]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ocfs2/aops.c
Sync to Linus v4.4-rc2 for LSM developers.
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58 {
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131 bail:
132 brelse(bh);
133
134 return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139 {
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
166 }
167
168 if (max_blocks < count)
169 count = max_blocks;
170
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
181 */
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
187
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
192 bh_result->b_size = count << inode->i_blkbits;
193
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
205 }
206 }
207
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
215 bail:
216 if (err < 0)
217 err = -EIO;
218
219 return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
224 {
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
244 }
245
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
253
254 SetPageUptodate(page);
255
256 return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 int ret;
262 struct buffer_head *di_bh = NULL;
263
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
290
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
310 }
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
334
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
343 }
344
345 /*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356 {
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
417
418 return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
432 {
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
496 bail:
497 status = err ? 0 : p_blkno;
498
499 return status;
500 }
501
502 /*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 struct buffer_head *bh_result, int create)
517 {
518 int ret;
519 u32 cpos = 0;
520 int alloc_locked = 0;
521 u64 p_blkno, inode_blocks, contig_blocks;
522 unsigned int ext_flags;
523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536 down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 &contig_blocks, &ext_flags);
542 up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
544 if (ret) {
545 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546 (unsigned long long)iblock);
547 ret = -EIO;
548 goto bail;
549 }
550
551 /* We should already CoW the refcounted extent in case of create. */
552 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
554 /* allocate blocks if no p_blkno is found, and create == 1 */
555 if (!p_blkno && create) {
556 ret = ocfs2_inode_lock(inode, NULL, 1);
557 if (ret < 0) {
558 mlog_errno(ret);
559 goto bail;
560 }
561
562 alloc_locked = 1;
563
564 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
566 /* fill hole, allocate blocks can't be larger than the size
567 * of the hole */
568 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570 contig_blocks);
571 if (clusters_to_alloc > contig_clusters)
572 clusters_to_alloc = contig_clusters;
573
574 /* allocate extent and insert them into the extent tree */
575 ret = ocfs2_extend_allocation(inode, cpos,
576 clusters_to_alloc, 0);
577 if (ret < 0) {
578 up_write(&OCFS2_I(inode)->ip_alloc_sem);
579 mlog_errno(ret);
580 goto bail;
581 }
582
583 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584 &contig_blocks, &ext_flags);
585 if (ret < 0) {
586 up_write(&OCFS2_I(inode)->ip_alloc_sem);
587 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588 (unsigned long long)iblock);
589 ret = -EIO;
590 goto bail;
591 }
592 set_buffer_new(bh_result);
593 up_write(&OCFS2_I(inode)->ip_alloc_sem);
594 }
595
596 /*
597 * get_more_blocks() expects us to describe a hole by clearing
598 * the mapped bit on bh_result().
599 *
600 * Consider an unwritten extent as a hole.
601 */
602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 map_bh(bh_result, inode->i_sb, p_blkno);
604 else
605 clear_buffer_mapped(bh_result);
606
607 /* make sure we don't map more than max_blocks blocks here as
608 that's all the kernel will handle at this point. */
609 if (max_blocks < contig_blocks)
610 contig_blocks = max_blocks;
611 bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613 if (alloc_locked)
614 ocfs2_inode_unlock(inode, 1);
615 return ret;
616 }
617
618 /*
619 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
620 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
621 * to protect io on one node from truncation on another.
622 */
623 static void ocfs2_dio_end_io(struct kiocb *iocb,
624 loff_t offset,
625 ssize_t bytes,
626 void *private)
627 {
628 struct inode *inode = file_inode(iocb->ki_filp);
629 int level;
630
631 /* this io's submitter should not have unlocked this before we could */
632 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
633
634 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
635 ocfs2_iocb_clear_unaligned_aio(iocb);
636
637 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
638 }
639
640 /* Let rw unlock to be done later to protect append direct io write */
641 if (offset + bytes <= i_size_read(inode)) {
642 ocfs2_iocb_clear_rw_locked(iocb);
643
644 level = ocfs2_iocb_rw_locked_level(iocb);
645 ocfs2_rw_unlock(inode, level);
646 }
647 }
648
649 static int ocfs2_releasepage(struct page *page, gfp_t wait)
650 {
651 if (!page_has_buffers(page))
652 return 0;
653 return try_to_free_buffers(page);
654 }
655
656 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
657 struct inode *inode, loff_t offset)
658 {
659 int ret = 0;
660 u32 v_cpos = 0;
661 u32 p_cpos = 0;
662 unsigned int num_clusters = 0;
663 unsigned int ext_flags = 0;
664
665 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
666 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
667 &num_clusters, &ext_flags);
668 if (ret < 0) {
669 mlog_errno(ret);
670 return ret;
671 }
672
673 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
674 return 1;
675
676 return 0;
677 }
678
679 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
680 struct inode *inode, loff_t offset,
681 u64 zero_len, int cluster_align)
682 {
683 u32 p_cpos = 0;
684 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
685 unsigned int num_clusters = 0;
686 unsigned int ext_flags = 0;
687 int ret = 0;
688
689 if (offset <= i_size_read(inode) || cluster_align)
690 return 0;
691
692 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
693 &ext_flags);
694 if (ret < 0) {
695 mlog_errno(ret);
696 return ret;
697 }
698
699 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
700 u64 s = i_size_read(inode);
701 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
702 (do_div(s, osb->s_clustersize) >> 9);
703
704 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
705 zero_len >> 9, GFP_NOFS, false);
706 if (ret < 0)
707 mlog_errno(ret);
708 }
709
710 return ret;
711 }
712
713 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
714 struct inode *inode, loff_t offset)
715 {
716 u64 zero_start, zero_len, total_zero_len;
717 u32 p_cpos = 0, clusters_to_add;
718 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
719 unsigned int num_clusters = 0;
720 unsigned int ext_flags = 0;
721 u32 size_div, offset_div;
722 int ret = 0;
723
724 {
725 u64 o = offset;
726 u64 s = i_size_read(inode);
727
728 offset_div = do_div(o, osb->s_clustersize);
729 size_div = do_div(s, osb->s_clustersize);
730 }
731
732 if (offset <= i_size_read(inode))
733 return 0;
734
735 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
736 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
737 total_zero_len = offset - i_size_read(inode);
738 if (clusters_to_add)
739 total_zero_len -= offset_div;
740
741 /* Allocate clusters to fill out holes, and this is only needed
742 * when we add more than one clusters. Otherwise the cluster will
743 * be allocated during direct IO */
744 if (clusters_to_add > 1) {
745 ret = ocfs2_extend_allocation(inode,
746 OCFS2_I(inode)->ip_clusters,
747 clusters_to_add - 1, 0);
748 if (ret) {
749 mlog_errno(ret);
750 goto out;
751 }
752 }
753
754 while (total_zero_len) {
755 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
756 &ext_flags);
757 if (ret < 0) {
758 mlog_errno(ret);
759 goto out;
760 }
761
762 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
763 size_div;
764 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
765 size_div;
766 zero_len = min(total_zero_len, zero_len);
767
768 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
769 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
770 zero_start >> 9, zero_len >> 9,
771 GFP_NOFS, false);
772 if (ret < 0) {
773 mlog_errno(ret);
774 goto out;
775 }
776 }
777
778 total_zero_len -= zero_len;
779 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
780
781 /* Only at first iteration can be cluster not aligned.
782 * So set size_div to 0 for the rest */
783 size_div = 0;
784 }
785
786 out:
787 return ret;
788 }
789
790 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
791 struct iov_iter *iter,
792 loff_t offset)
793 {
794 ssize_t ret = 0;
795 ssize_t written = 0;
796 bool orphaned = false;
797 int is_overwrite = 0;
798 struct file *file = iocb->ki_filp;
799 struct inode *inode = file_inode(file)->i_mapping->host;
800 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
801 struct buffer_head *di_bh = NULL;
802 size_t count = iter->count;
803 journal_t *journal = osb->journal->j_journal;
804 u64 zero_len_head, zero_len_tail;
805 int cluster_align_head, cluster_align_tail;
806 loff_t final_size = offset + count;
807 int append_write = offset >= i_size_read(inode) ? 1 : 0;
808 unsigned int num_clusters = 0;
809 unsigned int ext_flags = 0;
810
811 {
812 u64 o = offset;
813 u64 s = i_size_read(inode);
814
815 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
816 cluster_align_head = !zero_len_head;
817
818 zero_len_tail = osb->s_clustersize -
819 do_div(s, osb->s_clustersize);
820 if ((offset - i_size_read(inode)) < zero_len_tail)
821 zero_len_tail = offset - i_size_read(inode);
822 cluster_align_tail = !zero_len_tail;
823 }
824
825 /*
826 * when final_size > inode->i_size, inode->i_size will be
827 * updated after direct write, so add the inode to orphan
828 * dir first.
829 */
830 if (final_size > i_size_read(inode)) {
831 ret = ocfs2_add_inode_to_orphan(osb, inode);
832 if (ret < 0) {
833 mlog_errno(ret);
834 goto out;
835 }
836 orphaned = true;
837 }
838
839 if (append_write) {
840 ret = ocfs2_inode_lock(inode, NULL, 1);
841 if (ret < 0) {
842 mlog_errno(ret);
843 goto clean_orphan;
844 }
845
846 /* zeroing out the previously allocated cluster tail
847 * that but not zeroed */
848 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
849 down_read(&OCFS2_I(inode)->ip_alloc_sem);
850 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
851 zero_len_tail, cluster_align_tail);
852 up_read(&OCFS2_I(inode)->ip_alloc_sem);
853 } else {
854 down_write(&OCFS2_I(inode)->ip_alloc_sem);
855 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
856 offset);
857 up_write(&OCFS2_I(inode)->ip_alloc_sem);
858 }
859 if (ret < 0) {
860 mlog_errno(ret);
861 ocfs2_inode_unlock(inode, 1);
862 goto clean_orphan;
863 }
864
865 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
866 if (is_overwrite < 0) {
867 mlog_errno(is_overwrite);
868 ret = is_overwrite;
869 ocfs2_inode_unlock(inode, 1);
870 goto clean_orphan;
871 }
872
873 ocfs2_inode_unlock(inode, 1);
874 }
875
876 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
877 offset, ocfs2_direct_IO_get_blocks,
878 ocfs2_dio_end_io, NULL, 0);
879 /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
880 if ((written < 0) && (written != -EIOCBQUEUED)) {
881 loff_t i_size = i_size_read(inode);
882
883 if (offset + count > i_size) {
884 ret = ocfs2_inode_lock(inode, &di_bh, 1);
885 if (ret < 0) {
886 mlog_errno(ret);
887 goto clean_orphan;
888 }
889
890 if (i_size == i_size_read(inode)) {
891 ret = ocfs2_truncate_file(inode, di_bh,
892 i_size);
893 if (ret < 0) {
894 if (ret != -ENOSPC)
895 mlog_errno(ret);
896
897 ocfs2_inode_unlock(inode, 1);
898 brelse(di_bh);
899 di_bh = NULL;
900 goto clean_orphan;
901 }
902 }
903
904 ocfs2_inode_unlock(inode, 1);
905 brelse(di_bh);
906 di_bh = NULL;
907
908 ret = jbd2_journal_force_commit(journal);
909 if (ret < 0)
910 mlog_errno(ret);
911 }
912 } else if (written > 0 && append_write && !is_overwrite &&
913 !cluster_align_head) {
914 /* zeroing out the allocated cluster head */
915 u32 p_cpos = 0;
916 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
917
918 ret = ocfs2_inode_lock(inode, NULL, 0);
919 if (ret < 0) {
920 mlog_errno(ret);
921 goto clean_orphan;
922 }
923
924 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
925 &num_clusters, &ext_flags);
926 if (ret < 0) {
927 mlog_errno(ret);
928 ocfs2_inode_unlock(inode, 0);
929 goto clean_orphan;
930 }
931
932 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
933
934 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
935 (u64)p_cpos << (osb->s_clustersize_bits - 9),
936 zero_len_head >> 9, GFP_NOFS, false);
937 if (ret < 0)
938 mlog_errno(ret);
939
940 ocfs2_inode_unlock(inode, 0);
941 }
942
943 clean_orphan:
944 if (orphaned) {
945 int tmp_ret;
946 int update_isize = written > 0 ? 1 : 0;
947 loff_t end = update_isize ? offset + written : 0;
948
949 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
950 if (tmp_ret < 0) {
951 ret = tmp_ret;
952 mlog_errno(ret);
953 goto out;
954 }
955
956 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
957 update_isize, end);
958 if (tmp_ret < 0) {
959 ret = tmp_ret;
960 mlog_errno(ret);
961 brelse(di_bh);
962 goto out;
963 }
964
965 ocfs2_inode_unlock(inode, 1);
966 brelse(di_bh);
967
968 tmp_ret = jbd2_journal_force_commit(journal);
969 if (tmp_ret < 0) {
970 ret = tmp_ret;
971 mlog_errno(tmp_ret);
972 }
973 }
974
975 out:
976 if (ret >= 0)
977 ret = written;
978 return ret;
979 }
980
981 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
982 loff_t offset)
983 {
984 struct file *file = iocb->ki_filp;
985 struct inode *inode = file_inode(file)->i_mapping->host;
986 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
987 int full_coherency = !(osb->s_mount_opt &
988 OCFS2_MOUNT_COHERENCY_BUFFERED);
989
990 /*
991 * Fallback to buffered I/O if we see an inode without
992 * extents.
993 */
994 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
995 return 0;
996
997 /* Fallback to buffered I/O if we are appending and
998 * concurrent O_DIRECT writes are allowed.
999 */
1000 if (i_size_read(inode) <= offset && !full_coherency)
1001 return 0;
1002
1003 if (iov_iter_rw(iter) == READ)
1004 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1005 iter, offset,
1006 ocfs2_direct_IO_get_blocks,
1007 ocfs2_dio_end_io, NULL, 0);
1008 else
1009 return ocfs2_direct_IO_write(iocb, iter, offset);
1010 }
1011
1012 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1013 u32 cpos,
1014 unsigned int *start,
1015 unsigned int *end)
1016 {
1017 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1018
1019 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1020 unsigned int cpp;
1021
1022 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1023
1024 cluster_start = cpos % cpp;
1025 cluster_start = cluster_start << osb->s_clustersize_bits;
1026
1027 cluster_end = cluster_start + osb->s_clustersize;
1028 }
1029
1030 BUG_ON(cluster_start > PAGE_SIZE);
1031 BUG_ON(cluster_end > PAGE_SIZE);
1032
1033 if (start)
1034 *start = cluster_start;
1035 if (end)
1036 *end = cluster_end;
1037 }
1038
1039 /*
1040 * 'from' and 'to' are the region in the page to avoid zeroing.
1041 *
1042 * If pagesize > clustersize, this function will avoid zeroing outside
1043 * of the cluster boundary.
1044 *
1045 * from == to == 0 is code for "zero the entire cluster region"
1046 */
1047 static void ocfs2_clear_page_regions(struct page *page,
1048 struct ocfs2_super *osb, u32 cpos,
1049 unsigned from, unsigned to)
1050 {
1051 void *kaddr;
1052 unsigned int cluster_start, cluster_end;
1053
1054 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1055
1056 kaddr = kmap_atomic(page);
1057
1058 if (from || to) {
1059 if (from > cluster_start)
1060 memset(kaddr + cluster_start, 0, from - cluster_start);
1061 if (to < cluster_end)
1062 memset(kaddr + to, 0, cluster_end - to);
1063 } else {
1064 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1065 }
1066
1067 kunmap_atomic(kaddr);
1068 }
1069
1070 /*
1071 * Nonsparse file systems fully allocate before we get to the write
1072 * code. This prevents ocfs2_write() from tagging the write as an
1073 * allocating one, which means ocfs2_map_page_blocks() might try to
1074 * read-in the blocks at the tail of our file. Avoid reading them by
1075 * testing i_size against each block offset.
1076 */
1077 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1078 unsigned int block_start)
1079 {
1080 u64 offset = page_offset(page) + block_start;
1081
1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 return 1;
1084
1085 if (i_size_read(inode) > offset)
1086 return 1;
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * Some of this taken from __block_write_begin(). We already have our
1093 * mapping by now though, and the entire write will be allocating or
1094 * it won't, so not much need to use BH_New.
1095 *
1096 * This will also skip zeroing, which is handled externally.
1097 */
1098 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1099 struct inode *inode, unsigned int from,
1100 unsigned int to, int new)
1101 {
1102 int ret = 0;
1103 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1104 unsigned int block_end, block_start;
1105 unsigned int bsize = 1 << inode->i_blkbits;
1106
1107 if (!page_has_buffers(page))
1108 create_empty_buffers(page, bsize, 0);
1109
1110 head = page_buffers(page);
1111 for (bh = head, block_start = 0; bh != head || !block_start;
1112 bh = bh->b_this_page, block_start += bsize) {
1113 block_end = block_start + bsize;
1114
1115 clear_buffer_new(bh);
1116
1117 /*
1118 * Ignore blocks outside of our i/o range -
1119 * they may belong to unallocated clusters.
1120 */
1121 if (block_start >= to || block_end <= from) {
1122 if (PageUptodate(page))
1123 set_buffer_uptodate(bh);
1124 continue;
1125 }
1126
1127 /*
1128 * For an allocating write with cluster size >= page
1129 * size, we always write the entire page.
1130 */
1131 if (new)
1132 set_buffer_new(bh);
1133
1134 if (!buffer_mapped(bh)) {
1135 map_bh(bh, inode->i_sb, *p_blkno);
1136 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1137 }
1138
1139 if (PageUptodate(page)) {
1140 if (!buffer_uptodate(bh))
1141 set_buffer_uptodate(bh);
1142 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1143 !buffer_new(bh) &&
1144 ocfs2_should_read_blk(inode, page, block_start) &&
1145 (block_start < from || block_end > to)) {
1146 ll_rw_block(READ, 1, &bh);
1147 *wait_bh++=bh;
1148 }
1149
1150 *p_blkno = *p_blkno + 1;
1151 }
1152
1153 /*
1154 * If we issued read requests - let them complete.
1155 */
1156 while(wait_bh > wait) {
1157 wait_on_buffer(*--wait_bh);
1158 if (!buffer_uptodate(*wait_bh))
1159 ret = -EIO;
1160 }
1161
1162 if (ret == 0 || !new)
1163 return ret;
1164
1165 /*
1166 * If we get -EIO above, zero out any newly allocated blocks
1167 * to avoid exposing stale data.
1168 */
1169 bh = head;
1170 block_start = 0;
1171 do {
1172 block_end = block_start + bsize;
1173 if (block_end <= from)
1174 goto next_bh;
1175 if (block_start >= to)
1176 break;
1177
1178 zero_user(page, block_start, bh->b_size);
1179 set_buffer_uptodate(bh);
1180 mark_buffer_dirty(bh);
1181
1182 next_bh:
1183 block_start = block_end;
1184 bh = bh->b_this_page;
1185 } while (bh != head);
1186
1187 return ret;
1188 }
1189
1190 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1191 #define OCFS2_MAX_CTXT_PAGES 1
1192 #else
1193 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1194 #endif
1195
1196 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1197
1198 /*
1199 * Describe the state of a single cluster to be written to.
1200 */
1201 struct ocfs2_write_cluster_desc {
1202 u32 c_cpos;
1203 u32 c_phys;
1204 /*
1205 * Give this a unique field because c_phys eventually gets
1206 * filled.
1207 */
1208 unsigned c_new;
1209 unsigned c_unwritten;
1210 unsigned c_needs_zero;
1211 };
1212
1213 struct ocfs2_write_ctxt {
1214 /* Logical cluster position / len of write */
1215 u32 w_cpos;
1216 u32 w_clen;
1217
1218 /* First cluster allocated in a nonsparse extend */
1219 u32 w_first_new_cpos;
1220
1221 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1222
1223 /*
1224 * This is true if page_size > cluster_size.
1225 *
1226 * It triggers a set of special cases during write which might
1227 * have to deal with allocating writes to partial pages.
1228 */
1229 unsigned int w_large_pages;
1230
1231 /*
1232 * Pages involved in this write.
1233 *
1234 * w_target_page is the page being written to by the user.
1235 *
1236 * w_pages is an array of pages which always contains
1237 * w_target_page, and in the case of an allocating write with
1238 * page_size < cluster size, it will contain zero'd and mapped
1239 * pages adjacent to w_target_page which need to be written
1240 * out in so that future reads from that region will get
1241 * zero's.
1242 */
1243 unsigned int w_num_pages;
1244 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1245 struct page *w_target_page;
1246
1247 /*
1248 * w_target_locked is used for page_mkwrite path indicating no unlocking
1249 * against w_target_page in ocfs2_write_end_nolock.
1250 */
1251 unsigned int w_target_locked:1;
1252
1253 /*
1254 * ocfs2_write_end() uses this to know what the real range to
1255 * write in the target should be.
1256 */
1257 unsigned int w_target_from;
1258 unsigned int w_target_to;
1259
1260 /*
1261 * We could use journal_current_handle() but this is cleaner,
1262 * IMHO -Mark
1263 */
1264 handle_t *w_handle;
1265
1266 struct buffer_head *w_di_bh;
1267
1268 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1269 };
1270
1271 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1272 {
1273 int i;
1274
1275 for(i = 0; i < num_pages; i++) {
1276 if (pages[i]) {
1277 unlock_page(pages[i]);
1278 mark_page_accessed(pages[i]);
1279 page_cache_release(pages[i]);
1280 }
1281 }
1282 }
1283
1284 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1285 {
1286 int i;
1287
1288 /*
1289 * w_target_locked is only set to true in the page_mkwrite() case.
1290 * The intent is to allow us to lock the target page from write_begin()
1291 * to write_end(). The caller must hold a ref on w_target_page.
1292 */
1293 if (wc->w_target_locked) {
1294 BUG_ON(!wc->w_target_page);
1295 for (i = 0; i < wc->w_num_pages; i++) {
1296 if (wc->w_target_page == wc->w_pages[i]) {
1297 wc->w_pages[i] = NULL;
1298 break;
1299 }
1300 }
1301 mark_page_accessed(wc->w_target_page);
1302 page_cache_release(wc->w_target_page);
1303 }
1304 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1305 }
1306
1307 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1308 {
1309 ocfs2_unlock_pages(wc);
1310 brelse(wc->w_di_bh);
1311 kfree(wc);
1312 }
1313
1314 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1315 struct ocfs2_super *osb, loff_t pos,
1316 unsigned len, struct buffer_head *di_bh)
1317 {
1318 u32 cend;
1319 struct ocfs2_write_ctxt *wc;
1320
1321 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1322 if (!wc)
1323 return -ENOMEM;
1324
1325 wc->w_cpos = pos >> osb->s_clustersize_bits;
1326 wc->w_first_new_cpos = UINT_MAX;
1327 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1328 wc->w_clen = cend - wc->w_cpos + 1;
1329 get_bh(di_bh);
1330 wc->w_di_bh = di_bh;
1331
1332 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1333 wc->w_large_pages = 1;
1334 else
1335 wc->w_large_pages = 0;
1336
1337 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1338
1339 *wcp = wc;
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * If a page has any new buffers, zero them out here, and mark them uptodate
1346 * and dirty so they'll be written out (in order to prevent uninitialised
1347 * block data from leaking). And clear the new bit.
1348 */
1349 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1350 {
1351 unsigned int block_start, block_end;
1352 struct buffer_head *head, *bh;
1353
1354 BUG_ON(!PageLocked(page));
1355 if (!page_has_buffers(page))
1356 return;
1357
1358 bh = head = page_buffers(page);
1359 block_start = 0;
1360 do {
1361 block_end = block_start + bh->b_size;
1362
1363 if (buffer_new(bh)) {
1364 if (block_end > from && block_start < to) {
1365 if (!PageUptodate(page)) {
1366 unsigned start, end;
1367
1368 start = max(from, block_start);
1369 end = min(to, block_end);
1370
1371 zero_user_segment(page, start, end);
1372 set_buffer_uptodate(bh);
1373 }
1374
1375 clear_buffer_new(bh);
1376 mark_buffer_dirty(bh);
1377 }
1378 }
1379
1380 block_start = block_end;
1381 bh = bh->b_this_page;
1382 } while (bh != head);
1383 }
1384
1385 /*
1386 * Only called when we have a failure during allocating write to write
1387 * zero's to the newly allocated region.
1388 */
1389 static void ocfs2_write_failure(struct inode *inode,
1390 struct ocfs2_write_ctxt *wc,
1391 loff_t user_pos, unsigned user_len)
1392 {
1393 int i;
1394 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1395 to = user_pos + user_len;
1396 struct page *tmppage;
1397
1398 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1399
1400 for(i = 0; i < wc->w_num_pages; i++) {
1401 tmppage = wc->w_pages[i];
1402
1403 if (page_has_buffers(tmppage)) {
1404 if (ocfs2_should_order_data(inode))
1405 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1406
1407 block_commit_write(tmppage, from, to);
1408 }
1409 }
1410 }
1411
1412 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1413 struct ocfs2_write_ctxt *wc,
1414 struct page *page, u32 cpos,
1415 loff_t user_pos, unsigned user_len,
1416 int new)
1417 {
1418 int ret;
1419 unsigned int map_from = 0, map_to = 0;
1420 unsigned int cluster_start, cluster_end;
1421 unsigned int user_data_from = 0, user_data_to = 0;
1422
1423 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1424 &cluster_start, &cluster_end);
1425
1426 /* treat the write as new if the a hole/lseek spanned across
1427 * the page boundary.
1428 */
1429 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1430 (page_offset(page) <= user_pos));
1431
1432 if (page == wc->w_target_page) {
1433 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1434 map_to = map_from + user_len;
1435
1436 if (new)
1437 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1438 cluster_start, cluster_end,
1439 new);
1440 else
1441 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442 map_from, map_to, new);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1446 }
1447
1448 user_data_from = map_from;
1449 user_data_to = map_to;
1450 if (new) {
1451 map_from = cluster_start;
1452 map_to = cluster_end;
1453 }
1454 } else {
1455 /*
1456 * If we haven't allocated the new page yet, we
1457 * shouldn't be writing it out without copying user
1458 * data. This is likely a math error from the caller.
1459 */
1460 BUG_ON(!new);
1461
1462 map_from = cluster_start;
1463 map_to = cluster_end;
1464
1465 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1466 cluster_start, cluster_end, new);
1467 if (ret) {
1468 mlog_errno(ret);
1469 goto out;
1470 }
1471 }
1472
1473 /*
1474 * Parts of newly allocated pages need to be zero'd.
1475 *
1476 * Above, we have also rewritten 'to' and 'from' - as far as
1477 * the rest of the function is concerned, the entire cluster
1478 * range inside of a page needs to be written.
1479 *
1480 * We can skip this if the page is up to date - it's already
1481 * been zero'd from being read in as a hole.
1482 */
1483 if (new && !PageUptodate(page))
1484 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1485 cpos, user_data_from, user_data_to);
1486
1487 flush_dcache_page(page);
1488
1489 out:
1490 return ret;
1491 }
1492
1493 /*
1494 * This function will only grab one clusters worth of pages.
1495 */
1496 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1497 struct ocfs2_write_ctxt *wc,
1498 u32 cpos, loff_t user_pos,
1499 unsigned user_len, int new,
1500 struct page *mmap_page)
1501 {
1502 int ret = 0, i;
1503 unsigned long start, target_index, end_index, index;
1504 struct inode *inode = mapping->host;
1505 loff_t last_byte;
1506
1507 target_index = user_pos >> PAGE_CACHE_SHIFT;
1508
1509 /*
1510 * Figure out how many pages we'll be manipulating here. For
1511 * non allocating write, we just change the one
1512 * page. Otherwise, we'll need a whole clusters worth. If we're
1513 * writing past i_size, we only need enough pages to cover the
1514 * last page of the write.
1515 */
1516 if (new) {
1517 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1518 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1519 /*
1520 * We need the index *past* the last page we could possibly
1521 * touch. This is the page past the end of the write or
1522 * i_size, whichever is greater.
1523 */
1524 last_byte = max(user_pos + user_len, i_size_read(inode));
1525 BUG_ON(last_byte < 1);
1526 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1527 if ((start + wc->w_num_pages) > end_index)
1528 wc->w_num_pages = end_index - start;
1529 } else {
1530 wc->w_num_pages = 1;
1531 start = target_index;
1532 }
1533
1534 for(i = 0; i < wc->w_num_pages; i++) {
1535 index = start + i;
1536
1537 if (index == target_index && mmap_page) {
1538 /*
1539 * ocfs2_pagemkwrite() is a little different
1540 * and wants us to directly use the page
1541 * passed in.
1542 */
1543 lock_page(mmap_page);
1544
1545 /* Exit and let the caller retry */
1546 if (mmap_page->mapping != mapping) {
1547 WARN_ON(mmap_page->mapping);
1548 unlock_page(mmap_page);
1549 ret = -EAGAIN;
1550 goto out;
1551 }
1552
1553 page_cache_get(mmap_page);
1554 wc->w_pages[i] = mmap_page;
1555 wc->w_target_locked = true;
1556 } else {
1557 wc->w_pages[i] = find_or_create_page(mapping, index,
1558 GFP_NOFS);
1559 if (!wc->w_pages[i]) {
1560 ret = -ENOMEM;
1561 mlog_errno(ret);
1562 goto out;
1563 }
1564 }
1565 wait_for_stable_page(wc->w_pages[i]);
1566
1567 if (index == target_index)
1568 wc->w_target_page = wc->w_pages[i];
1569 }
1570 out:
1571 if (ret)
1572 wc->w_target_locked = false;
1573 return ret;
1574 }
1575
1576 /*
1577 * Prepare a single cluster for write one cluster into the file.
1578 */
1579 static int ocfs2_write_cluster(struct address_space *mapping,
1580 u32 phys, unsigned int unwritten,
1581 unsigned int should_zero,
1582 struct ocfs2_alloc_context *data_ac,
1583 struct ocfs2_alloc_context *meta_ac,
1584 struct ocfs2_write_ctxt *wc, u32 cpos,
1585 loff_t user_pos, unsigned user_len)
1586 {
1587 int ret, i, new;
1588 u64 v_blkno, p_blkno;
1589 struct inode *inode = mapping->host;
1590 struct ocfs2_extent_tree et;
1591
1592 new = phys == 0 ? 1 : 0;
1593 if (new) {
1594 u32 tmp_pos;
1595
1596 /*
1597 * This is safe to call with the page locks - it won't take
1598 * any additional semaphores or cluster locks.
1599 */
1600 tmp_pos = cpos;
1601 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1602 &tmp_pos, 1, 0, wc->w_di_bh,
1603 wc->w_handle, data_ac,
1604 meta_ac, NULL);
1605 /*
1606 * This shouldn't happen because we must have already
1607 * calculated the correct meta data allocation required. The
1608 * internal tree allocation code should know how to increase
1609 * transaction credits itself.
1610 *
1611 * If need be, we could handle -EAGAIN for a
1612 * RESTART_TRANS here.
1613 */
1614 mlog_bug_on_msg(ret == -EAGAIN,
1615 "Inode %llu: EAGAIN return during allocation.\n",
1616 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1617 if (ret < 0) {
1618 mlog_errno(ret);
1619 goto out;
1620 }
1621 } else if (unwritten) {
1622 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1623 wc->w_di_bh);
1624 ret = ocfs2_mark_extent_written(inode, &et,
1625 wc->w_handle, cpos, 1, phys,
1626 meta_ac, &wc->w_dealloc);
1627 if (ret < 0) {
1628 mlog_errno(ret);
1629 goto out;
1630 }
1631 }
1632
1633 if (should_zero)
1634 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1635 else
1636 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1637
1638 /*
1639 * The only reason this should fail is due to an inability to
1640 * find the extent added.
1641 */
1642 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1643 NULL);
1644 if (ret < 0) {
1645 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1646 "at logical block %llu",
1647 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1648 (unsigned long long)v_blkno);
1649 goto out;
1650 }
1651
1652 BUG_ON(p_blkno == 0);
1653
1654 for(i = 0; i < wc->w_num_pages; i++) {
1655 int tmpret;
1656
1657 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1658 wc->w_pages[i], cpos,
1659 user_pos, user_len,
1660 should_zero);
1661 if (tmpret) {
1662 mlog_errno(tmpret);
1663 if (ret == 0)
1664 ret = tmpret;
1665 }
1666 }
1667
1668 /*
1669 * We only have cleanup to do in case of allocating write.
1670 */
1671 if (ret && new)
1672 ocfs2_write_failure(inode, wc, user_pos, user_len);
1673
1674 out:
1675
1676 return ret;
1677 }
1678
1679 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1680 struct ocfs2_alloc_context *data_ac,
1681 struct ocfs2_alloc_context *meta_ac,
1682 struct ocfs2_write_ctxt *wc,
1683 loff_t pos, unsigned len)
1684 {
1685 int ret, i;
1686 loff_t cluster_off;
1687 unsigned int local_len = len;
1688 struct ocfs2_write_cluster_desc *desc;
1689 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1690
1691 for (i = 0; i < wc->w_clen; i++) {
1692 desc = &wc->w_desc[i];
1693
1694 /*
1695 * We have to make sure that the total write passed in
1696 * doesn't extend past a single cluster.
1697 */
1698 local_len = len;
1699 cluster_off = pos & (osb->s_clustersize - 1);
1700 if ((cluster_off + local_len) > osb->s_clustersize)
1701 local_len = osb->s_clustersize - cluster_off;
1702
1703 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1704 desc->c_unwritten,
1705 desc->c_needs_zero,
1706 data_ac, meta_ac,
1707 wc, desc->c_cpos, pos, local_len);
1708 if (ret) {
1709 mlog_errno(ret);
1710 goto out;
1711 }
1712
1713 len -= local_len;
1714 pos += local_len;
1715 }
1716
1717 ret = 0;
1718 out:
1719 return ret;
1720 }
1721
1722 /*
1723 * ocfs2_write_end() wants to know which parts of the target page it
1724 * should complete the write on. It's easiest to compute them ahead of
1725 * time when a more complete view of the write is available.
1726 */
1727 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1728 struct ocfs2_write_ctxt *wc,
1729 loff_t pos, unsigned len, int alloc)
1730 {
1731 struct ocfs2_write_cluster_desc *desc;
1732
1733 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1734 wc->w_target_to = wc->w_target_from + len;
1735
1736 if (alloc == 0)
1737 return;
1738
1739 /*
1740 * Allocating write - we may have different boundaries based
1741 * on page size and cluster size.
1742 *
1743 * NOTE: We can no longer compute one value from the other as
1744 * the actual write length and user provided length may be
1745 * different.
1746 */
1747
1748 if (wc->w_large_pages) {
1749 /*
1750 * We only care about the 1st and last cluster within
1751 * our range and whether they should be zero'd or not. Either
1752 * value may be extended out to the start/end of a
1753 * newly allocated cluster.
1754 */
1755 desc = &wc->w_desc[0];
1756 if (desc->c_needs_zero)
1757 ocfs2_figure_cluster_boundaries(osb,
1758 desc->c_cpos,
1759 &wc->w_target_from,
1760 NULL);
1761
1762 desc = &wc->w_desc[wc->w_clen - 1];
1763 if (desc->c_needs_zero)
1764 ocfs2_figure_cluster_boundaries(osb,
1765 desc->c_cpos,
1766 NULL,
1767 &wc->w_target_to);
1768 } else {
1769 wc->w_target_from = 0;
1770 wc->w_target_to = PAGE_CACHE_SIZE;
1771 }
1772 }
1773
1774 /*
1775 * Populate each single-cluster write descriptor in the write context
1776 * with information about the i/o to be done.
1777 *
1778 * Returns the number of clusters that will have to be allocated, as
1779 * well as a worst case estimate of the number of extent records that
1780 * would have to be created during a write to an unwritten region.
1781 */
1782 static int ocfs2_populate_write_desc(struct inode *inode,
1783 struct ocfs2_write_ctxt *wc,
1784 unsigned int *clusters_to_alloc,
1785 unsigned int *extents_to_split)
1786 {
1787 int ret;
1788 struct ocfs2_write_cluster_desc *desc;
1789 unsigned int num_clusters = 0;
1790 unsigned int ext_flags = 0;
1791 u32 phys = 0;
1792 int i;
1793
1794 *clusters_to_alloc = 0;
1795 *extents_to_split = 0;
1796
1797 for (i = 0; i < wc->w_clen; i++) {
1798 desc = &wc->w_desc[i];
1799 desc->c_cpos = wc->w_cpos + i;
1800
1801 if (num_clusters == 0) {
1802 /*
1803 * Need to look up the next extent record.
1804 */
1805 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1806 &num_clusters, &ext_flags);
1807 if (ret) {
1808 mlog_errno(ret);
1809 goto out;
1810 }
1811
1812 /* We should already CoW the refcountd extent. */
1813 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1814
1815 /*
1816 * Assume worst case - that we're writing in
1817 * the middle of the extent.
1818 *
1819 * We can assume that the write proceeds from
1820 * left to right, in which case the extent
1821 * insert code is smart enough to coalesce the
1822 * next splits into the previous records created.
1823 */
1824 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1825 *extents_to_split = *extents_to_split + 2;
1826 } else if (phys) {
1827 /*
1828 * Only increment phys if it doesn't describe
1829 * a hole.
1830 */
1831 phys++;
1832 }
1833
1834 /*
1835 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1836 * file that got extended. w_first_new_cpos tells us
1837 * where the newly allocated clusters are so we can
1838 * zero them.
1839 */
1840 if (desc->c_cpos >= wc->w_first_new_cpos) {
1841 BUG_ON(phys == 0);
1842 desc->c_needs_zero = 1;
1843 }
1844
1845 desc->c_phys = phys;
1846 if (phys == 0) {
1847 desc->c_new = 1;
1848 desc->c_needs_zero = 1;
1849 *clusters_to_alloc = *clusters_to_alloc + 1;
1850 }
1851
1852 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1853 desc->c_unwritten = 1;
1854 desc->c_needs_zero = 1;
1855 }
1856
1857 num_clusters--;
1858 }
1859
1860 ret = 0;
1861 out:
1862 return ret;
1863 }
1864
1865 static int ocfs2_write_begin_inline(struct address_space *mapping,
1866 struct inode *inode,
1867 struct ocfs2_write_ctxt *wc)
1868 {
1869 int ret;
1870 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1871 struct page *page;
1872 handle_t *handle;
1873 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1874
1875 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1876 if (IS_ERR(handle)) {
1877 ret = PTR_ERR(handle);
1878 mlog_errno(ret);
1879 goto out;
1880 }
1881
1882 page = find_or_create_page(mapping, 0, GFP_NOFS);
1883 if (!page) {
1884 ocfs2_commit_trans(osb, handle);
1885 ret = -ENOMEM;
1886 mlog_errno(ret);
1887 goto out;
1888 }
1889 /*
1890 * If we don't set w_num_pages then this page won't get unlocked
1891 * and freed on cleanup of the write context.
1892 */
1893 wc->w_pages[0] = wc->w_target_page = page;
1894 wc->w_num_pages = 1;
1895
1896 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1897 OCFS2_JOURNAL_ACCESS_WRITE);
1898 if (ret) {
1899 ocfs2_commit_trans(osb, handle);
1900
1901 mlog_errno(ret);
1902 goto out;
1903 }
1904
1905 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1906 ocfs2_set_inode_data_inline(inode, di);
1907
1908 if (!PageUptodate(page)) {
1909 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1910 if (ret) {
1911 ocfs2_commit_trans(osb, handle);
1912
1913 goto out;
1914 }
1915 }
1916
1917 wc->w_handle = handle;
1918 out:
1919 return ret;
1920 }
1921
1922 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1923 {
1924 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1925
1926 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1927 return 1;
1928 return 0;
1929 }
1930
1931 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1932 struct inode *inode, loff_t pos,
1933 unsigned len, struct page *mmap_page,
1934 struct ocfs2_write_ctxt *wc)
1935 {
1936 int ret, written = 0;
1937 loff_t end = pos + len;
1938 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1939 struct ocfs2_dinode *di = NULL;
1940
1941 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1942 len, (unsigned long long)pos,
1943 oi->ip_dyn_features);
1944
1945 /*
1946 * Handle inodes which already have inline data 1st.
1947 */
1948 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1949 if (mmap_page == NULL &&
1950 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1951 goto do_inline_write;
1952
1953 /*
1954 * The write won't fit - we have to give this inode an
1955 * inline extent list now.
1956 */
1957 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1958 if (ret)
1959 mlog_errno(ret);
1960 goto out;
1961 }
1962
1963 /*
1964 * Check whether the inode can accept inline data.
1965 */
1966 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1967 return 0;
1968
1969 /*
1970 * Check whether the write can fit.
1971 */
1972 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1973 if (mmap_page ||
1974 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1975 return 0;
1976
1977 do_inline_write:
1978 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1979 if (ret) {
1980 mlog_errno(ret);
1981 goto out;
1982 }
1983
1984 /*
1985 * This signals to the caller that the data can be written
1986 * inline.
1987 */
1988 written = 1;
1989 out:
1990 return written ? written : ret;
1991 }
1992
1993 /*
1994 * This function only does anything for file systems which can't
1995 * handle sparse files.
1996 *
1997 * What we want to do here is fill in any hole between the current end
1998 * of allocation and the end of our write. That way the rest of the
1999 * write path can treat it as an non-allocating write, which has no
2000 * special case code for sparse/nonsparse files.
2001 */
2002 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2003 struct buffer_head *di_bh,
2004 loff_t pos, unsigned len,
2005 struct ocfs2_write_ctxt *wc)
2006 {
2007 int ret;
2008 loff_t newsize = pos + len;
2009
2010 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2011
2012 if (newsize <= i_size_read(inode))
2013 return 0;
2014
2015 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2016 if (ret)
2017 mlog_errno(ret);
2018
2019 wc->w_first_new_cpos =
2020 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2021
2022 return ret;
2023 }
2024
2025 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2026 loff_t pos)
2027 {
2028 int ret = 0;
2029
2030 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2031 if (pos > i_size_read(inode))
2032 ret = ocfs2_zero_extend(inode, di_bh, pos);
2033
2034 return ret;
2035 }
2036
2037 /*
2038 * Try to flush truncate logs if we can free enough clusters from it.
2039 * As for return value, "< 0" means error, "0" no space and "1" means
2040 * we have freed enough spaces and let the caller try to allocate again.
2041 */
2042 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2043 unsigned int needed)
2044 {
2045 tid_t target;
2046 int ret = 0;
2047 unsigned int truncated_clusters;
2048
2049 mutex_lock(&osb->osb_tl_inode->i_mutex);
2050 truncated_clusters = osb->truncated_clusters;
2051 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2052
2053 /*
2054 * Check whether we can succeed in allocating if we free
2055 * the truncate log.
2056 */
2057 if (truncated_clusters < needed)
2058 goto out;
2059
2060 ret = ocfs2_flush_truncate_log(osb);
2061 if (ret) {
2062 mlog_errno(ret);
2063 goto out;
2064 }
2065
2066 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2067 jbd2_log_wait_commit(osb->journal->j_journal, target);
2068 ret = 1;
2069 }
2070 out:
2071 return ret;
2072 }
2073
2074 int ocfs2_write_begin_nolock(struct file *filp,
2075 struct address_space *mapping,
2076 loff_t pos, unsigned len, unsigned flags,
2077 struct page **pagep, void **fsdata,
2078 struct buffer_head *di_bh, struct page *mmap_page)
2079 {
2080 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2081 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2082 struct ocfs2_write_ctxt *wc;
2083 struct inode *inode = mapping->host;
2084 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2085 struct ocfs2_dinode *di;
2086 struct ocfs2_alloc_context *data_ac = NULL;
2087 struct ocfs2_alloc_context *meta_ac = NULL;
2088 handle_t *handle;
2089 struct ocfs2_extent_tree et;
2090 int try_free = 1, ret1;
2091
2092 try_again:
2093 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2094 if (ret) {
2095 mlog_errno(ret);
2096 return ret;
2097 }
2098
2099 if (ocfs2_supports_inline_data(osb)) {
2100 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2101 mmap_page, wc);
2102 if (ret == 1) {
2103 ret = 0;
2104 goto success;
2105 }
2106 if (ret < 0) {
2107 mlog_errno(ret);
2108 goto out;
2109 }
2110 }
2111
2112 if (ocfs2_sparse_alloc(osb))
2113 ret = ocfs2_zero_tail(inode, di_bh, pos);
2114 else
2115 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2116 wc);
2117 if (ret) {
2118 mlog_errno(ret);
2119 goto out;
2120 }
2121
2122 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2123 if (ret < 0) {
2124 mlog_errno(ret);
2125 goto out;
2126 } else if (ret == 1) {
2127 clusters_need = wc->w_clen;
2128 ret = ocfs2_refcount_cow(inode, di_bh,
2129 wc->w_cpos, wc->w_clen, UINT_MAX);
2130 if (ret) {
2131 mlog_errno(ret);
2132 goto out;
2133 }
2134 }
2135
2136 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2137 &extents_to_split);
2138 if (ret) {
2139 mlog_errno(ret);
2140 goto out;
2141 }
2142 clusters_need += clusters_to_alloc;
2143
2144 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2145
2146 trace_ocfs2_write_begin_nolock(
2147 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2148 (long long)i_size_read(inode),
2149 le32_to_cpu(di->i_clusters),
2150 pos, len, flags, mmap_page,
2151 clusters_to_alloc, extents_to_split);
2152
2153 /*
2154 * We set w_target_from, w_target_to here so that
2155 * ocfs2_write_end() knows which range in the target page to
2156 * write out. An allocation requires that we write the entire
2157 * cluster range.
2158 */
2159 if (clusters_to_alloc || extents_to_split) {
2160 /*
2161 * XXX: We are stretching the limits of
2162 * ocfs2_lock_allocators(). It greatly over-estimates
2163 * the work to be done.
2164 */
2165 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2166 wc->w_di_bh);
2167 ret = ocfs2_lock_allocators(inode, &et,
2168 clusters_to_alloc, extents_to_split,
2169 &data_ac, &meta_ac);
2170 if (ret) {
2171 mlog_errno(ret);
2172 goto out;
2173 }
2174
2175 if (data_ac)
2176 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2177
2178 credits = ocfs2_calc_extend_credits(inode->i_sb,
2179 &di->id2.i_list);
2180
2181 }
2182
2183 /*
2184 * We have to zero sparse allocated clusters, unwritten extent clusters,
2185 * and non-sparse clusters we just extended. For non-sparse writes,
2186 * we know zeros will only be needed in the first and/or last cluster.
2187 */
2188 if (clusters_to_alloc || extents_to_split ||
2189 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2190 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2191 cluster_of_pages = 1;
2192 else
2193 cluster_of_pages = 0;
2194
2195 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2196
2197 handle = ocfs2_start_trans(osb, credits);
2198 if (IS_ERR(handle)) {
2199 ret = PTR_ERR(handle);
2200 mlog_errno(ret);
2201 goto out;
2202 }
2203
2204 wc->w_handle = handle;
2205
2206 if (clusters_to_alloc) {
2207 ret = dquot_alloc_space_nodirty(inode,
2208 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2209 if (ret)
2210 goto out_commit;
2211 }
2212
2213 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2214 OCFS2_JOURNAL_ACCESS_WRITE);
2215 if (ret) {
2216 mlog_errno(ret);
2217 goto out_quota;
2218 }
2219
2220 /*
2221 * Fill our page array first. That way we've grabbed enough so
2222 * that we can zero and flush if we error after adding the
2223 * extent.
2224 */
2225 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2226 cluster_of_pages, mmap_page);
2227 if (ret && ret != -EAGAIN) {
2228 mlog_errno(ret);
2229 goto out_quota;
2230 }
2231
2232 /*
2233 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2234 * the target page. In this case, we exit with no error and no target
2235 * page. This will trigger the caller, page_mkwrite(), to re-try
2236 * the operation.
2237 */
2238 if (ret == -EAGAIN) {
2239 BUG_ON(wc->w_target_page);
2240 ret = 0;
2241 goto out_quota;
2242 }
2243
2244 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2245 len);
2246 if (ret) {
2247 mlog_errno(ret);
2248 goto out_quota;
2249 }
2250
2251 if (data_ac)
2252 ocfs2_free_alloc_context(data_ac);
2253 if (meta_ac)
2254 ocfs2_free_alloc_context(meta_ac);
2255
2256 success:
2257 *pagep = wc->w_target_page;
2258 *fsdata = wc;
2259 return 0;
2260 out_quota:
2261 if (clusters_to_alloc)
2262 dquot_free_space(inode,
2263 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2264 out_commit:
2265 ocfs2_commit_trans(osb, handle);
2266
2267 out:
2268 ocfs2_free_write_ctxt(wc);
2269
2270 if (data_ac) {
2271 ocfs2_free_alloc_context(data_ac);
2272 data_ac = NULL;
2273 }
2274 if (meta_ac) {
2275 ocfs2_free_alloc_context(meta_ac);
2276 meta_ac = NULL;
2277 }
2278
2279 if (ret == -ENOSPC && try_free) {
2280 /*
2281 * Try to free some truncate log so that we can have enough
2282 * clusters to allocate.
2283 */
2284 try_free = 0;
2285
2286 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2287 if (ret1 == 1)
2288 goto try_again;
2289
2290 if (ret1 < 0)
2291 mlog_errno(ret1);
2292 }
2293
2294 return ret;
2295 }
2296
2297 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2298 loff_t pos, unsigned len, unsigned flags,
2299 struct page **pagep, void **fsdata)
2300 {
2301 int ret;
2302 struct buffer_head *di_bh = NULL;
2303 struct inode *inode = mapping->host;
2304
2305 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306 if (ret) {
2307 mlog_errno(ret);
2308 return ret;
2309 }
2310
2311 /*
2312 * Take alloc sem here to prevent concurrent lookups. That way
2313 * the mapping, zeroing and tree manipulation within
2314 * ocfs2_write() will be safe against ->readpage(). This
2315 * should also serve to lock out allocation from a shared
2316 * writeable region.
2317 */
2318 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2319
2320 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2321 fsdata, di_bh, NULL);
2322 if (ret) {
2323 mlog_errno(ret);
2324 goto out_fail;
2325 }
2326
2327 brelse(di_bh);
2328
2329 return 0;
2330
2331 out_fail:
2332 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2333
2334 brelse(di_bh);
2335 ocfs2_inode_unlock(inode, 1);
2336
2337 return ret;
2338 }
2339
2340 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2341 unsigned len, unsigned *copied,
2342 struct ocfs2_dinode *di,
2343 struct ocfs2_write_ctxt *wc)
2344 {
2345 void *kaddr;
2346
2347 if (unlikely(*copied < len)) {
2348 if (!PageUptodate(wc->w_target_page)) {
2349 *copied = 0;
2350 return;
2351 }
2352 }
2353
2354 kaddr = kmap_atomic(wc->w_target_page);
2355 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2356 kunmap_atomic(kaddr);
2357
2358 trace_ocfs2_write_end_inline(
2359 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2360 (unsigned long long)pos, *copied,
2361 le16_to_cpu(di->id2.i_data.id_count),
2362 le16_to_cpu(di->i_dyn_features));
2363 }
2364
2365 int ocfs2_write_end_nolock(struct address_space *mapping,
2366 loff_t pos, unsigned len, unsigned copied,
2367 struct page *page, void *fsdata)
2368 {
2369 int i, ret;
2370 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2371 struct inode *inode = mapping->host;
2372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2373 struct ocfs2_write_ctxt *wc = fsdata;
2374 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2375 handle_t *handle = wc->w_handle;
2376 struct page *tmppage;
2377
2378 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2379 OCFS2_JOURNAL_ACCESS_WRITE);
2380 if (ret) {
2381 copied = ret;
2382 mlog_errno(ret);
2383 goto out;
2384 }
2385
2386 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2387 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2388 goto out_write_size;
2389 }
2390
2391 if (unlikely(copied < len)) {
2392 if (!PageUptodate(wc->w_target_page))
2393 copied = 0;
2394
2395 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2396 start+len);
2397 }
2398 flush_dcache_page(wc->w_target_page);
2399
2400 for(i = 0; i < wc->w_num_pages; i++) {
2401 tmppage = wc->w_pages[i];
2402
2403 if (tmppage == wc->w_target_page) {
2404 from = wc->w_target_from;
2405 to = wc->w_target_to;
2406
2407 BUG_ON(from > PAGE_CACHE_SIZE ||
2408 to > PAGE_CACHE_SIZE ||
2409 to < from);
2410 } else {
2411 /*
2412 * Pages adjacent to the target (if any) imply
2413 * a hole-filling write in which case we want
2414 * to flush their entire range.
2415 */
2416 from = 0;
2417 to = PAGE_CACHE_SIZE;
2418 }
2419
2420 if (page_has_buffers(tmppage)) {
2421 if (ocfs2_should_order_data(inode))
2422 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2423 block_commit_write(tmppage, from, to);
2424 }
2425 }
2426
2427 out_write_size:
2428 pos += copied;
2429 if (pos > i_size_read(inode)) {
2430 i_size_write(inode, pos);
2431 mark_inode_dirty(inode);
2432 }
2433 inode->i_blocks = ocfs2_inode_sector_count(inode);
2434 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2435 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2436 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2437 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2438 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2439 ocfs2_journal_dirty(handle, wc->w_di_bh);
2440
2441 out:
2442 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2443 * lock, or it will cause a deadlock since journal commit threads holds
2444 * this lock and will ask for the page lock when flushing the data.
2445 * put it here to preserve the unlock order.
2446 */
2447 ocfs2_unlock_pages(wc);
2448
2449 ocfs2_commit_trans(osb, handle);
2450
2451 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2452
2453 brelse(wc->w_di_bh);
2454 kfree(wc);
2455
2456 return copied;
2457 }
2458
2459 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2460 loff_t pos, unsigned len, unsigned copied,
2461 struct page *page, void *fsdata)
2462 {
2463 int ret;
2464 struct inode *inode = mapping->host;
2465
2466 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2467
2468 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2469 ocfs2_inode_unlock(inode, 1);
2470
2471 return ret;
2472 }
2473
2474 const struct address_space_operations ocfs2_aops = {
2475 .readpage = ocfs2_readpage,
2476 .readpages = ocfs2_readpages,
2477 .writepage = ocfs2_writepage,
2478 .write_begin = ocfs2_write_begin,
2479 .write_end = ocfs2_write_end,
2480 .bmap = ocfs2_bmap,
2481 .direct_IO = ocfs2_direct_IO,
2482 .invalidatepage = block_invalidatepage,
2483 .releasepage = ocfs2_releasepage,
2484 .migratepage = buffer_migrate_page,
2485 .is_partially_uptodate = block_is_partially_uptodate,
2486 .error_remove_page = generic_error_remove_page,
2487 };