]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ocfs2/file.c
Merge tag 'trace-v5.15-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / fs / ocfs2 / file.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * file.c
4 *
5 * File open, close, extend, truncate
6 *
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25
26 #include <cluster/masklog.h>
27
28 #include "ocfs2.h"
29
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 struct ocfs2_file_private *fp;
55
56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 if (!fp)
58 return -ENOMEM;
59
60 fp->fp_file = file;
61 mutex_init(&fp->fp_mutex);
62 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 file->private_data = fp;
64
65 return 0;
66 }
67
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp = file->private_data;
71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72
73 if (fp) {
74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 ocfs2_lock_res_free(&fp->fp_flock);
76 kfree(fp);
77 file->private_data = NULL;
78 }
79 }
80
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 int status;
84 int mode = file->f_flags;
85 struct ocfs2_inode_info *oi = OCFS2_I(inode);
86
87 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 (unsigned long long)oi->ip_blkno,
89 file->f_path.dentry->d_name.len,
90 file->f_path.dentry->d_name.name, mode);
91
92 if (file->f_mode & FMODE_WRITE) {
93 status = dquot_initialize(inode);
94 if (status)
95 goto leave;
96 }
97
98 spin_lock(&oi->ip_lock);
99
100 /* Check that the inode hasn't been wiped from disk by another
101 * node. If it hasn't then we're safe as long as we hold the
102 * spin lock until our increment of open count. */
103 if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 spin_unlock(&oi->ip_lock);
105
106 status = -ENOENT;
107 goto leave;
108 }
109
110 if (mode & O_DIRECT)
111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112
113 oi->ip_open_count++;
114 spin_unlock(&oi->ip_lock);
115
116 status = ocfs2_init_file_private(inode, file);
117 if (status) {
118 /*
119 * We want to set open count back if we're failing the
120 * open.
121 */
122 spin_lock(&oi->ip_lock);
123 oi->ip_open_count--;
124 spin_unlock(&oi->ip_lock);
125 }
126
127 file->f_mode |= FMODE_NOWAIT;
128
129 leave:
130 return status;
131 }
132
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
136
137 spin_lock(&oi->ip_lock);
138 if (!--oi->ip_open_count)
139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140
141 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 oi->ip_blkno,
143 file->f_path.dentry->d_name.len,
144 file->f_path.dentry->d_name.name,
145 oi->ip_open_count);
146 spin_unlock(&oi->ip_lock);
147
148 ocfs2_free_file_private(inode, file);
149
150 return 0;
151 }
152
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 return ocfs2_init_file_private(inode, file);
156 }
157
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 ocfs2_free_file_private(inode, file);
161 return 0;
162 }
163
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 int datasync)
166 {
167 int err = 0;
168 struct inode *inode = file->f_mapping->host;
169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 journal_t *journal = osb->journal->j_journal;
172 int ret;
173 tid_t commit_tid;
174 bool needs_barrier = false;
175
176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 oi->ip_blkno,
178 file->f_path.dentry->d_name.len,
179 file->f_path.dentry->d_name.name,
180 (unsigned long long)datasync);
181
182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 return -EROFS;
184
185 err = file_write_and_wait_range(file, start, end);
186 if (err)
187 return err;
188
189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 if (journal->j_flags & JBD2_BARRIER &&
191 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 needs_barrier = true;
193 err = jbd2_complete_transaction(journal, commit_tid);
194 if (needs_barrier) {
195 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 if (!err)
197 err = ret;
198 }
199
200 if (err)
201 mlog_errno(err);
202
203 return (err < 0) ? -EIO : 0;
204 }
205
206 int ocfs2_should_update_atime(struct inode *inode,
207 struct vfsmount *vfsmnt)
208 {
209 struct timespec64 now;
210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211
212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 return 0;
214
215 if ((inode->i_flags & S_NOATIME) ||
216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 return 0;
218
219 /*
220 * We can be called with no vfsmnt structure - NFSD will
221 * sometimes do this.
222 *
223 * Note that our action here is different than touch_atime() -
224 * if we can't tell whether this is a noatime mount, then we
225 * don't know whether to trust the value of s_atime_quantum.
226 */
227 if (vfsmnt == NULL)
228 return 0;
229
230 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 return 0;
233
234 if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 return 1;
238
239 return 0;
240 }
241
242 now = current_time(inode);
243 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 return 0;
245 else
246 return 1;
247 }
248
249 int ocfs2_update_inode_atime(struct inode *inode,
250 struct buffer_head *bh)
251 {
252 int ret;
253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 handle_t *handle;
255 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256
257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 if (IS_ERR(handle)) {
259 ret = PTR_ERR(handle);
260 mlog_errno(ret);
261 goto out;
262 }
263
264 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 OCFS2_JOURNAL_ACCESS_WRITE);
266 if (ret) {
267 mlog_errno(ret);
268 goto out_commit;
269 }
270
271 /*
272 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 * have i_mutex to guard against concurrent changes to other
274 * inode fields.
275 */
276 inode->i_atime = current_time(inode);
277 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 ocfs2_journal_dirty(handle, bh);
281
282 out_commit:
283 ocfs2_commit_trans(osb, handle);
284 out:
285 return ret;
286 }
287
288 int ocfs2_set_inode_size(handle_t *handle,
289 struct inode *inode,
290 struct buffer_head *fe_bh,
291 u64 new_i_size)
292 {
293 int status;
294
295 i_size_write(inode, new_i_size);
296 inode->i_blocks = ocfs2_inode_sector_count(inode);
297 inode->i_ctime = inode->i_mtime = current_time(inode);
298
299 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 if (status < 0) {
301 mlog_errno(status);
302 goto bail;
303 }
304
305 bail:
306 return status;
307 }
308
309 int ocfs2_simple_size_update(struct inode *inode,
310 struct buffer_head *di_bh,
311 u64 new_i_size)
312 {
313 int ret;
314 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 handle_t *handle = NULL;
316
317 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 if (IS_ERR(handle)) {
319 ret = PTR_ERR(handle);
320 mlog_errno(ret);
321 goto out;
322 }
323
324 ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 new_i_size);
326 if (ret < 0)
327 mlog_errno(ret);
328
329 ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 ocfs2_commit_trans(osb, handle);
331 out:
332 return ret;
333 }
334
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 struct buffer_head *fe_bh,
337 u64 offset)
338 {
339 int status;
340 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 unsigned int num_clusters = 0;
342 unsigned int ext_flags = 0;
343
344 /*
345 * If the new offset is aligned to the range of the cluster, there is
346 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 * CoW either.
348 */
349 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 return 0;
351
352 status = ocfs2_get_clusters(inode, cpos, &phys,
353 &num_clusters, &ext_flags);
354 if (status) {
355 mlog_errno(status);
356 goto out;
357 }
358
359 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 goto out;
361
362 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363
364 out:
365 return status;
366 }
367
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 struct inode *inode,
370 struct buffer_head *fe_bh,
371 u64 new_i_size)
372 {
373 int status;
374 handle_t *handle;
375 struct ocfs2_dinode *di;
376 u64 cluster_bytes;
377
378 /*
379 * We need to CoW the cluster contains the offset if it is reflinked
380 * since we will call ocfs2_zero_range_for_truncate later which will
381 * write "0" from offset to the end of the cluster.
382 */
383 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 if (status) {
385 mlog_errno(status);
386 return status;
387 }
388
389 /* TODO: This needs to actually orphan the inode in this
390 * transaction. */
391
392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 if (IS_ERR(handle)) {
394 status = PTR_ERR(handle);
395 mlog_errno(status);
396 goto out;
397 }
398
399 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 OCFS2_JOURNAL_ACCESS_WRITE);
401 if (status < 0) {
402 mlog_errno(status);
403 goto out_commit;
404 }
405
406 /*
407 * Do this before setting i_size.
408 */
409 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 cluster_bytes);
412 if (status) {
413 mlog_errno(status);
414 goto out_commit;
415 }
416
417 i_size_write(inode, new_i_size);
418 inode->i_ctime = inode->i_mtime = current_time(inode);
419
420 di = (struct ocfs2_dinode *) fe_bh->b_data;
421 di->i_size = cpu_to_le64(new_i_size);
422 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 ocfs2_update_inode_fsync_trans(handle, inode, 0);
425
426 ocfs2_journal_dirty(handle, fe_bh);
427
428 out_commit:
429 ocfs2_commit_trans(osb, handle);
430 out:
431 return status;
432 }
433
434 int ocfs2_truncate_file(struct inode *inode,
435 struct buffer_head *di_bh,
436 u64 new_i_size)
437 {
438 int status = 0;
439 struct ocfs2_dinode *fe = NULL;
440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441
442 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 * already validated it */
444 fe = (struct ocfs2_dinode *) di_bh->b_data;
445
446 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 (unsigned long long)le64_to_cpu(fe->i_size),
448 (unsigned long long)new_i_size);
449
450 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 "Inode %llu, inode i_size = %lld != di "
452 "i_size = %llu, i_flags = 0x%x\n",
453 (unsigned long long)OCFS2_I(inode)->ip_blkno,
454 i_size_read(inode),
455 (unsigned long long)le64_to_cpu(fe->i_size),
456 le32_to_cpu(fe->i_flags));
457
458 if (new_i_size > le64_to_cpu(fe->i_size)) {
459 trace_ocfs2_truncate_file_error(
460 (unsigned long long)le64_to_cpu(fe->i_size),
461 (unsigned long long)new_i_size);
462 status = -EINVAL;
463 mlog_errno(status);
464 goto bail;
465 }
466
467 down_write(&OCFS2_I(inode)->ip_alloc_sem);
468
469 ocfs2_resv_discard(&osb->osb_la_resmap,
470 &OCFS2_I(inode)->ip_la_data_resv);
471
472 /*
473 * The inode lock forced other nodes to sync and drop their
474 * pages, which (correctly) happens even if we have a truncate
475 * without allocation change - ocfs2 cluster sizes can be much
476 * greater than page size, so we have to truncate them
477 * anyway.
478 */
479 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
480 truncate_inode_pages(inode->i_mapping, new_i_size);
481
482 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
484 i_size_read(inode), 1);
485 if (status)
486 mlog_errno(status);
487
488 goto bail_unlock_sem;
489 }
490
491 /* alright, we're going to need to do a full blown alloc size
492 * change. Orphan the inode so that recovery can complete the
493 * truncate if necessary. This does the task of marking
494 * i_size. */
495 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
496 if (status < 0) {
497 mlog_errno(status);
498 goto bail_unlock_sem;
499 }
500
501 status = ocfs2_commit_truncate(osb, inode, di_bh);
502 if (status < 0) {
503 mlog_errno(status);
504 goto bail_unlock_sem;
505 }
506
507 /* TODO: orphan dir cleanup here. */
508 bail_unlock_sem:
509 up_write(&OCFS2_I(inode)->ip_alloc_sem);
510
511 bail:
512 if (!status && OCFS2_I(inode)->ip_clusters == 0)
513 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
514
515 return status;
516 }
517
518 /*
519 * extend file allocation only here.
520 * we'll update all the disk stuff, and oip->alloc_size
521 *
522 * expect stuff to be locked, a transaction started and enough data /
523 * metadata reservations in the contexts.
524 *
525 * Will return -EAGAIN, and a reason if a restart is needed.
526 * If passed in, *reason will always be set, even in error.
527 */
528 int ocfs2_add_inode_data(struct ocfs2_super *osb,
529 struct inode *inode,
530 u32 *logical_offset,
531 u32 clusters_to_add,
532 int mark_unwritten,
533 struct buffer_head *fe_bh,
534 handle_t *handle,
535 struct ocfs2_alloc_context *data_ac,
536 struct ocfs2_alloc_context *meta_ac,
537 enum ocfs2_alloc_restarted *reason_ret)
538 {
539 int ret;
540 struct ocfs2_extent_tree et;
541
542 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
543 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
544 clusters_to_add, mark_unwritten,
545 data_ac, meta_ac, reason_ret);
546
547 return ret;
548 }
549
550 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
551 u32 clusters_to_add, int mark_unwritten)
552 {
553 int status = 0;
554 int restart_func = 0;
555 int credits;
556 u32 prev_clusters;
557 struct buffer_head *bh = NULL;
558 struct ocfs2_dinode *fe = NULL;
559 handle_t *handle = NULL;
560 struct ocfs2_alloc_context *data_ac = NULL;
561 struct ocfs2_alloc_context *meta_ac = NULL;
562 enum ocfs2_alloc_restarted why = RESTART_NONE;
563 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
564 struct ocfs2_extent_tree et;
565 int did_quota = 0;
566
567 /*
568 * Unwritten extent only exists for file systems which
569 * support holes.
570 */
571 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
572
573 status = ocfs2_read_inode_block(inode, &bh);
574 if (status < 0) {
575 mlog_errno(status);
576 goto leave;
577 }
578 fe = (struct ocfs2_dinode *) bh->b_data;
579
580 restart_all:
581 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
582
583 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
584 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
585 &data_ac, &meta_ac);
586 if (status) {
587 mlog_errno(status);
588 goto leave;
589 }
590
591 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
592 handle = ocfs2_start_trans(osb, credits);
593 if (IS_ERR(handle)) {
594 status = PTR_ERR(handle);
595 handle = NULL;
596 mlog_errno(status);
597 goto leave;
598 }
599
600 restarted_transaction:
601 trace_ocfs2_extend_allocation(
602 (unsigned long long)OCFS2_I(inode)->ip_blkno,
603 (unsigned long long)i_size_read(inode),
604 le32_to_cpu(fe->i_clusters), clusters_to_add,
605 why, restart_func);
606
607 status = dquot_alloc_space_nodirty(inode,
608 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
609 if (status)
610 goto leave;
611 did_quota = 1;
612
613 /* reserve a write to the file entry early on - that we if we
614 * run out of credits in the allocation path, we can still
615 * update i_size. */
616 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
617 OCFS2_JOURNAL_ACCESS_WRITE);
618 if (status < 0) {
619 mlog_errno(status);
620 goto leave;
621 }
622
623 prev_clusters = OCFS2_I(inode)->ip_clusters;
624
625 status = ocfs2_add_inode_data(osb,
626 inode,
627 &logical_start,
628 clusters_to_add,
629 mark_unwritten,
630 bh,
631 handle,
632 data_ac,
633 meta_ac,
634 &why);
635 if ((status < 0) && (status != -EAGAIN)) {
636 if (status != -ENOSPC)
637 mlog_errno(status);
638 goto leave;
639 }
640 ocfs2_update_inode_fsync_trans(handle, inode, 1);
641 ocfs2_journal_dirty(handle, bh);
642
643 spin_lock(&OCFS2_I(inode)->ip_lock);
644 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
645 spin_unlock(&OCFS2_I(inode)->ip_lock);
646 /* Release unused quota reservation */
647 dquot_free_space(inode,
648 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
649 did_quota = 0;
650
651 if (why != RESTART_NONE && clusters_to_add) {
652 if (why == RESTART_META) {
653 restart_func = 1;
654 status = 0;
655 } else {
656 BUG_ON(why != RESTART_TRANS);
657
658 status = ocfs2_allocate_extend_trans(handle, 1);
659 if (status < 0) {
660 /* handle still has to be committed at
661 * this point. */
662 status = -ENOMEM;
663 mlog_errno(status);
664 goto leave;
665 }
666 goto restarted_transaction;
667 }
668 }
669
670 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
671 le32_to_cpu(fe->i_clusters),
672 (unsigned long long)le64_to_cpu(fe->i_size),
673 OCFS2_I(inode)->ip_clusters,
674 (unsigned long long)i_size_read(inode));
675
676 leave:
677 if (status < 0 && did_quota)
678 dquot_free_space(inode,
679 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
680 if (handle) {
681 ocfs2_commit_trans(osb, handle);
682 handle = NULL;
683 }
684 if (data_ac) {
685 ocfs2_free_alloc_context(data_ac);
686 data_ac = NULL;
687 }
688 if (meta_ac) {
689 ocfs2_free_alloc_context(meta_ac);
690 meta_ac = NULL;
691 }
692 if ((!status) && restart_func) {
693 restart_func = 0;
694 goto restart_all;
695 }
696 brelse(bh);
697 bh = NULL;
698
699 return status;
700 }
701
702 /*
703 * While a write will already be ordering the data, a truncate will not.
704 * Thus, we need to explicitly order the zeroed pages.
705 */
706 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
707 struct buffer_head *di_bh,
708 loff_t start_byte,
709 loff_t length)
710 {
711 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
712 handle_t *handle = NULL;
713 int ret = 0;
714
715 if (!ocfs2_should_order_data(inode))
716 goto out;
717
718 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
719 if (IS_ERR(handle)) {
720 ret = -ENOMEM;
721 mlog_errno(ret);
722 goto out;
723 }
724
725 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
726 if (ret < 0) {
727 mlog_errno(ret);
728 goto out;
729 }
730
731 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
732 OCFS2_JOURNAL_ACCESS_WRITE);
733 if (ret)
734 mlog_errno(ret);
735 ocfs2_update_inode_fsync_trans(handle, inode, 1);
736
737 out:
738 if (ret) {
739 if (!IS_ERR(handle))
740 ocfs2_commit_trans(osb, handle);
741 handle = ERR_PTR(ret);
742 }
743 return handle;
744 }
745
746 /* Some parts of this taken from generic_cont_expand, which turned out
747 * to be too fragile to do exactly what we need without us having to
748 * worry about recursive locking in ->write_begin() and ->write_end(). */
749 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
750 u64 abs_to, struct buffer_head *di_bh)
751 {
752 struct address_space *mapping = inode->i_mapping;
753 struct page *page;
754 unsigned long index = abs_from >> PAGE_SHIFT;
755 handle_t *handle;
756 int ret = 0;
757 unsigned zero_from, zero_to, block_start, block_end;
758 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
759
760 BUG_ON(abs_from >= abs_to);
761 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
762 BUG_ON(abs_from & (inode->i_blkbits - 1));
763
764 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
765 abs_from,
766 abs_to - abs_from);
767 if (IS_ERR(handle)) {
768 ret = PTR_ERR(handle);
769 goto out;
770 }
771
772 page = find_or_create_page(mapping, index, GFP_NOFS);
773 if (!page) {
774 ret = -ENOMEM;
775 mlog_errno(ret);
776 goto out_commit_trans;
777 }
778
779 /* Get the offsets within the page that we want to zero */
780 zero_from = abs_from & (PAGE_SIZE - 1);
781 zero_to = abs_to & (PAGE_SIZE - 1);
782 if (!zero_to)
783 zero_to = PAGE_SIZE;
784
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode)->ip_blkno,
787 (unsigned long long)abs_from,
788 (unsigned long long)abs_to,
789 index, zero_from, zero_to);
790
791 /* We know that zero_from is block aligned */
792 for (block_start = zero_from; block_start < zero_to;
793 block_start = block_end) {
794 block_end = block_start + i_blocksize(inode);
795
796 /*
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
799 * whole block.
800 */
801 ret = __block_write_begin(page, block_start + 1, 0,
802 ocfs2_get_block);
803 if (ret < 0) {
804 mlog_errno(ret);
805 goto out_unlock;
806 }
807
808
809 /* must not update i_size! */
810 ret = block_commit_write(page, block_start + 1,
811 block_start + 1);
812 if (ret < 0)
813 mlog_errno(ret);
814 else
815 ret = 0;
816 }
817
818 /*
819 * fs-writeback will release the dirty pages without page lock
820 * whose offset are over inode size, the release happens at
821 * block_write_full_page().
822 */
823 i_size_write(inode, abs_to);
824 inode->i_blocks = ocfs2_inode_sector_count(inode);
825 di->i_size = cpu_to_le64((u64)i_size_read(inode));
826 inode->i_mtime = inode->i_ctime = current_time(inode);
827 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
828 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
829 di->i_mtime_nsec = di->i_ctime_nsec;
830 if (handle) {
831 ocfs2_journal_dirty(handle, di_bh);
832 ocfs2_update_inode_fsync_trans(handle, inode, 1);
833 }
834
835 out_unlock:
836 unlock_page(page);
837 put_page(page);
838 out_commit_trans:
839 if (handle)
840 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
841 out:
842 return ret;
843 }
844
845 /*
846 * Find the next range to zero. We do this in terms of bytes because
847 * that's what ocfs2_zero_extend() wants, and it is dealing with the
848 * pagecache. We may return multiple extents.
849 *
850 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
851 * needs to be zeroed. range_start and range_end return the next zeroing
852 * range. A subsequent call should pass the previous range_end as its
853 * zero_start. If range_end is 0, there's nothing to do.
854 *
855 * Unwritten extents are skipped over. Refcounted extents are CoWd.
856 */
857 static int ocfs2_zero_extend_get_range(struct inode *inode,
858 struct buffer_head *di_bh,
859 u64 zero_start, u64 zero_end,
860 u64 *range_start, u64 *range_end)
861 {
862 int rc = 0, needs_cow = 0;
863 u32 p_cpos, zero_clusters = 0;
864 u32 zero_cpos =
865 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
866 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
867 unsigned int num_clusters = 0;
868 unsigned int ext_flags = 0;
869
870 while (zero_cpos < last_cpos) {
871 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
872 &num_clusters, &ext_flags);
873 if (rc) {
874 mlog_errno(rc);
875 goto out;
876 }
877
878 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
879 zero_clusters = num_clusters;
880 if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 needs_cow = 1;
882 break;
883 }
884
885 zero_cpos += num_clusters;
886 }
887 if (!zero_clusters) {
888 *range_end = 0;
889 goto out;
890 }
891
892 while ((zero_cpos + zero_clusters) < last_cpos) {
893 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
894 &p_cpos, &num_clusters,
895 &ext_flags);
896 if (rc) {
897 mlog_errno(rc);
898 goto out;
899 }
900
901 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
902 break;
903 if (ext_flags & OCFS2_EXT_REFCOUNTED)
904 needs_cow = 1;
905 zero_clusters += num_clusters;
906 }
907 if ((zero_cpos + zero_clusters) > last_cpos)
908 zero_clusters = last_cpos - zero_cpos;
909
910 if (needs_cow) {
911 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
912 zero_clusters, UINT_MAX);
913 if (rc) {
914 mlog_errno(rc);
915 goto out;
916 }
917 }
918
919 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
920 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
921 zero_cpos + zero_clusters);
922
923 out:
924 return rc;
925 }
926
927 /*
928 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
929 * has made sure that the entire range needs zeroing.
930 */
931 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 u64 range_end, struct buffer_head *di_bh)
933 {
934 int rc = 0;
935 u64 next_pos;
936 u64 zero_pos = range_start;
937
938 trace_ocfs2_zero_extend_range(
939 (unsigned long long)OCFS2_I(inode)->ip_blkno,
940 (unsigned long long)range_start,
941 (unsigned long long)range_end);
942 BUG_ON(range_start >= range_end);
943
944 while (zero_pos < range_end) {
945 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
946 if (next_pos > range_end)
947 next_pos = range_end;
948 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
949 if (rc < 0) {
950 mlog_errno(rc);
951 break;
952 }
953 zero_pos = next_pos;
954
955 /*
956 * Very large extends have the potential to lock up
957 * the cpu for extended periods of time.
958 */
959 cond_resched();
960 }
961
962 return rc;
963 }
964
965 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
966 loff_t zero_to_size)
967 {
968 int ret = 0;
969 u64 zero_start, range_start = 0, range_end = 0;
970 struct super_block *sb = inode->i_sb;
971
972 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
973 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
974 (unsigned long long)zero_start,
975 (unsigned long long)i_size_read(inode));
976 while (zero_start < zero_to_size) {
977 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
978 zero_to_size,
979 &range_start,
980 &range_end);
981 if (ret) {
982 mlog_errno(ret);
983 break;
984 }
985 if (!range_end)
986 break;
987 /* Trim the ends */
988 if (range_start < zero_start)
989 range_start = zero_start;
990 if (range_end > zero_to_size)
991 range_end = zero_to_size;
992
993 ret = ocfs2_zero_extend_range(inode, range_start,
994 range_end, di_bh);
995 if (ret) {
996 mlog_errno(ret);
997 break;
998 }
999 zero_start = range_end;
1000 }
1001
1002 return ret;
1003 }
1004
1005 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1006 u64 new_i_size, u64 zero_to)
1007 {
1008 int ret;
1009 u32 clusters_to_add;
1010 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011
1012 /*
1013 * Only quota files call this without a bh, and they can't be
1014 * refcounted.
1015 */
1016 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1017 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1018
1019 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1020 if (clusters_to_add < oi->ip_clusters)
1021 clusters_to_add = 0;
1022 else
1023 clusters_to_add -= oi->ip_clusters;
1024
1025 if (clusters_to_add) {
1026 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1027 clusters_to_add, 0);
1028 if (ret) {
1029 mlog_errno(ret);
1030 goto out;
1031 }
1032 }
1033
1034 /*
1035 * Call this even if we don't add any clusters to the tree. We
1036 * still need to zero the area between the old i_size and the
1037 * new i_size.
1038 */
1039 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1040 if (ret < 0)
1041 mlog_errno(ret);
1042
1043 out:
1044 return ret;
1045 }
1046
1047 static int ocfs2_extend_file(struct inode *inode,
1048 struct buffer_head *di_bh,
1049 u64 new_i_size)
1050 {
1051 int ret = 0;
1052 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1053
1054 BUG_ON(!di_bh);
1055
1056 /* setattr sometimes calls us like this. */
1057 if (new_i_size == 0)
1058 goto out;
1059
1060 if (i_size_read(inode) == new_i_size)
1061 goto out;
1062 BUG_ON(new_i_size < i_size_read(inode));
1063
1064 /*
1065 * The alloc sem blocks people in read/write from reading our
1066 * allocation until we're done changing it. We depend on
1067 * i_mutex to block other extend/truncate calls while we're
1068 * here. We even have to hold it for sparse files because there
1069 * might be some tail zeroing.
1070 */
1071 down_write(&oi->ip_alloc_sem);
1072
1073 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1074 /*
1075 * We can optimize small extends by keeping the inodes
1076 * inline data.
1077 */
1078 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1079 up_write(&oi->ip_alloc_sem);
1080 goto out_update_size;
1081 }
1082
1083 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1084 if (ret) {
1085 up_write(&oi->ip_alloc_sem);
1086 mlog_errno(ret);
1087 goto out;
1088 }
1089 }
1090
1091 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1092 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1093 else
1094 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 new_i_size);
1096
1097 up_write(&oi->ip_alloc_sem);
1098
1099 if (ret < 0) {
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103
1104 out_update_size:
1105 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1106 if (ret < 0)
1107 mlog_errno(ret);
1108
1109 out:
1110 return ret;
1111 }
1112
1113 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1114 struct iattr *attr)
1115 {
1116 int status = 0, size_change;
1117 int inode_locked = 0;
1118 struct inode *inode = d_inode(dentry);
1119 struct super_block *sb = inode->i_sb;
1120 struct ocfs2_super *osb = OCFS2_SB(sb);
1121 struct buffer_head *bh = NULL;
1122 handle_t *handle = NULL;
1123 struct dquot *transfer_to[MAXQUOTAS] = { };
1124 int qtype;
1125 int had_lock;
1126 struct ocfs2_lock_holder oh;
1127
1128 trace_ocfs2_setattr(inode, dentry,
1129 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1130 dentry->d_name.len, dentry->d_name.name,
1131 attr->ia_valid, attr->ia_mode,
1132 from_kuid(&init_user_ns, attr->ia_uid),
1133 from_kgid(&init_user_ns, attr->ia_gid));
1134
1135 /* ensuring we don't even attempt to truncate a symlink */
1136 if (S_ISLNK(inode->i_mode))
1137 attr->ia_valid &= ~ATTR_SIZE;
1138
1139 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1140 | ATTR_GID | ATTR_UID | ATTR_MODE)
1141 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 return 0;
1143
1144 status = setattr_prepare(&init_user_ns, dentry, attr);
1145 if (status)
1146 return status;
1147
1148 if (is_quota_modification(inode, attr)) {
1149 status = dquot_initialize(inode);
1150 if (status)
1151 return status;
1152 }
1153 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 if (size_change) {
1155 /*
1156 * Here we should wait dio to finish before inode lock
1157 * to avoid a deadlock between ocfs2_setattr() and
1158 * ocfs2_dio_end_io_write()
1159 */
1160 inode_dio_wait(inode);
1161
1162 status = ocfs2_rw_lock(inode, 1);
1163 if (status < 0) {
1164 mlog_errno(status);
1165 goto bail;
1166 }
1167 }
1168
1169 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 if (had_lock < 0) {
1171 status = had_lock;
1172 goto bail_unlock_rw;
1173 } else if (had_lock) {
1174 /*
1175 * As far as we know, ocfs2_setattr() could only be the first
1176 * VFS entry point in the call chain of recursive cluster
1177 * locking issue.
1178 *
1179 * For instance:
1180 * chmod_common()
1181 * notify_change()
1182 * ocfs2_setattr()
1183 * posix_acl_chmod()
1184 * ocfs2_iop_get_acl()
1185 *
1186 * But, we're not 100% sure if it's always true, because the
1187 * ordering of the VFS entry points in the call chain is out
1188 * of our control. So, we'd better dump the stack here to
1189 * catch the other cases of recursive locking.
1190 */
1191 mlog(ML_ERROR, "Another case of recursive locking:\n");
1192 dump_stack();
1193 }
1194 inode_locked = 1;
1195
1196 if (size_change) {
1197 status = inode_newsize_ok(inode, attr->ia_size);
1198 if (status)
1199 goto bail_unlock;
1200
1201 if (i_size_read(inode) >= attr->ia_size) {
1202 if (ocfs2_should_order_data(inode)) {
1203 status = ocfs2_begin_ordered_truncate(inode,
1204 attr->ia_size);
1205 if (status)
1206 goto bail_unlock;
1207 }
1208 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 } else
1210 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 if (status < 0) {
1212 if (status != -ENOSPC)
1213 mlog_errno(status);
1214 status = -ENOSPC;
1215 goto bail_unlock;
1216 }
1217 }
1218
1219 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1220 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 /*
1222 * Gather pointers to quota structures so that allocation /
1223 * freeing of quota structures happens here and not inside
1224 * dquot_transfer() where we have problems with lock ordering
1225 */
1226 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1227 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1228 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1229 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1230 if (IS_ERR(transfer_to[USRQUOTA])) {
1231 status = PTR_ERR(transfer_to[USRQUOTA]);
1232 transfer_to[USRQUOTA] = NULL;
1233 goto bail_unlock;
1234 }
1235 }
1236 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 transfer_to[GRPQUOTA] = NULL;
1243 goto bail_unlock;
1244 }
1245 }
1246 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 2 * ocfs2_quota_trans_credits(sb));
1249 if (IS_ERR(handle)) {
1250 status = PTR_ERR(handle);
1251 mlog_errno(status);
1252 goto bail_unlock_alloc;
1253 }
1254 status = __dquot_transfer(inode, transfer_to);
1255 if (status < 0)
1256 goto bail_commit;
1257 } else {
1258 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 if (IS_ERR(handle)) {
1261 status = PTR_ERR(handle);
1262 mlog_errno(status);
1263 goto bail_unlock_alloc;
1264 }
1265 }
1266
1267 setattr_copy(&init_user_ns, inode, attr);
1268 mark_inode_dirty(inode);
1269
1270 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 if (status < 0)
1272 mlog_errno(status);
1273
1274 bail_commit:
1275 ocfs2_commit_trans(osb, handle);
1276 bail_unlock_alloc:
1277 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1278 bail_unlock:
1279 if (status && inode_locked) {
1280 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1281 inode_locked = 0;
1282 }
1283 bail_unlock_rw:
1284 if (size_change)
1285 ocfs2_rw_unlock(inode, 1);
1286 bail:
1287
1288 /* Release quota pointers in case we acquired them */
1289 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1290 dqput(transfer_to[qtype]);
1291
1292 if (!status && attr->ia_valid & ATTR_MODE) {
1293 status = ocfs2_acl_chmod(inode, bh);
1294 if (status < 0)
1295 mlog_errno(status);
1296 }
1297 if (inode_locked)
1298 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1299
1300 brelse(bh);
1301 return status;
1302 }
1303
1304 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1305 struct kstat *stat, u32 request_mask, unsigned int flags)
1306 {
1307 struct inode *inode = d_inode(path->dentry);
1308 struct super_block *sb = path->dentry->d_sb;
1309 struct ocfs2_super *osb = sb->s_fs_info;
1310 int err;
1311
1312 err = ocfs2_inode_revalidate(path->dentry);
1313 if (err) {
1314 if (err != -ENOENT)
1315 mlog_errno(err);
1316 goto bail;
1317 }
1318
1319 generic_fillattr(&init_user_ns, inode, stat);
1320 /*
1321 * If there is inline data in the inode, the inode will normally not
1322 * have data blocks allocated (it may have an external xattr block).
1323 * Report at least one sector for such files, so tools like tar, rsync,
1324 * others don't incorrectly think the file is completely sparse.
1325 */
1326 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1327 stat->blocks += (stat->size + 511)>>9;
1328
1329 /* We set the blksize from the cluster size for performance */
1330 stat->blksize = osb->s_clustersize;
1331
1332 bail:
1333 return err;
1334 }
1335
1336 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1337 int mask)
1338 {
1339 int ret, had_lock;
1340 struct ocfs2_lock_holder oh;
1341
1342 if (mask & MAY_NOT_BLOCK)
1343 return -ECHILD;
1344
1345 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1346 if (had_lock < 0) {
1347 ret = had_lock;
1348 goto out;
1349 } else if (had_lock) {
1350 /* See comments in ocfs2_setattr() for details.
1351 * The call chain of this case could be:
1352 * do_sys_open()
1353 * may_open()
1354 * inode_permission()
1355 * ocfs2_permission()
1356 * ocfs2_iop_get_acl()
1357 */
1358 mlog(ML_ERROR, "Another case of recursive locking:\n");
1359 dump_stack();
1360 }
1361
1362 ret = generic_permission(&init_user_ns, inode, mask);
1363
1364 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1365 out:
1366 return ret;
1367 }
1368
1369 static int __ocfs2_write_remove_suid(struct inode *inode,
1370 struct buffer_head *bh)
1371 {
1372 int ret;
1373 handle_t *handle;
1374 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1375 struct ocfs2_dinode *di;
1376
1377 trace_ocfs2_write_remove_suid(
1378 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 inode->i_mode);
1380
1381 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1382 if (IS_ERR(handle)) {
1383 ret = PTR_ERR(handle);
1384 mlog_errno(ret);
1385 goto out;
1386 }
1387
1388 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1389 OCFS2_JOURNAL_ACCESS_WRITE);
1390 if (ret < 0) {
1391 mlog_errno(ret);
1392 goto out_trans;
1393 }
1394
1395 inode->i_mode &= ~S_ISUID;
1396 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1397 inode->i_mode &= ~S_ISGID;
1398
1399 di = (struct ocfs2_dinode *) bh->b_data;
1400 di->i_mode = cpu_to_le16(inode->i_mode);
1401 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1402
1403 ocfs2_journal_dirty(handle, bh);
1404
1405 out_trans:
1406 ocfs2_commit_trans(osb, handle);
1407 out:
1408 return ret;
1409 }
1410
1411 static int ocfs2_write_remove_suid(struct inode *inode)
1412 {
1413 int ret;
1414 struct buffer_head *bh = NULL;
1415
1416 ret = ocfs2_read_inode_block(inode, &bh);
1417 if (ret < 0) {
1418 mlog_errno(ret);
1419 goto out;
1420 }
1421
1422 ret = __ocfs2_write_remove_suid(inode, bh);
1423 out:
1424 brelse(bh);
1425 return ret;
1426 }
1427
1428 /*
1429 * Allocate enough extents to cover the region starting at byte offset
1430 * start for len bytes. Existing extents are skipped, any extents
1431 * added are marked as "unwritten".
1432 */
1433 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1434 u64 start, u64 len)
1435 {
1436 int ret;
1437 u32 cpos, phys_cpos, clusters, alloc_size;
1438 u64 end = start + len;
1439 struct buffer_head *di_bh = NULL;
1440
1441 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1442 ret = ocfs2_read_inode_block(inode, &di_bh);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1446 }
1447
1448 /*
1449 * Nothing to do if the requested reservation range
1450 * fits within the inode.
1451 */
1452 if (ocfs2_size_fits_inline_data(di_bh, end))
1453 goto out;
1454
1455 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1456 if (ret) {
1457 mlog_errno(ret);
1458 goto out;
1459 }
1460 }
1461
1462 /*
1463 * We consider both start and len to be inclusive.
1464 */
1465 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1466 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1467 clusters -= cpos;
1468
1469 while (clusters) {
1470 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1471 &alloc_size, NULL);
1472 if (ret) {
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 /*
1478 * Hole or existing extent len can be arbitrary, so
1479 * cap it to our own allocation request.
1480 */
1481 if (alloc_size > clusters)
1482 alloc_size = clusters;
1483
1484 if (phys_cpos) {
1485 /*
1486 * We already have an allocation at this
1487 * region so we can safely skip it.
1488 */
1489 goto next;
1490 }
1491
1492 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1493 if (ret) {
1494 if (ret != -ENOSPC)
1495 mlog_errno(ret);
1496 goto out;
1497 }
1498
1499 next:
1500 cpos += alloc_size;
1501 clusters -= alloc_size;
1502 }
1503
1504 ret = 0;
1505 out:
1506
1507 brelse(di_bh);
1508 return ret;
1509 }
1510
1511 /*
1512 * Truncate a byte range, avoiding pages within partial clusters. This
1513 * preserves those pages for the zeroing code to write to.
1514 */
1515 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 u64 byte_len)
1517 {
1518 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1519 loff_t start, end;
1520 struct address_space *mapping = inode->i_mapping;
1521
1522 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1523 end = byte_start + byte_len;
1524 end = end & ~(osb->s_clustersize - 1);
1525
1526 if (start < end) {
1527 unmap_mapping_range(mapping, start, end - start, 0);
1528 truncate_inode_pages_range(mapping, start, end - 1);
1529 }
1530 }
1531
1532 /*
1533 * zero out partial blocks of one cluster.
1534 *
1535 * start: file offset where zero starts, will be made upper block aligned.
1536 * len: it will be trimmed to the end of current cluster if "start + len"
1537 * is bigger than it.
1538 */
1539 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1540 u64 start, u64 len)
1541 {
1542 int ret;
1543 u64 start_block, end_block, nr_blocks;
1544 u64 p_block, offset;
1545 u32 cluster, p_cluster, nr_clusters;
1546 struct super_block *sb = inode->i_sb;
1547 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1548
1549 if (start + len < end)
1550 end = start + len;
1551
1552 start_block = ocfs2_blocks_for_bytes(sb, start);
1553 end_block = ocfs2_blocks_for_bytes(sb, end);
1554 nr_blocks = end_block - start_block;
1555 if (!nr_blocks)
1556 return 0;
1557
1558 cluster = ocfs2_bytes_to_clusters(sb, start);
1559 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1560 &nr_clusters, NULL);
1561 if (ret)
1562 return ret;
1563 if (!p_cluster)
1564 return 0;
1565
1566 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1567 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1568 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1569 }
1570
1571 static int ocfs2_zero_partial_clusters(struct inode *inode,
1572 u64 start, u64 len)
1573 {
1574 int ret = 0;
1575 u64 tmpend = 0;
1576 u64 end = start + len;
1577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1578 unsigned int csize = osb->s_clustersize;
1579 handle_t *handle;
1580 loff_t isize = i_size_read(inode);
1581
1582 /*
1583 * The "start" and "end" values are NOT necessarily part of
1584 * the range whose allocation is being deleted. Rather, this
1585 * is what the user passed in with the request. We must zero
1586 * partial clusters here. There's no need to worry about
1587 * physical allocation - the zeroing code knows to skip holes.
1588 */
1589 trace_ocfs2_zero_partial_clusters(
1590 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1591 (unsigned long long)start, (unsigned long long)end);
1592
1593 /*
1594 * If both edges are on a cluster boundary then there's no
1595 * zeroing required as the region is part of the allocation to
1596 * be truncated.
1597 */
1598 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1599 goto out;
1600
1601 /* No page cache for EOF blocks, issue zero out to disk. */
1602 if (end > isize) {
1603 /*
1604 * zeroout eof blocks in last cluster starting from
1605 * "isize" even "start" > "isize" because it is
1606 * complicated to zeroout just at "start" as "start"
1607 * may be not aligned with block size, buffer write
1608 * would be required to do that, but out of eof buffer
1609 * write is not supported.
1610 */
1611 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1612 end - isize);
1613 if (ret) {
1614 mlog_errno(ret);
1615 goto out;
1616 }
1617 if (start >= isize)
1618 goto out;
1619 end = isize;
1620 }
1621 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1622 if (IS_ERR(handle)) {
1623 ret = PTR_ERR(handle);
1624 mlog_errno(ret);
1625 goto out;
1626 }
1627
1628 /*
1629 * If start is on a cluster boundary and end is somewhere in another
1630 * cluster, we have not COWed the cluster starting at start, unless
1631 * end is also within the same cluster. So, in this case, we skip this
1632 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1633 * to the next one.
1634 */
1635 if ((start & (csize - 1)) != 0) {
1636 /*
1637 * We want to get the byte offset of the end of the 1st
1638 * cluster.
1639 */
1640 tmpend = (u64)osb->s_clustersize +
1641 (start & ~(osb->s_clustersize - 1));
1642 if (tmpend > end)
1643 tmpend = end;
1644
1645 trace_ocfs2_zero_partial_clusters_range1(
1646 (unsigned long long)start,
1647 (unsigned long long)tmpend);
1648
1649 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1650 tmpend);
1651 if (ret)
1652 mlog_errno(ret);
1653 }
1654
1655 if (tmpend < end) {
1656 /*
1657 * This may make start and end equal, but the zeroing
1658 * code will skip any work in that case so there's no
1659 * need to catch it up here.
1660 */
1661 start = end & ~(osb->s_clustersize - 1);
1662
1663 trace_ocfs2_zero_partial_clusters_range2(
1664 (unsigned long long)start, (unsigned long long)end);
1665
1666 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1667 if (ret)
1668 mlog_errno(ret);
1669 }
1670 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1671
1672 ocfs2_commit_trans(osb, handle);
1673 out:
1674 return ret;
1675 }
1676
1677 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1678 {
1679 int i;
1680 struct ocfs2_extent_rec *rec = NULL;
1681
1682 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1683
1684 rec = &el->l_recs[i];
1685
1686 if (le32_to_cpu(rec->e_cpos) < pos)
1687 break;
1688 }
1689
1690 return i;
1691 }
1692
1693 /*
1694 * Helper to calculate the punching pos and length in one run, we handle the
1695 * following three cases in order:
1696 *
1697 * - remove the entire record
1698 * - remove a partial record
1699 * - no record needs to be removed (hole-punching completed)
1700 */
1701 static void ocfs2_calc_trunc_pos(struct inode *inode,
1702 struct ocfs2_extent_list *el,
1703 struct ocfs2_extent_rec *rec,
1704 u32 trunc_start, u32 *trunc_cpos,
1705 u32 *trunc_len, u32 *trunc_end,
1706 u64 *blkno, int *done)
1707 {
1708 int ret = 0;
1709 u32 coff, range;
1710
1711 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1712
1713 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1714 /*
1715 * remove an entire extent record.
1716 */
1717 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1718 /*
1719 * Skip holes if any.
1720 */
1721 if (range < *trunc_end)
1722 *trunc_end = range;
1723 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1724 *blkno = le64_to_cpu(rec->e_blkno);
1725 *trunc_end = le32_to_cpu(rec->e_cpos);
1726 } else if (range > trunc_start) {
1727 /*
1728 * remove a partial extent record, which means we're
1729 * removing the last extent record.
1730 */
1731 *trunc_cpos = trunc_start;
1732 /*
1733 * skip hole if any.
1734 */
1735 if (range < *trunc_end)
1736 *trunc_end = range;
1737 *trunc_len = *trunc_end - trunc_start;
1738 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1739 *blkno = le64_to_cpu(rec->e_blkno) +
1740 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1741 *trunc_end = trunc_start;
1742 } else {
1743 /*
1744 * It may have two following possibilities:
1745 *
1746 * - last record has been removed
1747 * - trunc_start was within a hole
1748 *
1749 * both two cases mean the completion of hole punching.
1750 */
1751 ret = 1;
1752 }
1753
1754 *done = ret;
1755 }
1756
1757 int ocfs2_remove_inode_range(struct inode *inode,
1758 struct buffer_head *di_bh, u64 byte_start,
1759 u64 byte_len)
1760 {
1761 int ret = 0, flags = 0, done = 0, i;
1762 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1763 u32 cluster_in_el;
1764 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1765 struct ocfs2_cached_dealloc_ctxt dealloc;
1766 struct address_space *mapping = inode->i_mapping;
1767 struct ocfs2_extent_tree et;
1768 struct ocfs2_path *path = NULL;
1769 struct ocfs2_extent_list *el = NULL;
1770 struct ocfs2_extent_rec *rec = NULL;
1771 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1772 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1773
1774 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1775 ocfs2_init_dealloc_ctxt(&dealloc);
1776
1777 trace_ocfs2_remove_inode_range(
1778 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1779 (unsigned long long)byte_start,
1780 (unsigned long long)byte_len);
1781
1782 if (byte_len == 0)
1783 return 0;
1784
1785 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1786 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1787 byte_start + byte_len, 0);
1788 if (ret) {
1789 mlog_errno(ret);
1790 goto out;
1791 }
1792 /*
1793 * There's no need to get fancy with the page cache
1794 * truncate of an inline-data inode. We're talking
1795 * about less than a page here, which will be cached
1796 * in the dinode buffer anyway.
1797 */
1798 unmap_mapping_range(mapping, 0, 0, 0);
1799 truncate_inode_pages(mapping, 0);
1800 goto out;
1801 }
1802
1803 /*
1804 * For reflinks, we may need to CoW 2 clusters which might be
1805 * partially zero'd later, if hole's start and end offset were
1806 * within one cluster(means is not exactly aligned to clustersize).
1807 */
1808
1809 if (ocfs2_is_refcount_inode(inode)) {
1810 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1811 if (ret) {
1812 mlog_errno(ret);
1813 goto out;
1814 }
1815
1816 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1817 if (ret) {
1818 mlog_errno(ret);
1819 goto out;
1820 }
1821 }
1822
1823 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1824 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1825 cluster_in_el = trunc_end;
1826
1827 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out;
1831 }
1832
1833 path = ocfs2_new_path_from_et(&et);
1834 if (!path) {
1835 ret = -ENOMEM;
1836 mlog_errno(ret);
1837 goto out;
1838 }
1839
1840 while (trunc_end > trunc_start) {
1841
1842 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1843 cluster_in_el);
1844 if (ret) {
1845 mlog_errno(ret);
1846 goto out;
1847 }
1848
1849 el = path_leaf_el(path);
1850
1851 i = ocfs2_find_rec(el, trunc_end);
1852 /*
1853 * Need to go to previous extent block.
1854 */
1855 if (i < 0) {
1856 if (path->p_tree_depth == 0)
1857 break;
1858
1859 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1860 path,
1861 &cluster_in_el);
1862 if (ret) {
1863 mlog_errno(ret);
1864 goto out;
1865 }
1866
1867 /*
1868 * We've reached the leftmost extent block,
1869 * it's safe to leave.
1870 */
1871 if (cluster_in_el == 0)
1872 break;
1873
1874 /*
1875 * The 'pos' searched for previous extent block is
1876 * always one cluster less than actual trunc_end.
1877 */
1878 trunc_end = cluster_in_el + 1;
1879
1880 ocfs2_reinit_path(path, 1);
1881
1882 continue;
1883
1884 } else
1885 rec = &el->l_recs[i];
1886
1887 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1888 &trunc_len, &trunc_end, &blkno, &done);
1889 if (done)
1890 break;
1891
1892 flags = rec->e_flags;
1893 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1894
1895 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1896 phys_cpos, trunc_len, flags,
1897 &dealloc, refcount_loc, false);
1898 if (ret < 0) {
1899 mlog_errno(ret);
1900 goto out;
1901 }
1902
1903 cluster_in_el = trunc_end;
1904
1905 ocfs2_reinit_path(path, 1);
1906 }
1907
1908 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1909
1910 out:
1911 ocfs2_free_path(path);
1912 ocfs2_schedule_truncate_log_flush(osb, 1);
1913 ocfs2_run_deallocs(osb, &dealloc);
1914
1915 return ret;
1916 }
1917
1918 /*
1919 * Parts of this function taken from xfs_change_file_space()
1920 */
1921 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1922 loff_t f_pos, unsigned int cmd,
1923 struct ocfs2_space_resv *sr,
1924 int change_size)
1925 {
1926 int ret;
1927 s64 llen;
1928 loff_t size, orig_isize;
1929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1930 struct buffer_head *di_bh = NULL;
1931 handle_t *handle;
1932 unsigned long long max_off = inode->i_sb->s_maxbytes;
1933
1934 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1935 return -EROFS;
1936
1937 inode_lock(inode);
1938
1939 /*
1940 * This prevents concurrent writes on other nodes
1941 */
1942 ret = ocfs2_rw_lock(inode, 1);
1943 if (ret) {
1944 mlog_errno(ret);
1945 goto out;
1946 }
1947
1948 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1949 if (ret) {
1950 mlog_errno(ret);
1951 goto out_rw_unlock;
1952 }
1953
1954 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1955 ret = -EPERM;
1956 goto out_inode_unlock;
1957 }
1958
1959 switch (sr->l_whence) {
1960 case 0: /*SEEK_SET*/
1961 break;
1962 case 1: /*SEEK_CUR*/
1963 sr->l_start += f_pos;
1964 break;
1965 case 2: /*SEEK_END*/
1966 sr->l_start += i_size_read(inode);
1967 break;
1968 default:
1969 ret = -EINVAL;
1970 goto out_inode_unlock;
1971 }
1972 sr->l_whence = 0;
1973
1974 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1975
1976 if (sr->l_start < 0
1977 || sr->l_start > max_off
1978 || (sr->l_start + llen) < 0
1979 || (sr->l_start + llen) > max_off) {
1980 ret = -EINVAL;
1981 goto out_inode_unlock;
1982 }
1983 size = sr->l_start + sr->l_len;
1984
1985 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1986 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1987 if (sr->l_len <= 0) {
1988 ret = -EINVAL;
1989 goto out_inode_unlock;
1990 }
1991 }
1992
1993 if (file && should_remove_suid(file->f_path.dentry)) {
1994 ret = __ocfs2_write_remove_suid(inode, di_bh);
1995 if (ret) {
1996 mlog_errno(ret);
1997 goto out_inode_unlock;
1998 }
1999 }
2000
2001 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2002 switch (cmd) {
2003 case OCFS2_IOC_RESVSP:
2004 case OCFS2_IOC_RESVSP64:
2005 /*
2006 * This takes unsigned offsets, but the signed ones we
2007 * pass have been checked against overflow above.
2008 */
2009 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2010 sr->l_len);
2011 break;
2012 case OCFS2_IOC_UNRESVSP:
2013 case OCFS2_IOC_UNRESVSP64:
2014 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2015 sr->l_len);
2016 break;
2017 default:
2018 ret = -EINVAL;
2019 }
2020
2021 orig_isize = i_size_read(inode);
2022 /* zeroout eof blocks in the cluster. */
2023 if (!ret && change_size && orig_isize < size) {
2024 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2025 size - orig_isize);
2026 if (!ret)
2027 i_size_write(inode, size);
2028 }
2029 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2030 if (ret) {
2031 mlog_errno(ret);
2032 goto out_inode_unlock;
2033 }
2034
2035 /*
2036 * We update c/mtime for these changes
2037 */
2038 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2039 if (IS_ERR(handle)) {
2040 ret = PTR_ERR(handle);
2041 mlog_errno(ret);
2042 goto out_inode_unlock;
2043 }
2044
2045 inode->i_ctime = inode->i_mtime = current_time(inode);
2046 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2047 if (ret < 0)
2048 mlog_errno(ret);
2049
2050 if (file && (file->f_flags & O_SYNC))
2051 handle->h_sync = 1;
2052
2053 ocfs2_commit_trans(osb, handle);
2054
2055 out_inode_unlock:
2056 brelse(di_bh);
2057 ocfs2_inode_unlock(inode, 1);
2058 out_rw_unlock:
2059 ocfs2_rw_unlock(inode, 1);
2060
2061 out:
2062 inode_unlock(inode);
2063 return ret;
2064 }
2065
2066 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2067 struct ocfs2_space_resv *sr)
2068 {
2069 struct inode *inode = file_inode(file);
2070 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2071 int ret;
2072
2073 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2074 !ocfs2_writes_unwritten_extents(osb))
2075 return -ENOTTY;
2076 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2077 !ocfs2_sparse_alloc(osb))
2078 return -ENOTTY;
2079
2080 if (!S_ISREG(inode->i_mode))
2081 return -EINVAL;
2082
2083 if (!(file->f_mode & FMODE_WRITE))
2084 return -EBADF;
2085
2086 ret = mnt_want_write_file(file);
2087 if (ret)
2088 return ret;
2089 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2090 mnt_drop_write_file(file);
2091 return ret;
2092 }
2093
2094 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2095 loff_t len)
2096 {
2097 struct inode *inode = file_inode(file);
2098 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2099 struct ocfs2_space_resv sr;
2100 int change_size = 1;
2101 int cmd = OCFS2_IOC_RESVSP64;
2102
2103 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2104 return -EOPNOTSUPP;
2105 if (!ocfs2_writes_unwritten_extents(osb))
2106 return -EOPNOTSUPP;
2107
2108 if (mode & FALLOC_FL_KEEP_SIZE)
2109 change_size = 0;
2110
2111 if (mode & FALLOC_FL_PUNCH_HOLE)
2112 cmd = OCFS2_IOC_UNRESVSP64;
2113
2114 sr.l_whence = 0;
2115 sr.l_start = (s64)offset;
2116 sr.l_len = (s64)len;
2117
2118 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2119 change_size);
2120 }
2121
2122 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2123 size_t count)
2124 {
2125 int ret = 0;
2126 unsigned int extent_flags;
2127 u32 cpos, clusters, extent_len, phys_cpos;
2128 struct super_block *sb = inode->i_sb;
2129
2130 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2131 !ocfs2_is_refcount_inode(inode) ||
2132 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2133 return 0;
2134
2135 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2136 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2137
2138 while (clusters) {
2139 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2140 &extent_flags);
2141 if (ret < 0) {
2142 mlog_errno(ret);
2143 goto out;
2144 }
2145
2146 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2147 ret = 1;
2148 break;
2149 }
2150
2151 if (extent_len > clusters)
2152 extent_len = clusters;
2153
2154 clusters -= extent_len;
2155 cpos += extent_len;
2156 }
2157 out:
2158 return ret;
2159 }
2160
2161 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2162 {
2163 int blockmask = inode->i_sb->s_blocksize - 1;
2164 loff_t final_size = pos + count;
2165
2166 if ((pos & blockmask) || (final_size & blockmask))
2167 return 1;
2168 return 0;
2169 }
2170
2171 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2172 struct buffer_head **di_bh,
2173 int meta_level,
2174 int write_sem,
2175 int wait)
2176 {
2177 int ret = 0;
2178
2179 if (wait)
2180 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2181 else
2182 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2183 if (ret < 0)
2184 goto out;
2185
2186 if (wait) {
2187 if (write_sem)
2188 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2189 else
2190 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2191 } else {
2192 if (write_sem)
2193 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2194 else
2195 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2196
2197 if (!ret) {
2198 ret = -EAGAIN;
2199 goto out_unlock;
2200 }
2201 }
2202
2203 return ret;
2204
2205 out_unlock:
2206 brelse(*di_bh);
2207 *di_bh = NULL;
2208 ocfs2_inode_unlock(inode, meta_level);
2209 out:
2210 return ret;
2211 }
2212
2213 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2214 struct buffer_head **di_bh,
2215 int meta_level,
2216 int write_sem)
2217 {
2218 if (write_sem)
2219 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2220 else
2221 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2222
2223 brelse(*di_bh);
2224 *di_bh = NULL;
2225
2226 if (meta_level >= 0)
2227 ocfs2_inode_unlock(inode, meta_level);
2228 }
2229
2230 static int ocfs2_prepare_inode_for_write(struct file *file,
2231 loff_t pos, size_t count, int wait)
2232 {
2233 int ret = 0, meta_level = 0, overwrite_io = 0;
2234 int write_sem = 0;
2235 struct dentry *dentry = file->f_path.dentry;
2236 struct inode *inode = d_inode(dentry);
2237 struct buffer_head *di_bh = NULL;
2238 u32 cpos;
2239 u32 clusters;
2240
2241 /*
2242 * We start with a read level meta lock and only jump to an ex
2243 * if we need to make modifications here.
2244 */
2245 for(;;) {
2246 ret = ocfs2_inode_lock_for_extent_tree(inode,
2247 &di_bh,
2248 meta_level,
2249 write_sem,
2250 wait);
2251 if (ret < 0) {
2252 if (ret != -EAGAIN)
2253 mlog_errno(ret);
2254 goto out;
2255 }
2256
2257 /*
2258 * Check if IO will overwrite allocated blocks in case
2259 * IOCB_NOWAIT flag is set.
2260 */
2261 if (!wait && !overwrite_io) {
2262 overwrite_io = 1;
2263
2264 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2265 if (ret < 0) {
2266 if (ret != -EAGAIN)
2267 mlog_errno(ret);
2268 goto out_unlock;
2269 }
2270 }
2271
2272 /* Clear suid / sgid if necessary. We do this here
2273 * instead of later in the write path because
2274 * remove_suid() calls ->setattr without any hint that
2275 * we may have already done our cluster locking. Since
2276 * ocfs2_setattr() *must* take cluster locks to
2277 * proceed, this will lead us to recursively lock the
2278 * inode. There's also the dinode i_size state which
2279 * can be lost via setattr during extending writes (we
2280 * set inode->i_size at the end of a write. */
2281 if (should_remove_suid(dentry)) {
2282 if (meta_level == 0) {
2283 ocfs2_inode_unlock_for_extent_tree(inode,
2284 &di_bh,
2285 meta_level,
2286 write_sem);
2287 meta_level = 1;
2288 continue;
2289 }
2290
2291 ret = ocfs2_write_remove_suid(inode);
2292 if (ret < 0) {
2293 mlog_errno(ret);
2294 goto out_unlock;
2295 }
2296 }
2297
2298 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2299 if (ret == 1) {
2300 ocfs2_inode_unlock_for_extent_tree(inode,
2301 &di_bh,
2302 meta_level,
2303 write_sem);
2304 meta_level = 1;
2305 write_sem = 1;
2306 ret = ocfs2_inode_lock_for_extent_tree(inode,
2307 &di_bh,
2308 meta_level,
2309 write_sem,
2310 wait);
2311 if (ret < 0) {
2312 if (ret != -EAGAIN)
2313 mlog_errno(ret);
2314 goto out;
2315 }
2316
2317 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2318 clusters =
2319 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2320 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2321 }
2322
2323 if (ret < 0) {
2324 if (ret != -EAGAIN)
2325 mlog_errno(ret);
2326 goto out_unlock;
2327 }
2328
2329 break;
2330 }
2331
2332 out_unlock:
2333 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2334 pos, count, wait);
2335
2336 ocfs2_inode_unlock_for_extent_tree(inode,
2337 &di_bh,
2338 meta_level,
2339 write_sem);
2340
2341 out:
2342 return ret;
2343 }
2344
2345 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2346 struct iov_iter *from)
2347 {
2348 int rw_level;
2349 ssize_t written = 0;
2350 ssize_t ret;
2351 size_t count = iov_iter_count(from);
2352 struct file *file = iocb->ki_filp;
2353 struct inode *inode = file_inode(file);
2354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2355 int full_coherency = !(osb->s_mount_opt &
2356 OCFS2_MOUNT_COHERENCY_BUFFERED);
2357 void *saved_ki_complete = NULL;
2358 int append_write = ((iocb->ki_pos + count) >=
2359 i_size_read(inode) ? 1 : 0);
2360 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2361 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2362
2363 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2364 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2365 file->f_path.dentry->d_name.len,
2366 file->f_path.dentry->d_name.name,
2367 (unsigned int)from->nr_segs); /* GRRRRR */
2368
2369 if (!direct_io && nowait)
2370 return -EOPNOTSUPP;
2371
2372 if (count == 0)
2373 return 0;
2374
2375 if (nowait) {
2376 if (!inode_trylock(inode))
2377 return -EAGAIN;
2378 } else
2379 inode_lock(inode);
2380
2381 /*
2382 * Concurrent O_DIRECT writes are allowed with
2383 * mount_option "coherency=buffered".
2384 * For append write, we must take rw EX.
2385 */
2386 rw_level = (!direct_io || full_coherency || append_write);
2387
2388 if (nowait)
2389 ret = ocfs2_try_rw_lock(inode, rw_level);
2390 else
2391 ret = ocfs2_rw_lock(inode, rw_level);
2392 if (ret < 0) {
2393 if (ret != -EAGAIN)
2394 mlog_errno(ret);
2395 goto out_mutex;
2396 }
2397
2398 /*
2399 * O_DIRECT writes with "coherency=full" need to take EX cluster
2400 * inode_lock to guarantee coherency.
2401 */
2402 if (direct_io && full_coherency) {
2403 /*
2404 * We need to take and drop the inode lock to force
2405 * other nodes to drop their caches. Buffered I/O
2406 * already does this in write_begin().
2407 */
2408 if (nowait)
2409 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2410 else
2411 ret = ocfs2_inode_lock(inode, NULL, 1);
2412 if (ret < 0) {
2413 if (ret != -EAGAIN)
2414 mlog_errno(ret);
2415 goto out;
2416 }
2417
2418 ocfs2_inode_unlock(inode, 1);
2419 }
2420
2421 ret = generic_write_checks(iocb, from);
2422 if (ret <= 0) {
2423 if (ret)
2424 mlog_errno(ret);
2425 goto out;
2426 }
2427 count = ret;
2428
2429 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2430 if (ret < 0) {
2431 if (ret != -EAGAIN)
2432 mlog_errno(ret);
2433 goto out;
2434 }
2435
2436 if (direct_io && !is_sync_kiocb(iocb) &&
2437 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2438 /*
2439 * Make it a sync io if it's an unaligned aio.
2440 */
2441 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2442 }
2443
2444 /* communicate with ocfs2_dio_end_io */
2445 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2446
2447 written = __generic_file_write_iter(iocb, from);
2448 /* buffered aio wouldn't have proper lock coverage today */
2449 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2450
2451 /*
2452 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2453 * function pointer which is called when o_direct io completes so that
2454 * it can unlock our rw lock.
2455 * Unfortunately there are error cases which call end_io and others
2456 * that don't. so we don't have to unlock the rw_lock if either an
2457 * async dio is going to do it in the future or an end_io after an
2458 * error has already done it.
2459 */
2460 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2461 rw_level = -1;
2462 }
2463
2464 if (unlikely(written <= 0))
2465 goto out;
2466
2467 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2468 IS_SYNC(inode)) {
2469 ret = filemap_fdatawrite_range(file->f_mapping,
2470 iocb->ki_pos - written,
2471 iocb->ki_pos - 1);
2472 if (ret < 0)
2473 written = ret;
2474
2475 if (!ret) {
2476 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2477 if (ret < 0)
2478 written = ret;
2479 }
2480
2481 if (!ret)
2482 ret = filemap_fdatawait_range(file->f_mapping,
2483 iocb->ki_pos - written,
2484 iocb->ki_pos - 1);
2485 }
2486
2487 out:
2488 if (saved_ki_complete)
2489 xchg(&iocb->ki_complete, saved_ki_complete);
2490
2491 if (rw_level != -1)
2492 ocfs2_rw_unlock(inode, rw_level);
2493
2494 out_mutex:
2495 inode_unlock(inode);
2496
2497 if (written)
2498 ret = written;
2499 return ret;
2500 }
2501
2502 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2503 struct iov_iter *to)
2504 {
2505 int ret = 0, rw_level = -1, lock_level = 0;
2506 struct file *filp = iocb->ki_filp;
2507 struct inode *inode = file_inode(filp);
2508 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2509 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2510
2511 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2512 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2513 filp->f_path.dentry->d_name.len,
2514 filp->f_path.dentry->d_name.name,
2515 to->nr_segs); /* GRRRRR */
2516
2517
2518 if (!inode) {
2519 ret = -EINVAL;
2520 mlog_errno(ret);
2521 goto bail;
2522 }
2523
2524 if (!direct_io && nowait)
2525 return -EOPNOTSUPP;
2526
2527 /*
2528 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2529 * need locks to protect pending reads from racing with truncate.
2530 */
2531 if (direct_io) {
2532 if (nowait)
2533 ret = ocfs2_try_rw_lock(inode, 0);
2534 else
2535 ret = ocfs2_rw_lock(inode, 0);
2536
2537 if (ret < 0) {
2538 if (ret != -EAGAIN)
2539 mlog_errno(ret);
2540 goto bail;
2541 }
2542 rw_level = 0;
2543 /* communicate with ocfs2_dio_end_io */
2544 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2545 }
2546
2547 /*
2548 * We're fine letting folks race truncates and extending
2549 * writes with read across the cluster, just like they can
2550 * locally. Hence no rw_lock during read.
2551 *
2552 * Take and drop the meta data lock to update inode fields
2553 * like i_size. This allows the checks down below
2554 * generic_file_read_iter() a chance of actually working.
2555 */
2556 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2557 !nowait);
2558 if (ret < 0) {
2559 if (ret != -EAGAIN)
2560 mlog_errno(ret);
2561 goto bail;
2562 }
2563 ocfs2_inode_unlock(inode, lock_level);
2564
2565 ret = generic_file_read_iter(iocb, to);
2566 trace_generic_file_read_iter_ret(ret);
2567
2568 /* buffered aio wouldn't have proper lock coverage today */
2569 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2570
2571 /* see ocfs2_file_write_iter */
2572 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2573 rw_level = -1;
2574 }
2575
2576 bail:
2577 if (rw_level != -1)
2578 ocfs2_rw_unlock(inode, rw_level);
2579
2580 return ret;
2581 }
2582
2583 /* Refer generic_file_llseek_unlocked() */
2584 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2585 {
2586 struct inode *inode = file->f_mapping->host;
2587 int ret = 0;
2588
2589 inode_lock(inode);
2590
2591 switch (whence) {
2592 case SEEK_SET:
2593 break;
2594 case SEEK_END:
2595 /* SEEK_END requires the OCFS2 inode lock for the file
2596 * because it references the file's size.
2597 */
2598 ret = ocfs2_inode_lock(inode, NULL, 0);
2599 if (ret < 0) {
2600 mlog_errno(ret);
2601 goto out;
2602 }
2603 offset += i_size_read(inode);
2604 ocfs2_inode_unlock(inode, 0);
2605 break;
2606 case SEEK_CUR:
2607 if (offset == 0) {
2608 offset = file->f_pos;
2609 goto out;
2610 }
2611 offset += file->f_pos;
2612 break;
2613 case SEEK_DATA:
2614 case SEEK_HOLE:
2615 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2616 if (ret)
2617 goto out;
2618 break;
2619 default:
2620 ret = -EINVAL;
2621 goto out;
2622 }
2623
2624 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2625
2626 out:
2627 inode_unlock(inode);
2628 if (ret)
2629 return ret;
2630 return offset;
2631 }
2632
2633 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2634 struct file *file_out, loff_t pos_out,
2635 loff_t len, unsigned int remap_flags)
2636 {
2637 struct inode *inode_in = file_inode(file_in);
2638 struct inode *inode_out = file_inode(file_out);
2639 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2640 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2641 bool same_inode = (inode_in == inode_out);
2642 loff_t remapped = 0;
2643 ssize_t ret;
2644
2645 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2646 return -EINVAL;
2647 if (!ocfs2_refcount_tree(osb))
2648 return -EOPNOTSUPP;
2649 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2650 return -EROFS;
2651
2652 /* Lock both files against IO */
2653 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2654 if (ret)
2655 return ret;
2656
2657 /* Check file eligibility and prepare for block sharing. */
2658 ret = -EINVAL;
2659 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2660 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2661 goto out_unlock;
2662
2663 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2664 &len, remap_flags);
2665 if (ret < 0 || len == 0)
2666 goto out_unlock;
2667
2668 /* Lock out changes to the allocation maps and remap. */
2669 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2670 if (!same_inode)
2671 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2672 SINGLE_DEPTH_NESTING);
2673
2674 /* Zap any page cache for the destination file's range. */
2675 truncate_inode_pages_range(&inode_out->i_data,
2676 round_down(pos_out, PAGE_SIZE),
2677 round_up(pos_out + len, PAGE_SIZE) - 1);
2678
2679 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2680 inode_out, out_bh, pos_out, len);
2681 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2682 if (!same_inode)
2683 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2684 if (remapped < 0) {
2685 ret = remapped;
2686 mlog_errno(ret);
2687 goto out_unlock;
2688 }
2689
2690 /*
2691 * Empty the extent map so that we may get the right extent
2692 * record from the disk.
2693 */
2694 ocfs2_extent_map_trunc(inode_in, 0);
2695 ocfs2_extent_map_trunc(inode_out, 0);
2696
2697 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2698 if (ret) {
2699 mlog_errno(ret);
2700 goto out_unlock;
2701 }
2702
2703 out_unlock:
2704 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2705 return remapped > 0 ? remapped : ret;
2706 }
2707
2708 const struct inode_operations ocfs2_file_iops = {
2709 .setattr = ocfs2_setattr,
2710 .getattr = ocfs2_getattr,
2711 .permission = ocfs2_permission,
2712 .listxattr = ocfs2_listxattr,
2713 .fiemap = ocfs2_fiemap,
2714 .get_acl = ocfs2_iop_get_acl,
2715 .set_acl = ocfs2_iop_set_acl,
2716 .fileattr_get = ocfs2_fileattr_get,
2717 .fileattr_set = ocfs2_fileattr_set,
2718 };
2719
2720 const struct inode_operations ocfs2_special_file_iops = {
2721 .setattr = ocfs2_setattr,
2722 .getattr = ocfs2_getattr,
2723 .permission = ocfs2_permission,
2724 .get_acl = ocfs2_iop_get_acl,
2725 .set_acl = ocfs2_iop_set_acl,
2726 };
2727
2728 /*
2729 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2730 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2731 */
2732 const struct file_operations ocfs2_fops = {
2733 .llseek = ocfs2_file_llseek,
2734 .mmap = ocfs2_mmap,
2735 .fsync = ocfs2_sync_file,
2736 .release = ocfs2_file_release,
2737 .open = ocfs2_file_open,
2738 .read_iter = ocfs2_file_read_iter,
2739 .write_iter = ocfs2_file_write_iter,
2740 .unlocked_ioctl = ocfs2_ioctl,
2741 #ifdef CONFIG_COMPAT
2742 .compat_ioctl = ocfs2_compat_ioctl,
2743 #endif
2744 .lock = ocfs2_lock,
2745 .flock = ocfs2_flock,
2746 .splice_read = generic_file_splice_read,
2747 .splice_write = iter_file_splice_write,
2748 .fallocate = ocfs2_fallocate,
2749 .remap_file_range = ocfs2_remap_file_range,
2750 };
2751
2752 const struct file_operations ocfs2_dops = {
2753 .llseek = generic_file_llseek,
2754 .read = generic_read_dir,
2755 .iterate = ocfs2_readdir,
2756 .fsync = ocfs2_sync_file,
2757 .release = ocfs2_dir_release,
2758 .open = ocfs2_dir_open,
2759 .unlocked_ioctl = ocfs2_ioctl,
2760 #ifdef CONFIG_COMPAT
2761 .compat_ioctl = ocfs2_compat_ioctl,
2762 #endif
2763 .lock = ocfs2_lock,
2764 .flock = ocfs2_flock,
2765 };
2766
2767 /*
2768 * POSIX-lockless variants of our file_operations.
2769 *
2770 * These will be used if the underlying cluster stack does not support
2771 * posix file locking, if the user passes the "localflocks" mount
2772 * option, or if we have a local-only fs.
2773 *
2774 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2775 * so we still want it in the case of no stack support for
2776 * plocks. Internally, it will do the right thing when asked to ignore
2777 * the cluster.
2778 */
2779 const struct file_operations ocfs2_fops_no_plocks = {
2780 .llseek = ocfs2_file_llseek,
2781 .mmap = ocfs2_mmap,
2782 .fsync = ocfs2_sync_file,
2783 .release = ocfs2_file_release,
2784 .open = ocfs2_file_open,
2785 .read_iter = ocfs2_file_read_iter,
2786 .write_iter = ocfs2_file_write_iter,
2787 .unlocked_ioctl = ocfs2_ioctl,
2788 #ifdef CONFIG_COMPAT
2789 .compat_ioctl = ocfs2_compat_ioctl,
2790 #endif
2791 .flock = ocfs2_flock,
2792 .splice_read = generic_file_splice_read,
2793 .splice_write = iter_file_splice_write,
2794 .fallocate = ocfs2_fallocate,
2795 .remap_file_range = ocfs2_remap_file_range,
2796 };
2797
2798 const struct file_operations ocfs2_dops_no_plocks = {
2799 .llseek = generic_file_llseek,
2800 .read = generic_read_dir,
2801 .iterate = ocfs2_readdir,
2802 .fsync = ocfs2_sync_file,
2803 .release = ocfs2_dir_release,
2804 .open = ocfs2_dir_open,
2805 .unlocked_ioctl = ocfs2_ioctl,
2806 #ifdef CONFIG_COMPAT
2807 .compat_ioctl = ocfs2_compat_ioctl,
2808 #endif
2809 .flock = ocfs2_flock,
2810 };