]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ocfs2/aops.c
Merge tag 'pm+acpi-4.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58 {
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131 bail:
132 brelse(bh);
133
134 return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224 {
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343 }
344
345 /*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356 {
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432 {
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
496 bail:
497 status = err ? 0 : p_blkno;
498
499 return status;
500 }
501
502 /*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 struct buffer_head *bh_result, int create)
517 {
518 int ret;
519 u32 cpos = 0;
520 int alloc_locked = 0;
521 u64 p_blkno, inode_blocks, contig_blocks;
522 unsigned int ext_flags;
523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536 down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 &contig_blocks, &ext_flags);
542 up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
544 if (ret) {
545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 (unsigned long long)iblock);
547 ret = -EIO;
548 goto bail;
549 }
550
551 /* We should already CoW the refcounted extent in case of create. */
552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
554 /* allocate blocks if no p_blkno is found, and create == 1 */
555 if (!p_blkno && create) {
556 ret = ocfs2_inode_lock(inode, NULL, 1);
557 if (ret < 0) {
558 mlog_errno(ret);
559 goto bail;
560 }
561
562 alloc_locked = 1;
563
564 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
566 /* fill hole, allocate blocks can't be larger than the size
567 * of the hole */
568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 contig_blocks);
571 if (clusters_to_alloc > contig_clusters)
572 clusters_to_alloc = contig_clusters;
573
574 /* allocate extent and insert them into the extent tree */
575 ret = ocfs2_extend_allocation(inode, cpos,
576 clusters_to_alloc, 0);
577 if (ret < 0) {
578 up_write(&OCFS2_I(inode)->ip_alloc_sem);
579 mlog_errno(ret);
580 goto bail;
581 }
582
583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 &contig_blocks, &ext_flags);
585 if (ret < 0) {
586 up_write(&OCFS2_I(inode)->ip_alloc_sem);
587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 (unsigned long long)iblock);
589 ret = -EIO;
590 goto bail;
591 }
592 set_buffer_new(bh_result);
593 up_write(&OCFS2_I(inode)->ip_alloc_sem);
594 }
595
596 /*
597 * get_more_blocks() expects us to describe a hole by clearing
598 * the mapped bit on bh_result().
599 *
600 * Consider an unwritten extent as a hole.
601 */
602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 map_bh(bh_result, inode->i_sb, p_blkno);
604 else
605 clear_buffer_mapped(bh_result);
606
607 /* make sure we don't map more than max_blocks blocks here as
608 that's all the kernel will handle at this point. */
609 if (max_blocks < contig_blocks)
610 contig_blocks = max_blocks;
611 bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613 if (alloc_locked)
614 ocfs2_inode_unlock(inode, 1);
615 return ret;
616 }
617
618 /*
619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
621 * to protect io on one node from truncation on another.
622 */
623 static int ocfs2_dio_end_io(struct kiocb *iocb,
624 loff_t offset,
625 ssize_t bytes,
626 void *private)
627 {
628 struct inode *inode = file_inode(iocb->ki_filp);
629 int level;
630
631 if (bytes <= 0)
632 return 0;
633
634 /* this io's submitter should not have unlocked this before we could */
635 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
636
637 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
638 ocfs2_iocb_clear_unaligned_aio(iocb);
639
640 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
641 }
642
643 /* Let rw unlock to be done later to protect append direct io write */
644 if (offset + bytes <= i_size_read(inode)) {
645 ocfs2_iocb_clear_rw_locked(iocb);
646
647 level = ocfs2_iocb_rw_locked_level(iocb);
648 ocfs2_rw_unlock(inode, level);
649 }
650
651 return 0;
652 }
653
654 static int ocfs2_releasepage(struct page *page, gfp_t wait)
655 {
656 if (!page_has_buffers(page))
657 return 0;
658 return try_to_free_buffers(page);
659 }
660
661 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
662 struct inode *inode, loff_t offset)
663 {
664 int ret = 0;
665 u32 v_cpos = 0;
666 u32 p_cpos = 0;
667 unsigned int num_clusters = 0;
668 unsigned int ext_flags = 0;
669
670 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
671 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
672 &num_clusters, &ext_flags);
673 if (ret < 0) {
674 mlog_errno(ret);
675 return ret;
676 }
677
678 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
679 return 1;
680
681 return 0;
682 }
683
684 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
685 struct inode *inode, loff_t offset,
686 u64 zero_len, int cluster_align)
687 {
688 u32 p_cpos = 0;
689 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
690 unsigned int num_clusters = 0;
691 unsigned int ext_flags = 0;
692 int ret = 0;
693
694 if (offset <= i_size_read(inode) || cluster_align)
695 return 0;
696
697 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
698 &ext_flags);
699 if (ret < 0) {
700 mlog_errno(ret);
701 return ret;
702 }
703
704 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
705 u64 s = i_size_read(inode);
706 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
707 (do_div(s, osb->s_clustersize) >> 9);
708
709 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
710 zero_len >> 9, GFP_NOFS, false);
711 if (ret < 0)
712 mlog_errno(ret);
713 }
714
715 return ret;
716 }
717
718 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
719 struct inode *inode, loff_t offset)
720 {
721 u64 zero_start, zero_len, total_zero_len;
722 u32 p_cpos = 0, clusters_to_add;
723 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
724 unsigned int num_clusters = 0;
725 unsigned int ext_flags = 0;
726 u32 size_div, offset_div;
727 int ret = 0;
728
729 {
730 u64 o = offset;
731 u64 s = i_size_read(inode);
732
733 offset_div = do_div(o, osb->s_clustersize);
734 size_div = do_div(s, osb->s_clustersize);
735 }
736
737 if (offset <= i_size_read(inode))
738 return 0;
739
740 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
741 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
742 total_zero_len = offset - i_size_read(inode);
743 if (clusters_to_add)
744 total_zero_len -= offset_div;
745
746 /* Allocate clusters to fill out holes, and this is only needed
747 * when we add more than one clusters. Otherwise the cluster will
748 * be allocated during direct IO */
749 if (clusters_to_add > 1) {
750 ret = ocfs2_extend_allocation(inode,
751 OCFS2_I(inode)->ip_clusters,
752 clusters_to_add - 1, 0);
753 if (ret) {
754 mlog_errno(ret);
755 goto out;
756 }
757 }
758
759 while (total_zero_len) {
760 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
761 &ext_flags);
762 if (ret < 0) {
763 mlog_errno(ret);
764 goto out;
765 }
766
767 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
768 size_div;
769 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
770 size_div;
771 zero_len = min(total_zero_len, zero_len);
772
773 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
774 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
775 zero_start >> 9, zero_len >> 9,
776 GFP_NOFS, false);
777 if (ret < 0) {
778 mlog_errno(ret);
779 goto out;
780 }
781 }
782
783 total_zero_len -= zero_len;
784 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
785
786 /* Only at first iteration can be cluster not aligned.
787 * So set size_div to 0 for the rest */
788 size_div = 0;
789 }
790
791 out:
792 return ret;
793 }
794
795 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
796 struct iov_iter *iter,
797 loff_t offset)
798 {
799 ssize_t ret = 0;
800 ssize_t written = 0;
801 bool orphaned = false;
802 int is_overwrite = 0;
803 struct file *file = iocb->ki_filp;
804 struct inode *inode = file_inode(file)->i_mapping->host;
805 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
806 struct buffer_head *di_bh = NULL;
807 size_t count = iter->count;
808 journal_t *journal = osb->journal->j_journal;
809 u64 zero_len_head, zero_len_tail;
810 int cluster_align_head, cluster_align_tail;
811 loff_t final_size = offset + count;
812 int append_write = offset >= i_size_read(inode) ? 1 : 0;
813 unsigned int num_clusters = 0;
814 unsigned int ext_flags = 0;
815
816 {
817 u64 o = offset;
818 u64 s = i_size_read(inode);
819
820 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
821 cluster_align_head = !zero_len_head;
822
823 zero_len_tail = osb->s_clustersize -
824 do_div(s, osb->s_clustersize);
825 if ((offset - i_size_read(inode)) < zero_len_tail)
826 zero_len_tail = offset - i_size_read(inode);
827 cluster_align_tail = !zero_len_tail;
828 }
829
830 /*
831 * when final_size > inode->i_size, inode->i_size will be
832 * updated after direct write, so add the inode to orphan
833 * dir first.
834 */
835 if (final_size > i_size_read(inode)) {
836 ret = ocfs2_add_inode_to_orphan(osb, inode);
837 if (ret < 0) {
838 mlog_errno(ret);
839 goto out;
840 }
841 orphaned = true;
842 }
843
844 if (append_write) {
845 ret = ocfs2_inode_lock(inode, NULL, 1);
846 if (ret < 0) {
847 mlog_errno(ret);
848 goto clean_orphan;
849 }
850
851 /* zeroing out the previously allocated cluster tail
852 * that but not zeroed */
853 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
854 down_read(&OCFS2_I(inode)->ip_alloc_sem);
855 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
856 zero_len_tail, cluster_align_tail);
857 up_read(&OCFS2_I(inode)->ip_alloc_sem);
858 } else {
859 down_write(&OCFS2_I(inode)->ip_alloc_sem);
860 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
861 offset);
862 up_write(&OCFS2_I(inode)->ip_alloc_sem);
863 }
864 if (ret < 0) {
865 mlog_errno(ret);
866 ocfs2_inode_unlock(inode, 1);
867 goto clean_orphan;
868 }
869
870 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
871 if (is_overwrite < 0) {
872 mlog_errno(is_overwrite);
873 ret = is_overwrite;
874 ocfs2_inode_unlock(inode, 1);
875 goto clean_orphan;
876 }
877
878 ocfs2_inode_unlock(inode, 1);
879 }
880
881 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
882 offset, ocfs2_direct_IO_get_blocks,
883 ocfs2_dio_end_io, NULL, 0);
884 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
885 if ((written < 0) && (written != -EIOCBQUEUED)) {
886 loff_t i_size = i_size_read(inode);
887
888 if (offset + count > i_size) {
889 ret = ocfs2_inode_lock(inode, &di_bh, 1);
890 if (ret < 0) {
891 mlog_errno(ret);
892 goto clean_orphan;
893 }
894
895 if (i_size == i_size_read(inode)) {
896 ret = ocfs2_truncate_file(inode, di_bh,
897 i_size);
898 if (ret < 0) {
899 if (ret != -ENOSPC)
900 mlog_errno(ret);
901
902 ocfs2_inode_unlock(inode, 1);
903 brelse(di_bh);
904 di_bh = NULL;
905 goto clean_orphan;
906 }
907 }
908
909 ocfs2_inode_unlock(inode, 1);
910 brelse(di_bh);
911 di_bh = NULL;
912
913 ret = jbd2_journal_force_commit(journal);
914 if (ret < 0)
915 mlog_errno(ret);
916 }
917 } else if (written > 0 && append_write && !is_overwrite &&
918 !cluster_align_head) {
919 /* zeroing out the allocated cluster head */
920 u32 p_cpos = 0;
921 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
922
923 ret = ocfs2_inode_lock(inode, NULL, 0);
924 if (ret < 0) {
925 mlog_errno(ret);
926 goto clean_orphan;
927 }
928
929 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
930 &num_clusters, &ext_flags);
931 if (ret < 0) {
932 mlog_errno(ret);
933 ocfs2_inode_unlock(inode, 0);
934 goto clean_orphan;
935 }
936
937 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
938
939 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
940 (u64)p_cpos << (osb->s_clustersize_bits - 9),
941 zero_len_head >> 9, GFP_NOFS, false);
942 if (ret < 0)
943 mlog_errno(ret);
944
945 ocfs2_inode_unlock(inode, 0);
946 }
947
948 clean_orphan:
949 if (orphaned) {
950 int tmp_ret;
951 int update_isize = written > 0 ? 1 : 0;
952 loff_t end = update_isize ? offset + written : 0;
953
954 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
955 if (tmp_ret < 0) {
956 ret = tmp_ret;
957 mlog_errno(ret);
958 goto out;
959 }
960
961 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
962 update_isize, end);
963 if (tmp_ret < 0) {
964 ocfs2_inode_unlock(inode, 1);
965 ret = tmp_ret;
966 mlog_errno(ret);
967 brelse(di_bh);
968 goto out;
969 }
970
971 ocfs2_inode_unlock(inode, 1);
972 brelse(di_bh);
973
974 tmp_ret = jbd2_journal_force_commit(journal);
975 if (tmp_ret < 0) {
976 ret = tmp_ret;
977 mlog_errno(tmp_ret);
978 }
979 }
980
981 out:
982 if (ret >= 0)
983 ret = written;
984 return ret;
985 }
986
987 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
988 loff_t offset)
989 {
990 struct file *file = iocb->ki_filp;
991 struct inode *inode = file_inode(file)->i_mapping->host;
992 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
993 int full_coherency = !(osb->s_mount_opt &
994 OCFS2_MOUNT_COHERENCY_BUFFERED);
995
996 /*
997 * Fallback to buffered I/O if we see an inode without
998 * extents.
999 */
1000 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
1001 return 0;
1002
1003 /* Fallback to buffered I/O if we are appending and
1004 * concurrent O_DIRECT writes are allowed.
1005 */
1006 if (i_size_read(inode) <= offset && !full_coherency)
1007 return 0;
1008
1009 if (iov_iter_rw(iter) == READ)
1010 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1011 iter, offset,
1012 ocfs2_direct_IO_get_blocks,
1013 ocfs2_dio_end_io, NULL, 0);
1014 else
1015 return ocfs2_direct_IO_write(iocb, iter, offset);
1016 }
1017
1018 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1019 u32 cpos,
1020 unsigned int *start,
1021 unsigned int *end)
1022 {
1023 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1024
1025 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1026 unsigned int cpp;
1027
1028 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1029
1030 cluster_start = cpos % cpp;
1031 cluster_start = cluster_start << osb->s_clustersize_bits;
1032
1033 cluster_end = cluster_start + osb->s_clustersize;
1034 }
1035
1036 BUG_ON(cluster_start > PAGE_SIZE);
1037 BUG_ON(cluster_end > PAGE_SIZE);
1038
1039 if (start)
1040 *start = cluster_start;
1041 if (end)
1042 *end = cluster_end;
1043 }
1044
1045 /*
1046 * 'from' and 'to' are the region in the page to avoid zeroing.
1047 *
1048 * If pagesize > clustersize, this function will avoid zeroing outside
1049 * of the cluster boundary.
1050 *
1051 * from == to == 0 is code for "zero the entire cluster region"
1052 */
1053 static void ocfs2_clear_page_regions(struct page *page,
1054 struct ocfs2_super *osb, u32 cpos,
1055 unsigned from, unsigned to)
1056 {
1057 void *kaddr;
1058 unsigned int cluster_start, cluster_end;
1059
1060 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1061
1062 kaddr = kmap_atomic(page);
1063
1064 if (from || to) {
1065 if (from > cluster_start)
1066 memset(kaddr + cluster_start, 0, from - cluster_start);
1067 if (to < cluster_end)
1068 memset(kaddr + to, 0, cluster_end - to);
1069 } else {
1070 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1071 }
1072
1073 kunmap_atomic(kaddr);
1074 }
1075
1076 /*
1077 * Nonsparse file systems fully allocate before we get to the write
1078 * code. This prevents ocfs2_write() from tagging the write as an
1079 * allocating one, which means ocfs2_map_page_blocks() might try to
1080 * read-in the blocks at the tail of our file. Avoid reading them by
1081 * testing i_size against each block offset.
1082 */
1083 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1084 unsigned int block_start)
1085 {
1086 u64 offset = page_offset(page) + block_start;
1087
1088 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1089 return 1;
1090
1091 if (i_size_read(inode) > offset)
1092 return 1;
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * Some of this taken from __block_write_begin(). We already have our
1099 * mapping by now though, and the entire write will be allocating or
1100 * it won't, so not much need to use BH_New.
1101 *
1102 * This will also skip zeroing, which is handled externally.
1103 */
1104 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1105 struct inode *inode, unsigned int from,
1106 unsigned int to, int new)
1107 {
1108 int ret = 0;
1109 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1110 unsigned int block_end, block_start;
1111 unsigned int bsize = 1 << inode->i_blkbits;
1112
1113 if (!page_has_buffers(page))
1114 create_empty_buffers(page, bsize, 0);
1115
1116 head = page_buffers(page);
1117 for (bh = head, block_start = 0; bh != head || !block_start;
1118 bh = bh->b_this_page, block_start += bsize) {
1119 block_end = block_start + bsize;
1120
1121 clear_buffer_new(bh);
1122
1123 /*
1124 * Ignore blocks outside of our i/o range -
1125 * they may belong to unallocated clusters.
1126 */
1127 if (block_start >= to || block_end <= from) {
1128 if (PageUptodate(page))
1129 set_buffer_uptodate(bh);
1130 continue;
1131 }
1132
1133 /*
1134 * For an allocating write with cluster size >= page
1135 * size, we always write the entire page.
1136 */
1137 if (new)
1138 set_buffer_new(bh);
1139
1140 if (!buffer_mapped(bh)) {
1141 map_bh(bh, inode->i_sb, *p_blkno);
1142 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1143 }
1144
1145 if (PageUptodate(page)) {
1146 if (!buffer_uptodate(bh))
1147 set_buffer_uptodate(bh);
1148 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1149 !buffer_new(bh) &&
1150 ocfs2_should_read_blk(inode, page, block_start) &&
1151 (block_start < from || block_end > to)) {
1152 ll_rw_block(READ, 1, &bh);
1153 *wait_bh++=bh;
1154 }
1155
1156 *p_blkno = *p_blkno + 1;
1157 }
1158
1159 /*
1160 * If we issued read requests - let them complete.
1161 */
1162 while(wait_bh > wait) {
1163 wait_on_buffer(*--wait_bh);
1164 if (!buffer_uptodate(*wait_bh))
1165 ret = -EIO;
1166 }
1167
1168 if (ret == 0 || !new)
1169 return ret;
1170
1171 /*
1172 * If we get -EIO above, zero out any newly allocated blocks
1173 * to avoid exposing stale data.
1174 */
1175 bh = head;
1176 block_start = 0;
1177 do {
1178 block_end = block_start + bsize;
1179 if (block_end <= from)
1180 goto next_bh;
1181 if (block_start >= to)
1182 break;
1183
1184 zero_user(page, block_start, bh->b_size);
1185 set_buffer_uptodate(bh);
1186 mark_buffer_dirty(bh);
1187
1188 next_bh:
1189 block_start = block_end;
1190 bh = bh->b_this_page;
1191 } while (bh != head);
1192
1193 return ret;
1194 }
1195
1196 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1197 #define OCFS2_MAX_CTXT_PAGES 1
1198 #else
1199 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1200 #endif
1201
1202 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1203
1204 /*
1205 * Describe the state of a single cluster to be written to.
1206 */
1207 struct ocfs2_write_cluster_desc {
1208 u32 c_cpos;
1209 u32 c_phys;
1210 /*
1211 * Give this a unique field because c_phys eventually gets
1212 * filled.
1213 */
1214 unsigned c_new;
1215 unsigned c_unwritten;
1216 unsigned c_needs_zero;
1217 };
1218
1219 struct ocfs2_write_ctxt {
1220 /* Logical cluster position / len of write */
1221 u32 w_cpos;
1222 u32 w_clen;
1223
1224 /* First cluster allocated in a nonsparse extend */
1225 u32 w_first_new_cpos;
1226
1227 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1228
1229 /*
1230 * This is true if page_size > cluster_size.
1231 *
1232 * It triggers a set of special cases during write which might
1233 * have to deal with allocating writes to partial pages.
1234 */
1235 unsigned int w_large_pages;
1236
1237 /*
1238 * Pages involved in this write.
1239 *
1240 * w_target_page is the page being written to by the user.
1241 *
1242 * w_pages is an array of pages which always contains
1243 * w_target_page, and in the case of an allocating write with
1244 * page_size < cluster size, it will contain zero'd and mapped
1245 * pages adjacent to w_target_page which need to be written
1246 * out in so that future reads from that region will get
1247 * zero's.
1248 */
1249 unsigned int w_num_pages;
1250 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1251 struct page *w_target_page;
1252
1253 /*
1254 * w_target_locked is used for page_mkwrite path indicating no unlocking
1255 * against w_target_page in ocfs2_write_end_nolock.
1256 */
1257 unsigned int w_target_locked:1;
1258
1259 /*
1260 * ocfs2_write_end() uses this to know what the real range to
1261 * write in the target should be.
1262 */
1263 unsigned int w_target_from;
1264 unsigned int w_target_to;
1265
1266 /*
1267 * We could use journal_current_handle() but this is cleaner,
1268 * IMHO -Mark
1269 */
1270 handle_t *w_handle;
1271
1272 struct buffer_head *w_di_bh;
1273
1274 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1275 };
1276
1277 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1278 {
1279 int i;
1280
1281 for(i = 0; i < num_pages; i++) {
1282 if (pages[i]) {
1283 unlock_page(pages[i]);
1284 mark_page_accessed(pages[i]);
1285 page_cache_release(pages[i]);
1286 }
1287 }
1288 }
1289
1290 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1291 {
1292 int i;
1293
1294 /*
1295 * w_target_locked is only set to true in the page_mkwrite() case.
1296 * The intent is to allow us to lock the target page from write_begin()
1297 * to write_end(). The caller must hold a ref on w_target_page.
1298 */
1299 if (wc->w_target_locked) {
1300 BUG_ON(!wc->w_target_page);
1301 for (i = 0; i < wc->w_num_pages; i++) {
1302 if (wc->w_target_page == wc->w_pages[i]) {
1303 wc->w_pages[i] = NULL;
1304 break;
1305 }
1306 }
1307 mark_page_accessed(wc->w_target_page);
1308 page_cache_release(wc->w_target_page);
1309 }
1310 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1311 }
1312
1313 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1314 {
1315 ocfs2_unlock_pages(wc);
1316 brelse(wc->w_di_bh);
1317 kfree(wc);
1318 }
1319
1320 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1321 struct ocfs2_super *osb, loff_t pos,
1322 unsigned len, struct buffer_head *di_bh)
1323 {
1324 u32 cend;
1325 struct ocfs2_write_ctxt *wc;
1326
1327 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1328 if (!wc)
1329 return -ENOMEM;
1330
1331 wc->w_cpos = pos >> osb->s_clustersize_bits;
1332 wc->w_first_new_cpos = UINT_MAX;
1333 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1334 wc->w_clen = cend - wc->w_cpos + 1;
1335 get_bh(di_bh);
1336 wc->w_di_bh = di_bh;
1337
1338 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1339 wc->w_large_pages = 1;
1340 else
1341 wc->w_large_pages = 0;
1342
1343 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1344
1345 *wcp = wc;
1346
1347 return 0;
1348 }
1349
1350 /*
1351 * If a page has any new buffers, zero them out here, and mark them uptodate
1352 * and dirty so they'll be written out (in order to prevent uninitialised
1353 * block data from leaking). And clear the new bit.
1354 */
1355 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1356 {
1357 unsigned int block_start, block_end;
1358 struct buffer_head *head, *bh;
1359
1360 BUG_ON(!PageLocked(page));
1361 if (!page_has_buffers(page))
1362 return;
1363
1364 bh = head = page_buffers(page);
1365 block_start = 0;
1366 do {
1367 block_end = block_start + bh->b_size;
1368
1369 if (buffer_new(bh)) {
1370 if (block_end > from && block_start < to) {
1371 if (!PageUptodate(page)) {
1372 unsigned start, end;
1373
1374 start = max(from, block_start);
1375 end = min(to, block_end);
1376
1377 zero_user_segment(page, start, end);
1378 set_buffer_uptodate(bh);
1379 }
1380
1381 clear_buffer_new(bh);
1382 mark_buffer_dirty(bh);
1383 }
1384 }
1385
1386 block_start = block_end;
1387 bh = bh->b_this_page;
1388 } while (bh != head);
1389 }
1390
1391 /*
1392 * Only called when we have a failure during allocating write to write
1393 * zero's to the newly allocated region.
1394 */
1395 static void ocfs2_write_failure(struct inode *inode,
1396 struct ocfs2_write_ctxt *wc,
1397 loff_t user_pos, unsigned user_len)
1398 {
1399 int i;
1400 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1401 to = user_pos + user_len;
1402 struct page *tmppage;
1403
1404 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1405
1406 for(i = 0; i < wc->w_num_pages; i++) {
1407 tmppage = wc->w_pages[i];
1408
1409 if (page_has_buffers(tmppage)) {
1410 if (ocfs2_should_order_data(inode))
1411 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1412
1413 block_commit_write(tmppage, from, to);
1414 }
1415 }
1416 }
1417
1418 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1419 struct ocfs2_write_ctxt *wc,
1420 struct page *page, u32 cpos,
1421 loff_t user_pos, unsigned user_len,
1422 int new)
1423 {
1424 int ret;
1425 unsigned int map_from = 0, map_to = 0;
1426 unsigned int cluster_start, cluster_end;
1427 unsigned int user_data_from = 0, user_data_to = 0;
1428
1429 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1430 &cluster_start, &cluster_end);
1431
1432 /* treat the write as new if the a hole/lseek spanned across
1433 * the page boundary.
1434 */
1435 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1436 (page_offset(page) <= user_pos));
1437
1438 if (page == wc->w_target_page) {
1439 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1440 map_to = map_from + user_len;
1441
1442 if (new)
1443 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1444 cluster_start, cluster_end,
1445 new);
1446 else
1447 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1448 map_from, map_to, new);
1449 if (ret) {
1450 mlog_errno(ret);
1451 goto out;
1452 }
1453
1454 user_data_from = map_from;
1455 user_data_to = map_to;
1456 if (new) {
1457 map_from = cluster_start;
1458 map_to = cluster_end;
1459 }
1460 } else {
1461 /*
1462 * If we haven't allocated the new page yet, we
1463 * shouldn't be writing it out without copying user
1464 * data. This is likely a math error from the caller.
1465 */
1466 BUG_ON(!new);
1467
1468 map_from = cluster_start;
1469 map_to = cluster_end;
1470
1471 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1472 cluster_start, cluster_end, new);
1473 if (ret) {
1474 mlog_errno(ret);
1475 goto out;
1476 }
1477 }
1478
1479 /*
1480 * Parts of newly allocated pages need to be zero'd.
1481 *
1482 * Above, we have also rewritten 'to' and 'from' - as far as
1483 * the rest of the function is concerned, the entire cluster
1484 * range inside of a page needs to be written.
1485 *
1486 * We can skip this if the page is up to date - it's already
1487 * been zero'd from being read in as a hole.
1488 */
1489 if (new && !PageUptodate(page))
1490 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1491 cpos, user_data_from, user_data_to);
1492
1493 flush_dcache_page(page);
1494
1495 out:
1496 return ret;
1497 }
1498
1499 /*
1500 * This function will only grab one clusters worth of pages.
1501 */
1502 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1503 struct ocfs2_write_ctxt *wc,
1504 u32 cpos, loff_t user_pos,
1505 unsigned user_len, int new,
1506 struct page *mmap_page)
1507 {
1508 int ret = 0, i;
1509 unsigned long start, target_index, end_index, index;
1510 struct inode *inode = mapping->host;
1511 loff_t last_byte;
1512
1513 target_index = user_pos >> PAGE_CACHE_SHIFT;
1514
1515 /*
1516 * Figure out how many pages we'll be manipulating here. For
1517 * non allocating write, we just change the one
1518 * page. Otherwise, we'll need a whole clusters worth. If we're
1519 * writing past i_size, we only need enough pages to cover the
1520 * last page of the write.
1521 */
1522 if (new) {
1523 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1524 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1525 /*
1526 * We need the index *past* the last page we could possibly
1527 * touch. This is the page past the end of the write or
1528 * i_size, whichever is greater.
1529 */
1530 last_byte = max(user_pos + user_len, i_size_read(inode));
1531 BUG_ON(last_byte < 1);
1532 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1533 if ((start + wc->w_num_pages) > end_index)
1534 wc->w_num_pages = end_index - start;
1535 } else {
1536 wc->w_num_pages = 1;
1537 start = target_index;
1538 }
1539
1540 for(i = 0; i < wc->w_num_pages; i++) {
1541 index = start + i;
1542
1543 if (index == target_index && mmap_page) {
1544 /*
1545 * ocfs2_pagemkwrite() is a little different
1546 * and wants us to directly use the page
1547 * passed in.
1548 */
1549 lock_page(mmap_page);
1550
1551 /* Exit and let the caller retry */
1552 if (mmap_page->mapping != mapping) {
1553 WARN_ON(mmap_page->mapping);
1554 unlock_page(mmap_page);
1555 ret = -EAGAIN;
1556 goto out;
1557 }
1558
1559 page_cache_get(mmap_page);
1560 wc->w_pages[i] = mmap_page;
1561 wc->w_target_locked = true;
1562 } else {
1563 wc->w_pages[i] = find_or_create_page(mapping, index,
1564 GFP_NOFS);
1565 if (!wc->w_pages[i]) {
1566 ret = -ENOMEM;
1567 mlog_errno(ret);
1568 goto out;
1569 }
1570 }
1571 wait_for_stable_page(wc->w_pages[i]);
1572
1573 if (index == target_index)
1574 wc->w_target_page = wc->w_pages[i];
1575 }
1576 out:
1577 if (ret)
1578 wc->w_target_locked = false;
1579 return ret;
1580 }
1581
1582 /*
1583 * Prepare a single cluster for write one cluster into the file.
1584 */
1585 static int ocfs2_write_cluster(struct address_space *mapping,
1586 u32 phys, unsigned int unwritten,
1587 unsigned int should_zero,
1588 struct ocfs2_alloc_context *data_ac,
1589 struct ocfs2_alloc_context *meta_ac,
1590 struct ocfs2_write_ctxt *wc, u32 cpos,
1591 loff_t user_pos, unsigned user_len)
1592 {
1593 int ret, i, new;
1594 u64 v_blkno, p_blkno;
1595 struct inode *inode = mapping->host;
1596 struct ocfs2_extent_tree et;
1597
1598 new = phys == 0 ? 1 : 0;
1599 if (new) {
1600 u32 tmp_pos;
1601
1602 /*
1603 * This is safe to call with the page locks - it won't take
1604 * any additional semaphores or cluster locks.
1605 */
1606 tmp_pos = cpos;
1607 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1608 &tmp_pos, 1, 0, wc->w_di_bh,
1609 wc->w_handle, data_ac,
1610 meta_ac, NULL);
1611 /*
1612 * This shouldn't happen because we must have already
1613 * calculated the correct meta data allocation required. The
1614 * internal tree allocation code should know how to increase
1615 * transaction credits itself.
1616 *
1617 * If need be, we could handle -EAGAIN for a
1618 * RESTART_TRANS here.
1619 */
1620 mlog_bug_on_msg(ret == -EAGAIN,
1621 "Inode %llu: EAGAIN return during allocation.\n",
1622 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1623 if (ret < 0) {
1624 mlog_errno(ret);
1625 goto out;
1626 }
1627 } else if (unwritten) {
1628 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1629 wc->w_di_bh);
1630 ret = ocfs2_mark_extent_written(inode, &et,
1631 wc->w_handle, cpos, 1, phys,
1632 meta_ac, &wc->w_dealloc);
1633 if (ret < 0) {
1634 mlog_errno(ret);
1635 goto out;
1636 }
1637 }
1638
1639 if (should_zero)
1640 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1641 else
1642 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1643
1644 /*
1645 * The only reason this should fail is due to an inability to
1646 * find the extent added.
1647 */
1648 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1649 NULL);
1650 if (ret < 0) {
1651 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1652 "at logical block %llu",
1653 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1654 (unsigned long long)v_blkno);
1655 goto out;
1656 }
1657
1658 BUG_ON(p_blkno == 0);
1659
1660 for(i = 0; i < wc->w_num_pages; i++) {
1661 int tmpret;
1662
1663 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1664 wc->w_pages[i], cpos,
1665 user_pos, user_len,
1666 should_zero);
1667 if (tmpret) {
1668 mlog_errno(tmpret);
1669 if (ret == 0)
1670 ret = tmpret;
1671 }
1672 }
1673
1674 /*
1675 * We only have cleanup to do in case of allocating write.
1676 */
1677 if (ret && new)
1678 ocfs2_write_failure(inode, wc, user_pos, user_len);
1679
1680 out:
1681
1682 return ret;
1683 }
1684
1685 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1686 struct ocfs2_alloc_context *data_ac,
1687 struct ocfs2_alloc_context *meta_ac,
1688 struct ocfs2_write_ctxt *wc,
1689 loff_t pos, unsigned len)
1690 {
1691 int ret, i;
1692 loff_t cluster_off;
1693 unsigned int local_len = len;
1694 struct ocfs2_write_cluster_desc *desc;
1695 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1696
1697 for (i = 0; i < wc->w_clen; i++) {
1698 desc = &wc->w_desc[i];
1699
1700 /*
1701 * We have to make sure that the total write passed in
1702 * doesn't extend past a single cluster.
1703 */
1704 local_len = len;
1705 cluster_off = pos & (osb->s_clustersize - 1);
1706 if ((cluster_off + local_len) > osb->s_clustersize)
1707 local_len = osb->s_clustersize - cluster_off;
1708
1709 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1710 desc->c_unwritten,
1711 desc->c_needs_zero,
1712 data_ac, meta_ac,
1713 wc, desc->c_cpos, pos, local_len);
1714 if (ret) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
1718
1719 len -= local_len;
1720 pos += local_len;
1721 }
1722
1723 ret = 0;
1724 out:
1725 return ret;
1726 }
1727
1728 /*
1729 * ocfs2_write_end() wants to know which parts of the target page it
1730 * should complete the write on. It's easiest to compute them ahead of
1731 * time when a more complete view of the write is available.
1732 */
1733 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1734 struct ocfs2_write_ctxt *wc,
1735 loff_t pos, unsigned len, int alloc)
1736 {
1737 struct ocfs2_write_cluster_desc *desc;
1738
1739 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1740 wc->w_target_to = wc->w_target_from + len;
1741
1742 if (alloc == 0)
1743 return;
1744
1745 /*
1746 * Allocating write - we may have different boundaries based
1747 * on page size and cluster size.
1748 *
1749 * NOTE: We can no longer compute one value from the other as
1750 * the actual write length and user provided length may be
1751 * different.
1752 */
1753
1754 if (wc->w_large_pages) {
1755 /*
1756 * We only care about the 1st and last cluster within
1757 * our range and whether they should be zero'd or not. Either
1758 * value may be extended out to the start/end of a
1759 * newly allocated cluster.
1760 */
1761 desc = &wc->w_desc[0];
1762 if (desc->c_needs_zero)
1763 ocfs2_figure_cluster_boundaries(osb,
1764 desc->c_cpos,
1765 &wc->w_target_from,
1766 NULL);
1767
1768 desc = &wc->w_desc[wc->w_clen - 1];
1769 if (desc->c_needs_zero)
1770 ocfs2_figure_cluster_boundaries(osb,
1771 desc->c_cpos,
1772 NULL,
1773 &wc->w_target_to);
1774 } else {
1775 wc->w_target_from = 0;
1776 wc->w_target_to = PAGE_CACHE_SIZE;
1777 }
1778 }
1779
1780 /*
1781 * Populate each single-cluster write descriptor in the write context
1782 * with information about the i/o to be done.
1783 *
1784 * Returns the number of clusters that will have to be allocated, as
1785 * well as a worst case estimate of the number of extent records that
1786 * would have to be created during a write to an unwritten region.
1787 */
1788 static int ocfs2_populate_write_desc(struct inode *inode,
1789 struct ocfs2_write_ctxt *wc,
1790 unsigned int *clusters_to_alloc,
1791 unsigned int *extents_to_split)
1792 {
1793 int ret;
1794 struct ocfs2_write_cluster_desc *desc;
1795 unsigned int num_clusters = 0;
1796 unsigned int ext_flags = 0;
1797 u32 phys = 0;
1798 int i;
1799
1800 *clusters_to_alloc = 0;
1801 *extents_to_split = 0;
1802
1803 for (i = 0; i < wc->w_clen; i++) {
1804 desc = &wc->w_desc[i];
1805 desc->c_cpos = wc->w_cpos + i;
1806
1807 if (num_clusters == 0) {
1808 /*
1809 * Need to look up the next extent record.
1810 */
1811 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1812 &num_clusters, &ext_flags);
1813 if (ret) {
1814 mlog_errno(ret);
1815 goto out;
1816 }
1817
1818 /* We should already CoW the refcountd extent. */
1819 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1820
1821 /*
1822 * Assume worst case - that we're writing in
1823 * the middle of the extent.
1824 *
1825 * We can assume that the write proceeds from
1826 * left to right, in which case the extent
1827 * insert code is smart enough to coalesce the
1828 * next splits into the previous records created.
1829 */
1830 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1831 *extents_to_split = *extents_to_split + 2;
1832 } else if (phys) {
1833 /*
1834 * Only increment phys if it doesn't describe
1835 * a hole.
1836 */
1837 phys++;
1838 }
1839
1840 /*
1841 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1842 * file that got extended. w_first_new_cpos tells us
1843 * where the newly allocated clusters are so we can
1844 * zero them.
1845 */
1846 if (desc->c_cpos >= wc->w_first_new_cpos) {
1847 BUG_ON(phys == 0);
1848 desc->c_needs_zero = 1;
1849 }
1850
1851 desc->c_phys = phys;
1852 if (phys == 0) {
1853 desc->c_new = 1;
1854 desc->c_needs_zero = 1;
1855 *clusters_to_alloc = *clusters_to_alloc + 1;
1856 }
1857
1858 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1859 desc->c_unwritten = 1;
1860 desc->c_needs_zero = 1;
1861 }
1862
1863 num_clusters--;
1864 }
1865
1866 ret = 0;
1867 out:
1868 return ret;
1869 }
1870
1871 static int ocfs2_write_begin_inline(struct address_space *mapping,
1872 struct inode *inode,
1873 struct ocfs2_write_ctxt *wc)
1874 {
1875 int ret;
1876 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1877 struct page *page;
1878 handle_t *handle;
1879 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1880
1881 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1882 if (IS_ERR(handle)) {
1883 ret = PTR_ERR(handle);
1884 mlog_errno(ret);
1885 goto out;
1886 }
1887
1888 page = find_or_create_page(mapping, 0, GFP_NOFS);
1889 if (!page) {
1890 ocfs2_commit_trans(osb, handle);
1891 ret = -ENOMEM;
1892 mlog_errno(ret);
1893 goto out;
1894 }
1895 /*
1896 * If we don't set w_num_pages then this page won't get unlocked
1897 * and freed on cleanup of the write context.
1898 */
1899 wc->w_pages[0] = wc->w_target_page = page;
1900 wc->w_num_pages = 1;
1901
1902 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1903 OCFS2_JOURNAL_ACCESS_WRITE);
1904 if (ret) {
1905 ocfs2_commit_trans(osb, handle);
1906
1907 mlog_errno(ret);
1908 goto out;
1909 }
1910
1911 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1912 ocfs2_set_inode_data_inline(inode, di);
1913
1914 if (!PageUptodate(page)) {
1915 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1916 if (ret) {
1917 ocfs2_commit_trans(osb, handle);
1918
1919 goto out;
1920 }
1921 }
1922
1923 wc->w_handle = handle;
1924 out:
1925 return ret;
1926 }
1927
1928 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1929 {
1930 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1931
1932 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1933 return 1;
1934 return 0;
1935 }
1936
1937 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1938 struct inode *inode, loff_t pos,
1939 unsigned len, struct page *mmap_page,
1940 struct ocfs2_write_ctxt *wc)
1941 {
1942 int ret, written = 0;
1943 loff_t end = pos + len;
1944 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1945 struct ocfs2_dinode *di = NULL;
1946
1947 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1948 len, (unsigned long long)pos,
1949 oi->ip_dyn_features);
1950
1951 /*
1952 * Handle inodes which already have inline data 1st.
1953 */
1954 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1955 if (mmap_page == NULL &&
1956 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1957 goto do_inline_write;
1958
1959 /*
1960 * The write won't fit - we have to give this inode an
1961 * inline extent list now.
1962 */
1963 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1964 if (ret)
1965 mlog_errno(ret);
1966 goto out;
1967 }
1968
1969 /*
1970 * Check whether the inode can accept inline data.
1971 */
1972 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1973 return 0;
1974
1975 /*
1976 * Check whether the write can fit.
1977 */
1978 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1979 if (mmap_page ||
1980 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1981 return 0;
1982
1983 do_inline_write:
1984 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1985 if (ret) {
1986 mlog_errno(ret);
1987 goto out;
1988 }
1989
1990 /*
1991 * This signals to the caller that the data can be written
1992 * inline.
1993 */
1994 written = 1;
1995 out:
1996 return written ? written : ret;
1997 }
1998
1999 /*
2000 * This function only does anything for file systems which can't
2001 * handle sparse files.
2002 *
2003 * What we want to do here is fill in any hole between the current end
2004 * of allocation and the end of our write. That way the rest of the
2005 * write path can treat it as an non-allocating write, which has no
2006 * special case code for sparse/nonsparse files.
2007 */
2008 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2009 struct buffer_head *di_bh,
2010 loff_t pos, unsigned len,
2011 struct ocfs2_write_ctxt *wc)
2012 {
2013 int ret;
2014 loff_t newsize = pos + len;
2015
2016 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2017
2018 if (newsize <= i_size_read(inode))
2019 return 0;
2020
2021 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2022 if (ret)
2023 mlog_errno(ret);
2024
2025 wc->w_first_new_cpos =
2026 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2027
2028 return ret;
2029 }
2030
2031 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2032 loff_t pos)
2033 {
2034 int ret = 0;
2035
2036 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2037 if (pos > i_size_read(inode))
2038 ret = ocfs2_zero_extend(inode, di_bh, pos);
2039
2040 return ret;
2041 }
2042
2043 /*
2044 * Try to flush truncate logs if we can free enough clusters from it.
2045 * As for return value, "< 0" means error, "0" no space and "1" means
2046 * we have freed enough spaces and let the caller try to allocate again.
2047 */
2048 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2049 unsigned int needed)
2050 {
2051 tid_t target;
2052 int ret = 0;
2053 unsigned int truncated_clusters;
2054
2055 inode_lock(osb->osb_tl_inode);
2056 truncated_clusters = osb->truncated_clusters;
2057 inode_unlock(osb->osb_tl_inode);
2058
2059 /*
2060 * Check whether we can succeed in allocating if we free
2061 * the truncate log.
2062 */
2063 if (truncated_clusters < needed)
2064 goto out;
2065
2066 ret = ocfs2_flush_truncate_log(osb);
2067 if (ret) {
2068 mlog_errno(ret);
2069 goto out;
2070 }
2071
2072 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2073 jbd2_log_wait_commit(osb->journal->j_journal, target);
2074 ret = 1;
2075 }
2076 out:
2077 return ret;
2078 }
2079
2080 int ocfs2_write_begin_nolock(struct file *filp,
2081 struct address_space *mapping,
2082 loff_t pos, unsigned len, unsigned flags,
2083 struct page **pagep, void **fsdata,
2084 struct buffer_head *di_bh, struct page *mmap_page)
2085 {
2086 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2087 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2088 struct ocfs2_write_ctxt *wc;
2089 struct inode *inode = mapping->host;
2090 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2091 struct ocfs2_dinode *di;
2092 struct ocfs2_alloc_context *data_ac = NULL;
2093 struct ocfs2_alloc_context *meta_ac = NULL;
2094 handle_t *handle;
2095 struct ocfs2_extent_tree et;
2096 int try_free = 1, ret1;
2097
2098 try_again:
2099 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2100 if (ret) {
2101 mlog_errno(ret);
2102 return ret;
2103 }
2104
2105 if (ocfs2_supports_inline_data(osb)) {
2106 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2107 mmap_page, wc);
2108 if (ret == 1) {
2109 ret = 0;
2110 goto success;
2111 }
2112 if (ret < 0) {
2113 mlog_errno(ret);
2114 goto out;
2115 }
2116 }
2117
2118 if (ocfs2_sparse_alloc(osb))
2119 ret = ocfs2_zero_tail(inode, di_bh, pos);
2120 else
2121 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2122 wc);
2123 if (ret) {
2124 mlog_errno(ret);
2125 goto out;
2126 }
2127
2128 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2129 if (ret < 0) {
2130 mlog_errno(ret);
2131 goto out;
2132 } else if (ret == 1) {
2133 clusters_need = wc->w_clen;
2134 ret = ocfs2_refcount_cow(inode, di_bh,
2135 wc->w_cpos, wc->w_clen, UINT_MAX);
2136 if (ret) {
2137 mlog_errno(ret);
2138 goto out;
2139 }
2140 }
2141
2142 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2143 &extents_to_split);
2144 if (ret) {
2145 mlog_errno(ret);
2146 goto out;
2147 }
2148 clusters_need += clusters_to_alloc;
2149
2150 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2151
2152 trace_ocfs2_write_begin_nolock(
2153 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2154 (long long)i_size_read(inode),
2155 le32_to_cpu(di->i_clusters),
2156 pos, len, flags, mmap_page,
2157 clusters_to_alloc, extents_to_split);
2158
2159 /*
2160 * We set w_target_from, w_target_to here so that
2161 * ocfs2_write_end() knows which range in the target page to
2162 * write out. An allocation requires that we write the entire
2163 * cluster range.
2164 */
2165 if (clusters_to_alloc || extents_to_split) {
2166 /*
2167 * XXX: We are stretching the limits of
2168 * ocfs2_lock_allocators(). It greatly over-estimates
2169 * the work to be done.
2170 */
2171 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2172 wc->w_di_bh);
2173 ret = ocfs2_lock_allocators(inode, &et,
2174 clusters_to_alloc, extents_to_split,
2175 &data_ac, &meta_ac);
2176 if (ret) {
2177 mlog_errno(ret);
2178 goto out;
2179 }
2180
2181 if (data_ac)
2182 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2183
2184 credits = ocfs2_calc_extend_credits(inode->i_sb,
2185 &di->id2.i_list);
2186
2187 }
2188
2189 /*
2190 * We have to zero sparse allocated clusters, unwritten extent clusters,
2191 * and non-sparse clusters we just extended. For non-sparse writes,
2192 * we know zeros will only be needed in the first and/or last cluster.
2193 */
2194 if (clusters_to_alloc || extents_to_split ||
2195 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2196 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2197 cluster_of_pages = 1;
2198 else
2199 cluster_of_pages = 0;
2200
2201 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2202
2203 handle = ocfs2_start_trans(osb, credits);
2204 if (IS_ERR(handle)) {
2205 ret = PTR_ERR(handle);
2206 mlog_errno(ret);
2207 goto out;
2208 }
2209
2210 wc->w_handle = handle;
2211
2212 if (clusters_to_alloc) {
2213 ret = dquot_alloc_space_nodirty(inode,
2214 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2215 if (ret)
2216 goto out_commit;
2217 }
2218
2219 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2220 OCFS2_JOURNAL_ACCESS_WRITE);
2221 if (ret) {
2222 mlog_errno(ret);
2223 goto out_quota;
2224 }
2225
2226 /*
2227 * Fill our page array first. That way we've grabbed enough so
2228 * that we can zero and flush if we error after adding the
2229 * extent.
2230 */
2231 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2232 cluster_of_pages, mmap_page);
2233 if (ret && ret != -EAGAIN) {
2234 mlog_errno(ret);
2235 goto out_quota;
2236 }
2237
2238 /*
2239 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2240 * the target page. In this case, we exit with no error and no target
2241 * page. This will trigger the caller, page_mkwrite(), to re-try
2242 * the operation.
2243 */
2244 if (ret == -EAGAIN) {
2245 BUG_ON(wc->w_target_page);
2246 ret = 0;
2247 goto out_quota;
2248 }
2249
2250 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2251 len);
2252 if (ret) {
2253 mlog_errno(ret);
2254 goto out_quota;
2255 }
2256
2257 if (data_ac)
2258 ocfs2_free_alloc_context(data_ac);
2259 if (meta_ac)
2260 ocfs2_free_alloc_context(meta_ac);
2261
2262 success:
2263 *pagep = wc->w_target_page;
2264 *fsdata = wc;
2265 return 0;
2266 out_quota:
2267 if (clusters_to_alloc)
2268 dquot_free_space(inode,
2269 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2270 out_commit:
2271 ocfs2_commit_trans(osb, handle);
2272
2273 out:
2274 ocfs2_free_write_ctxt(wc);
2275
2276 if (data_ac) {
2277 ocfs2_free_alloc_context(data_ac);
2278 data_ac = NULL;
2279 }
2280 if (meta_ac) {
2281 ocfs2_free_alloc_context(meta_ac);
2282 meta_ac = NULL;
2283 }
2284
2285 if (ret == -ENOSPC && try_free) {
2286 /*
2287 * Try to free some truncate log so that we can have enough
2288 * clusters to allocate.
2289 */
2290 try_free = 0;
2291
2292 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2293 if (ret1 == 1)
2294 goto try_again;
2295
2296 if (ret1 < 0)
2297 mlog_errno(ret1);
2298 }
2299
2300 return ret;
2301 }
2302
2303 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2304 loff_t pos, unsigned len, unsigned flags,
2305 struct page **pagep, void **fsdata)
2306 {
2307 int ret;
2308 struct buffer_head *di_bh = NULL;
2309 struct inode *inode = mapping->host;
2310
2311 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312 if (ret) {
2313 mlog_errno(ret);
2314 return ret;
2315 }
2316
2317 /*
2318 * Take alloc sem here to prevent concurrent lookups. That way
2319 * the mapping, zeroing and tree manipulation within
2320 * ocfs2_write() will be safe against ->readpage(). This
2321 * should also serve to lock out allocation from a shared
2322 * writeable region.
2323 */
2324 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2325
2326 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2327 fsdata, di_bh, NULL);
2328 if (ret) {
2329 mlog_errno(ret);
2330 goto out_fail;
2331 }
2332
2333 brelse(di_bh);
2334
2335 return 0;
2336
2337 out_fail:
2338 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2339
2340 brelse(di_bh);
2341 ocfs2_inode_unlock(inode, 1);
2342
2343 return ret;
2344 }
2345
2346 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2347 unsigned len, unsigned *copied,
2348 struct ocfs2_dinode *di,
2349 struct ocfs2_write_ctxt *wc)
2350 {
2351 void *kaddr;
2352
2353 if (unlikely(*copied < len)) {
2354 if (!PageUptodate(wc->w_target_page)) {
2355 *copied = 0;
2356 return;
2357 }
2358 }
2359
2360 kaddr = kmap_atomic(wc->w_target_page);
2361 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2362 kunmap_atomic(kaddr);
2363
2364 trace_ocfs2_write_end_inline(
2365 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2366 (unsigned long long)pos, *copied,
2367 le16_to_cpu(di->id2.i_data.id_count),
2368 le16_to_cpu(di->i_dyn_features));
2369 }
2370
2371 int ocfs2_write_end_nolock(struct address_space *mapping,
2372 loff_t pos, unsigned len, unsigned copied,
2373 struct page *page, void *fsdata)
2374 {
2375 int i, ret;
2376 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2377 struct inode *inode = mapping->host;
2378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2379 struct ocfs2_write_ctxt *wc = fsdata;
2380 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2381 handle_t *handle = wc->w_handle;
2382 struct page *tmppage;
2383
2384 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2385 OCFS2_JOURNAL_ACCESS_WRITE);
2386 if (ret) {
2387 copied = ret;
2388 mlog_errno(ret);
2389 goto out;
2390 }
2391
2392 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2393 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2394 goto out_write_size;
2395 }
2396
2397 if (unlikely(copied < len)) {
2398 if (!PageUptodate(wc->w_target_page))
2399 copied = 0;
2400
2401 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2402 start+len);
2403 }
2404 flush_dcache_page(wc->w_target_page);
2405
2406 for(i = 0; i < wc->w_num_pages; i++) {
2407 tmppage = wc->w_pages[i];
2408
2409 if (tmppage == wc->w_target_page) {
2410 from = wc->w_target_from;
2411 to = wc->w_target_to;
2412
2413 BUG_ON(from > PAGE_CACHE_SIZE ||
2414 to > PAGE_CACHE_SIZE ||
2415 to < from);
2416 } else {
2417 /*
2418 * Pages adjacent to the target (if any) imply
2419 * a hole-filling write in which case we want
2420 * to flush their entire range.
2421 */
2422 from = 0;
2423 to = PAGE_CACHE_SIZE;
2424 }
2425
2426 if (page_has_buffers(tmppage)) {
2427 if (ocfs2_should_order_data(inode))
2428 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2429 block_commit_write(tmppage, from, to);
2430 }
2431 }
2432
2433 out_write_size:
2434 pos += copied;
2435 if (pos > i_size_read(inode)) {
2436 i_size_write(inode, pos);
2437 mark_inode_dirty(inode);
2438 }
2439 inode->i_blocks = ocfs2_inode_sector_count(inode);
2440 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2441 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2442 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2443 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2444 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2445 ocfs2_journal_dirty(handle, wc->w_di_bh);
2446
2447 out:
2448 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2449 * lock, or it will cause a deadlock since journal commit threads holds
2450 * this lock and will ask for the page lock when flushing the data.
2451 * put it here to preserve the unlock order.
2452 */
2453 ocfs2_unlock_pages(wc);
2454
2455 ocfs2_commit_trans(osb, handle);
2456
2457 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2458
2459 brelse(wc->w_di_bh);
2460 kfree(wc);
2461
2462 return copied;
2463 }
2464
2465 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned copied,
2467 struct page *page, void *fsdata)
2468 {
2469 int ret;
2470 struct inode *inode = mapping->host;
2471
2472 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2473
2474 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2475 ocfs2_inode_unlock(inode, 1);
2476
2477 return ret;
2478 }
2479
2480 const struct address_space_operations ocfs2_aops = {
2481 .readpage = ocfs2_readpage,
2482 .readpages = ocfs2_readpages,
2483 .writepage = ocfs2_writepage,
2484 .write_begin = ocfs2_write_begin,
2485 .write_end = ocfs2_write_end,
2486 .bmap = ocfs2_bmap,
2487 .direct_IO = ocfs2_direct_IO,
2488 .invalidatepage = block_invalidatepage,
2489 .releasepage = ocfs2_releasepage,
2490 .migratepage = buffer_migrate_page,
2491 .is_partially_uptodate = block_is_partially_uptodate,
2492 .error_remove_page = generic_error_remove_page,
2493 };