
862
863 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
864 wc->w_large_pages = 1;
865 else
866 wc->w_large_pages = 0;
867
868 *wcp = wc;
869
870 return 0;
871 }
872
873 /*
874 * If a page has any new buffers, zero them out here, and mark them uptodate
875 * and dirty so they'll be written out (in order to prevent uninitialised
876 * block data from leaking). And clear the new bit.
877 */
878 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
879 {
880 unsigned int block_start, block_end;
881 struct buffer_head *head, *bh;
882
883 BUG_ON(!PageLocked(page));
884 if (!page_has_buffers(page))
885 return;
886
887 bh = head = page_buffers(page);
888 block_start = 0;
889 do {
890 block_end = block_start + bh->b_size;
891
892 if (buffer_new(bh)) {
893 if (block_end > from && block_start < to) {
894 if (!PageUptodate(page)) {
895 unsigned start, end;
896 void *kaddr;
897
898 start = max(from, block_start);
899 end = min(to, block_end);
900
901 kaddr = kmap_atomic(page, KM_USER0);
902 memset(kaddr+start, 0, end - start);
903 flush_dcache_page(page);
904 kunmap_atomic(kaddr, KM_USER0);
905 set_buffer_uptodate(bh);
906 }
907
908 clear_buffer_new(bh);
909 mark_buffer_dirty(bh);
910 }
911 }
912
913 block_start = block_end;
914 bh = bh->b_this_page;
915 } while (bh != head);
916 }
917
918 /*
919 * Only called when we have a failure during allocating write to write
920 * zero's to the newly allocated region.
921 */
922 static void ocfs2_write_failure(struct inode *inode,
923 struct ocfs2_write_ctxt *wc,
924 loff_t user_pos, unsigned user_len)
925 {
926 int i;
927 unsigned from, to;
928 struct page *tmppage;
929
930 ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
931
932 if (wc->w_large_pages) {
933 from = wc->w_target_from;
934 to = wc->w_target_to;
935 } else {
936 from = 0;
937 to = PAGE_CACHE_SIZE;
938 }
939
940 for(i = 0; i < wc->w_num_pages; i++) {
941 tmppage = wc->w_pages[i];
942
943 if (ocfs2_should_order_data(inode))
944 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
945 from, to, NULL,
946 ocfs2_journal_dirty_data);
947
948 block_commit_write(tmppage, from, to);
949 }
950 }
951
952 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
953 struct ocfs2_write_ctxt *wc,
954 struct page *page, u32 cpos,
955 loff_t user_pos, unsigned user_len,
956 int new)
957 {
958 int ret;
959 unsigned int map_from = 0, map_to = 0;
960 unsigned int cluster_start, cluster_end;
961 unsigned int user_data_from = 0, user_data_to = 0;
962
963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
964 &cluster_start, &cluster_end);
965
966 if (page == wc->w_target_page) {
967 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
968 map_to = map_from + user_len;
969
970 if (new)
971 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 cluster_start, cluster_end,
973 new);
974 else
975 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
976 map_from, map_to, new);
977 if (ret) {
978 mlog_errno(ret);
979 goto out;
980 }
981
982 user_data_from = map_from;
983 user_data_to = map_to;
984 if (new) {
985 map_from = cluster_start;
986 map_to = cluster_end;
987 }
988
989 wc->w_target_from = map_from;
990 wc->w_target_to = map_to;
991 } else {
992 /*
993 * If we haven't allocated the new page yet, we
994 * shouldn't be writing it out without copying user
995 * data. This is likely a math error from the caller.
996 */
997 BUG_ON(!new);
998
999 map_from = cluster_start;
1000 map_to = cluster_end;
1001
1002 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1003 cluster_start, cluster_end, new);
1004 if (ret) {
1005 mlog_errno(ret);
1006 goto out;
1007 }
1008 }
1009
1010 /*
1011 * Parts of newly allocated pages need to be zero'd.
1012 *
1013 * Above, we have also rewritten 'to' and 'from' - as far as
1014 * the rest of the function is concerned, the entire cluster
1015 * range inside of a page needs to be written.
1016 *
1017 * We can skip this if the page is up to date - it's already
1018 * been zero'd from being read in as a hole.
1019 */
1020 if (new && !PageUptodate(page))
1021 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1022 cpos, user_data_from, user_data_to);
1023
1024 flush_dcache_page(page);
1025
1026 out:
1027 return ret;
1028 }
1029
1030 /*
1031 * This function will only grab one clusters worth of pages.
1032 */
1033 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1034 struct ocfs2_write_ctxt *wc,
1035 u32 cpos, loff_t user_pos, int new)
1036 {
1037 int ret = 0, i;
1038 unsigned long start, target_index, index;
1039 struct inode *inode = mapping->host;
1040
1041 target_index = user_pos >> PAGE_CACHE_SHIFT;
1042
1043 /*
1044 * Figure out how many pages we'll be manipulating here. For
1045 * non allocating write, we just change the one
1046 * page. Otherwise, we'll need a whole clusters worth.
1047 */
1048 if (new) {
1049 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1050 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1051 } else {
1052 wc->w_num_pages = 1;
1053 start = target_index;
1054 }
1055
1056 for(i = 0; i < wc->w_num_pages; i++) {
1057 index = start + i;
1058
1059 wc->w_pages[i] = find_or_create_page(mapping, index, GFP_NOFS);
1060 if (!wc->w_pages[i]) {
1061 ret = -ENOMEM;
1062 mlog_errno(ret);
1063 goto out;
1064 }
1065
1066 if (index == target_index)
1067 wc->w_target_page = wc->w_pages[i];
1068 }
1069 out:
1070 return ret;
1071 }
1072
1073 /*
1074 * Prepare a single cluster for write one cluster into the file.
1075 */
1076 static int ocfs2_write_cluster(struct address_space *mapping,
1077 u32 phys, struct ocfs2_alloc_context *data_ac,
1078 struct ocfs2_alloc_context *meta_ac,
1079 struct ocfs2_write_ctxt *wc, u32 cpos,
1080 loff_t user_pos, unsigned user_len)
1081 {
1082 int ret, i, new;
1083 u64 v_blkno, p_blkno;
1084 struct inode *inode = mapping->host;
1085
1086 new = phys == 0 ? 1 : 0;
1087
1088 if (new) {
1089 u32 tmp_pos;
1090
1091 /*
1092 * This is safe to call with the page locks - it won't take
1093 * any additional semaphores or cluster locks.
1094 */
1095 tmp_pos = cpos;
1096 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1097 &tmp_pos, 1, wc->w_di_bh,
1098 wc->w_handle, data_ac,
1099 meta_ac, NULL);
1100 /*
1101 * This shouldn't happen because we must have already
1102 * calculated the correct meta data allocation required. The
1103 * internal tree allocation code should know how to increase
1104 * transaction credits itself.
1105 *
1106 * If need be, we could handle -EAGAIN for a
1107 * RESTART_TRANS here.
1108 */
1109 mlog_bug_on_msg(ret == -EAGAIN,
1110 "Inode %llu: EAGAIN return during allocation.\n",
1111 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1112 if (ret < 0) {
1113 mlog_errno(ret);
1114 goto out;
1115 }
1116
1117 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1118 } else {
1119 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1120 }
1121
1122 /*
1123 * The only reason this should fail is due to an inability to
1124 * find the extent added.
1125 */
1126 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1127 NULL);
1128 if (ret < 0) {
1129 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1130 "at logical block %llu",
1131 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1132 (unsigned long long)v_blkno);
1133 goto out;
1134 }
1135
1136 BUG_ON(p_blkno == 0);
1137
1138 for(i = 0; i < wc->w_num_pages; i++) {
1139 int tmpret;
1140
1141 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1142 wc->w_pages[i], cpos,
1143 user_pos, user_len, new);
1144 if (tmpret) {
1145 mlog_errno(tmpret);
1146 if (ret == 0)
1147 tmpret = ret;
1148 }
1149 }
1150
1151 /*
1152 * We only have cleanup to do in case of allocating write.
1153 */
1154 if (ret && new)
1155 ocfs2_write_failure(inode, wc, user_pos, user_len);
1156
1157 out:
1158
1159 return ret;
1160 }
1161
1162 /*
1163 * ocfs2_write_end() wants to know which parts of the target page it
1164 * should complete the write on. It's easiest to compute them ahead of
1165 * time when a more complete view of the write is available.
1166 */
1167 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1168 struct ocfs2_write_ctxt *wc,
1169 loff_t pos, unsigned len, int alloc)
1170 {
1171 struct ocfs2_write_cluster_desc *desc;
1172
1173 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1174 wc->w_target_to = wc->w_target_from + len;
1175
1176 if (alloc == 0)
1177 return;
1178
1179 /*
1180 * Allocating write - we may have different boundaries based
1181 * on page size and cluster size.
1182 *
1183 * NOTE: We can no longer compute one value from the other as
1184 * the actual write length and user provided length may be
1185 * different.
1186 */
1187
1188 if (wc->w_large_pages) {
1189 /*
1190 * We only care about the 1st and last cluster within
1191 * our range and whether they are holes or not. Either
1192 * value may be extended out to the start/end of a
1193 * newly allocated cluster.
1194 */
1195 desc = &wc->w_desc[0];
1196 if (desc->c_new)
1197 ocfs2_figure_cluster_boundaries(osb,
1198 desc->c_cpos,
1199 &wc->w_target_from,
1200 NULL);
1201
1202 desc = &wc->w_desc[wc->w_clen - 1];
1203 if (desc->c_new)
1204 ocfs2_figure_cluster_boundaries(osb,
1205 desc->c_cpos,
1206 NULL,
1207 &wc->w_target_to);
1208 } else {
1209 wc->w_target_from = 0;
1210 wc->w_target_to = PAGE_CACHE_SIZE;
1211 }
1212 }
1213
1214 int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1215 loff_t pos, unsigned len, unsigned flags,
1216 struct page **pagep, void **fsdata)
1217 {
1218 int ret, i, credits = OCFS2_INODE_UPDATE_CREDITS;
1219 unsigned int num_clusters = 0, clusters_to_alloc = 0;
1220 u32 phys = 0;
1221 struct ocfs2_write_ctxt *wc;
1222 struct inode *inode = mapping->host;
1223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1224 struct ocfs2_dinode *di;
1225 struct ocfs2_alloc_context *data_ac = NULL;
1226 struct ocfs2_alloc_context *meta_ac = NULL;
1227 handle_t *handle;
1228 struct ocfs2_write_cluster_desc *desc;
1229
1230 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len);
1231 if (ret) {
1232 mlog_errno(ret);
1233 return ret;
1234 }
1235
1236 ret = ocfs2_meta_lock(inode, &wc->w_di_bh, 1);
1237 if (ret) {
1238 mlog_errno(ret);
1239 goto out;
1240 }
1241 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1242
1243 /*
1244 * Take alloc sem here to prevent concurrent lookups. That way
1245 * the mapping, zeroing and tree manipulation within
1246 * ocfs2_write() will be safe against ->readpage(). This
1247 * should also serve to lock out allocation from a shared
1248 * writeable region.
1249 */
1250 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1251
1252 for (i = 0; i < wc->w_clen; i++) {
1253 desc = &wc->w_desc[i];
1254 desc->c_cpos = wc->w_cpos + i;
1255
1256 if (num_clusters == 0) {
1257 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1258 &num_clusters, NULL);
1259 if (ret) {
1260 mlog_errno(ret);
1261 goto out_meta;
1262 }
1263 } else if (phys) {
1264 /*
1265 * Only increment phys if it doesn't describe
1266 * a hole.
1267 */
1268 phys++;
1269 }
1270
1271 desc->c_phys = phys;
1272 if (phys == 0) {
1273 desc->c_new = 1;
1274 clusters_to_alloc++;
1275 }
1276
1277 num_clusters--;
1278 }
1279
1280 /*
1281 * We set w_target_from, w_target_to here so that
1282 * ocfs2_write_end() knows which range in the target page to
1283 * write out. An allocation requires that we write the entire
1284 * cluster range.
1285 */
1286 if (clusters_to_alloc > 0) {
1287 /*
1288 * XXX: We are stretching the limits of
1289 * ocfs2_lock_allocators(). It greately over-estimates
1290 * the work to be done.
1291 */
1292 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1293 &data_ac, &meta_ac);
1294 if (ret) {
1295 mlog_errno(ret);
1296 goto out_meta;
1297 }
1298
1299 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1300 clusters_to_alloc);
1301
1302 }
1303
1304 ocfs2_set_target_boundaries(osb, wc, pos, len, clusters_to_alloc);
1305
1306 ret = ocfs2_data_lock(inode, 1);
1307 if (ret) {
1308 mlog_errno(ret);
1309 goto out_meta;
1310 }
1311
1312 handle = ocfs2_start_trans(osb, credits);
1313 if (IS_ERR(handle)) {
1314 ret = PTR_ERR(handle);
1315 mlog_errno(ret);
1316 goto out_data;
1317 }
1318
1319 wc->w_handle = handle;
1320
1321 /*
1322 * We don't want this to fail in ocfs2_write_end(), so do it
1323 * here.
1324 */
1325 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1326 OCFS2_JOURNAL_ACCESS_WRITE);
1327 if (ret) {
1328 mlog_errno(ret);
1329 goto out_commit;
1330 }
1331
1332 /*
1333 * Fill our page array first. That way we've grabbed enough so
1334 * that we can zero and flush if we error after adding the
1335 * extent.
1336 */
1337 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1338 clusters_to_alloc);
1339 if (ret) {
1340 mlog_errno(ret);
1341 goto out_commit;
1342 }
1343
1344 for (i = 0; i < wc->w_clen; i++) {
1345 desc = &wc->w_desc[i];
1346
1347 ret = ocfs2_write_cluster(mapping, desc->c_phys, data_ac,
1348 meta_ac, wc, desc->c_cpos, pos, len);
1349 if (ret) {
1350 mlog_errno(ret);
1351 goto out_commit;
1352 }
1353 }
1354
1355 if (data_ac)
1356 ocfs2_free_alloc_context(data_ac);
1357 if (meta_ac)
1358 ocfs2_free_alloc_context(meta_ac);
1359
1360 *pagep = wc->w_target_page;
1361 *fsdata = wc;
1362 return 0;
1363 out_commit:
1364 ocfs2_commit_trans(osb, handle);
1365
1366 out_data:
1367 ocfs2_data_unlock(inode, 1);
1368
1369 out_meta:
1370 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1371 ocfs2_meta_unlock(inode, 1);
1372
1373 out:
1374 ocfs2_free_write_ctxt(wc);
1375
1376 if (data_ac)
1377 ocfs2_free_alloc_context(data_ac);
1378 if (meta_ac)
1379 ocfs2_free_alloc_context(meta_ac);
1380 return ret;
1381 }
1382
1383 int ocfs2_write_end(struct file *file, struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1386 {
1387 int i;
1388 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1389 struct inode *inode = mapping->host;
1390 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1391 struct ocfs2_write_ctxt *wc = fsdata;
1392 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1393 handle_t *handle = wc->w_handle;
1394 struct page *tmppage;
1395
1396 if (unlikely(copied < len)) {
1397 if (!PageUptodate(wc->w_target_page))
1398 copied = 0;
1399
1400 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1401 start+len);
1402 }
1403 flush_dcache_page(wc->w_target_page);
1404
1405 for(i = 0; i < wc->w_num_pages; i++) {
1406 tmppage = wc->w_pages[i];
1407
1408 if (tmppage == wc->w_target_page) {
1409 from = wc->w_target_from;
1410 to = wc->w_target_to;
1411
1412 BUG_ON(from > PAGE_CACHE_SIZE ||
1413 to > PAGE_CACHE_SIZE ||
1414 to < from);
1415 } else {
1416 /*
1417 * Pages adjacent to the target (if any) imply
1418 * a hole-filling write in which case we want
1419 * to flush their entire range.
1420 */
1421 from = 0;
1422 to = PAGE_CACHE_SIZE;
1423 }
1424
1425 if (ocfs2_should_order_data(inode))
1426 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1427 from, to, NULL,
1428 ocfs2_journal_dirty_data);
1429
1430 block_commit_write(tmppage, from, to);
1431 }
1432
1433 pos += copied;
1434 if (pos > inode->i_size) {
1435 i_size_write(inode, pos);
1436 mark_inode_dirty(inode);
1437 }
1438 inode->i_blocks = ocfs2_inode_sector_count(inode);
1439 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1440 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1441 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1442 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1443
1444 ocfs2_journal_dirty(handle, wc->w_di_bh);
1445
1446 ocfs2_commit_trans(osb, handle);
1447 ocfs2_data_unlock(inode, 1);
1448 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1449 ocfs2_meta_unlock(inode, 1);
1450 ocfs2_free_write_ctxt(wc);
1451
1452 return copied;
1453 }
1454
1455 const struct address_space_operations ocfs2_aops = {
1456 .readpage = ocfs2_readpage,
1457 .writepage = ocfs2_writepage,
1458 .bmap = ocfs2_bmap,
1459 .sync_page = block_sync_page,
1460 .direct_IO = ocfs2_direct_IO,
1461 .invalidatepage = ocfs2_invalidatepage,
1462 .releasepage = ocfs2_releasepage,
1463 .migratepage = buffer_migrate_page,
1464 };