]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/aops.c
Merge branch 'for-john' of git://x-git.kernel.org/pub/scm/linux/kernel/git/jberg...
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53 {
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124 bail:
125 brelse(bh);
126
127 return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132 {
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208 bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217 {
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr);
246
247 SetPageUptodate(page);
248
249 return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
303 }
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
327
328 out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332 out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
336 }
337
338 /*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349 {
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387 out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392 }
393
394 /* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
410
411 return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413
414 /* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418 int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
425 {
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448 }
449
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
489 bail:
490 status = err ? 0 : p_blkno;
491
492 return status;
493 }
494
495 /*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
513 {
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
543 *
544 * Consider an unwritten extent as a hole.
545 */
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557 return ret;
558 }
559
560 /*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private,
569 int ret,
570 bool is_async)
571 {
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
581
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
591 ocfs2_iocb_clear_rw_locked(iocb);
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
595
596 inode_dio_done(inode);
597 if (is_async)
598 aio_complete(iocb, ret, 0);
599 }
600
601 /*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607 {
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
610 jbd2_journal_invalidatepage(journal, page, offset);
611 }
612
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
614 {
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
617 if (!page_has_buffers(page))
618 return 0;
619 return jbd2_journal_try_to_free_buffers(journal, page, wait);
620 }
621
622 static ssize_t ocfs2_direct_IO(int rw,
623 struct kiocb *iocb,
624 const struct iovec *iov,
625 loff_t offset,
626 unsigned long nr_segs)
627 {
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file_inode(file)->i_mapping->host;
630
631 /*
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
634 */
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
637
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
641
642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 iov, offset, nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io, NULL, 0);
646 }
647
648 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 u32 cpos,
650 unsigned int *start,
651 unsigned int *end)
652 {
653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654
655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 unsigned int cpp;
657
658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659
660 cluster_start = cpos % cpp;
661 cluster_start = cluster_start << osb->s_clustersize_bits;
662
663 cluster_end = cluster_start + osb->s_clustersize;
664 }
665
666 BUG_ON(cluster_start > PAGE_SIZE);
667 BUG_ON(cluster_end > PAGE_SIZE);
668
669 if (start)
670 *start = cluster_start;
671 if (end)
672 *end = cluster_end;
673 }
674
675 /*
676 * 'from' and 'to' are the region in the page to avoid zeroing.
677 *
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
680 *
681 * from == to == 0 is code for "zero the entire cluster region"
682 */
683 static void ocfs2_clear_page_regions(struct page *page,
684 struct ocfs2_super *osb, u32 cpos,
685 unsigned from, unsigned to)
686 {
687 void *kaddr;
688 unsigned int cluster_start, cluster_end;
689
690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691
692 kaddr = kmap_atomic(page);
693
694 if (from || to) {
695 if (from > cluster_start)
696 memset(kaddr + cluster_start, 0, from - cluster_start);
697 if (to < cluster_end)
698 memset(kaddr + to, 0, cluster_end - to);
699 } else {
700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701 }
702
703 kunmap_atomic(kaddr);
704 }
705
706 /*
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
712 */
713 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 unsigned int block_start)
715 {
716 u64 offset = page_offset(page) + block_start;
717
718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 return 1;
720
721 if (i_size_read(inode) > offset)
722 return 1;
723
724 return 0;
725 }
726
727 /*
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
731 *
732 * This will also skip zeroing, which is handled externally.
733 */
734 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 struct inode *inode, unsigned int from,
736 unsigned int to, int new)
737 {
738 int ret = 0;
739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 unsigned int block_end, block_start;
741 unsigned int bsize = 1 << inode->i_blkbits;
742
743 if (!page_has_buffers(page))
744 create_empty_buffers(page, bsize, 0);
745
746 head = page_buffers(page);
747 for (bh = head, block_start = 0; bh != head || !block_start;
748 bh = bh->b_this_page, block_start += bsize) {
749 block_end = block_start + bsize;
750
751 clear_buffer_new(bh);
752
753 /*
754 * Ignore blocks outside of our i/o range -
755 * they may belong to unallocated clusters.
756 */
757 if (block_start >= to || block_end <= from) {
758 if (PageUptodate(page))
759 set_buffer_uptodate(bh);
760 continue;
761 }
762
763 /*
764 * For an allocating write with cluster size >= page
765 * size, we always write the entire page.
766 */
767 if (new)
768 set_buffer_new(bh);
769
770 if (!buffer_mapped(bh)) {
771 map_bh(bh, inode->i_sb, *p_blkno);
772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773 }
774
775 if (PageUptodate(page)) {
776 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 !buffer_new(bh) &&
780 ocfs2_should_read_blk(inode, page, block_start) &&
781 (block_start < from || block_end > to)) {
782 ll_rw_block(READ, 1, &bh);
783 *wait_bh++=bh;
784 }
785
786 *p_blkno = *p_blkno + 1;
787 }
788
789 /*
790 * If we issued read requests - let them complete.
791 */
792 while(wait_bh > wait) {
793 wait_on_buffer(*--wait_bh);
794 if (!buffer_uptodate(*wait_bh))
795 ret = -EIO;
796 }
797
798 if (ret == 0 || !new)
799 return ret;
800
801 /*
802 * If we get -EIO above, zero out any newly allocated blocks
803 * to avoid exposing stale data.
804 */
805 bh = head;
806 block_start = 0;
807 do {
808 block_end = block_start + bsize;
809 if (block_end <= from)
810 goto next_bh;
811 if (block_start >= to)
812 break;
813
814 zero_user(page, block_start, bh->b_size);
815 set_buffer_uptodate(bh);
816 mark_buffer_dirty(bh);
817
818 next_bh:
819 block_start = block_end;
820 bh = bh->b_this_page;
821 } while (bh != head);
822
823 return ret;
824 }
825
826 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827 #define OCFS2_MAX_CTXT_PAGES 1
828 #else
829 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830 #endif
831
832 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833
834 /*
835 * Describe the state of a single cluster to be written to.
836 */
837 struct ocfs2_write_cluster_desc {
838 u32 c_cpos;
839 u32 c_phys;
840 /*
841 * Give this a unique field because c_phys eventually gets
842 * filled.
843 */
844 unsigned c_new;
845 unsigned c_unwritten;
846 unsigned c_needs_zero;
847 };
848
849 struct ocfs2_write_ctxt {
850 /* Logical cluster position / len of write */
851 u32 w_cpos;
852 u32 w_clen;
853
854 /* First cluster allocated in a nonsparse extend */
855 u32 w_first_new_cpos;
856
857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858
859 /*
860 * This is true if page_size > cluster_size.
861 *
862 * It triggers a set of special cases during write which might
863 * have to deal with allocating writes to partial pages.
864 */
865 unsigned int w_large_pages;
866
867 /*
868 * Pages involved in this write.
869 *
870 * w_target_page is the page being written to by the user.
871 *
872 * w_pages is an array of pages which always contains
873 * w_target_page, and in the case of an allocating write with
874 * page_size < cluster size, it will contain zero'd and mapped
875 * pages adjacent to w_target_page which need to be written
876 * out in so that future reads from that region will get
877 * zero's.
878 */
879 unsigned int w_num_pages;
880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
881 struct page *w_target_page;
882
883 /*
884 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 * against w_target_page in ocfs2_write_end_nolock.
886 */
887 unsigned int w_target_locked:1;
888
889 /*
890 * ocfs2_write_end() uses this to know what the real range to
891 * write in the target should be.
892 */
893 unsigned int w_target_from;
894 unsigned int w_target_to;
895
896 /*
897 * We could use journal_current_handle() but this is cleaner,
898 * IMHO -Mark
899 */
900 handle_t *w_handle;
901
902 struct buffer_head *w_di_bh;
903
904 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905 };
906
907 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908 {
909 int i;
910
911 for(i = 0; i < num_pages; i++) {
912 if (pages[i]) {
913 unlock_page(pages[i]);
914 mark_page_accessed(pages[i]);
915 page_cache_release(pages[i]);
916 }
917 }
918 }
919
920 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
921 {
922 int i;
923
924 /*
925 * w_target_locked is only set to true in the page_mkwrite() case.
926 * The intent is to allow us to lock the target page from write_begin()
927 * to write_end(). The caller must hold a ref on w_target_page.
928 */
929 if (wc->w_target_locked) {
930 BUG_ON(!wc->w_target_page);
931 for (i = 0; i < wc->w_num_pages; i++) {
932 if (wc->w_target_page == wc->w_pages[i]) {
933 wc->w_pages[i] = NULL;
934 break;
935 }
936 }
937 mark_page_accessed(wc->w_target_page);
938 page_cache_release(wc->w_target_page);
939 }
940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941
942 brelse(wc->w_di_bh);
943 kfree(wc);
944 }
945
946 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947 struct ocfs2_super *osb, loff_t pos,
948 unsigned len, struct buffer_head *di_bh)
949 {
950 u32 cend;
951 struct ocfs2_write_ctxt *wc;
952
953 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954 if (!wc)
955 return -ENOMEM;
956
957 wc->w_cpos = pos >> osb->s_clustersize_bits;
958 wc->w_first_new_cpos = UINT_MAX;
959 cend = (pos + len - 1) >> osb->s_clustersize_bits;
960 wc->w_clen = cend - wc->w_cpos + 1;
961 get_bh(di_bh);
962 wc->w_di_bh = di_bh;
963
964 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965 wc->w_large_pages = 1;
966 else
967 wc->w_large_pages = 0;
968
969 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
970
971 *wcp = wc;
972
973 return 0;
974 }
975
976 /*
977 * If a page has any new buffers, zero them out here, and mark them uptodate
978 * and dirty so they'll be written out (in order to prevent uninitialised
979 * block data from leaking). And clear the new bit.
980 */
981 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
982 {
983 unsigned int block_start, block_end;
984 struct buffer_head *head, *bh;
985
986 BUG_ON(!PageLocked(page));
987 if (!page_has_buffers(page))
988 return;
989
990 bh = head = page_buffers(page);
991 block_start = 0;
992 do {
993 block_end = block_start + bh->b_size;
994
995 if (buffer_new(bh)) {
996 if (block_end > from && block_start < to) {
997 if (!PageUptodate(page)) {
998 unsigned start, end;
999
1000 start = max(from, block_start);
1001 end = min(to, block_end);
1002
1003 zero_user_segment(page, start, end);
1004 set_buffer_uptodate(bh);
1005 }
1006
1007 clear_buffer_new(bh);
1008 mark_buffer_dirty(bh);
1009 }
1010 }
1011
1012 block_start = block_end;
1013 bh = bh->b_this_page;
1014 } while (bh != head);
1015 }
1016
1017 /*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021 static void ocfs2_write_failure(struct inode *inode,
1022 struct ocfs2_write_ctxt *wc,
1023 loff_t user_pos, unsigned user_len)
1024 {
1025 int i;
1026 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027 to = user_pos + user_len;
1028 struct page *tmppage;
1029
1030 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1031
1032 for(i = 0; i < wc->w_num_pages; i++) {
1033 tmppage = wc->w_pages[i];
1034
1035 if (page_has_buffers(tmppage)) {
1036 if (ocfs2_should_order_data(inode))
1037 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1038
1039 block_commit_write(tmppage, from, to);
1040 }
1041 }
1042 }
1043
1044 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045 struct ocfs2_write_ctxt *wc,
1046 struct page *page, u32 cpos,
1047 loff_t user_pos, unsigned user_len,
1048 int new)
1049 {
1050 int ret;
1051 unsigned int map_from = 0, map_to = 0;
1052 unsigned int cluster_start, cluster_end;
1053 unsigned int user_data_from = 0, user_data_to = 0;
1054
1055 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056 &cluster_start, &cluster_end);
1057
1058 /* treat the write as new if the a hole/lseek spanned across
1059 * the page boundary.
1060 */
1061 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062 (page_offset(page) <= user_pos));
1063
1064 if (page == wc->w_target_page) {
1065 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066 map_to = map_from + user_len;
1067
1068 if (new)
1069 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070 cluster_start, cluster_end,
1071 new);
1072 else
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 map_from, map_to, new);
1075 if (ret) {
1076 mlog_errno(ret);
1077 goto out;
1078 }
1079
1080 user_data_from = map_from;
1081 user_data_to = map_to;
1082 if (new) {
1083 map_from = cluster_start;
1084 map_to = cluster_end;
1085 }
1086 } else {
1087 /*
1088 * If we haven't allocated the new page yet, we
1089 * shouldn't be writing it out without copying user
1090 * data. This is likely a math error from the caller.
1091 */
1092 BUG_ON(!new);
1093
1094 map_from = cluster_start;
1095 map_to = cluster_end;
1096
1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 cluster_start, cluster_end, new);
1099 if (ret) {
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103 }
1104
1105 /*
1106 * Parts of newly allocated pages need to be zero'd.
1107 *
1108 * Above, we have also rewritten 'to' and 'from' - as far as
1109 * the rest of the function is concerned, the entire cluster
1110 * range inside of a page needs to be written.
1111 *
1112 * We can skip this if the page is up to date - it's already
1113 * been zero'd from being read in as a hole.
1114 */
1115 if (new && !PageUptodate(page))
1116 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117 cpos, user_data_from, user_data_to);
1118
1119 flush_dcache_page(page);
1120
1121 out:
1122 return ret;
1123 }
1124
1125 /*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129 struct ocfs2_write_ctxt *wc,
1130 u32 cpos, loff_t user_pos,
1131 unsigned user_len, int new,
1132 struct page *mmap_page)
1133 {
1134 int ret = 0, i;
1135 unsigned long start, target_index, end_index, index;
1136 struct inode *inode = mapping->host;
1137 loff_t last_byte;
1138
1139 target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141 /*
1142 * Figure out how many pages we'll be manipulating here. For
1143 * non allocating write, we just change the one
1144 * page. Otherwise, we'll need a whole clusters worth. If we're
1145 * writing past i_size, we only need enough pages to cover the
1146 * last page of the write.
1147 */
1148 if (new) {
1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151 /*
1152 * We need the index *past* the last page we could possibly
1153 * touch. This is the page past the end of the write or
1154 * i_size, whichever is greater.
1155 */
1156 last_byte = max(user_pos + user_len, i_size_read(inode));
1157 BUG_ON(last_byte < 1);
1158 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159 if ((start + wc->w_num_pages) > end_index)
1160 wc->w_num_pages = end_index - start;
1161 } else {
1162 wc->w_num_pages = 1;
1163 start = target_index;
1164 }
1165
1166 for(i = 0; i < wc->w_num_pages; i++) {
1167 index = start + i;
1168
1169 if (index == target_index && mmap_page) {
1170 /*
1171 * ocfs2_pagemkwrite() is a little different
1172 * and wants us to directly use the page
1173 * passed in.
1174 */
1175 lock_page(mmap_page);
1176
1177 /* Exit and let the caller retry */
1178 if (mmap_page->mapping != mapping) {
1179 WARN_ON(mmap_page->mapping);
1180 unlock_page(mmap_page);
1181 ret = -EAGAIN;
1182 goto out;
1183 }
1184
1185 page_cache_get(mmap_page);
1186 wc->w_pages[i] = mmap_page;
1187 wc->w_target_locked = true;
1188 } else {
1189 wc->w_pages[i] = find_or_create_page(mapping, index,
1190 GFP_NOFS);
1191 if (!wc->w_pages[i]) {
1192 ret = -ENOMEM;
1193 mlog_errno(ret);
1194 goto out;
1195 }
1196 }
1197 wait_for_stable_page(wc->w_pages[i]);
1198
1199 if (index == target_index)
1200 wc->w_target_page = wc->w_pages[i];
1201 }
1202 out:
1203 if (ret)
1204 wc->w_target_locked = false;
1205 return ret;
1206 }
1207
1208 /*
1209 * Prepare a single cluster for write one cluster into the file.
1210 */
1211 static int ocfs2_write_cluster(struct address_space *mapping,
1212 u32 phys, unsigned int unwritten,
1213 unsigned int should_zero,
1214 struct ocfs2_alloc_context *data_ac,
1215 struct ocfs2_alloc_context *meta_ac,
1216 struct ocfs2_write_ctxt *wc, u32 cpos,
1217 loff_t user_pos, unsigned user_len)
1218 {
1219 int ret, i, new;
1220 u64 v_blkno, p_blkno;
1221 struct inode *inode = mapping->host;
1222 struct ocfs2_extent_tree et;
1223
1224 new = phys == 0 ? 1 : 0;
1225 if (new) {
1226 u32 tmp_pos;
1227
1228 /*
1229 * This is safe to call with the page locks - it won't take
1230 * any additional semaphores or cluster locks.
1231 */
1232 tmp_pos = cpos;
1233 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1234 &tmp_pos, 1, 0, wc->w_di_bh,
1235 wc->w_handle, data_ac,
1236 meta_ac, NULL);
1237 /*
1238 * This shouldn't happen because we must have already
1239 * calculated the correct meta data allocation required. The
1240 * internal tree allocation code should know how to increase
1241 * transaction credits itself.
1242 *
1243 * If need be, we could handle -EAGAIN for a
1244 * RESTART_TRANS here.
1245 */
1246 mlog_bug_on_msg(ret == -EAGAIN,
1247 "Inode %llu: EAGAIN return during allocation.\n",
1248 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1249 if (ret < 0) {
1250 mlog_errno(ret);
1251 goto out;
1252 }
1253 } else if (unwritten) {
1254 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1255 wc->w_di_bh);
1256 ret = ocfs2_mark_extent_written(inode, &et,
1257 wc->w_handle, cpos, 1, phys,
1258 meta_ac, &wc->w_dealloc);
1259 if (ret < 0) {
1260 mlog_errno(ret);
1261 goto out;
1262 }
1263 }
1264
1265 if (should_zero)
1266 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1267 else
1268 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1269
1270 /*
1271 * The only reason this should fail is due to an inability to
1272 * find the extent added.
1273 */
1274 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1275 NULL);
1276 if (ret < 0) {
1277 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1278 "at logical block %llu",
1279 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1280 (unsigned long long)v_blkno);
1281 goto out;
1282 }
1283
1284 BUG_ON(p_blkno == 0);
1285
1286 for(i = 0; i < wc->w_num_pages; i++) {
1287 int tmpret;
1288
1289 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1290 wc->w_pages[i], cpos,
1291 user_pos, user_len,
1292 should_zero);
1293 if (tmpret) {
1294 mlog_errno(tmpret);
1295 if (ret == 0)
1296 ret = tmpret;
1297 }
1298 }
1299
1300 /*
1301 * We only have cleanup to do in case of allocating write.
1302 */
1303 if (ret && new)
1304 ocfs2_write_failure(inode, wc, user_pos, user_len);
1305
1306 out:
1307
1308 return ret;
1309 }
1310
1311 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1312 struct ocfs2_alloc_context *data_ac,
1313 struct ocfs2_alloc_context *meta_ac,
1314 struct ocfs2_write_ctxt *wc,
1315 loff_t pos, unsigned len)
1316 {
1317 int ret, i;
1318 loff_t cluster_off;
1319 unsigned int local_len = len;
1320 struct ocfs2_write_cluster_desc *desc;
1321 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1322
1323 for (i = 0; i < wc->w_clen; i++) {
1324 desc = &wc->w_desc[i];
1325
1326 /*
1327 * We have to make sure that the total write passed in
1328 * doesn't extend past a single cluster.
1329 */
1330 local_len = len;
1331 cluster_off = pos & (osb->s_clustersize - 1);
1332 if ((cluster_off + local_len) > osb->s_clustersize)
1333 local_len = osb->s_clustersize - cluster_off;
1334
1335 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1336 desc->c_unwritten,
1337 desc->c_needs_zero,
1338 data_ac, meta_ac,
1339 wc, desc->c_cpos, pos, local_len);
1340 if (ret) {
1341 mlog_errno(ret);
1342 goto out;
1343 }
1344
1345 len -= local_len;
1346 pos += local_len;
1347 }
1348
1349 ret = 0;
1350 out:
1351 return ret;
1352 }
1353
1354 /*
1355 * ocfs2_write_end() wants to know which parts of the target page it
1356 * should complete the write on. It's easiest to compute them ahead of
1357 * time when a more complete view of the write is available.
1358 */
1359 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1360 struct ocfs2_write_ctxt *wc,
1361 loff_t pos, unsigned len, int alloc)
1362 {
1363 struct ocfs2_write_cluster_desc *desc;
1364
1365 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1366 wc->w_target_to = wc->w_target_from + len;
1367
1368 if (alloc == 0)
1369 return;
1370
1371 /*
1372 * Allocating write - we may have different boundaries based
1373 * on page size and cluster size.
1374 *
1375 * NOTE: We can no longer compute one value from the other as
1376 * the actual write length and user provided length may be
1377 * different.
1378 */
1379
1380 if (wc->w_large_pages) {
1381 /*
1382 * We only care about the 1st and last cluster within
1383 * our range and whether they should be zero'd or not. Either
1384 * value may be extended out to the start/end of a
1385 * newly allocated cluster.
1386 */
1387 desc = &wc->w_desc[0];
1388 if (desc->c_needs_zero)
1389 ocfs2_figure_cluster_boundaries(osb,
1390 desc->c_cpos,
1391 &wc->w_target_from,
1392 NULL);
1393
1394 desc = &wc->w_desc[wc->w_clen - 1];
1395 if (desc->c_needs_zero)
1396 ocfs2_figure_cluster_boundaries(osb,
1397 desc->c_cpos,
1398 NULL,
1399 &wc->w_target_to);
1400 } else {
1401 wc->w_target_from = 0;
1402 wc->w_target_to = PAGE_CACHE_SIZE;
1403 }
1404 }
1405
1406 /*
1407 * Populate each single-cluster write descriptor in the write context
1408 * with information about the i/o to be done.
1409 *
1410 * Returns the number of clusters that will have to be allocated, as
1411 * well as a worst case estimate of the number of extent records that
1412 * would have to be created during a write to an unwritten region.
1413 */
1414 static int ocfs2_populate_write_desc(struct inode *inode,
1415 struct ocfs2_write_ctxt *wc,
1416 unsigned int *clusters_to_alloc,
1417 unsigned int *extents_to_split)
1418 {
1419 int ret;
1420 struct ocfs2_write_cluster_desc *desc;
1421 unsigned int num_clusters = 0;
1422 unsigned int ext_flags = 0;
1423 u32 phys = 0;
1424 int i;
1425
1426 *clusters_to_alloc = 0;
1427 *extents_to_split = 0;
1428
1429 for (i = 0; i < wc->w_clen; i++) {
1430 desc = &wc->w_desc[i];
1431 desc->c_cpos = wc->w_cpos + i;
1432
1433 if (num_clusters == 0) {
1434 /*
1435 * Need to look up the next extent record.
1436 */
1437 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1438 &num_clusters, &ext_flags);
1439 if (ret) {
1440 mlog_errno(ret);
1441 goto out;
1442 }
1443
1444 /* We should already CoW the refcountd extent. */
1445 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1446
1447 /*
1448 * Assume worst case - that we're writing in
1449 * the middle of the extent.
1450 *
1451 * We can assume that the write proceeds from
1452 * left to right, in which case the extent
1453 * insert code is smart enough to coalesce the
1454 * next splits into the previous records created.
1455 */
1456 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1457 *extents_to_split = *extents_to_split + 2;
1458 } else if (phys) {
1459 /*
1460 * Only increment phys if it doesn't describe
1461 * a hole.
1462 */
1463 phys++;
1464 }
1465
1466 /*
1467 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1468 * file that got extended. w_first_new_cpos tells us
1469 * where the newly allocated clusters are so we can
1470 * zero them.
1471 */
1472 if (desc->c_cpos >= wc->w_first_new_cpos) {
1473 BUG_ON(phys == 0);
1474 desc->c_needs_zero = 1;
1475 }
1476
1477 desc->c_phys = phys;
1478 if (phys == 0) {
1479 desc->c_new = 1;
1480 desc->c_needs_zero = 1;
1481 *clusters_to_alloc = *clusters_to_alloc + 1;
1482 }
1483
1484 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1485 desc->c_unwritten = 1;
1486 desc->c_needs_zero = 1;
1487 }
1488
1489 num_clusters--;
1490 }
1491
1492 ret = 0;
1493 out:
1494 return ret;
1495 }
1496
1497 static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 struct inode *inode,
1499 struct ocfs2_write_ctxt *wc)
1500 {
1501 int ret;
1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 struct page *page;
1504 handle_t *handle;
1505 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506
1507 page = find_or_create_page(mapping, 0, GFP_NOFS);
1508 if (!page) {
1509 ret = -ENOMEM;
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513 /*
1514 * If we don't set w_num_pages then this page won't get unlocked
1515 * and freed on cleanup of the write context.
1516 */
1517 wc->w_pages[0] = wc->w_target_page = page;
1518 wc->w_num_pages = 1;
1519
1520 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521 if (IS_ERR(handle)) {
1522 ret = PTR_ERR(handle);
1523 mlog_errno(ret);
1524 goto out;
1525 }
1526
1527 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1528 OCFS2_JOURNAL_ACCESS_WRITE);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1531
1532 mlog_errno(ret);
1533 goto out;
1534 }
1535
1536 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 ocfs2_set_inode_data_inline(inode, di);
1538
1539 if (!PageUptodate(page)) {
1540 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 if (ret) {
1542 ocfs2_commit_trans(osb, handle);
1543
1544 goto out;
1545 }
1546 }
1547
1548 wc->w_handle = handle;
1549 out:
1550 return ret;
1551 }
1552
1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554 {
1555 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556
1557 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1558 return 1;
1559 return 0;
1560 }
1561
1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 struct inode *inode, loff_t pos,
1564 unsigned len, struct page *mmap_page,
1565 struct ocfs2_write_ctxt *wc)
1566 {
1567 int ret, written = 0;
1568 loff_t end = pos + len;
1569 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570 struct ocfs2_dinode *di = NULL;
1571
1572 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1573 len, (unsigned long long)pos,
1574 oi->ip_dyn_features);
1575
1576 /*
1577 * Handle inodes which already have inline data 1st.
1578 */
1579 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1580 if (mmap_page == NULL &&
1581 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1582 goto do_inline_write;
1583
1584 /*
1585 * The write won't fit - we have to give this inode an
1586 * inline extent list now.
1587 */
1588 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1589 if (ret)
1590 mlog_errno(ret);
1591 goto out;
1592 }
1593
1594 /*
1595 * Check whether the inode can accept inline data.
1596 */
1597 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1598 return 0;
1599
1600 /*
1601 * Check whether the write can fit.
1602 */
1603 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1604 if (mmap_page ||
1605 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1606 return 0;
1607
1608 do_inline_write:
1609 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1610 if (ret) {
1611 mlog_errno(ret);
1612 goto out;
1613 }
1614
1615 /*
1616 * This signals to the caller that the data can be written
1617 * inline.
1618 */
1619 written = 1;
1620 out:
1621 return written ? written : ret;
1622 }
1623
1624 /*
1625 * This function only does anything for file systems which can't
1626 * handle sparse files.
1627 *
1628 * What we want to do here is fill in any hole between the current end
1629 * of allocation and the end of our write. That way the rest of the
1630 * write path can treat it as an non-allocating write, which has no
1631 * special case code for sparse/nonsparse files.
1632 */
1633 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1634 struct buffer_head *di_bh,
1635 loff_t pos, unsigned len,
1636 struct ocfs2_write_ctxt *wc)
1637 {
1638 int ret;
1639 loff_t newsize = pos + len;
1640
1641 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642
1643 if (newsize <= i_size_read(inode))
1644 return 0;
1645
1646 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1647 if (ret)
1648 mlog_errno(ret);
1649
1650 wc->w_first_new_cpos =
1651 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1652
1653 return ret;
1654 }
1655
1656 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1657 loff_t pos)
1658 {
1659 int ret = 0;
1660
1661 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1662 if (pos > i_size_read(inode))
1663 ret = ocfs2_zero_extend(inode, di_bh, pos);
1664
1665 return ret;
1666 }
1667
1668 /*
1669 * Try to flush truncate logs if we can free enough clusters from it.
1670 * As for return value, "< 0" means error, "0" no space and "1" means
1671 * we have freed enough spaces and let the caller try to allocate again.
1672 */
1673 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1674 unsigned int needed)
1675 {
1676 tid_t target;
1677 int ret = 0;
1678 unsigned int truncated_clusters;
1679
1680 mutex_lock(&osb->osb_tl_inode->i_mutex);
1681 truncated_clusters = osb->truncated_clusters;
1682 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1683
1684 /*
1685 * Check whether we can succeed in allocating if we free
1686 * the truncate log.
1687 */
1688 if (truncated_clusters < needed)
1689 goto out;
1690
1691 ret = ocfs2_flush_truncate_log(osb);
1692 if (ret) {
1693 mlog_errno(ret);
1694 goto out;
1695 }
1696
1697 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1698 jbd2_log_wait_commit(osb->journal->j_journal, target);
1699 ret = 1;
1700 }
1701 out:
1702 return ret;
1703 }
1704
1705 int ocfs2_write_begin_nolock(struct file *filp,
1706 struct address_space *mapping,
1707 loff_t pos, unsigned len, unsigned flags,
1708 struct page **pagep, void **fsdata,
1709 struct buffer_head *di_bh, struct page *mmap_page)
1710 {
1711 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1712 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1713 struct ocfs2_write_ctxt *wc;
1714 struct inode *inode = mapping->host;
1715 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1716 struct ocfs2_dinode *di;
1717 struct ocfs2_alloc_context *data_ac = NULL;
1718 struct ocfs2_alloc_context *meta_ac = NULL;
1719 handle_t *handle;
1720 struct ocfs2_extent_tree et;
1721 int try_free = 1, ret1;
1722
1723 try_again:
1724 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1725 if (ret) {
1726 mlog_errno(ret);
1727 return ret;
1728 }
1729
1730 if (ocfs2_supports_inline_data(osb)) {
1731 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1732 mmap_page, wc);
1733 if (ret == 1) {
1734 ret = 0;
1735 goto success;
1736 }
1737 if (ret < 0) {
1738 mlog_errno(ret);
1739 goto out;
1740 }
1741 }
1742
1743 if (ocfs2_sparse_alloc(osb))
1744 ret = ocfs2_zero_tail(inode, di_bh, pos);
1745 else
1746 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1747 wc);
1748 if (ret) {
1749 mlog_errno(ret);
1750 goto out;
1751 }
1752
1753 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1754 if (ret < 0) {
1755 mlog_errno(ret);
1756 goto out;
1757 } else if (ret == 1) {
1758 clusters_need = wc->w_clen;
1759 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1760 wc->w_cpos, wc->w_clen, UINT_MAX);
1761 if (ret) {
1762 mlog_errno(ret);
1763 goto out;
1764 }
1765 }
1766
1767 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1768 &extents_to_split);
1769 if (ret) {
1770 mlog_errno(ret);
1771 goto out;
1772 }
1773 clusters_need += clusters_to_alloc;
1774
1775 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1776
1777 trace_ocfs2_write_begin_nolock(
1778 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 (long long)i_size_read(inode),
1780 le32_to_cpu(di->i_clusters),
1781 pos, len, flags, mmap_page,
1782 clusters_to_alloc, extents_to_split);
1783
1784 /*
1785 * We set w_target_from, w_target_to here so that
1786 * ocfs2_write_end() knows which range in the target page to
1787 * write out. An allocation requires that we write the entire
1788 * cluster range.
1789 */
1790 if (clusters_to_alloc || extents_to_split) {
1791 /*
1792 * XXX: We are stretching the limits of
1793 * ocfs2_lock_allocators(). It greatly over-estimates
1794 * the work to be done.
1795 */
1796 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1797 wc->w_di_bh);
1798 ret = ocfs2_lock_allocators(inode, &et,
1799 clusters_to_alloc, extents_to_split,
1800 &data_ac, &meta_ac);
1801 if (ret) {
1802 mlog_errno(ret);
1803 goto out;
1804 }
1805
1806 if (data_ac)
1807 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1808
1809 credits = ocfs2_calc_extend_credits(inode->i_sb,
1810 &di->id2.i_list,
1811 clusters_to_alloc);
1812
1813 }
1814
1815 /*
1816 * We have to zero sparse allocated clusters, unwritten extent clusters,
1817 * and non-sparse clusters we just extended. For non-sparse writes,
1818 * we know zeros will only be needed in the first and/or last cluster.
1819 */
1820 if (clusters_to_alloc || extents_to_split ||
1821 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1822 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1823 cluster_of_pages = 1;
1824 else
1825 cluster_of_pages = 0;
1826
1827 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1828
1829 handle = ocfs2_start_trans(osb, credits);
1830 if (IS_ERR(handle)) {
1831 ret = PTR_ERR(handle);
1832 mlog_errno(ret);
1833 goto out;
1834 }
1835
1836 wc->w_handle = handle;
1837
1838 if (clusters_to_alloc) {
1839 ret = dquot_alloc_space_nodirty(inode,
1840 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841 if (ret)
1842 goto out_commit;
1843 }
1844 /*
1845 * We don't want this to fail in ocfs2_write_end(), so do it
1846 * here.
1847 */
1848 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1849 OCFS2_JOURNAL_ACCESS_WRITE);
1850 if (ret) {
1851 mlog_errno(ret);
1852 goto out_quota;
1853 }
1854
1855 /*
1856 * Fill our page array first. That way we've grabbed enough so
1857 * that we can zero and flush if we error after adding the
1858 * extent.
1859 */
1860 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1861 cluster_of_pages, mmap_page);
1862 if (ret && ret != -EAGAIN) {
1863 mlog_errno(ret);
1864 goto out_quota;
1865 }
1866
1867 /*
1868 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1869 * the target page. In this case, we exit with no error and no target
1870 * page. This will trigger the caller, page_mkwrite(), to re-try
1871 * the operation.
1872 */
1873 if (ret == -EAGAIN) {
1874 BUG_ON(wc->w_target_page);
1875 ret = 0;
1876 goto out_quota;
1877 }
1878
1879 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1880 len);
1881 if (ret) {
1882 mlog_errno(ret);
1883 goto out_quota;
1884 }
1885
1886 if (data_ac)
1887 ocfs2_free_alloc_context(data_ac);
1888 if (meta_ac)
1889 ocfs2_free_alloc_context(meta_ac);
1890
1891 success:
1892 *pagep = wc->w_target_page;
1893 *fsdata = wc;
1894 return 0;
1895 out_quota:
1896 if (clusters_to_alloc)
1897 dquot_free_space(inode,
1898 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1899 out_commit:
1900 ocfs2_commit_trans(osb, handle);
1901
1902 out:
1903 ocfs2_free_write_ctxt(wc);
1904
1905 if (data_ac)
1906 ocfs2_free_alloc_context(data_ac);
1907 if (meta_ac)
1908 ocfs2_free_alloc_context(meta_ac);
1909
1910 if (ret == -ENOSPC && try_free) {
1911 /*
1912 * Try to free some truncate log so that we can have enough
1913 * clusters to allocate.
1914 */
1915 try_free = 0;
1916
1917 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1918 if (ret1 == 1)
1919 goto try_again;
1920
1921 if (ret1 < 0)
1922 mlog_errno(ret1);
1923 }
1924
1925 return ret;
1926 }
1927
1928 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1929 loff_t pos, unsigned len, unsigned flags,
1930 struct page **pagep, void **fsdata)
1931 {
1932 int ret;
1933 struct buffer_head *di_bh = NULL;
1934 struct inode *inode = mapping->host;
1935
1936 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1937 if (ret) {
1938 mlog_errno(ret);
1939 return ret;
1940 }
1941
1942 /*
1943 * Take alloc sem here to prevent concurrent lookups. That way
1944 * the mapping, zeroing and tree manipulation within
1945 * ocfs2_write() will be safe against ->readpage(). This
1946 * should also serve to lock out allocation from a shared
1947 * writeable region.
1948 */
1949 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1950
1951 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1952 fsdata, di_bh, NULL);
1953 if (ret) {
1954 mlog_errno(ret);
1955 goto out_fail;
1956 }
1957
1958 brelse(di_bh);
1959
1960 return 0;
1961
1962 out_fail:
1963 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1964
1965 brelse(di_bh);
1966 ocfs2_inode_unlock(inode, 1);
1967
1968 return ret;
1969 }
1970
1971 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1972 unsigned len, unsigned *copied,
1973 struct ocfs2_dinode *di,
1974 struct ocfs2_write_ctxt *wc)
1975 {
1976 void *kaddr;
1977
1978 if (unlikely(*copied < len)) {
1979 if (!PageUptodate(wc->w_target_page)) {
1980 *copied = 0;
1981 return;
1982 }
1983 }
1984
1985 kaddr = kmap_atomic(wc->w_target_page);
1986 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1987 kunmap_atomic(kaddr);
1988
1989 trace_ocfs2_write_end_inline(
1990 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1991 (unsigned long long)pos, *copied,
1992 le16_to_cpu(di->id2.i_data.id_count),
1993 le16_to_cpu(di->i_dyn_features));
1994 }
1995
1996 int ocfs2_write_end_nolock(struct address_space *mapping,
1997 loff_t pos, unsigned len, unsigned copied,
1998 struct page *page, void *fsdata)
1999 {
2000 int i;
2001 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2002 struct inode *inode = mapping->host;
2003 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2004 struct ocfs2_write_ctxt *wc = fsdata;
2005 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2006 handle_t *handle = wc->w_handle;
2007 struct page *tmppage;
2008
2009 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2010 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2011 goto out_write_size;
2012 }
2013
2014 if (unlikely(copied < len)) {
2015 if (!PageUptodate(wc->w_target_page))
2016 copied = 0;
2017
2018 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2019 start+len);
2020 }
2021 flush_dcache_page(wc->w_target_page);
2022
2023 for(i = 0; i < wc->w_num_pages; i++) {
2024 tmppage = wc->w_pages[i];
2025
2026 if (tmppage == wc->w_target_page) {
2027 from = wc->w_target_from;
2028 to = wc->w_target_to;
2029
2030 BUG_ON(from > PAGE_CACHE_SIZE ||
2031 to > PAGE_CACHE_SIZE ||
2032 to < from);
2033 } else {
2034 /*
2035 * Pages adjacent to the target (if any) imply
2036 * a hole-filling write in which case we want
2037 * to flush their entire range.
2038 */
2039 from = 0;
2040 to = PAGE_CACHE_SIZE;
2041 }
2042
2043 if (page_has_buffers(tmppage)) {
2044 if (ocfs2_should_order_data(inode))
2045 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2046 block_commit_write(tmppage, from, to);
2047 }
2048 }
2049
2050 out_write_size:
2051 pos += copied;
2052 if (pos > inode->i_size) {
2053 i_size_write(inode, pos);
2054 mark_inode_dirty(inode);
2055 }
2056 inode->i_blocks = ocfs2_inode_sector_count(inode);
2057 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2058 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2059 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2060 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2061 ocfs2_journal_dirty(handle, wc->w_di_bh);
2062
2063 ocfs2_commit_trans(osb, handle);
2064
2065 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2066
2067 ocfs2_free_write_ctxt(wc);
2068
2069 return copied;
2070 }
2071
2072 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2073 loff_t pos, unsigned len, unsigned copied,
2074 struct page *page, void *fsdata)
2075 {
2076 int ret;
2077 struct inode *inode = mapping->host;
2078
2079 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2080
2081 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2082 ocfs2_inode_unlock(inode, 1);
2083
2084 return ret;
2085 }
2086
2087 const struct address_space_operations ocfs2_aops = {
2088 .readpage = ocfs2_readpage,
2089 .readpages = ocfs2_readpages,
2090 .writepage = ocfs2_writepage,
2091 .write_begin = ocfs2_write_begin,
2092 .write_end = ocfs2_write_end,
2093 .bmap = ocfs2_bmap,
2094 .direct_IO = ocfs2_direct_IO,
2095 .invalidatepage = ocfs2_invalidatepage,
2096 .releasepage = ocfs2_releasepage,
2097 .migratepage = buffer_migrate_page,
2098 .is_partially_uptodate = block_is_partially_uptodate,
2099 .error_remove_page = generic_error_remove_page,
2100 };