]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ocfs2/aops.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58 {
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131 bail:
132 brelse(bh);
133
134 return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224 {
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343 }
344
345 /*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356 {
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432 {
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /*
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
472 */
473 if (ocfs2_is_refcount_inode(inode))
474 return 0;
475
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
478 */
479 if (!INODE_JOURNAL(inode)) {
480 err = ocfs2_inode_lock(inode, NULL, 0);
481 if (err) {
482 if (err != -ENOENT)
483 mlog_errno(err);
484 goto bail;
485 }
486 down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 }
488
489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 NULL);
492
493 if (!INODE_JOURNAL(inode)) {
494 up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 ocfs2_inode_unlock(inode, 0);
496 }
497
498 if (err) {
499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block);
501 mlog_errno(err);
502 goto bail;
503 }
504
505 bail:
506 status = err ? 0 : p_blkno;
507
508 return status;
509 }
510
511 static int ocfs2_releasepage(struct page *page, gfp_t wait)
512 {
513 if (!page_has_buffers(page))
514 return 0;
515 return try_to_free_buffers(page);
516 }
517
518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 u32 cpos,
520 unsigned int *start,
521 unsigned int *end)
522 {
523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524
525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 unsigned int cpp;
527
528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529
530 cluster_start = cpos % cpp;
531 cluster_start = cluster_start << osb->s_clustersize_bits;
532
533 cluster_end = cluster_start + osb->s_clustersize;
534 }
535
536 BUG_ON(cluster_start > PAGE_SIZE);
537 BUG_ON(cluster_end > PAGE_SIZE);
538
539 if (start)
540 *start = cluster_start;
541 if (end)
542 *end = cluster_end;
543 }
544
545 /*
546 * 'from' and 'to' are the region in the page to avoid zeroing.
547 *
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
550 *
551 * from == to == 0 is code for "zero the entire cluster region"
552 */
553 static void ocfs2_clear_page_regions(struct page *page,
554 struct ocfs2_super *osb, u32 cpos,
555 unsigned from, unsigned to)
556 {
557 void *kaddr;
558 unsigned int cluster_start, cluster_end;
559
560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561
562 kaddr = kmap_atomic(page);
563
564 if (from || to) {
565 if (from > cluster_start)
566 memset(kaddr + cluster_start, 0, from - cluster_start);
567 if (to < cluster_end)
568 memset(kaddr + to, 0, cluster_end - to);
569 } else {
570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 }
572
573 kunmap_atomic(kaddr);
574 }
575
576 /*
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
582 */
583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 unsigned int block_start)
585 {
586 u64 offset = page_offset(page) + block_start;
587
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 return 1;
590
591 if (i_size_read(inode) > offset)
592 return 1;
593
594 return 0;
595 }
596
597 /*
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
601 *
602 * This will also skip zeroing, which is handled externally.
603 */
604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 struct inode *inode, unsigned int from,
606 unsigned int to, int new)
607 {
608 int ret = 0;
609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 unsigned int block_end, block_start;
611 unsigned int bsize = i_blocksize(inode);
612
613 if (!page_has_buffers(page))
614 create_empty_buffers(page, bsize, 0);
615
616 head = page_buffers(page);
617 for (bh = head, block_start = 0; bh != head || !block_start;
618 bh = bh->b_this_page, block_start += bsize) {
619 block_end = block_start + bsize;
620
621 clear_buffer_new(bh);
622
623 /*
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
626 */
627 if (block_start >= to || block_end <= from) {
628 if (PageUptodate(page))
629 set_buffer_uptodate(bh);
630 continue;
631 }
632
633 /*
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
636 */
637 if (new)
638 set_buffer_new(bh);
639
640 if (!buffer_mapped(bh)) {
641 map_bh(bh, inode->i_sb, *p_blkno);
642 clean_bdev_bh_alias(bh);
643 }
644
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 !buffer_new(bh) &&
650 ocfs2_should_read_blk(inode, page, block_start) &&
651 (block_start < from || block_end > to)) {
652 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 *wait_bh++=bh;
654 }
655
656 *p_blkno = *p_blkno + 1;
657 }
658
659 /*
660 * If we issued read requests - let them complete.
661 */
662 while(wait_bh > wait) {
663 wait_on_buffer(*--wait_bh);
664 if (!buffer_uptodate(*wait_bh))
665 ret = -EIO;
666 }
667
668 if (ret == 0 || !new)
669 return ret;
670
671 /*
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
674 */
675 bh = head;
676 block_start = 0;
677 do {
678 block_end = block_start + bsize;
679 if (block_end <= from)
680 goto next_bh;
681 if (block_start >= to)
682 break;
683
684 zero_user(page, block_start, bh->b_size);
685 set_buffer_uptodate(bh);
686 mark_buffer_dirty(bh);
687
688 next_bh:
689 block_start = block_end;
690 bh = bh->b_this_page;
691 } while (bh != head);
692
693 return ret;
694 }
695
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES 1
698 #else
699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700 #endif
701
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703
704 struct ocfs2_unwritten_extent {
705 struct list_head ue_node;
706 struct list_head ue_ip_node;
707 u32 ue_cpos;
708 u32 ue_phys;
709 };
710
711 /*
712 * Describe the state of a single cluster to be written to.
713 */
714 struct ocfs2_write_cluster_desc {
715 u32 c_cpos;
716 u32 c_phys;
717 /*
718 * Give this a unique field because c_phys eventually gets
719 * filled.
720 */
721 unsigned c_new;
722 unsigned c_clear_unwritten;
723 unsigned c_needs_zero;
724 };
725
726 struct ocfs2_write_ctxt {
727 /* Logical cluster position / len of write */
728 u32 w_cpos;
729 u32 w_clen;
730
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos;
733
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type;
736
737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738
739 /*
740 * This is true if page_size > cluster_size.
741 *
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
744 */
745 unsigned int w_large_pages;
746
747 /*
748 * Pages involved in this write.
749 *
750 * w_target_page is the page being written to by the user.
751 *
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
757 * zero's.
758 */
759 unsigned int w_num_pages;
760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
761 struct page *w_target_page;
762
763 /*
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
766 */
767 unsigned int w_target_locked:1;
768
769 /*
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
772 */
773 unsigned int w_target_from;
774 unsigned int w_target_to;
775
776 /*
777 * We could use journal_current_handle() but this is cleaner,
778 * IMHO -Mark
779 */
780 handle_t *w_handle;
781
782 struct buffer_head *w_di_bh;
783
784 struct ocfs2_cached_dealloc_ctxt w_dealloc;
785
786 struct list_head w_unwritten_list;
787 };
788
789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
790 {
791 int i;
792
793 for(i = 0; i < num_pages; i++) {
794 if (pages[i]) {
795 unlock_page(pages[i]);
796 mark_page_accessed(pages[i]);
797 put_page(pages[i]);
798 }
799 }
800 }
801
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
803 {
804 int i;
805
806 /*
807 * w_target_locked is only set to true in the page_mkwrite() case.
808 * The intent is to allow us to lock the target page from write_begin()
809 * to write_end(). The caller must hold a ref on w_target_page.
810 */
811 if (wc->w_target_locked) {
812 BUG_ON(!wc->w_target_page);
813 for (i = 0; i < wc->w_num_pages; i++) {
814 if (wc->w_target_page == wc->w_pages[i]) {
815 wc->w_pages[i] = NULL;
816 break;
817 }
818 }
819 mark_page_accessed(wc->w_target_page);
820 put_page(wc->w_target_page);
821 }
822 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
823 }
824
825 static void ocfs2_free_unwritten_list(struct inode *inode,
826 struct list_head *head)
827 {
828 struct ocfs2_inode_info *oi = OCFS2_I(inode);
829 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
830
831 list_for_each_entry_safe(ue, tmp, head, ue_node) {
832 list_del(&ue->ue_node);
833 spin_lock(&oi->ip_lock);
834 list_del(&ue->ue_ip_node);
835 spin_unlock(&oi->ip_lock);
836 kfree(ue);
837 }
838 }
839
840 static void ocfs2_free_write_ctxt(struct inode *inode,
841 struct ocfs2_write_ctxt *wc)
842 {
843 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
844 ocfs2_unlock_pages(wc);
845 brelse(wc->w_di_bh);
846 kfree(wc);
847 }
848
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
850 struct ocfs2_super *osb, loff_t pos,
851 unsigned len, ocfs2_write_type_t type,
852 struct buffer_head *di_bh)
853 {
854 u32 cend;
855 struct ocfs2_write_ctxt *wc;
856
857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
858 if (!wc)
859 return -ENOMEM;
860
861 wc->w_cpos = pos >> osb->s_clustersize_bits;
862 wc->w_first_new_cpos = UINT_MAX;
863 cend = (pos + len - 1) >> osb->s_clustersize_bits;
864 wc->w_clen = cend - wc->w_cpos + 1;
865 get_bh(di_bh);
866 wc->w_di_bh = di_bh;
867 wc->w_type = type;
868
869 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
870 wc->w_large_pages = 1;
871 else
872 wc->w_large_pages = 0;
873
874 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
875 INIT_LIST_HEAD(&wc->w_unwritten_list);
876
877 *wcp = wc;
878
879 return 0;
880 }
881
882 /*
883 * If a page has any new buffers, zero them out here, and mark them uptodate
884 * and dirty so they'll be written out (in order to prevent uninitialised
885 * block data from leaking). And clear the new bit.
886 */
887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
888 {
889 unsigned int block_start, block_end;
890 struct buffer_head *head, *bh;
891
892 BUG_ON(!PageLocked(page));
893 if (!page_has_buffers(page))
894 return;
895
896 bh = head = page_buffers(page);
897 block_start = 0;
898 do {
899 block_end = block_start + bh->b_size;
900
901 if (buffer_new(bh)) {
902 if (block_end > from && block_start < to) {
903 if (!PageUptodate(page)) {
904 unsigned start, end;
905
906 start = max(from, block_start);
907 end = min(to, block_end);
908
909 zero_user_segment(page, start, end);
910 set_buffer_uptodate(bh);
911 }
912
913 clear_buffer_new(bh);
914 mark_buffer_dirty(bh);
915 }
916 }
917
918 block_start = block_end;
919 bh = bh->b_this_page;
920 } while (bh != head);
921 }
922
923 /*
924 * Only called when we have a failure during allocating write to write
925 * zero's to the newly allocated region.
926 */
927 static void ocfs2_write_failure(struct inode *inode,
928 struct ocfs2_write_ctxt *wc,
929 loff_t user_pos, unsigned user_len)
930 {
931 int i;
932 unsigned from = user_pos & (PAGE_SIZE - 1),
933 to = user_pos + user_len;
934 struct page *tmppage;
935
936 if (wc->w_target_page)
937 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
938
939 for(i = 0; i < wc->w_num_pages; i++) {
940 tmppage = wc->w_pages[i];
941
942 if (tmppage && page_has_buffers(tmppage)) {
943 if (ocfs2_should_order_data(inode))
944 ocfs2_jbd2_file_inode(wc->w_handle, inode);
945
946 block_commit_write(tmppage, from, to);
947 }
948 }
949 }
950
951 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
952 struct ocfs2_write_ctxt *wc,
953 struct page *page, u32 cpos,
954 loff_t user_pos, unsigned user_len,
955 int new)
956 {
957 int ret;
958 unsigned int map_from = 0, map_to = 0;
959 unsigned int cluster_start, cluster_end;
960 unsigned int user_data_from = 0, user_data_to = 0;
961
962 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
963 &cluster_start, &cluster_end);
964
965 /* treat the write as new if the a hole/lseek spanned across
966 * the page boundary.
967 */
968 new = new | ((i_size_read(inode) <= page_offset(page)) &&
969 (page_offset(page) <= user_pos));
970
971 if (page == wc->w_target_page) {
972 map_from = user_pos & (PAGE_SIZE - 1);
973 map_to = map_from + user_len;
974
975 if (new)
976 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
977 cluster_start, cluster_end,
978 new);
979 else
980 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
981 map_from, map_to, new);
982 if (ret) {
983 mlog_errno(ret);
984 goto out;
985 }
986
987 user_data_from = map_from;
988 user_data_to = map_to;
989 if (new) {
990 map_from = cluster_start;
991 map_to = cluster_end;
992 }
993 } else {
994 /*
995 * If we haven't allocated the new page yet, we
996 * shouldn't be writing it out without copying user
997 * data. This is likely a math error from the caller.
998 */
999 BUG_ON(!new);
1000
1001 map_from = cluster_start;
1002 map_to = cluster_end;
1003
1004 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1005 cluster_start, cluster_end, new);
1006 if (ret) {
1007 mlog_errno(ret);
1008 goto out;
1009 }
1010 }
1011
1012 /*
1013 * Parts of newly allocated pages need to be zero'd.
1014 *
1015 * Above, we have also rewritten 'to' and 'from' - as far as
1016 * the rest of the function is concerned, the entire cluster
1017 * range inside of a page needs to be written.
1018 *
1019 * We can skip this if the page is up to date - it's already
1020 * been zero'd from being read in as a hole.
1021 */
1022 if (new && !PageUptodate(page))
1023 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1024 cpos, user_data_from, user_data_to);
1025
1026 flush_dcache_page(page);
1027
1028 out:
1029 return ret;
1030 }
1031
1032 /*
1033 * This function will only grab one clusters worth of pages.
1034 */
1035 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1036 struct ocfs2_write_ctxt *wc,
1037 u32 cpos, loff_t user_pos,
1038 unsigned user_len, int new,
1039 struct page *mmap_page)
1040 {
1041 int ret = 0, i;
1042 unsigned long start, target_index, end_index, index;
1043 struct inode *inode = mapping->host;
1044 loff_t last_byte;
1045
1046 target_index = user_pos >> PAGE_SHIFT;
1047
1048 /*
1049 * Figure out how many pages we'll be manipulating here. For
1050 * non allocating write, we just change the one
1051 * page. Otherwise, we'll need a whole clusters worth. If we're
1052 * writing past i_size, we only need enough pages to cover the
1053 * last page of the write.
1054 */
1055 if (new) {
1056 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1057 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1058 /*
1059 * We need the index *past* the last page we could possibly
1060 * touch. This is the page past the end of the write or
1061 * i_size, whichever is greater.
1062 */
1063 last_byte = max(user_pos + user_len, i_size_read(inode));
1064 BUG_ON(last_byte < 1);
1065 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1066 if ((start + wc->w_num_pages) > end_index)
1067 wc->w_num_pages = end_index - start;
1068 } else {
1069 wc->w_num_pages = 1;
1070 start = target_index;
1071 }
1072 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1073
1074 for(i = 0; i < wc->w_num_pages; i++) {
1075 index = start + i;
1076
1077 if (index >= target_index && index <= end_index &&
1078 wc->w_type == OCFS2_WRITE_MMAP) {
1079 /*
1080 * ocfs2_pagemkwrite() is a little different
1081 * and wants us to directly use the page
1082 * passed in.
1083 */
1084 lock_page(mmap_page);
1085
1086 /* Exit and let the caller retry */
1087 if (mmap_page->mapping != mapping) {
1088 WARN_ON(mmap_page->mapping);
1089 unlock_page(mmap_page);
1090 ret = -EAGAIN;
1091 goto out;
1092 }
1093
1094 get_page(mmap_page);
1095 wc->w_pages[i] = mmap_page;
1096 wc->w_target_locked = true;
1097 } else if (index >= target_index && index <= end_index &&
1098 wc->w_type == OCFS2_WRITE_DIRECT) {
1099 /* Direct write has no mapping page. */
1100 wc->w_pages[i] = NULL;
1101 continue;
1102 } else {
1103 wc->w_pages[i] = find_or_create_page(mapping, index,
1104 GFP_NOFS);
1105 if (!wc->w_pages[i]) {
1106 ret = -ENOMEM;
1107 mlog_errno(ret);
1108 goto out;
1109 }
1110 }
1111 wait_for_stable_page(wc->w_pages[i]);
1112
1113 if (index == target_index)
1114 wc->w_target_page = wc->w_pages[i];
1115 }
1116 out:
1117 if (ret)
1118 wc->w_target_locked = false;
1119 return ret;
1120 }
1121
1122 /*
1123 * Prepare a single cluster for write one cluster into the file.
1124 */
1125 static int ocfs2_write_cluster(struct address_space *mapping,
1126 u32 *phys, unsigned int new,
1127 unsigned int clear_unwritten,
1128 unsigned int should_zero,
1129 struct ocfs2_alloc_context *data_ac,
1130 struct ocfs2_alloc_context *meta_ac,
1131 struct ocfs2_write_ctxt *wc, u32 cpos,
1132 loff_t user_pos, unsigned user_len)
1133 {
1134 int ret, i;
1135 u64 p_blkno;
1136 struct inode *inode = mapping->host;
1137 struct ocfs2_extent_tree et;
1138 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1139
1140 if (new) {
1141 u32 tmp_pos;
1142
1143 /*
1144 * This is safe to call with the page locks - it won't take
1145 * any additional semaphores or cluster locks.
1146 */
1147 tmp_pos = cpos;
1148 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1149 &tmp_pos, 1, !clear_unwritten,
1150 wc->w_di_bh, wc->w_handle,
1151 data_ac, meta_ac, NULL);
1152 /*
1153 * This shouldn't happen because we must have already
1154 * calculated the correct meta data allocation required. The
1155 * internal tree allocation code should know how to increase
1156 * transaction credits itself.
1157 *
1158 * If need be, we could handle -EAGAIN for a
1159 * RESTART_TRANS here.
1160 */
1161 mlog_bug_on_msg(ret == -EAGAIN,
1162 "Inode %llu: EAGAIN return during allocation.\n",
1163 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1164 if (ret < 0) {
1165 mlog_errno(ret);
1166 goto out;
1167 }
1168 } else if (clear_unwritten) {
1169 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1170 wc->w_di_bh);
1171 ret = ocfs2_mark_extent_written(inode, &et,
1172 wc->w_handle, cpos, 1, *phys,
1173 meta_ac, &wc->w_dealloc);
1174 if (ret < 0) {
1175 mlog_errno(ret);
1176 goto out;
1177 }
1178 }
1179
1180 /*
1181 * The only reason this should fail is due to an inability to
1182 * find the extent added.
1183 */
1184 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1185 if (ret < 0) {
1186 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1187 "at logical cluster %u",
1188 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1189 goto out;
1190 }
1191
1192 BUG_ON(*phys == 0);
1193
1194 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1195 if (!should_zero)
1196 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1197
1198 for(i = 0; i < wc->w_num_pages; i++) {
1199 int tmpret;
1200
1201 /* This is the direct io target page. */
1202 if (wc->w_pages[i] == NULL) {
1203 p_blkno++;
1204 continue;
1205 }
1206
1207 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1208 wc->w_pages[i], cpos,
1209 user_pos, user_len,
1210 should_zero);
1211 if (tmpret) {
1212 mlog_errno(tmpret);
1213 if (ret == 0)
1214 ret = tmpret;
1215 }
1216 }
1217
1218 /*
1219 * We only have cleanup to do in case of allocating write.
1220 */
1221 if (ret && new)
1222 ocfs2_write_failure(inode, wc, user_pos, user_len);
1223
1224 out:
1225
1226 return ret;
1227 }
1228
1229 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1230 struct ocfs2_alloc_context *data_ac,
1231 struct ocfs2_alloc_context *meta_ac,
1232 struct ocfs2_write_ctxt *wc,
1233 loff_t pos, unsigned len)
1234 {
1235 int ret, i;
1236 loff_t cluster_off;
1237 unsigned int local_len = len;
1238 struct ocfs2_write_cluster_desc *desc;
1239 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1240
1241 for (i = 0; i < wc->w_clen; i++) {
1242 desc = &wc->w_desc[i];
1243
1244 /*
1245 * We have to make sure that the total write passed in
1246 * doesn't extend past a single cluster.
1247 */
1248 local_len = len;
1249 cluster_off = pos & (osb->s_clustersize - 1);
1250 if ((cluster_off + local_len) > osb->s_clustersize)
1251 local_len = osb->s_clustersize - cluster_off;
1252
1253 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1254 desc->c_new,
1255 desc->c_clear_unwritten,
1256 desc->c_needs_zero,
1257 data_ac, meta_ac,
1258 wc, desc->c_cpos, pos, local_len);
1259 if (ret) {
1260 mlog_errno(ret);
1261 goto out;
1262 }
1263
1264 len -= local_len;
1265 pos += local_len;
1266 }
1267
1268 ret = 0;
1269 out:
1270 return ret;
1271 }
1272
1273 /*
1274 * ocfs2_write_end() wants to know which parts of the target page it
1275 * should complete the write on. It's easiest to compute them ahead of
1276 * time when a more complete view of the write is available.
1277 */
1278 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1279 struct ocfs2_write_ctxt *wc,
1280 loff_t pos, unsigned len, int alloc)
1281 {
1282 struct ocfs2_write_cluster_desc *desc;
1283
1284 wc->w_target_from = pos & (PAGE_SIZE - 1);
1285 wc->w_target_to = wc->w_target_from + len;
1286
1287 if (alloc == 0)
1288 return;
1289
1290 /*
1291 * Allocating write - we may have different boundaries based
1292 * on page size and cluster size.
1293 *
1294 * NOTE: We can no longer compute one value from the other as
1295 * the actual write length and user provided length may be
1296 * different.
1297 */
1298
1299 if (wc->w_large_pages) {
1300 /*
1301 * We only care about the 1st and last cluster within
1302 * our range and whether they should be zero'd or not. Either
1303 * value may be extended out to the start/end of a
1304 * newly allocated cluster.
1305 */
1306 desc = &wc->w_desc[0];
1307 if (desc->c_needs_zero)
1308 ocfs2_figure_cluster_boundaries(osb,
1309 desc->c_cpos,
1310 &wc->w_target_from,
1311 NULL);
1312
1313 desc = &wc->w_desc[wc->w_clen - 1];
1314 if (desc->c_needs_zero)
1315 ocfs2_figure_cluster_boundaries(osb,
1316 desc->c_cpos,
1317 NULL,
1318 &wc->w_target_to);
1319 } else {
1320 wc->w_target_from = 0;
1321 wc->w_target_to = PAGE_SIZE;
1322 }
1323 }
1324
1325 /*
1326 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1327 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1328 * by the direct io procedure.
1329 * If this is a new extent that allocated by direct io, we should mark it in
1330 * the ip_unwritten_list.
1331 */
1332 static int ocfs2_unwritten_check(struct inode *inode,
1333 struct ocfs2_write_ctxt *wc,
1334 struct ocfs2_write_cluster_desc *desc)
1335 {
1336 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1337 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1338 int ret = 0;
1339
1340 if (!desc->c_needs_zero)
1341 return 0;
1342
1343 retry:
1344 spin_lock(&oi->ip_lock);
1345 /* Needs not to zero no metter buffer or direct. The one who is zero
1346 * the cluster is doing zero. And he will clear unwritten after all
1347 * cluster io finished. */
1348 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1349 if (desc->c_cpos == ue->ue_cpos) {
1350 BUG_ON(desc->c_new);
1351 desc->c_needs_zero = 0;
1352 desc->c_clear_unwritten = 0;
1353 goto unlock;
1354 }
1355 }
1356
1357 if (wc->w_type != OCFS2_WRITE_DIRECT)
1358 goto unlock;
1359
1360 if (new == NULL) {
1361 spin_unlock(&oi->ip_lock);
1362 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1363 GFP_NOFS);
1364 if (new == NULL) {
1365 ret = -ENOMEM;
1366 goto out;
1367 }
1368 goto retry;
1369 }
1370 /* This direct write will doing zero. */
1371 new->ue_cpos = desc->c_cpos;
1372 new->ue_phys = desc->c_phys;
1373 desc->c_clear_unwritten = 0;
1374 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1375 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1376 new = NULL;
1377 unlock:
1378 spin_unlock(&oi->ip_lock);
1379 out:
1380 if (new)
1381 kfree(new);
1382 return ret;
1383 }
1384
1385 /*
1386 * Populate each single-cluster write descriptor in the write context
1387 * with information about the i/o to be done.
1388 *
1389 * Returns the number of clusters that will have to be allocated, as
1390 * well as a worst case estimate of the number of extent records that
1391 * would have to be created during a write to an unwritten region.
1392 */
1393 static int ocfs2_populate_write_desc(struct inode *inode,
1394 struct ocfs2_write_ctxt *wc,
1395 unsigned int *clusters_to_alloc,
1396 unsigned int *extents_to_split)
1397 {
1398 int ret;
1399 struct ocfs2_write_cluster_desc *desc;
1400 unsigned int num_clusters = 0;
1401 unsigned int ext_flags = 0;
1402 u32 phys = 0;
1403 int i;
1404
1405 *clusters_to_alloc = 0;
1406 *extents_to_split = 0;
1407
1408 for (i = 0; i < wc->w_clen; i++) {
1409 desc = &wc->w_desc[i];
1410 desc->c_cpos = wc->w_cpos + i;
1411
1412 if (num_clusters == 0) {
1413 /*
1414 * Need to look up the next extent record.
1415 */
1416 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1417 &num_clusters, &ext_flags);
1418 if (ret) {
1419 mlog_errno(ret);
1420 goto out;
1421 }
1422
1423 /* We should already CoW the refcountd extent. */
1424 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1425
1426 /*
1427 * Assume worst case - that we're writing in
1428 * the middle of the extent.
1429 *
1430 * We can assume that the write proceeds from
1431 * left to right, in which case the extent
1432 * insert code is smart enough to coalesce the
1433 * next splits into the previous records created.
1434 */
1435 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1436 *extents_to_split = *extents_to_split + 2;
1437 } else if (phys) {
1438 /*
1439 * Only increment phys if it doesn't describe
1440 * a hole.
1441 */
1442 phys++;
1443 }
1444
1445 /*
1446 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1447 * file that got extended. w_first_new_cpos tells us
1448 * where the newly allocated clusters are so we can
1449 * zero them.
1450 */
1451 if (desc->c_cpos >= wc->w_first_new_cpos) {
1452 BUG_ON(phys == 0);
1453 desc->c_needs_zero = 1;
1454 }
1455
1456 desc->c_phys = phys;
1457 if (phys == 0) {
1458 desc->c_new = 1;
1459 desc->c_needs_zero = 1;
1460 desc->c_clear_unwritten = 1;
1461 *clusters_to_alloc = *clusters_to_alloc + 1;
1462 }
1463
1464 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1465 desc->c_clear_unwritten = 1;
1466 desc->c_needs_zero = 1;
1467 }
1468
1469 ret = ocfs2_unwritten_check(inode, wc, desc);
1470 if (ret) {
1471 mlog_errno(ret);
1472 goto out;
1473 }
1474
1475 num_clusters--;
1476 }
1477
1478 ret = 0;
1479 out:
1480 return ret;
1481 }
1482
1483 static int ocfs2_write_begin_inline(struct address_space *mapping,
1484 struct inode *inode,
1485 struct ocfs2_write_ctxt *wc)
1486 {
1487 int ret;
1488 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1489 struct page *page;
1490 handle_t *handle;
1491 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1492
1493 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1496 mlog_errno(ret);
1497 goto out;
1498 }
1499
1500 page = find_or_create_page(mapping, 0, GFP_NOFS);
1501 if (!page) {
1502 ocfs2_commit_trans(osb, handle);
1503 ret = -ENOMEM;
1504 mlog_errno(ret);
1505 goto out;
1506 }
1507 /*
1508 * If we don't set w_num_pages then this page won't get unlocked
1509 * and freed on cleanup of the write context.
1510 */
1511 wc->w_pages[0] = wc->w_target_page = page;
1512 wc->w_num_pages = 1;
1513
1514 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1515 OCFS2_JOURNAL_ACCESS_WRITE);
1516 if (ret) {
1517 ocfs2_commit_trans(osb, handle);
1518
1519 mlog_errno(ret);
1520 goto out;
1521 }
1522
1523 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524 ocfs2_set_inode_data_inline(inode, di);
1525
1526 if (!PageUptodate(page)) {
1527 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528 if (ret) {
1529 ocfs2_commit_trans(osb, handle);
1530
1531 goto out;
1532 }
1533 }
1534
1535 wc->w_handle = handle;
1536 out:
1537 return ret;
1538 }
1539
1540 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541 {
1542 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543
1544 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1545 return 1;
1546 return 0;
1547 }
1548
1549 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550 struct inode *inode, loff_t pos,
1551 unsigned len, struct page *mmap_page,
1552 struct ocfs2_write_ctxt *wc)
1553 {
1554 int ret, written = 0;
1555 loff_t end = pos + len;
1556 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557 struct ocfs2_dinode *di = NULL;
1558
1559 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1560 len, (unsigned long long)pos,
1561 oi->ip_dyn_features);
1562
1563 /*
1564 * Handle inodes which already have inline data 1st.
1565 */
1566 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1567 if (mmap_page == NULL &&
1568 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1569 goto do_inline_write;
1570
1571 /*
1572 * The write won't fit - we have to give this inode an
1573 * inline extent list now.
1574 */
1575 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1576 if (ret)
1577 mlog_errno(ret);
1578 goto out;
1579 }
1580
1581 /*
1582 * Check whether the inode can accept inline data.
1583 */
1584 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1585 return 0;
1586
1587 /*
1588 * Check whether the write can fit.
1589 */
1590 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1591 if (mmap_page ||
1592 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1593 return 0;
1594
1595 do_inline_write:
1596 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1597 if (ret) {
1598 mlog_errno(ret);
1599 goto out;
1600 }
1601
1602 /*
1603 * This signals to the caller that the data can be written
1604 * inline.
1605 */
1606 written = 1;
1607 out:
1608 return written ? written : ret;
1609 }
1610
1611 /*
1612 * This function only does anything for file systems which can't
1613 * handle sparse files.
1614 *
1615 * What we want to do here is fill in any hole between the current end
1616 * of allocation and the end of our write. That way the rest of the
1617 * write path can treat it as an non-allocating write, which has no
1618 * special case code for sparse/nonsparse files.
1619 */
1620 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1621 struct buffer_head *di_bh,
1622 loff_t pos, unsigned len,
1623 struct ocfs2_write_ctxt *wc)
1624 {
1625 int ret;
1626 loff_t newsize = pos + len;
1627
1628 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1629
1630 if (newsize <= i_size_read(inode))
1631 return 0;
1632
1633 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1634 if (ret)
1635 mlog_errno(ret);
1636
1637 /* There is no wc if this is call from direct. */
1638 if (wc)
1639 wc->w_first_new_cpos =
1640 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1641
1642 return ret;
1643 }
1644
1645 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1646 loff_t pos)
1647 {
1648 int ret = 0;
1649
1650 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1651 if (pos > i_size_read(inode))
1652 ret = ocfs2_zero_extend(inode, di_bh, pos);
1653
1654 return ret;
1655 }
1656
1657 int ocfs2_write_begin_nolock(struct address_space *mapping,
1658 loff_t pos, unsigned len, ocfs2_write_type_t type,
1659 struct page **pagep, void **fsdata,
1660 struct buffer_head *di_bh, struct page *mmap_page)
1661 {
1662 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1663 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1664 struct ocfs2_write_ctxt *wc;
1665 struct inode *inode = mapping->host;
1666 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1667 struct ocfs2_dinode *di;
1668 struct ocfs2_alloc_context *data_ac = NULL;
1669 struct ocfs2_alloc_context *meta_ac = NULL;
1670 handle_t *handle;
1671 struct ocfs2_extent_tree et;
1672 int try_free = 1, ret1;
1673
1674 try_again:
1675 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1676 if (ret) {
1677 mlog_errno(ret);
1678 return ret;
1679 }
1680
1681 if (ocfs2_supports_inline_data(osb)) {
1682 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1683 mmap_page, wc);
1684 if (ret == 1) {
1685 ret = 0;
1686 goto success;
1687 }
1688 if (ret < 0) {
1689 mlog_errno(ret);
1690 goto out;
1691 }
1692 }
1693
1694 /* Direct io change i_size late, should not zero tail here. */
1695 if (type != OCFS2_WRITE_DIRECT) {
1696 if (ocfs2_sparse_alloc(osb))
1697 ret = ocfs2_zero_tail(inode, di_bh, pos);
1698 else
1699 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1700 len, wc);
1701 if (ret) {
1702 mlog_errno(ret);
1703 goto out;
1704 }
1705 }
1706
1707 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1708 if (ret < 0) {
1709 mlog_errno(ret);
1710 goto out;
1711 } else if (ret == 1) {
1712 clusters_need = wc->w_clen;
1713 ret = ocfs2_refcount_cow(inode, di_bh,
1714 wc->w_cpos, wc->w_clen, UINT_MAX);
1715 if (ret) {
1716 mlog_errno(ret);
1717 goto out;
1718 }
1719 }
1720
1721 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1722 &extents_to_split);
1723 if (ret) {
1724 mlog_errno(ret);
1725 goto out;
1726 }
1727 clusters_need += clusters_to_alloc;
1728
1729 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1730
1731 trace_ocfs2_write_begin_nolock(
1732 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1733 (long long)i_size_read(inode),
1734 le32_to_cpu(di->i_clusters),
1735 pos, len, type, mmap_page,
1736 clusters_to_alloc, extents_to_split);
1737
1738 /*
1739 * We set w_target_from, w_target_to here so that
1740 * ocfs2_write_end() knows which range in the target page to
1741 * write out. An allocation requires that we write the entire
1742 * cluster range.
1743 */
1744 if (clusters_to_alloc || extents_to_split) {
1745 /*
1746 * XXX: We are stretching the limits of
1747 * ocfs2_lock_allocators(). It greatly over-estimates
1748 * the work to be done.
1749 */
1750 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1751 wc->w_di_bh);
1752 ret = ocfs2_lock_allocators(inode, &et,
1753 clusters_to_alloc, extents_to_split,
1754 &data_ac, &meta_ac);
1755 if (ret) {
1756 mlog_errno(ret);
1757 goto out;
1758 }
1759
1760 if (data_ac)
1761 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1762
1763 credits = ocfs2_calc_extend_credits(inode->i_sb,
1764 &di->id2.i_list);
1765 } else if (type == OCFS2_WRITE_DIRECT)
1766 /* direct write needs not to start trans if no extents alloc. */
1767 goto success;
1768
1769 /*
1770 * We have to zero sparse allocated clusters, unwritten extent clusters,
1771 * and non-sparse clusters we just extended. For non-sparse writes,
1772 * we know zeros will only be needed in the first and/or last cluster.
1773 */
1774 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1775 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1776 cluster_of_pages = 1;
1777 else
1778 cluster_of_pages = 0;
1779
1780 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1781
1782 handle = ocfs2_start_trans(osb, credits);
1783 if (IS_ERR(handle)) {
1784 ret = PTR_ERR(handle);
1785 mlog_errno(ret);
1786 goto out;
1787 }
1788
1789 wc->w_handle = handle;
1790
1791 if (clusters_to_alloc) {
1792 ret = dquot_alloc_space_nodirty(inode,
1793 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1794 if (ret)
1795 goto out_commit;
1796 }
1797
1798 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1799 OCFS2_JOURNAL_ACCESS_WRITE);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out_quota;
1803 }
1804
1805 /*
1806 * Fill our page array first. That way we've grabbed enough so
1807 * that we can zero and flush if we error after adding the
1808 * extent.
1809 */
1810 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1811 cluster_of_pages, mmap_page);
1812 if (ret && ret != -EAGAIN) {
1813 mlog_errno(ret);
1814 goto out_quota;
1815 }
1816
1817 /*
1818 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1819 * the target page. In this case, we exit with no error and no target
1820 * page. This will trigger the caller, page_mkwrite(), to re-try
1821 * the operation.
1822 */
1823 if (ret == -EAGAIN) {
1824 BUG_ON(wc->w_target_page);
1825 ret = 0;
1826 goto out_quota;
1827 }
1828
1829 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1830 len);
1831 if (ret) {
1832 mlog_errno(ret);
1833 goto out_quota;
1834 }
1835
1836 if (data_ac)
1837 ocfs2_free_alloc_context(data_ac);
1838 if (meta_ac)
1839 ocfs2_free_alloc_context(meta_ac);
1840
1841 success:
1842 if (pagep)
1843 *pagep = wc->w_target_page;
1844 *fsdata = wc;
1845 return 0;
1846 out_quota:
1847 if (clusters_to_alloc)
1848 dquot_free_space(inode,
1849 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1850 out_commit:
1851 ocfs2_commit_trans(osb, handle);
1852
1853 out:
1854 /*
1855 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1856 * even in case of error here like ENOSPC and ENOMEM. So, we need
1857 * to unlock the target page manually to prevent deadlocks when
1858 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1859 * to VM code.
1860 */
1861 if (wc->w_target_locked)
1862 unlock_page(mmap_page);
1863
1864 ocfs2_free_write_ctxt(inode, wc);
1865
1866 if (data_ac) {
1867 ocfs2_free_alloc_context(data_ac);
1868 data_ac = NULL;
1869 }
1870 if (meta_ac) {
1871 ocfs2_free_alloc_context(meta_ac);
1872 meta_ac = NULL;
1873 }
1874
1875 if (ret == -ENOSPC && try_free) {
1876 /*
1877 * Try to free some truncate log so that we can have enough
1878 * clusters to allocate.
1879 */
1880 try_free = 0;
1881
1882 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1883 if (ret1 == 1)
1884 goto try_again;
1885
1886 if (ret1 < 0)
1887 mlog_errno(ret1);
1888 }
1889
1890 return ret;
1891 }
1892
1893 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1894 loff_t pos, unsigned len, unsigned flags,
1895 struct page **pagep, void **fsdata)
1896 {
1897 int ret;
1898 struct buffer_head *di_bh = NULL;
1899 struct inode *inode = mapping->host;
1900
1901 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1902 if (ret) {
1903 mlog_errno(ret);
1904 return ret;
1905 }
1906
1907 /*
1908 * Take alloc sem here to prevent concurrent lookups. That way
1909 * the mapping, zeroing and tree manipulation within
1910 * ocfs2_write() will be safe against ->readpage(). This
1911 * should also serve to lock out allocation from a shared
1912 * writeable region.
1913 */
1914 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1915
1916 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1917 pagep, fsdata, di_bh, NULL);
1918 if (ret) {
1919 mlog_errno(ret);
1920 goto out_fail;
1921 }
1922
1923 brelse(di_bh);
1924
1925 return 0;
1926
1927 out_fail:
1928 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1929
1930 brelse(di_bh);
1931 ocfs2_inode_unlock(inode, 1);
1932
1933 return ret;
1934 }
1935
1936 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1937 unsigned len, unsigned *copied,
1938 struct ocfs2_dinode *di,
1939 struct ocfs2_write_ctxt *wc)
1940 {
1941 void *kaddr;
1942
1943 if (unlikely(*copied < len)) {
1944 if (!PageUptodate(wc->w_target_page)) {
1945 *copied = 0;
1946 return;
1947 }
1948 }
1949
1950 kaddr = kmap_atomic(wc->w_target_page);
1951 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1952 kunmap_atomic(kaddr);
1953
1954 trace_ocfs2_write_end_inline(
1955 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1956 (unsigned long long)pos, *copied,
1957 le16_to_cpu(di->id2.i_data.id_count),
1958 le16_to_cpu(di->i_dyn_features));
1959 }
1960
1961 int ocfs2_write_end_nolock(struct address_space *mapping,
1962 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1963 {
1964 int i, ret;
1965 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1966 struct inode *inode = mapping->host;
1967 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1968 struct ocfs2_write_ctxt *wc = fsdata;
1969 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1970 handle_t *handle = wc->w_handle;
1971 struct page *tmppage;
1972
1973 BUG_ON(!list_empty(&wc->w_unwritten_list));
1974
1975 if (handle) {
1976 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1977 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1978 if (ret) {
1979 copied = ret;
1980 mlog_errno(ret);
1981 goto out;
1982 }
1983 }
1984
1985 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1986 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1987 goto out_write_size;
1988 }
1989
1990 if (unlikely(copied < len) && wc->w_target_page) {
1991 if (!PageUptodate(wc->w_target_page))
1992 copied = 0;
1993
1994 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1995 start+len);
1996 }
1997 if (wc->w_target_page)
1998 flush_dcache_page(wc->w_target_page);
1999
2000 for(i = 0; i < wc->w_num_pages; i++) {
2001 tmppage = wc->w_pages[i];
2002
2003 /* This is the direct io target page. */
2004 if (tmppage == NULL)
2005 continue;
2006
2007 if (tmppage == wc->w_target_page) {
2008 from = wc->w_target_from;
2009 to = wc->w_target_to;
2010
2011 BUG_ON(from > PAGE_SIZE ||
2012 to > PAGE_SIZE ||
2013 to < from);
2014 } else {
2015 /*
2016 * Pages adjacent to the target (if any) imply
2017 * a hole-filling write in which case we want
2018 * to flush their entire range.
2019 */
2020 from = 0;
2021 to = PAGE_SIZE;
2022 }
2023
2024 if (page_has_buffers(tmppage)) {
2025 if (handle && ocfs2_should_order_data(inode))
2026 ocfs2_jbd2_file_inode(handle, inode);
2027 block_commit_write(tmppage, from, to);
2028 }
2029 }
2030
2031 out_write_size:
2032 /* Direct io do not update i_size here. */
2033 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2034 pos += copied;
2035 if (pos > i_size_read(inode)) {
2036 i_size_write(inode, pos);
2037 mark_inode_dirty(inode);
2038 }
2039 inode->i_blocks = ocfs2_inode_sector_count(inode);
2040 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2041 inode->i_mtime = inode->i_ctime = current_time(inode);
2042 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2043 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2044 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045 }
2046 if (handle)
2047 ocfs2_journal_dirty(handle, wc->w_di_bh);
2048
2049 out:
2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 * lock, or it will cause a deadlock since journal commit threads holds
2052 * this lock and will ask for the page lock when flushing the data.
2053 * put it here to preserve the unlock order.
2054 */
2055 ocfs2_unlock_pages(wc);
2056
2057 if (handle)
2058 ocfs2_commit_trans(osb, handle);
2059
2060 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062 brelse(wc->w_di_bh);
2063 kfree(wc);
2064
2065 return copied;
2066 }
2067
2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069 loff_t pos, unsigned len, unsigned copied,
2070 struct page *page, void *fsdata)
2071 {
2072 int ret;
2073 struct inode *inode = mapping->host;
2074
2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076
2077 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078 ocfs2_inode_unlock(inode, 1);
2079
2080 return ret;
2081 }
2082
2083 struct ocfs2_dio_write_ctxt {
2084 struct list_head dw_zero_list;
2085 unsigned dw_zero_count;
2086 int dw_orphaned;
2087 pid_t dw_writer_pid;
2088 };
2089
2090 static struct ocfs2_dio_write_ctxt *
2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092 {
2093 struct ocfs2_dio_write_ctxt *dwc = NULL;
2094
2095 if (bh->b_private)
2096 return bh->b_private;
2097
2098 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099 if (dwc == NULL)
2100 return NULL;
2101 INIT_LIST_HEAD(&dwc->dw_zero_list);
2102 dwc->dw_zero_count = 0;
2103 dwc->dw_orphaned = 0;
2104 dwc->dw_writer_pid = task_pid_nr(current);
2105 bh->b_private = dwc;
2106 *alloc = 1;
2107
2108 return dwc;
2109 }
2110
2111 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112 struct ocfs2_dio_write_ctxt *dwc)
2113 {
2114 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115 kfree(dwc);
2116 }
2117
2118 /*
2119 * TODO: Make this into a generic get_blocks function.
2120 *
2121 * From do_direct_io in direct-io.c:
2122 * "So what we do is to permit the ->get_blocks function to populate
2123 * bh.b_size with the size of IO which is permitted at this offset and
2124 * this i_blkbits."
2125 *
2126 * This function is called directly from get_more_blocks in direct-io.c.
2127 *
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 * fs_count, map_bh, dio->rw == WRITE);
2130 */
2131 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2132 struct buffer_head *bh_result, int create)
2133 {
2134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136 struct ocfs2_write_ctxt *wc;
2137 struct ocfs2_write_cluster_desc *desc = NULL;
2138 struct ocfs2_dio_write_ctxt *dwc = NULL;
2139 struct buffer_head *di_bh = NULL;
2140 u64 p_blkno;
2141 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2142 unsigned len, total_len = bh_result->b_size;
2143 int ret = 0, first_get_block = 0;
2144
2145 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146 len = min(total_len, len);
2147
2148 mlog(0, "get block of %lu at %llu:%u req %u\n",
2149 inode->i_ino, pos, len, total_len);
2150
2151 /*
2152 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2153 * we may need to add it to orphan dir. So can not fall to fast path
2154 * while file size will be changed.
2155 */
2156 if (pos + total_len <= i_size_read(inode)) {
2157 down_read(&oi->ip_alloc_sem);
2158 /* This is the fast path for re-write. */
2159 ret = ocfs2_get_block(inode, iblock, bh_result, create);
2160
2161 up_read(&oi->ip_alloc_sem);
2162
2163 if (buffer_mapped(bh_result) &&
2164 !buffer_new(bh_result) &&
2165 ret == 0)
2166 goto out;
2167
2168 /* Clear state set by ocfs2_get_block. */
2169 bh_result->b_state = 0;
2170 }
2171
2172 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2173 if (unlikely(dwc == NULL)) {
2174 ret = -ENOMEM;
2175 mlog_errno(ret);
2176 goto out;
2177 }
2178
2179 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2180 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2181 !dwc->dw_orphaned) {
2182 /*
2183 * when we are going to alloc extents beyond file size, add the
2184 * inode to orphan dir, so we can recall those spaces when
2185 * system crashed during write.
2186 */
2187 ret = ocfs2_add_inode_to_orphan(osb, inode);
2188 if (ret < 0) {
2189 mlog_errno(ret);
2190 goto out;
2191 }
2192 dwc->dw_orphaned = 1;
2193 }
2194
2195 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2196 if (ret) {
2197 mlog_errno(ret);
2198 goto out;
2199 }
2200
2201 down_write(&oi->ip_alloc_sem);
2202
2203 if (first_get_block) {
2204 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2205 ret = ocfs2_zero_tail(inode, di_bh, pos);
2206 else
2207 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2208 total_len, NULL);
2209 if (ret < 0) {
2210 mlog_errno(ret);
2211 goto unlock;
2212 }
2213 }
2214
2215 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2216 OCFS2_WRITE_DIRECT, NULL,
2217 (void **)&wc, di_bh, NULL);
2218 if (ret) {
2219 mlog_errno(ret);
2220 goto unlock;
2221 }
2222
2223 desc = &wc->w_desc[0];
2224
2225 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2226 BUG_ON(p_blkno == 0);
2227 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2228
2229 map_bh(bh_result, inode->i_sb, p_blkno);
2230 bh_result->b_size = len;
2231 if (desc->c_needs_zero)
2232 set_buffer_new(bh_result);
2233
2234 /* May sleep in end_io. It should not happen in a irq context. So defer
2235 * it to dio work queue. */
2236 set_buffer_defer_completion(bh_result);
2237
2238 if (!list_empty(&wc->w_unwritten_list)) {
2239 struct ocfs2_unwritten_extent *ue = NULL;
2240
2241 ue = list_first_entry(&wc->w_unwritten_list,
2242 struct ocfs2_unwritten_extent,
2243 ue_node);
2244 BUG_ON(ue->ue_cpos != desc->c_cpos);
2245 /* The physical address may be 0, fill it. */
2246 ue->ue_phys = desc->c_phys;
2247
2248 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2249 dwc->dw_zero_count++;
2250 }
2251
2252 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2253 BUG_ON(ret != len);
2254 ret = 0;
2255 unlock:
2256 up_write(&oi->ip_alloc_sem);
2257 ocfs2_inode_unlock(inode, 1);
2258 brelse(di_bh);
2259 out:
2260 if (ret < 0)
2261 ret = -EIO;
2262 return ret;
2263 }
2264
2265 static int ocfs2_dio_end_io_write(struct inode *inode,
2266 struct ocfs2_dio_write_ctxt *dwc,
2267 loff_t offset,
2268 ssize_t bytes)
2269 {
2270 struct ocfs2_cached_dealloc_ctxt dealloc;
2271 struct ocfs2_extent_tree et;
2272 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2273 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2274 struct ocfs2_unwritten_extent *ue = NULL;
2275 struct buffer_head *di_bh = NULL;
2276 struct ocfs2_dinode *di;
2277 struct ocfs2_alloc_context *data_ac = NULL;
2278 struct ocfs2_alloc_context *meta_ac = NULL;
2279 handle_t *handle = NULL;
2280 loff_t end = offset + bytes;
2281 int ret = 0, credits = 0, locked = 0;
2282
2283 ocfs2_init_dealloc_ctxt(&dealloc);
2284
2285 /* We do clear unwritten, delete orphan, change i_size here. If neither
2286 * of these happen, we can skip all this. */
2287 if (list_empty(&dwc->dw_zero_list) &&
2288 end <= i_size_read(inode) &&
2289 !dwc->dw_orphaned)
2290 goto out;
2291
2292 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2293 * are in that context. */
2294 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2295 inode_lock(inode);
2296 locked = 1;
2297 }
2298
2299 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2300 if (ret < 0) {
2301 mlog_errno(ret);
2302 goto out;
2303 }
2304
2305 down_write(&oi->ip_alloc_sem);
2306
2307 /* Delete orphan before acquire i_mutex. */
2308 if (dwc->dw_orphaned) {
2309 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2310
2311 end = end > i_size_read(inode) ? end : 0;
2312
2313 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2314 !!end, end);
2315 if (ret < 0)
2316 mlog_errno(ret);
2317 }
2318
2319 di = (struct ocfs2_dinode *)di_bh->b_data;
2320
2321 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2322
2323 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2324 &data_ac, &meta_ac);
2325 if (ret) {
2326 mlog_errno(ret);
2327 goto unlock;
2328 }
2329
2330 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2331
2332 handle = ocfs2_start_trans(osb, credits);
2333 if (IS_ERR(handle)) {
2334 ret = PTR_ERR(handle);
2335 mlog_errno(ret);
2336 goto unlock;
2337 }
2338 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2339 OCFS2_JOURNAL_ACCESS_WRITE);
2340 if (ret) {
2341 mlog_errno(ret);
2342 goto commit;
2343 }
2344
2345 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2346 ret = ocfs2_mark_extent_written(inode, &et, handle,
2347 ue->ue_cpos, 1,
2348 ue->ue_phys,
2349 meta_ac, &dealloc);
2350 if (ret < 0) {
2351 mlog_errno(ret);
2352 break;
2353 }
2354 }
2355
2356 if (end > i_size_read(inode)) {
2357 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2358 if (ret < 0)
2359 mlog_errno(ret);
2360 }
2361 commit:
2362 ocfs2_commit_trans(osb, handle);
2363 unlock:
2364 up_write(&oi->ip_alloc_sem);
2365 ocfs2_inode_unlock(inode, 1);
2366 brelse(di_bh);
2367 out:
2368 if (data_ac)
2369 ocfs2_free_alloc_context(data_ac);
2370 if (meta_ac)
2371 ocfs2_free_alloc_context(meta_ac);
2372 ocfs2_run_deallocs(osb, &dealloc);
2373 if (locked)
2374 inode_unlock(inode);
2375 ocfs2_dio_free_write_ctx(inode, dwc);
2376
2377 return ret;
2378 }
2379
2380 /*
2381 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2382 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2383 * to protect io on one node from truncation on another.
2384 */
2385 static int ocfs2_dio_end_io(struct kiocb *iocb,
2386 loff_t offset,
2387 ssize_t bytes,
2388 void *private)
2389 {
2390 struct inode *inode = file_inode(iocb->ki_filp);
2391 int level;
2392 int ret = 0;
2393
2394 /* this io's submitter should not have unlocked this before we could */
2395 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2396
2397 if (bytes > 0 && private)
2398 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2399
2400 ocfs2_iocb_clear_rw_locked(iocb);
2401
2402 level = ocfs2_iocb_rw_locked_level(iocb);
2403 ocfs2_rw_unlock(inode, level);
2404 return ret;
2405 }
2406
2407 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2408 {
2409 struct file *file = iocb->ki_filp;
2410 struct inode *inode = file->f_mapping->host;
2411 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2412 get_block_t *get_block;
2413
2414 /*
2415 * Fallback to buffered I/O if we see an inode without
2416 * extents.
2417 */
2418 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2419 return 0;
2420
2421 /* Fallback to buffered I/O if we do not support append dio. */
2422 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2423 !ocfs2_supports_append_dio(osb))
2424 return 0;
2425
2426 if (iov_iter_rw(iter) == READ)
2427 get_block = ocfs2_get_block;
2428 else
2429 get_block = ocfs2_dio_get_block;
2430
2431 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2432 iter, get_block,
2433 ocfs2_dio_end_io, NULL, 0);
2434 }
2435
2436 const struct address_space_operations ocfs2_aops = {
2437 .readpage = ocfs2_readpage,
2438 .readpages = ocfs2_readpages,
2439 .writepage = ocfs2_writepage,
2440 .write_begin = ocfs2_write_begin,
2441 .write_end = ocfs2_write_end,
2442 .bmap = ocfs2_bmap,
2443 .direct_IO = ocfs2_direct_IO,
2444 .invalidatepage = block_invalidatepage,
2445 .releasepage = ocfs2_releasepage,
2446 .migratepage = buffer_migrate_page,
2447 .is_partially_uptodate = block_is_partially_uptodate,
2448 .error_remove_page = generic_error_remove_page,
2449 };