]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/aops.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56 struct buffer_head *bh_result, int create)
57 {
58 int err = -EIO;
59 int status;
60 struct ocfs2_dinode *fe = NULL;
61 struct buffer_head *bh = NULL;
62 struct buffer_head *buffer_cache_bh = NULL;
63 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64 void *kaddr;
65
66 trace_ocfs2_symlink_get_block(
67 (unsigned long long)OCFS2_I(inode)->ip_blkno,
68 (unsigned long long)iblock, bh_result, create);
69
70 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74 (unsigned long long)iblock);
75 goto bail;
76 }
77
78 status = ocfs2_read_inode_block(inode, &bh);
79 if (status < 0) {
80 mlog_errno(status);
81 goto bail;
82 }
83 fe = (struct ocfs2_dinode *) bh->b_data;
84
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 err = -ENOMEM;
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 err = -ENOMEM;
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
111 kaddr = kmap_atomic(bh_result->b_page);
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
119 kunmap_atomic(kaddr);
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130 bail:
131 brelse(bh);
132
133 return err;
134 }
135
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
138 {
139 int err = 0;
140 unsigned int ext_flags;
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 &ext_flags);
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
164 goto bail;
165 }
166
167 if (max_blocks < count)
168 count = max_blocks;
169
170 /*
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
174 * allows __block_write_begin() to zero.
175 *
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
180 */
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
185 }
186
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 map_bh(bh_result, inode->i_sb, p_blkno);
190
191 bh_result->b_size = count << inode->i_blkbits;
192
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
203 goto bail;
204 }
205 }
206
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213
214 bail:
215 if (err < 0)
216 err = -EIO;
217
218 return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
223 {
224 void *kaddr;
225 loff_t size;
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
232 }
233
234 size = i_size_read(inode);
235
236 if (size > PAGE_CACHE_SIZE ||
237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 ocfs2_error(inode->i_sb,
239 "Inode %llu has with inline data has bad size: %Lu",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
242 return -EROFS;
243 }
244
245 kaddr = kmap_atomic(page);
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250 flush_dcache_page(page);
251 kunmap_atomic(kaddr);
252
253 SetPageUptodate(page);
254
255 return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260 int ret;
261 struct buffer_head *di_bh = NULL;
262
263 BUG_ON(!PageLocked(page));
264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266 ret = ocfs2_read_inode_block(inode, &di_bh);
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
270 }
271
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274 unlock_page(page);
275
276 brelse(di_bh);
277 return ret;
278 }
279
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282 struct inode *inode = page->mapping->host;
283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285 int ret, unlock = 1;
286
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
289
290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
296 }
297
298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299 /*
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
302 */
303 ret = AOP_TRUNCATED_PAGE;
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
308 goto out_inode_unlock;
309 }
310
311 /*
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 * and notice that the page they just read isn't needed.
318 *
319 * XXX sys_readahead() seems to get that wrong?
320 */
321 if (start >= i_size_read(inode)) {
322 zero_user(page, 0, PAGE_SIZE);
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
326 }
327
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
332 unlock = 0;
333
334 out_alloc:
335 up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
338 out:
339 if (unlock)
340 unlock_page(page);
341 return ret;
342 }
343
344 /*
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
347 *
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
352 */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 struct list_head *pages, unsigned nr_pages)
355 {
356 int ret, err = -EIO;
357 struct inode *inode = mapping->host;
358 struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 loff_t start;
360 struct page *last;
361
362 /*
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
365 */
366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 if (ret)
368 return err;
369
370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 ocfs2_inode_unlock(inode, 0);
372 return err;
373 }
374
375 /*
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
378 */
379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 goto out_unlock;
381
382 /*
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
385 */
386 last = list_entry(pages->prev, struct page, lru);
387 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388 if (start >= i_size_read(inode))
389 goto out_unlock;
390
391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393 out_unlock:
394 up_read(&oi->ip_alloc_sem);
395 ocfs2_inode_unlock(inode, 0);
396
397 return err;
398 }
399
400 /* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
403 * ocfs2_writepage.
404 *
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
410 */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 page->index);
416
417 return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419
420 /* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
424 int walk_page_buffers( handle_t *handle,
425 struct buffer_head *head,
426 unsigned from,
427 unsigned to,
428 int *partial,
429 int (*fn)( handle_t *handle,
430 struct buffer_head *bh))
431 {
432 struct buffer_head *bh;
433 unsigned block_start, block_end;
434 unsigned blocksize = head->b_size;
435 int err, ret = 0;
436 struct buffer_head *next;
437
438 for ( bh = head, block_start = 0;
439 ret == 0 && (bh != head || !block_start);
440 block_start = block_end, bh = next)
441 {
442 next = bh->b_this_page;
443 block_end = block_start + blocksize;
444 if (block_end <= from || block_start >= to) {
445 if (partial && !buffer_uptodate(bh))
446 *partial = 1;
447 continue;
448 }
449 err = (*fn)(handle, bh);
450 if (!ret)
451 ret = err;
452 }
453 return ret;
454 }
455
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458 sector_t status;
459 u64 p_blkno = 0;
460 int err = 0;
461 struct inode *inode = mapping->host;
462
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 (unsigned long long)block);
465
466 /* We don't need to lock journal system files, since they aren't
467 * accessed concurrently from multiple nodes.
468 */
469 if (!INODE_JOURNAL(inode)) {
470 err = ocfs2_inode_lock(inode, NULL, 0);
471 if (err) {
472 if (err != -ENOENT)
473 mlog_errno(err);
474 goto bail;
475 }
476 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 }
478
479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 NULL);
482
483 if (!INODE_JOURNAL(inode)) {
484 up_read(&OCFS2_I(inode)->ip_alloc_sem);
485 ocfs2_inode_unlock(inode, 0);
486 }
487
488 if (err) {
489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 (unsigned long long)block);
491 mlog_errno(err);
492 goto bail;
493 }
494
495 bail:
496 status = err ? 0 : p_blkno;
497
498 return status;
499 }
500
501 /*
502 * TODO: Make this into a generic get_blocks function.
503 *
504 * From do_direct_io in direct-io.c:
505 * "So what we do is to permit the ->get_blocks function to populate
506 * bh.b_size with the size of IO which is permitted at this offset and
507 * this i_blkbits."
508 *
509 * This function is called directly from get_more_blocks in direct-io.c.
510 *
511 * called like this: dio->get_blocks(dio->inode, fs_startblk,
512 * fs_count, map_bh, dio->rw == WRITE);
513 */
514 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
515 struct buffer_head *bh_result, int create)
516 {
517 int ret;
518 u32 cpos = 0;
519 int alloc_locked = 0;
520 u64 p_blkno, inode_blocks, contig_blocks;
521 unsigned int ext_flags;
522 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
523 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
524 unsigned long len = bh_result->b_size;
525 unsigned int clusters_to_alloc = 0;
526
527 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
528
529 /* This function won't even be called if the request isn't all
530 * nicely aligned and of the right size, so there's no need
531 * for us to check any of that. */
532
533 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
534
535 /* This figures out the size of the next contiguous block, and
536 * our logical offset */
537 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
538 &contig_blocks, &ext_flags);
539 if (ret) {
540 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541 (unsigned long long)iblock);
542 ret = -EIO;
543 goto bail;
544 }
545
546 /* We should already CoW the refcounted extent in case of create. */
547 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
549 /* allocate blocks if no p_blkno is found, and create == 1 */
550 if (!p_blkno && create) {
551 ret = ocfs2_inode_lock(inode, NULL, 1);
552 if (ret < 0) {
553 mlog_errno(ret);
554 goto bail;
555 }
556
557 alloc_locked = 1;
558
559 /* fill hole, allocate blocks can't be larger than the size
560 * of the hole */
561 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562 if (clusters_to_alloc > contig_blocks)
563 clusters_to_alloc = contig_blocks;
564
565 /* allocate extent and insert them into the extent tree */
566 ret = ocfs2_extend_allocation(inode, cpos,
567 clusters_to_alloc, 0);
568 if (ret < 0) {
569 mlog_errno(ret);
570 goto bail;
571 }
572
573 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574 &contig_blocks, &ext_flags);
575 if (ret < 0) {
576 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577 (unsigned long long)iblock);
578 ret = -EIO;
579 goto bail;
580 }
581 }
582
583 /*
584 * get_more_blocks() expects us to describe a hole by clearing
585 * the mapped bit on bh_result().
586 *
587 * Consider an unwritten extent as a hole.
588 */
589 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590 map_bh(bh_result, inode->i_sb, p_blkno);
591 else
592 clear_buffer_mapped(bh_result);
593
594 /* make sure we don't map more than max_blocks blocks here as
595 that's all the kernel will handle at this point. */
596 if (max_blocks < contig_blocks)
597 contig_blocks = max_blocks;
598 bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600 if (alloc_locked)
601 ocfs2_inode_unlock(inode, 1);
602 return ret;
603 }
604
605 /*
606 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
607 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
608 * to protect io on one node from truncation on another.
609 */
610 static void ocfs2_dio_end_io(struct kiocb *iocb,
611 loff_t offset,
612 ssize_t bytes,
613 void *private)
614 {
615 struct inode *inode = file_inode(iocb->ki_filp);
616 int level;
617
618 /* this io's submitter should not have unlocked this before we could */
619 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
620
621 if (ocfs2_iocb_is_sem_locked(iocb))
622 ocfs2_iocb_clear_sem_locked(iocb);
623
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628 }
629
630 ocfs2_iocb_clear_rw_locked(iocb);
631
632 level = ocfs2_iocb_rw_locked_level(iocb);
633 ocfs2_rw_unlock(inode, level);
634 }
635
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638 if (!page_has_buffers(page))
639 return 0;
640 return try_to_free_buffers(page);
641 }
642
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 struct inode *inode, loff_t offset)
645 {
646 int ret = 0;
647 u32 v_cpos = 0;
648 u32 p_cpos = 0;
649 unsigned int num_clusters = 0;
650 unsigned int ext_flags = 0;
651
652 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 &num_clusters, &ext_flags);
655 if (ret < 0) {
656 mlog_errno(ret);
657 return ret;
658 }
659
660 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 return 1;
662
663 return 0;
664 }
665
666 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
667 struct iov_iter *iter,
668 loff_t offset)
669 {
670 ssize_t ret = 0;
671 ssize_t written = 0;
672 bool orphaned = false;
673 int is_overwrite = 0;
674 struct file *file = iocb->ki_filp;
675 struct inode *inode = file_inode(file)->i_mapping->host;
676 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
677 struct buffer_head *di_bh = NULL;
678 size_t count = iter->count;
679 journal_t *journal = osb->journal->j_journal;
680 u32 zero_len;
681 int cluster_align;
682 loff_t final_size = offset + count;
683 int append_write = offset >= i_size_read(inode) ? 1 : 0;
684 unsigned int num_clusters = 0;
685 unsigned int ext_flags = 0;
686
687 {
688 u64 o = offset;
689
690 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
691 cluster_align = !zero_len;
692 }
693
694 /*
695 * when final_size > inode->i_size, inode->i_size will be
696 * updated after direct write, so add the inode to orphan
697 * dir first.
698 */
699 if (final_size > i_size_read(inode)) {
700 ret = ocfs2_add_inode_to_orphan(osb, inode);
701 if (ret < 0) {
702 mlog_errno(ret);
703 goto out;
704 }
705 orphaned = true;
706 }
707
708 if (append_write) {
709 ret = ocfs2_inode_lock(inode, &di_bh, 1);
710 if (ret < 0) {
711 mlog_errno(ret);
712 goto clean_orphan;
713 }
714
715 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716 ret = ocfs2_zero_extend(inode, di_bh, offset);
717 else
718 ret = ocfs2_extend_no_holes(inode, di_bh, offset,
719 offset);
720 if (ret < 0) {
721 mlog_errno(ret);
722 ocfs2_inode_unlock(inode, 1);
723 brelse(di_bh);
724 goto clean_orphan;
725 }
726
727 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
728 if (is_overwrite < 0) {
729 mlog_errno(is_overwrite);
730 ocfs2_inode_unlock(inode, 1);
731 brelse(di_bh);
732 goto clean_orphan;
733 }
734
735 ocfs2_inode_unlock(inode, 1);
736 brelse(di_bh);
737 di_bh = NULL;
738 }
739
740 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
741 iter, offset,
742 ocfs2_direct_IO_get_blocks,
743 ocfs2_dio_end_io, NULL, 0);
744 if (unlikely(written < 0)) {
745 loff_t i_size = i_size_read(inode);
746
747 if (offset + count > i_size) {
748 ret = ocfs2_inode_lock(inode, &di_bh, 1);
749 if (ret < 0) {
750 mlog_errno(ret);
751 goto clean_orphan;
752 }
753
754 if (i_size == i_size_read(inode)) {
755 ret = ocfs2_truncate_file(inode, di_bh,
756 i_size);
757 if (ret < 0) {
758 if (ret != -ENOSPC)
759 mlog_errno(ret);
760
761 ocfs2_inode_unlock(inode, 1);
762 brelse(di_bh);
763 goto clean_orphan;
764 }
765 }
766
767 ocfs2_inode_unlock(inode, 1);
768 brelse(di_bh);
769
770 ret = jbd2_journal_force_commit(journal);
771 if (ret < 0)
772 mlog_errno(ret);
773 }
774 } else if (written < 0 && append_write && !is_overwrite &&
775 !cluster_align) {
776 u32 p_cpos = 0;
777 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778
779 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780 &num_clusters, &ext_flags);
781 if (ret < 0) {
782 mlog_errno(ret);
783 goto clean_orphan;
784 }
785
786 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787
788 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789 p_cpos << (osb->s_clustersize_bits - 9),
790 zero_len >> 9, GFP_KERNEL, false);
791 if (ret < 0)
792 mlog_errno(ret);
793 }
794
795 clean_orphan:
796 if (orphaned) {
797 int tmp_ret;
798 int update_isize = written > 0 ? 1 : 0;
799 loff_t end = update_isize ? offset + written : 0;
800
801 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802 update_isize, end);
803 if (tmp_ret < 0) {
804 ret = tmp_ret;
805 goto out;
806 }
807
808 tmp_ret = jbd2_journal_force_commit(journal);
809 if (tmp_ret < 0) {
810 ret = tmp_ret;
811 mlog_errno(tmp_ret);
812 }
813 }
814
815 out:
816 if (ret >= 0)
817 ret = written;
818 return ret;
819 }
820
821 static ssize_t ocfs2_direct_IO(int rw,
822 struct kiocb *iocb,
823 struct iov_iter *iter,
824 loff_t offset)
825 {
826 struct file *file = iocb->ki_filp;
827 struct inode *inode = file_inode(file)->i_mapping->host;
828 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
829 int full_coherency = !(osb->s_mount_opt &
830 OCFS2_MOUNT_COHERENCY_BUFFERED);
831
832 /*
833 * Fallback to buffered I/O if we see an inode without
834 * extents.
835 */
836 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
837 return 0;
838
839 /* Fallback to buffered I/O if we are appending and
840 * concurrent O_DIRECT writes are allowed.
841 */
842 if (i_size_read(inode) <= offset && !full_coherency)
843 return 0;
844
845 if (rw == READ)
846 return __blockdev_direct_IO(rw, iocb, inode,
847 inode->i_sb->s_bdev,
848 iter, offset,
849 ocfs2_direct_IO_get_blocks,
850 ocfs2_dio_end_io, NULL, 0);
851 else
852 return ocfs2_direct_IO_write(iocb, iter, offset);
853 }
854
855 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
856 u32 cpos,
857 unsigned int *start,
858 unsigned int *end)
859 {
860 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
861
862 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
863 unsigned int cpp;
864
865 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
866
867 cluster_start = cpos % cpp;
868 cluster_start = cluster_start << osb->s_clustersize_bits;
869
870 cluster_end = cluster_start + osb->s_clustersize;
871 }
872
873 BUG_ON(cluster_start > PAGE_SIZE);
874 BUG_ON(cluster_end > PAGE_SIZE);
875
876 if (start)
877 *start = cluster_start;
878 if (end)
879 *end = cluster_end;
880 }
881
882 /*
883 * 'from' and 'to' are the region in the page to avoid zeroing.
884 *
885 * If pagesize > clustersize, this function will avoid zeroing outside
886 * of the cluster boundary.
887 *
888 * from == to == 0 is code for "zero the entire cluster region"
889 */
890 static void ocfs2_clear_page_regions(struct page *page,
891 struct ocfs2_super *osb, u32 cpos,
892 unsigned from, unsigned to)
893 {
894 void *kaddr;
895 unsigned int cluster_start, cluster_end;
896
897 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
898
899 kaddr = kmap_atomic(page);
900
901 if (from || to) {
902 if (from > cluster_start)
903 memset(kaddr + cluster_start, 0, from - cluster_start);
904 if (to < cluster_end)
905 memset(kaddr + to, 0, cluster_end - to);
906 } else {
907 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
908 }
909
910 kunmap_atomic(kaddr);
911 }
912
913 /*
914 * Nonsparse file systems fully allocate before we get to the write
915 * code. This prevents ocfs2_write() from tagging the write as an
916 * allocating one, which means ocfs2_map_page_blocks() might try to
917 * read-in the blocks at the tail of our file. Avoid reading them by
918 * testing i_size against each block offset.
919 */
920 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
921 unsigned int block_start)
922 {
923 u64 offset = page_offset(page) + block_start;
924
925 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
926 return 1;
927
928 if (i_size_read(inode) > offset)
929 return 1;
930
931 return 0;
932 }
933
934 /*
935 * Some of this taken from __block_write_begin(). We already have our
936 * mapping by now though, and the entire write will be allocating or
937 * it won't, so not much need to use BH_New.
938 *
939 * This will also skip zeroing, which is handled externally.
940 */
941 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
942 struct inode *inode, unsigned int from,
943 unsigned int to, int new)
944 {
945 int ret = 0;
946 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
947 unsigned int block_end, block_start;
948 unsigned int bsize = 1 << inode->i_blkbits;
949
950 if (!page_has_buffers(page))
951 create_empty_buffers(page, bsize, 0);
952
953 head = page_buffers(page);
954 for (bh = head, block_start = 0; bh != head || !block_start;
955 bh = bh->b_this_page, block_start += bsize) {
956 block_end = block_start + bsize;
957
958 clear_buffer_new(bh);
959
960 /*
961 * Ignore blocks outside of our i/o range -
962 * they may belong to unallocated clusters.
963 */
964 if (block_start >= to || block_end <= from) {
965 if (PageUptodate(page))
966 set_buffer_uptodate(bh);
967 continue;
968 }
969
970 /*
971 * For an allocating write with cluster size >= page
972 * size, we always write the entire page.
973 */
974 if (new)
975 set_buffer_new(bh);
976
977 if (!buffer_mapped(bh)) {
978 map_bh(bh, inode->i_sb, *p_blkno);
979 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
980 }
981
982 if (PageUptodate(page)) {
983 if (!buffer_uptodate(bh))
984 set_buffer_uptodate(bh);
985 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
986 !buffer_new(bh) &&
987 ocfs2_should_read_blk(inode, page, block_start) &&
988 (block_start < from || block_end > to)) {
989 ll_rw_block(READ, 1, &bh);
990 *wait_bh++=bh;
991 }
992
993 *p_blkno = *p_blkno + 1;
994 }
995
996 /*
997 * If we issued read requests - let them complete.
998 */
999 while(wait_bh > wait) {
1000 wait_on_buffer(*--wait_bh);
1001 if (!buffer_uptodate(*wait_bh))
1002 ret = -EIO;
1003 }
1004
1005 if (ret == 0 || !new)
1006 return ret;
1007
1008 /*
1009 * If we get -EIO above, zero out any newly allocated blocks
1010 * to avoid exposing stale data.
1011 */
1012 bh = head;
1013 block_start = 0;
1014 do {
1015 block_end = block_start + bsize;
1016 if (block_end <= from)
1017 goto next_bh;
1018 if (block_start >= to)
1019 break;
1020
1021 zero_user(page, block_start, bh->b_size);
1022 set_buffer_uptodate(bh);
1023 mark_buffer_dirty(bh);
1024
1025 next_bh:
1026 block_start = block_end;
1027 bh = bh->b_this_page;
1028 } while (bh != head);
1029
1030 return ret;
1031 }
1032
1033 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1034 #define OCFS2_MAX_CTXT_PAGES 1
1035 #else
1036 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1037 #endif
1038
1039 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1040
1041 /*
1042 * Describe the state of a single cluster to be written to.
1043 */
1044 struct ocfs2_write_cluster_desc {
1045 u32 c_cpos;
1046 u32 c_phys;
1047 /*
1048 * Give this a unique field because c_phys eventually gets
1049 * filled.
1050 */
1051 unsigned c_new;
1052 unsigned c_unwritten;
1053 unsigned c_needs_zero;
1054 };
1055
1056 struct ocfs2_write_ctxt {
1057 /* Logical cluster position / len of write */
1058 u32 w_cpos;
1059 u32 w_clen;
1060
1061 /* First cluster allocated in a nonsparse extend */
1062 u32 w_first_new_cpos;
1063
1064 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1065
1066 /*
1067 * This is true if page_size > cluster_size.
1068 *
1069 * It triggers a set of special cases during write which might
1070 * have to deal with allocating writes to partial pages.
1071 */
1072 unsigned int w_large_pages;
1073
1074 /*
1075 * Pages involved in this write.
1076 *
1077 * w_target_page is the page being written to by the user.
1078 *
1079 * w_pages is an array of pages which always contains
1080 * w_target_page, and in the case of an allocating write with
1081 * page_size < cluster size, it will contain zero'd and mapped
1082 * pages adjacent to w_target_page which need to be written
1083 * out in so that future reads from that region will get
1084 * zero's.
1085 */
1086 unsigned int w_num_pages;
1087 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1088 struct page *w_target_page;
1089
1090 /*
1091 * w_target_locked is used for page_mkwrite path indicating no unlocking
1092 * against w_target_page in ocfs2_write_end_nolock.
1093 */
1094 unsigned int w_target_locked:1;
1095
1096 /*
1097 * ocfs2_write_end() uses this to know what the real range to
1098 * write in the target should be.
1099 */
1100 unsigned int w_target_from;
1101 unsigned int w_target_to;
1102
1103 /*
1104 * We could use journal_current_handle() but this is cleaner,
1105 * IMHO -Mark
1106 */
1107 handle_t *w_handle;
1108
1109 struct buffer_head *w_di_bh;
1110
1111 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1112 };
1113
1114 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1115 {
1116 int i;
1117
1118 for(i = 0; i < num_pages; i++) {
1119 if (pages[i]) {
1120 unlock_page(pages[i]);
1121 mark_page_accessed(pages[i]);
1122 page_cache_release(pages[i]);
1123 }
1124 }
1125 }
1126
1127 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1128 {
1129 int i;
1130
1131 /*
1132 * w_target_locked is only set to true in the page_mkwrite() case.
1133 * The intent is to allow us to lock the target page from write_begin()
1134 * to write_end(). The caller must hold a ref on w_target_page.
1135 */
1136 if (wc->w_target_locked) {
1137 BUG_ON(!wc->w_target_page);
1138 for (i = 0; i < wc->w_num_pages; i++) {
1139 if (wc->w_target_page == wc->w_pages[i]) {
1140 wc->w_pages[i] = NULL;
1141 break;
1142 }
1143 }
1144 mark_page_accessed(wc->w_target_page);
1145 page_cache_release(wc->w_target_page);
1146 }
1147 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1148 }
1149
1150 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1151 {
1152 ocfs2_unlock_pages(wc);
1153 brelse(wc->w_di_bh);
1154 kfree(wc);
1155 }
1156
1157 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1158 struct ocfs2_super *osb, loff_t pos,
1159 unsigned len, struct buffer_head *di_bh)
1160 {
1161 u32 cend;
1162 struct ocfs2_write_ctxt *wc;
1163
1164 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1165 if (!wc)
1166 return -ENOMEM;
1167
1168 wc->w_cpos = pos >> osb->s_clustersize_bits;
1169 wc->w_first_new_cpos = UINT_MAX;
1170 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1171 wc->w_clen = cend - wc->w_cpos + 1;
1172 get_bh(di_bh);
1173 wc->w_di_bh = di_bh;
1174
1175 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1176 wc->w_large_pages = 1;
1177 else
1178 wc->w_large_pages = 0;
1179
1180 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1181
1182 *wcp = wc;
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * If a page has any new buffers, zero them out here, and mark them uptodate
1189 * and dirty so they'll be written out (in order to prevent uninitialised
1190 * block data from leaking). And clear the new bit.
1191 */
1192 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1193 {
1194 unsigned int block_start, block_end;
1195 struct buffer_head *head, *bh;
1196
1197 BUG_ON(!PageLocked(page));
1198 if (!page_has_buffers(page))
1199 return;
1200
1201 bh = head = page_buffers(page);
1202 block_start = 0;
1203 do {
1204 block_end = block_start + bh->b_size;
1205
1206 if (buffer_new(bh)) {
1207 if (block_end > from && block_start < to) {
1208 if (!PageUptodate(page)) {
1209 unsigned start, end;
1210
1211 start = max(from, block_start);
1212 end = min(to, block_end);
1213
1214 zero_user_segment(page, start, end);
1215 set_buffer_uptodate(bh);
1216 }
1217
1218 clear_buffer_new(bh);
1219 mark_buffer_dirty(bh);
1220 }
1221 }
1222
1223 block_start = block_end;
1224 bh = bh->b_this_page;
1225 } while (bh != head);
1226 }
1227
1228 /*
1229 * Only called when we have a failure during allocating write to write
1230 * zero's to the newly allocated region.
1231 */
1232 static void ocfs2_write_failure(struct inode *inode,
1233 struct ocfs2_write_ctxt *wc,
1234 loff_t user_pos, unsigned user_len)
1235 {
1236 int i;
1237 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1238 to = user_pos + user_len;
1239 struct page *tmppage;
1240
1241 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1242
1243 for(i = 0; i < wc->w_num_pages; i++) {
1244 tmppage = wc->w_pages[i];
1245
1246 if (page_has_buffers(tmppage)) {
1247 if (ocfs2_should_order_data(inode))
1248 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1249
1250 block_commit_write(tmppage, from, to);
1251 }
1252 }
1253 }
1254
1255 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1256 struct ocfs2_write_ctxt *wc,
1257 struct page *page, u32 cpos,
1258 loff_t user_pos, unsigned user_len,
1259 int new)
1260 {
1261 int ret;
1262 unsigned int map_from = 0, map_to = 0;
1263 unsigned int cluster_start, cluster_end;
1264 unsigned int user_data_from = 0, user_data_to = 0;
1265
1266 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1267 &cluster_start, &cluster_end);
1268
1269 /* treat the write as new if the a hole/lseek spanned across
1270 * the page boundary.
1271 */
1272 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1273 (page_offset(page) <= user_pos));
1274
1275 if (page == wc->w_target_page) {
1276 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1277 map_to = map_from + user_len;
1278
1279 if (new)
1280 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1281 cluster_start, cluster_end,
1282 new);
1283 else
1284 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1285 map_from, map_to, new);
1286 if (ret) {
1287 mlog_errno(ret);
1288 goto out;
1289 }
1290
1291 user_data_from = map_from;
1292 user_data_to = map_to;
1293 if (new) {
1294 map_from = cluster_start;
1295 map_to = cluster_end;
1296 }
1297 } else {
1298 /*
1299 * If we haven't allocated the new page yet, we
1300 * shouldn't be writing it out without copying user
1301 * data. This is likely a math error from the caller.
1302 */
1303 BUG_ON(!new);
1304
1305 map_from = cluster_start;
1306 map_to = cluster_end;
1307
1308 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1309 cluster_start, cluster_end, new);
1310 if (ret) {
1311 mlog_errno(ret);
1312 goto out;
1313 }
1314 }
1315
1316 /*
1317 * Parts of newly allocated pages need to be zero'd.
1318 *
1319 * Above, we have also rewritten 'to' and 'from' - as far as
1320 * the rest of the function is concerned, the entire cluster
1321 * range inside of a page needs to be written.
1322 *
1323 * We can skip this if the page is up to date - it's already
1324 * been zero'd from being read in as a hole.
1325 */
1326 if (new && !PageUptodate(page))
1327 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1328 cpos, user_data_from, user_data_to);
1329
1330 flush_dcache_page(page);
1331
1332 out:
1333 return ret;
1334 }
1335
1336 /*
1337 * This function will only grab one clusters worth of pages.
1338 */
1339 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1340 struct ocfs2_write_ctxt *wc,
1341 u32 cpos, loff_t user_pos,
1342 unsigned user_len, int new,
1343 struct page *mmap_page)
1344 {
1345 int ret = 0, i;
1346 unsigned long start, target_index, end_index, index;
1347 struct inode *inode = mapping->host;
1348 loff_t last_byte;
1349
1350 target_index = user_pos >> PAGE_CACHE_SHIFT;
1351
1352 /*
1353 * Figure out how many pages we'll be manipulating here. For
1354 * non allocating write, we just change the one
1355 * page. Otherwise, we'll need a whole clusters worth. If we're
1356 * writing past i_size, we only need enough pages to cover the
1357 * last page of the write.
1358 */
1359 if (new) {
1360 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1361 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1362 /*
1363 * We need the index *past* the last page we could possibly
1364 * touch. This is the page past the end of the write or
1365 * i_size, whichever is greater.
1366 */
1367 last_byte = max(user_pos + user_len, i_size_read(inode));
1368 BUG_ON(last_byte < 1);
1369 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1370 if ((start + wc->w_num_pages) > end_index)
1371 wc->w_num_pages = end_index - start;
1372 } else {
1373 wc->w_num_pages = 1;
1374 start = target_index;
1375 }
1376
1377 for(i = 0; i < wc->w_num_pages; i++) {
1378 index = start + i;
1379
1380 if (index == target_index && mmap_page) {
1381 /*
1382 * ocfs2_pagemkwrite() is a little different
1383 * and wants us to directly use the page
1384 * passed in.
1385 */
1386 lock_page(mmap_page);
1387
1388 /* Exit and let the caller retry */
1389 if (mmap_page->mapping != mapping) {
1390 WARN_ON(mmap_page->mapping);
1391 unlock_page(mmap_page);
1392 ret = -EAGAIN;
1393 goto out;
1394 }
1395
1396 page_cache_get(mmap_page);
1397 wc->w_pages[i] = mmap_page;
1398 wc->w_target_locked = true;
1399 } else {
1400 wc->w_pages[i] = find_or_create_page(mapping, index,
1401 GFP_NOFS);
1402 if (!wc->w_pages[i]) {
1403 ret = -ENOMEM;
1404 mlog_errno(ret);
1405 goto out;
1406 }
1407 }
1408 wait_for_stable_page(wc->w_pages[i]);
1409
1410 if (index == target_index)
1411 wc->w_target_page = wc->w_pages[i];
1412 }
1413 out:
1414 if (ret)
1415 wc->w_target_locked = false;
1416 return ret;
1417 }
1418
1419 /*
1420 * Prepare a single cluster for write one cluster into the file.
1421 */
1422 static int ocfs2_write_cluster(struct address_space *mapping,
1423 u32 phys, unsigned int unwritten,
1424 unsigned int should_zero,
1425 struct ocfs2_alloc_context *data_ac,
1426 struct ocfs2_alloc_context *meta_ac,
1427 struct ocfs2_write_ctxt *wc, u32 cpos,
1428 loff_t user_pos, unsigned user_len)
1429 {
1430 int ret, i, new;
1431 u64 v_blkno, p_blkno;
1432 struct inode *inode = mapping->host;
1433 struct ocfs2_extent_tree et;
1434
1435 new = phys == 0 ? 1 : 0;
1436 if (new) {
1437 u32 tmp_pos;
1438
1439 /*
1440 * This is safe to call with the page locks - it won't take
1441 * any additional semaphores or cluster locks.
1442 */
1443 tmp_pos = cpos;
1444 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1445 &tmp_pos, 1, 0, wc->w_di_bh,
1446 wc->w_handle, data_ac,
1447 meta_ac, NULL);
1448 /*
1449 * This shouldn't happen because we must have already
1450 * calculated the correct meta data allocation required. The
1451 * internal tree allocation code should know how to increase
1452 * transaction credits itself.
1453 *
1454 * If need be, we could handle -EAGAIN for a
1455 * RESTART_TRANS here.
1456 */
1457 mlog_bug_on_msg(ret == -EAGAIN,
1458 "Inode %llu: EAGAIN return during allocation.\n",
1459 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1460 if (ret < 0) {
1461 mlog_errno(ret);
1462 goto out;
1463 }
1464 } else if (unwritten) {
1465 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1466 wc->w_di_bh);
1467 ret = ocfs2_mark_extent_written(inode, &et,
1468 wc->w_handle, cpos, 1, phys,
1469 meta_ac, &wc->w_dealloc);
1470 if (ret < 0) {
1471 mlog_errno(ret);
1472 goto out;
1473 }
1474 }
1475
1476 if (should_zero)
1477 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1478 else
1479 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1480
1481 /*
1482 * The only reason this should fail is due to an inability to
1483 * find the extent added.
1484 */
1485 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1486 NULL);
1487 if (ret < 0) {
1488 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1489 "at logical block %llu",
1490 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1491 (unsigned long long)v_blkno);
1492 goto out;
1493 }
1494
1495 BUG_ON(p_blkno == 0);
1496
1497 for(i = 0; i < wc->w_num_pages; i++) {
1498 int tmpret;
1499
1500 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1501 wc->w_pages[i], cpos,
1502 user_pos, user_len,
1503 should_zero);
1504 if (tmpret) {
1505 mlog_errno(tmpret);
1506 if (ret == 0)
1507 ret = tmpret;
1508 }
1509 }
1510
1511 /*
1512 * We only have cleanup to do in case of allocating write.
1513 */
1514 if (ret && new)
1515 ocfs2_write_failure(inode, wc, user_pos, user_len);
1516
1517 out:
1518
1519 return ret;
1520 }
1521
1522 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1523 struct ocfs2_alloc_context *data_ac,
1524 struct ocfs2_alloc_context *meta_ac,
1525 struct ocfs2_write_ctxt *wc,
1526 loff_t pos, unsigned len)
1527 {
1528 int ret, i;
1529 loff_t cluster_off;
1530 unsigned int local_len = len;
1531 struct ocfs2_write_cluster_desc *desc;
1532 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1533
1534 for (i = 0; i < wc->w_clen; i++) {
1535 desc = &wc->w_desc[i];
1536
1537 /*
1538 * We have to make sure that the total write passed in
1539 * doesn't extend past a single cluster.
1540 */
1541 local_len = len;
1542 cluster_off = pos & (osb->s_clustersize - 1);
1543 if ((cluster_off + local_len) > osb->s_clustersize)
1544 local_len = osb->s_clustersize - cluster_off;
1545
1546 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1547 desc->c_unwritten,
1548 desc->c_needs_zero,
1549 data_ac, meta_ac,
1550 wc, desc->c_cpos, pos, local_len);
1551 if (ret) {
1552 mlog_errno(ret);
1553 goto out;
1554 }
1555
1556 len -= local_len;
1557 pos += local_len;
1558 }
1559
1560 ret = 0;
1561 out:
1562 return ret;
1563 }
1564
1565 /*
1566 * ocfs2_write_end() wants to know which parts of the target page it
1567 * should complete the write on. It's easiest to compute them ahead of
1568 * time when a more complete view of the write is available.
1569 */
1570 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1571 struct ocfs2_write_ctxt *wc,
1572 loff_t pos, unsigned len, int alloc)
1573 {
1574 struct ocfs2_write_cluster_desc *desc;
1575
1576 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1577 wc->w_target_to = wc->w_target_from + len;
1578
1579 if (alloc == 0)
1580 return;
1581
1582 /*
1583 * Allocating write - we may have different boundaries based
1584 * on page size and cluster size.
1585 *
1586 * NOTE: We can no longer compute one value from the other as
1587 * the actual write length and user provided length may be
1588 * different.
1589 */
1590
1591 if (wc->w_large_pages) {
1592 /*
1593 * We only care about the 1st and last cluster within
1594 * our range and whether they should be zero'd or not. Either
1595 * value may be extended out to the start/end of a
1596 * newly allocated cluster.
1597 */
1598 desc = &wc->w_desc[0];
1599 if (desc->c_needs_zero)
1600 ocfs2_figure_cluster_boundaries(osb,
1601 desc->c_cpos,
1602 &wc->w_target_from,
1603 NULL);
1604
1605 desc = &wc->w_desc[wc->w_clen - 1];
1606 if (desc->c_needs_zero)
1607 ocfs2_figure_cluster_boundaries(osb,
1608 desc->c_cpos,
1609 NULL,
1610 &wc->w_target_to);
1611 } else {
1612 wc->w_target_from = 0;
1613 wc->w_target_to = PAGE_CACHE_SIZE;
1614 }
1615 }
1616
1617 /*
1618 * Populate each single-cluster write descriptor in the write context
1619 * with information about the i/o to be done.
1620 *
1621 * Returns the number of clusters that will have to be allocated, as
1622 * well as a worst case estimate of the number of extent records that
1623 * would have to be created during a write to an unwritten region.
1624 */
1625 static int ocfs2_populate_write_desc(struct inode *inode,
1626 struct ocfs2_write_ctxt *wc,
1627 unsigned int *clusters_to_alloc,
1628 unsigned int *extents_to_split)
1629 {
1630 int ret;
1631 struct ocfs2_write_cluster_desc *desc;
1632 unsigned int num_clusters = 0;
1633 unsigned int ext_flags = 0;
1634 u32 phys = 0;
1635 int i;
1636
1637 *clusters_to_alloc = 0;
1638 *extents_to_split = 0;
1639
1640 for (i = 0; i < wc->w_clen; i++) {
1641 desc = &wc->w_desc[i];
1642 desc->c_cpos = wc->w_cpos + i;
1643
1644 if (num_clusters == 0) {
1645 /*
1646 * Need to look up the next extent record.
1647 */
1648 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1649 &num_clusters, &ext_flags);
1650 if (ret) {
1651 mlog_errno(ret);
1652 goto out;
1653 }
1654
1655 /* We should already CoW the refcountd extent. */
1656 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1657
1658 /*
1659 * Assume worst case - that we're writing in
1660 * the middle of the extent.
1661 *
1662 * We can assume that the write proceeds from
1663 * left to right, in which case the extent
1664 * insert code is smart enough to coalesce the
1665 * next splits into the previous records created.
1666 */
1667 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1668 *extents_to_split = *extents_to_split + 2;
1669 } else if (phys) {
1670 /*
1671 * Only increment phys if it doesn't describe
1672 * a hole.
1673 */
1674 phys++;
1675 }
1676
1677 /*
1678 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1679 * file that got extended. w_first_new_cpos tells us
1680 * where the newly allocated clusters are so we can
1681 * zero them.
1682 */
1683 if (desc->c_cpos >= wc->w_first_new_cpos) {
1684 BUG_ON(phys == 0);
1685 desc->c_needs_zero = 1;
1686 }
1687
1688 desc->c_phys = phys;
1689 if (phys == 0) {
1690 desc->c_new = 1;
1691 desc->c_needs_zero = 1;
1692 *clusters_to_alloc = *clusters_to_alloc + 1;
1693 }
1694
1695 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1696 desc->c_unwritten = 1;
1697 desc->c_needs_zero = 1;
1698 }
1699
1700 num_clusters--;
1701 }
1702
1703 ret = 0;
1704 out:
1705 return ret;
1706 }
1707
1708 static int ocfs2_write_begin_inline(struct address_space *mapping,
1709 struct inode *inode,
1710 struct ocfs2_write_ctxt *wc)
1711 {
1712 int ret;
1713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1714 struct page *page;
1715 handle_t *handle;
1716 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1717
1718 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1719 if (IS_ERR(handle)) {
1720 ret = PTR_ERR(handle);
1721 mlog_errno(ret);
1722 goto out;
1723 }
1724
1725 page = find_or_create_page(mapping, 0, GFP_NOFS);
1726 if (!page) {
1727 ocfs2_commit_trans(osb, handle);
1728 ret = -ENOMEM;
1729 mlog_errno(ret);
1730 goto out;
1731 }
1732 /*
1733 * If we don't set w_num_pages then this page won't get unlocked
1734 * and freed on cleanup of the write context.
1735 */
1736 wc->w_pages[0] = wc->w_target_page = page;
1737 wc->w_num_pages = 1;
1738
1739 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1740 OCFS2_JOURNAL_ACCESS_WRITE);
1741 if (ret) {
1742 ocfs2_commit_trans(osb, handle);
1743
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747
1748 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1749 ocfs2_set_inode_data_inline(inode, di);
1750
1751 if (!PageUptodate(page)) {
1752 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1753 if (ret) {
1754 ocfs2_commit_trans(osb, handle);
1755
1756 goto out;
1757 }
1758 }
1759
1760 wc->w_handle = handle;
1761 out:
1762 return ret;
1763 }
1764
1765 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1766 {
1767 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1768
1769 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1770 return 1;
1771 return 0;
1772 }
1773
1774 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1775 struct inode *inode, loff_t pos,
1776 unsigned len, struct page *mmap_page,
1777 struct ocfs2_write_ctxt *wc)
1778 {
1779 int ret, written = 0;
1780 loff_t end = pos + len;
1781 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1782 struct ocfs2_dinode *di = NULL;
1783
1784 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1785 len, (unsigned long long)pos,
1786 oi->ip_dyn_features);
1787
1788 /*
1789 * Handle inodes which already have inline data 1st.
1790 */
1791 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1792 if (mmap_page == NULL &&
1793 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1794 goto do_inline_write;
1795
1796 /*
1797 * The write won't fit - we have to give this inode an
1798 * inline extent list now.
1799 */
1800 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1801 if (ret)
1802 mlog_errno(ret);
1803 goto out;
1804 }
1805
1806 /*
1807 * Check whether the inode can accept inline data.
1808 */
1809 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1810 return 0;
1811
1812 /*
1813 * Check whether the write can fit.
1814 */
1815 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1816 if (mmap_page ||
1817 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1818 return 0;
1819
1820 do_inline_write:
1821 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1822 if (ret) {
1823 mlog_errno(ret);
1824 goto out;
1825 }
1826
1827 /*
1828 * This signals to the caller that the data can be written
1829 * inline.
1830 */
1831 written = 1;
1832 out:
1833 return written ? written : ret;
1834 }
1835
1836 /*
1837 * This function only does anything for file systems which can't
1838 * handle sparse files.
1839 *
1840 * What we want to do here is fill in any hole between the current end
1841 * of allocation and the end of our write. That way the rest of the
1842 * write path can treat it as an non-allocating write, which has no
1843 * special case code for sparse/nonsparse files.
1844 */
1845 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1846 struct buffer_head *di_bh,
1847 loff_t pos, unsigned len,
1848 struct ocfs2_write_ctxt *wc)
1849 {
1850 int ret;
1851 loff_t newsize = pos + len;
1852
1853 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1854
1855 if (newsize <= i_size_read(inode))
1856 return 0;
1857
1858 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1859 if (ret)
1860 mlog_errno(ret);
1861
1862 wc->w_first_new_cpos =
1863 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1864
1865 return ret;
1866 }
1867
1868 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1869 loff_t pos)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1874 if (pos > i_size_read(inode))
1875 ret = ocfs2_zero_extend(inode, di_bh, pos);
1876
1877 return ret;
1878 }
1879
1880 /*
1881 * Try to flush truncate logs if we can free enough clusters from it.
1882 * As for return value, "< 0" means error, "0" no space and "1" means
1883 * we have freed enough spaces and let the caller try to allocate again.
1884 */
1885 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1886 unsigned int needed)
1887 {
1888 tid_t target;
1889 int ret = 0;
1890 unsigned int truncated_clusters;
1891
1892 mutex_lock(&osb->osb_tl_inode->i_mutex);
1893 truncated_clusters = osb->truncated_clusters;
1894 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1895
1896 /*
1897 * Check whether we can succeed in allocating if we free
1898 * the truncate log.
1899 */
1900 if (truncated_clusters < needed)
1901 goto out;
1902
1903 ret = ocfs2_flush_truncate_log(osb);
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out;
1907 }
1908
1909 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1910 jbd2_log_wait_commit(osb->journal->j_journal, target);
1911 ret = 1;
1912 }
1913 out:
1914 return ret;
1915 }
1916
1917 int ocfs2_write_begin_nolock(struct file *filp,
1918 struct address_space *mapping,
1919 loff_t pos, unsigned len, unsigned flags,
1920 struct page **pagep, void **fsdata,
1921 struct buffer_head *di_bh, struct page *mmap_page)
1922 {
1923 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1924 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1925 struct ocfs2_write_ctxt *wc;
1926 struct inode *inode = mapping->host;
1927 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1928 struct ocfs2_dinode *di;
1929 struct ocfs2_alloc_context *data_ac = NULL;
1930 struct ocfs2_alloc_context *meta_ac = NULL;
1931 handle_t *handle;
1932 struct ocfs2_extent_tree et;
1933 int try_free = 1, ret1;
1934
1935 try_again:
1936 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1937 if (ret) {
1938 mlog_errno(ret);
1939 return ret;
1940 }
1941
1942 if (ocfs2_supports_inline_data(osb)) {
1943 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1944 mmap_page, wc);
1945 if (ret == 1) {
1946 ret = 0;
1947 goto success;
1948 }
1949 if (ret < 0) {
1950 mlog_errno(ret);
1951 goto out;
1952 }
1953 }
1954
1955 if (ocfs2_sparse_alloc(osb))
1956 ret = ocfs2_zero_tail(inode, di_bh, pos);
1957 else
1958 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1959 wc);
1960 if (ret) {
1961 mlog_errno(ret);
1962 goto out;
1963 }
1964
1965 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1966 if (ret < 0) {
1967 mlog_errno(ret);
1968 goto out;
1969 } else if (ret == 1) {
1970 clusters_need = wc->w_clen;
1971 ret = ocfs2_refcount_cow(inode, di_bh,
1972 wc->w_cpos, wc->w_clen, UINT_MAX);
1973 if (ret) {
1974 mlog_errno(ret);
1975 goto out;
1976 }
1977 }
1978
1979 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1980 &extents_to_split);
1981 if (ret) {
1982 mlog_errno(ret);
1983 goto out;
1984 }
1985 clusters_need += clusters_to_alloc;
1986
1987 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1988
1989 trace_ocfs2_write_begin_nolock(
1990 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1991 (long long)i_size_read(inode),
1992 le32_to_cpu(di->i_clusters),
1993 pos, len, flags, mmap_page,
1994 clusters_to_alloc, extents_to_split);
1995
1996 /*
1997 * We set w_target_from, w_target_to here so that
1998 * ocfs2_write_end() knows which range in the target page to
1999 * write out. An allocation requires that we write the entire
2000 * cluster range.
2001 */
2002 if (clusters_to_alloc || extents_to_split) {
2003 /*
2004 * XXX: We are stretching the limits of
2005 * ocfs2_lock_allocators(). It greatly over-estimates
2006 * the work to be done.
2007 */
2008 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2009 wc->w_di_bh);
2010 ret = ocfs2_lock_allocators(inode, &et,
2011 clusters_to_alloc, extents_to_split,
2012 &data_ac, &meta_ac);
2013 if (ret) {
2014 mlog_errno(ret);
2015 goto out;
2016 }
2017
2018 if (data_ac)
2019 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2020
2021 credits = ocfs2_calc_extend_credits(inode->i_sb,
2022 &di->id2.i_list);
2023
2024 }
2025
2026 /*
2027 * We have to zero sparse allocated clusters, unwritten extent clusters,
2028 * and non-sparse clusters we just extended. For non-sparse writes,
2029 * we know zeros will only be needed in the first and/or last cluster.
2030 */
2031 if (clusters_to_alloc || extents_to_split ||
2032 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2033 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2034 cluster_of_pages = 1;
2035 else
2036 cluster_of_pages = 0;
2037
2038 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2039
2040 handle = ocfs2_start_trans(osb, credits);
2041 if (IS_ERR(handle)) {
2042 ret = PTR_ERR(handle);
2043 mlog_errno(ret);
2044 goto out;
2045 }
2046
2047 wc->w_handle = handle;
2048
2049 if (clusters_to_alloc) {
2050 ret = dquot_alloc_space_nodirty(inode,
2051 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2052 if (ret)
2053 goto out_commit;
2054 }
2055 /*
2056 * We don't want this to fail in ocfs2_write_end(), so do it
2057 * here.
2058 */
2059 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2060 OCFS2_JOURNAL_ACCESS_WRITE);
2061 if (ret) {
2062 mlog_errno(ret);
2063 goto out_quota;
2064 }
2065
2066 /*
2067 * Fill our page array first. That way we've grabbed enough so
2068 * that we can zero and flush if we error after adding the
2069 * extent.
2070 */
2071 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2072 cluster_of_pages, mmap_page);
2073 if (ret && ret != -EAGAIN) {
2074 mlog_errno(ret);
2075 goto out_quota;
2076 }
2077
2078 /*
2079 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2080 * the target page. In this case, we exit with no error and no target
2081 * page. This will trigger the caller, page_mkwrite(), to re-try
2082 * the operation.
2083 */
2084 if (ret == -EAGAIN) {
2085 BUG_ON(wc->w_target_page);
2086 ret = 0;
2087 goto out_quota;
2088 }
2089
2090 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2091 len);
2092 if (ret) {
2093 mlog_errno(ret);
2094 goto out_quota;
2095 }
2096
2097 if (data_ac)
2098 ocfs2_free_alloc_context(data_ac);
2099 if (meta_ac)
2100 ocfs2_free_alloc_context(meta_ac);
2101
2102 success:
2103 *pagep = wc->w_target_page;
2104 *fsdata = wc;
2105 return 0;
2106 out_quota:
2107 if (clusters_to_alloc)
2108 dquot_free_space(inode,
2109 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2110 out_commit:
2111 ocfs2_commit_trans(osb, handle);
2112
2113 out:
2114 ocfs2_free_write_ctxt(wc);
2115
2116 if (data_ac) {
2117 ocfs2_free_alloc_context(data_ac);
2118 data_ac = NULL;
2119 }
2120 if (meta_ac) {
2121 ocfs2_free_alloc_context(meta_ac);
2122 meta_ac = NULL;
2123 }
2124
2125 if (ret == -ENOSPC && try_free) {
2126 /*
2127 * Try to free some truncate log so that we can have enough
2128 * clusters to allocate.
2129 */
2130 try_free = 0;
2131
2132 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2133 if (ret1 == 1)
2134 goto try_again;
2135
2136 if (ret1 < 0)
2137 mlog_errno(ret1);
2138 }
2139
2140 return ret;
2141 }
2142
2143 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2144 loff_t pos, unsigned len, unsigned flags,
2145 struct page **pagep, void **fsdata)
2146 {
2147 int ret;
2148 struct buffer_head *di_bh = NULL;
2149 struct inode *inode = mapping->host;
2150
2151 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2152 if (ret) {
2153 mlog_errno(ret);
2154 return ret;
2155 }
2156
2157 /*
2158 * Take alloc sem here to prevent concurrent lookups. That way
2159 * the mapping, zeroing and tree manipulation within
2160 * ocfs2_write() will be safe against ->readpage(). This
2161 * should also serve to lock out allocation from a shared
2162 * writeable region.
2163 */
2164 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2165
2166 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2167 fsdata, di_bh, NULL);
2168 if (ret) {
2169 mlog_errno(ret);
2170 goto out_fail;
2171 }
2172
2173 brelse(di_bh);
2174
2175 return 0;
2176
2177 out_fail:
2178 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2179
2180 brelse(di_bh);
2181 ocfs2_inode_unlock(inode, 1);
2182
2183 return ret;
2184 }
2185
2186 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2187 unsigned len, unsigned *copied,
2188 struct ocfs2_dinode *di,
2189 struct ocfs2_write_ctxt *wc)
2190 {
2191 void *kaddr;
2192
2193 if (unlikely(*copied < len)) {
2194 if (!PageUptodate(wc->w_target_page)) {
2195 *copied = 0;
2196 return;
2197 }
2198 }
2199
2200 kaddr = kmap_atomic(wc->w_target_page);
2201 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2202 kunmap_atomic(kaddr);
2203
2204 trace_ocfs2_write_end_inline(
2205 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2206 (unsigned long long)pos, *copied,
2207 le16_to_cpu(di->id2.i_data.id_count),
2208 le16_to_cpu(di->i_dyn_features));
2209 }
2210
2211 int ocfs2_write_end_nolock(struct address_space *mapping,
2212 loff_t pos, unsigned len, unsigned copied,
2213 struct page *page, void *fsdata)
2214 {
2215 int i;
2216 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2217 struct inode *inode = mapping->host;
2218 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2219 struct ocfs2_write_ctxt *wc = fsdata;
2220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2221 handle_t *handle = wc->w_handle;
2222 struct page *tmppage;
2223
2224 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2225 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2226 goto out_write_size;
2227 }
2228
2229 if (unlikely(copied < len)) {
2230 if (!PageUptodate(wc->w_target_page))
2231 copied = 0;
2232
2233 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2234 start+len);
2235 }
2236 flush_dcache_page(wc->w_target_page);
2237
2238 for(i = 0; i < wc->w_num_pages; i++) {
2239 tmppage = wc->w_pages[i];
2240
2241 if (tmppage == wc->w_target_page) {
2242 from = wc->w_target_from;
2243 to = wc->w_target_to;
2244
2245 BUG_ON(from > PAGE_CACHE_SIZE ||
2246 to > PAGE_CACHE_SIZE ||
2247 to < from);
2248 } else {
2249 /*
2250 * Pages adjacent to the target (if any) imply
2251 * a hole-filling write in which case we want
2252 * to flush their entire range.
2253 */
2254 from = 0;
2255 to = PAGE_CACHE_SIZE;
2256 }
2257
2258 if (page_has_buffers(tmppage)) {
2259 if (ocfs2_should_order_data(inode))
2260 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2261 block_commit_write(tmppage, from, to);
2262 }
2263 }
2264
2265 out_write_size:
2266 pos += copied;
2267 if (pos > i_size_read(inode)) {
2268 i_size_write(inode, pos);
2269 mark_inode_dirty(inode);
2270 }
2271 inode->i_blocks = ocfs2_inode_sector_count(inode);
2272 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2273 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2274 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2275 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2276 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2277 ocfs2_journal_dirty(handle, wc->w_di_bh);
2278
2279 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2280 * lock, or it will cause a deadlock since journal commit threads holds
2281 * this lock and will ask for the page lock when flushing the data.
2282 * put it here to preserve the unlock order.
2283 */
2284 ocfs2_unlock_pages(wc);
2285
2286 ocfs2_commit_trans(osb, handle);
2287
2288 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2289
2290 brelse(wc->w_di_bh);
2291 kfree(wc);
2292
2293 return copied;
2294 }
2295
2296 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2297 loff_t pos, unsigned len, unsigned copied,
2298 struct page *page, void *fsdata)
2299 {
2300 int ret;
2301 struct inode *inode = mapping->host;
2302
2303 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2304
2305 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2306 ocfs2_inode_unlock(inode, 1);
2307
2308 return ret;
2309 }
2310
2311 const struct address_space_operations ocfs2_aops = {
2312 .readpage = ocfs2_readpage,
2313 .readpages = ocfs2_readpages,
2314 .writepage = ocfs2_writepage,
2315 .write_begin = ocfs2_write_begin,
2316 .write_end = ocfs2_write_end,
2317 .bmap = ocfs2_bmap,
2318 .direct_IO = ocfs2_direct_IO,
2319 .invalidatepage = block_invalidatepage,
2320 .releasepage = ocfs2_releasepage,
2321 .migratepage = buffer_migrate_page,
2322 .is_partially_uptodate = block_is_partially_uptodate,
2323 .error_remove_page = generic_error_remove_page,
2324 };