]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/file.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp;
71
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 if (!fp)
74 return -ENOMEM;
75
76 fp->fp_file = file;
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
80
81 return 0;
82 }
83
84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89 if (fp) {
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
92 kfree(fp);
93 file->private_data = NULL;
94 }
95 }
96
97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 int status;
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
107
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
110 if (status)
111 goto leave;
112 }
113
114 spin_lock(&oi->ip_lock);
115
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
121
122 status = -ENOENT;
123 goto leave;
124 }
125
126 if (mode & O_DIRECT)
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129 oi->ip_open_count++;
130 spin_unlock(&oi->ip_lock);
131
132 status = ocfs2_init_file_private(inode, file);
133 if (status) {
134 /*
135 * We want to set open count back if we're failing the
136 * open.
137 */
138 spin_lock(&oi->ip_lock);
139 oi->ip_open_count--;
140 spin_unlock(&oi->ip_lock);
141 }
142
143 leave:
144 return status;
145 }
146
147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
150
151 spin_lock(&oi->ip_lock);
152 if (!--oi->ip_open_count)
153 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154
155 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156 oi->ip_blkno,
157 file->f_path.dentry->d_name.len,
158 file->f_path.dentry->d_name.name,
159 oi->ip_open_count);
160 spin_unlock(&oi->ip_lock);
161
162 ocfs2_free_file_private(inode, file);
163
164 return 0;
165 }
166
167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169 return ocfs2_init_file_private(inode, file);
170 }
171
172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174 ocfs2_free_file_private(inode, file);
175 return 0;
176 }
177
178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179 int datasync)
180 {
181 int err = 0;
182 struct inode *inode = file->f_mapping->host;
183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 journal_t *journal = osb->journal->j_journal;
186 int ret;
187 tid_t commit_tid;
188 bool needs_barrier = false;
189
190 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 OCFS2_I(inode)->ip_blkno,
192 file->f_path.dentry->d_name.len,
193 file->f_path.dentry->d_name.name,
194 (unsigned long long)datasync);
195
196 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197 return -EROFS;
198
199 err = file_write_and_wait_range(file, start, end);
200 if (err)
201 return err;
202
203 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 if (journal->j_flags & JBD2_BARRIER &&
205 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 needs_barrier = true;
207 err = jbd2_complete_transaction(journal, commit_tid);
208 if (needs_barrier) {
209 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210 if (!err)
211 err = ret;
212 }
213
214 if (err)
215 mlog_errno(err);
216
217 return (err < 0) ? -EIO : 0;
218 }
219
220 int ocfs2_should_update_atime(struct inode *inode,
221 struct vfsmount *vfsmnt)
222 {
223 struct timespec now;
224 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225
226 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227 return 0;
228
229 if ((inode->i_flags & S_NOATIME) ||
230 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
231 return 0;
232
233 /*
234 * We can be called with no vfsmnt structure - NFSD will
235 * sometimes do this.
236 *
237 * Note that our action here is different than touch_atime() -
238 * if we can't tell whether this is a noatime mount, then we
239 * don't know whether to trust the value of s_atime_quantum.
240 */
241 if (vfsmnt == NULL)
242 return 0;
243
244 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246 return 0;
247
248 if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251 return 1;
252
253 return 0;
254 }
255
256 now = current_time(inode);
257 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258 return 0;
259 else
260 return 1;
261 }
262
263 int ocfs2_update_inode_atime(struct inode *inode,
264 struct buffer_head *bh)
265 {
266 int ret;
267 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268 handle_t *handle;
269 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270
271 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 if (IS_ERR(handle)) {
273 ret = PTR_ERR(handle);
274 mlog_errno(ret);
275 goto out;
276 }
277
278 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 OCFS2_JOURNAL_ACCESS_WRITE);
280 if (ret) {
281 mlog_errno(ret);
282 goto out_commit;
283 }
284
285 /*
286 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 * have i_mutex to guard against concurrent changes to other
288 * inode fields.
289 */
290 inode->i_atime = current_time(inode);
291 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 ocfs2_journal_dirty(handle, bh);
295
296 out_commit:
297 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299 return ret;
300 }
301
302 int ocfs2_set_inode_size(handle_t *handle,
303 struct inode *inode,
304 struct buffer_head *fe_bh,
305 u64 new_i_size)
306 {
307 int status;
308
309 i_size_write(inode, new_i_size);
310 inode->i_blocks = ocfs2_inode_sector_count(inode);
311 inode->i_ctime = inode->i_mtime = current_time(inode);
312
313 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314 if (status < 0) {
315 mlog_errno(status);
316 goto bail;
317 }
318
319 bail:
320 return status;
321 }
322
323 int ocfs2_simple_size_update(struct inode *inode,
324 struct buffer_head *di_bh,
325 u64 new_i_size)
326 {
327 int ret;
328 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 handle_t *handle = NULL;
330
331 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 if (IS_ERR(handle)) {
333 ret = PTR_ERR(handle);
334 mlog_errno(ret);
335 goto out;
336 }
337
338 ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 new_i_size);
340 if (ret < 0)
341 mlog_errno(ret);
342
343 ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 ocfs2_commit_trans(osb, handle);
345 out:
346 return ret;
347 }
348
349 static int ocfs2_cow_file_pos(struct inode *inode,
350 struct buffer_head *fe_bh,
351 u64 offset)
352 {
353 int status;
354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 unsigned int num_clusters = 0;
356 unsigned int ext_flags = 0;
357
358 /*
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 * CoW either.
362 */
363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 return 0;
365
366 status = ocfs2_get_clusters(inode, cpos, &phys,
367 &num_clusters, &ext_flags);
368 if (status) {
369 mlog_errno(status);
370 goto out;
371 }
372
373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 goto out;
375
376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377
378 out:
379 return status;
380 }
381
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 struct inode *inode,
384 struct buffer_head *fe_bh,
385 u64 new_i_size)
386 {
387 int status;
388 handle_t *handle;
389 struct ocfs2_dinode *di;
390 u64 cluster_bytes;
391
392 /*
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
396 */
397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 if (status) {
399 mlog_errno(status);
400 return status;
401 }
402
403 /* TODO: This needs to actually orphan the inode in this
404 * transaction. */
405
406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 if (IS_ERR(handle)) {
408 status = PTR_ERR(handle);
409 mlog_errno(status);
410 goto out;
411 }
412
413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 OCFS2_JOURNAL_ACCESS_WRITE);
415 if (status < 0) {
416 mlog_errno(status);
417 goto out_commit;
418 }
419
420 /*
421 * Do this before setting i_size.
422 */
423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 cluster_bytes);
426 if (status) {
427 mlog_errno(status);
428 goto out_commit;
429 }
430
431 i_size_write(inode, new_i_size);
432 inode->i_ctime = inode->i_mtime = current_time(inode);
433
434 di = (struct ocfs2_dinode *) fe_bh->b_data;
435 di->i_size = cpu_to_le64(new_i_size);
436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 ocfs2_update_inode_fsync_trans(handle, inode, 0);
439
440 ocfs2_journal_dirty(handle, fe_bh);
441
442 out_commit:
443 ocfs2_commit_trans(osb, handle);
444 out:
445 return status;
446 }
447
448 int ocfs2_truncate_file(struct inode *inode,
449 struct buffer_head *di_bh,
450 u64 new_i_size)
451 {
452 int status = 0;
453 struct ocfs2_dinode *fe = NULL;
454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455
456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 * already validated it */
458 fe = (struct ocfs2_dinode *) di_bh->b_data;
459
460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 (unsigned long long)le64_to_cpu(fe->i_size),
462 (unsigned long long)new_i_size);
463
464 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 "Inode %llu, inode i_size = %lld != di "
466 "i_size = %llu, i_flags = 0x%x\n",
467 (unsigned long long)OCFS2_I(inode)->ip_blkno,
468 i_size_read(inode),
469 (unsigned long long)le64_to_cpu(fe->i_size),
470 le32_to_cpu(fe->i_flags));
471
472 if (new_i_size > le64_to_cpu(fe->i_size)) {
473 trace_ocfs2_truncate_file_error(
474 (unsigned long long)le64_to_cpu(fe->i_size),
475 (unsigned long long)new_i_size);
476 status = -EINVAL;
477 mlog_errno(status);
478 goto bail;
479 }
480
481 down_write(&OCFS2_I(inode)->ip_alloc_sem);
482
483 ocfs2_resv_discard(&osb->osb_la_resmap,
484 &OCFS2_I(inode)->ip_la_data_resv);
485
486 /*
487 * The inode lock forced other nodes to sync and drop their
488 * pages, which (correctly) happens even if we have a truncate
489 * without allocation change - ocfs2 cluster sizes can be much
490 * greater than page size, so we have to truncate them
491 * anyway.
492 */
493 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
494 truncate_inode_pages(inode->i_mapping, new_i_size);
495
496 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
498 i_size_read(inode), 1);
499 if (status)
500 mlog_errno(status);
501
502 goto bail_unlock_sem;
503 }
504
505 /* alright, we're going to need to do a full blown alloc size
506 * change. Orphan the inode so that recovery can complete the
507 * truncate if necessary. This does the task of marking
508 * i_size. */
509 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
510 if (status < 0) {
511 mlog_errno(status);
512 goto bail_unlock_sem;
513 }
514
515 status = ocfs2_commit_truncate(osb, inode, di_bh);
516 if (status < 0) {
517 mlog_errno(status);
518 goto bail_unlock_sem;
519 }
520
521 /* TODO: orphan dir cleanup here. */
522 bail_unlock_sem:
523 up_write(&OCFS2_I(inode)->ip_alloc_sem);
524
525 bail:
526 if (!status && OCFS2_I(inode)->ip_clusters == 0)
527 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
528
529 return status;
530 }
531
532 /*
533 * extend file allocation only here.
534 * we'll update all the disk stuff, and oip->alloc_size
535 *
536 * expect stuff to be locked, a transaction started and enough data /
537 * metadata reservations in the contexts.
538 *
539 * Will return -EAGAIN, and a reason if a restart is needed.
540 * If passed in, *reason will always be set, even in error.
541 */
542 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543 struct inode *inode,
544 u32 *logical_offset,
545 u32 clusters_to_add,
546 int mark_unwritten,
547 struct buffer_head *fe_bh,
548 handle_t *handle,
549 struct ocfs2_alloc_context *data_ac,
550 struct ocfs2_alloc_context *meta_ac,
551 enum ocfs2_alloc_restarted *reason_ret)
552 {
553 int ret;
554 struct ocfs2_extent_tree et;
555
556 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
557 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
558 clusters_to_add, mark_unwritten,
559 data_ac, meta_ac, reason_ret);
560
561 return ret;
562 }
563
564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
565 u32 clusters_to_add, int mark_unwritten)
566 {
567 int status = 0;
568 int restart_func = 0;
569 int credits;
570 u32 prev_clusters;
571 struct buffer_head *bh = NULL;
572 struct ocfs2_dinode *fe = NULL;
573 handle_t *handle = NULL;
574 struct ocfs2_alloc_context *data_ac = NULL;
575 struct ocfs2_alloc_context *meta_ac = NULL;
576 enum ocfs2_alloc_restarted why = RESTART_NONE;
577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
578 struct ocfs2_extent_tree et;
579 int did_quota = 0;
580
581 /*
582 * Unwritten extent only exists for file systems which
583 * support holes.
584 */
585 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
586
587 status = ocfs2_read_inode_block(inode, &bh);
588 if (status < 0) {
589 mlog_errno(status);
590 goto leave;
591 }
592 fe = (struct ocfs2_dinode *) bh->b_data;
593
594 restart_all:
595 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
596
597 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
598 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
599 &data_ac, &meta_ac);
600 if (status) {
601 mlog_errno(status);
602 goto leave;
603 }
604
605 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
606 handle = ocfs2_start_trans(osb, credits);
607 if (IS_ERR(handle)) {
608 status = PTR_ERR(handle);
609 handle = NULL;
610 mlog_errno(status);
611 goto leave;
612 }
613
614 restarted_transaction:
615 trace_ocfs2_extend_allocation(
616 (unsigned long long)OCFS2_I(inode)->ip_blkno,
617 (unsigned long long)i_size_read(inode),
618 le32_to_cpu(fe->i_clusters), clusters_to_add,
619 why, restart_func);
620
621 status = dquot_alloc_space_nodirty(inode,
622 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
623 if (status)
624 goto leave;
625 did_quota = 1;
626
627 /* reserve a write to the file entry early on - that we if we
628 * run out of credits in the allocation path, we can still
629 * update i_size. */
630 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
631 OCFS2_JOURNAL_ACCESS_WRITE);
632 if (status < 0) {
633 mlog_errno(status);
634 goto leave;
635 }
636
637 prev_clusters = OCFS2_I(inode)->ip_clusters;
638
639 status = ocfs2_add_inode_data(osb,
640 inode,
641 &logical_start,
642 clusters_to_add,
643 mark_unwritten,
644 bh,
645 handle,
646 data_ac,
647 meta_ac,
648 &why);
649 if ((status < 0) && (status != -EAGAIN)) {
650 if (status != -ENOSPC)
651 mlog_errno(status);
652 goto leave;
653 }
654 ocfs2_update_inode_fsync_trans(handle, inode, 1);
655 ocfs2_journal_dirty(handle, bh);
656
657 spin_lock(&OCFS2_I(inode)->ip_lock);
658 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
659 spin_unlock(&OCFS2_I(inode)->ip_lock);
660 /* Release unused quota reservation */
661 dquot_free_space(inode,
662 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
663 did_quota = 0;
664
665 if (why != RESTART_NONE && clusters_to_add) {
666 if (why == RESTART_META) {
667 restart_func = 1;
668 status = 0;
669 } else {
670 BUG_ON(why != RESTART_TRANS);
671
672 status = ocfs2_allocate_extend_trans(handle, 1);
673 if (status < 0) {
674 /* handle still has to be committed at
675 * this point. */
676 status = -ENOMEM;
677 mlog_errno(status);
678 goto leave;
679 }
680 goto restarted_transaction;
681 }
682 }
683
684 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
685 le32_to_cpu(fe->i_clusters),
686 (unsigned long long)le64_to_cpu(fe->i_size),
687 OCFS2_I(inode)->ip_clusters,
688 (unsigned long long)i_size_read(inode));
689
690 leave:
691 if (status < 0 && did_quota)
692 dquot_free_space(inode,
693 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
694 if (handle) {
695 ocfs2_commit_trans(osb, handle);
696 handle = NULL;
697 }
698 if (data_ac) {
699 ocfs2_free_alloc_context(data_ac);
700 data_ac = NULL;
701 }
702 if (meta_ac) {
703 ocfs2_free_alloc_context(meta_ac);
704 meta_ac = NULL;
705 }
706 if ((!status) && restart_func) {
707 restart_func = 0;
708 goto restart_all;
709 }
710 brelse(bh);
711 bh = NULL;
712
713 return status;
714 }
715
716 /*
717 * While a write will already be ordering the data, a truncate will not.
718 * Thus, we need to explicitly order the zeroed pages.
719 */
720 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
721 struct buffer_head *di_bh)
722 {
723 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
724 handle_t *handle = NULL;
725 int ret = 0;
726
727 if (!ocfs2_should_order_data(inode))
728 goto out;
729
730 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
731 if (IS_ERR(handle)) {
732 ret = -ENOMEM;
733 mlog_errno(ret);
734 goto out;
735 }
736
737 ret = ocfs2_jbd2_file_inode(handle, inode);
738 if (ret < 0) {
739 mlog_errno(ret);
740 goto out;
741 }
742
743 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
744 OCFS2_JOURNAL_ACCESS_WRITE);
745 if (ret)
746 mlog_errno(ret);
747 ocfs2_update_inode_fsync_trans(handle, inode, 1);
748
749 out:
750 if (ret) {
751 if (!IS_ERR(handle))
752 ocfs2_commit_trans(osb, handle);
753 handle = ERR_PTR(ret);
754 }
755 return handle;
756 }
757
758 /* Some parts of this taken from generic_cont_expand, which turned out
759 * to be too fragile to do exactly what we need without us having to
760 * worry about recursive locking in ->write_begin() and ->write_end(). */
761 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
762 u64 abs_to, struct buffer_head *di_bh)
763 {
764 struct address_space *mapping = inode->i_mapping;
765 struct page *page;
766 unsigned long index = abs_from >> PAGE_SHIFT;
767 handle_t *handle;
768 int ret = 0;
769 unsigned zero_from, zero_to, block_start, block_end;
770 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
771
772 BUG_ON(abs_from >= abs_to);
773 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
774 BUG_ON(abs_from & (inode->i_blkbits - 1));
775
776 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
777 if (IS_ERR(handle)) {
778 ret = PTR_ERR(handle);
779 goto out;
780 }
781
782 page = find_or_create_page(mapping, index, GFP_NOFS);
783 if (!page) {
784 ret = -ENOMEM;
785 mlog_errno(ret);
786 goto out_commit_trans;
787 }
788
789 /* Get the offsets within the page that we want to zero */
790 zero_from = abs_from & (PAGE_SIZE - 1);
791 zero_to = abs_to & (PAGE_SIZE - 1);
792 if (!zero_to)
793 zero_to = PAGE_SIZE;
794
795 trace_ocfs2_write_zero_page(
796 (unsigned long long)OCFS2_I(inode)->ip_blkno,
797 (unsigned long long)abs_from,
798 (unsigned long long)abs_to,
799 index, zero_from, zero_to);
800
801 /* We know that zero_from is block aligned */
802 for (block_start = zero_from; block_start < zero_to;
803 block_start = block_end) {
804 block_end = block_start + i_blocksize(inode);
805
806 /*
807 * block_start is block-aligned. Bump it by one to force
808 * __block_write_begin and block_commit_write to zero the
809 * whole block.
810 */
811 ret = __block_write_begin(page, block_start + 1, 0,
812 ocfs2_get_block);
813 if (ret < 0) {
814 mlog_errno(ret);
815 goto out_unlock;
816 }
817
818
819 /* must not update i_size! */
820 ret = block_commit_write(page, block_start + 1,
821 block_start + 1);
822 if (ret < 0)
823 mlog_errno(ret);
824 else
825 ret = 0;
826 }
827
828 /*
829 * fs-writeback will release the dirty pages without page lock
830 * whose offset are over inode size, the release happens at
831 * block_write_full_page().
832 */
833 i_size_write(inode, abs_to);
834 inode->i_blocks = ocfs2_inode_sector_count(inode);
835 di->i_size = cpu_to_le64((u64)i_size_read(inode));
836 inode->i_mtime = inode->i_ctime = current_time(inode);
837 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
838 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
839 di->i_mtime_nsec = di->i_ctime_nsec;
840 if (handle) {
841 ocfs2_journal_dirty(handle, di_bh);
842 ocfs2_update_inode_fsync_trans(handle, inode, 1);
843 }
844
845 out_unlock:
846 unlock_page(page);
847 put_page(page);
848 out_commit_trans:
849 if (handle)
850 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
851 out:
852 return ret;
853 }
854
855 /*
856 * Find the next range to zero. We do this in terms of bytes because
857 * that's what ocfs2_zero_extend() wants, and it is dealing with the
858 * pagecache. We may return multiple extents.
859 *
860 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
861 * needs to be zeroed. range_start and range_end return the next zeroing
862 * range. A subsequent call should pass the previous range_end as its
863 * zero_start. If range_end is 0, there's nothing to do.
864 *
865 * Unwritten extents are skipped over. Refcounted extents are CoWd.
866 */
867 static int ocfs2_zero_extend_get_range(struct inode *inode,
868 struct buffer_head *di_bh,
869 u64 zero_start, u64 zero_end,
870 u64 *range_start, u64 *range_end)
871 {
872 int rc = 0, needs_cow = 0;
873 u32 p_cpos, zero_clusters = 0;
874 u32 zero_cpos =
875 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
876 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
877 unsigned int num_clusters = 0;
878 unsigned int ext_flags = 0;
879
880 while (zero_cpos < last_cpos) {
881 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
882 &num_clusters, &ext_flags);
883 if (rc) {
884 mlog_errno(rc);
885 goto out;
886 }
887
888 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
889 zero_clusters = num_clusters;
890 if (ext_flags & OCFS2_EXT_REFCOUNTED)
891 needs_cow = 1;
892 break;
893 }
894
895 zero_cpos += num_clusters;
896 }
897 if (!zero_clusters) {
898 *range_end = 0;
899 goto out;
900 }
901
902 while ((zero_cpos + zero_clusters) < last_cpos) {
903 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
904 &p_cpos, &num_clusters,
905 &ext_flags);
906 if (rc) {
907 mlog_errno(rc);
908 goto out;
909 }
910
911 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
912 break;
913 if (ext_flags & OCFS2_EXT_REFCOUNTED)
914 needs_cow = 1;
915 zero_clusters += num_clusters;
916 }
917 if ((zero_cpos + zero_clusters) > last_cpos)
918 zero_clusters = last_cpos - zero_cpos;
919
920 if (needs_cow) {
921 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
922 zero_clusters, UINT_MAX);
923 if (rc) {
924 mlog_errno(rc);
925 goto out;
926 }
927 }
928
929 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
930 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
931 zero_cpos + zero_clusters);
932
933 out:
934 return rc;
935 }
936
937 /*
938 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
939 * has made sure that the entire range needs zeroing.
940 */
941 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
942 u64 range_end, struct buffer_head *di_bh)
943 {
944 int rc = 0;
945 u64 next_pos;
946 u64 zero_pos = range_start;
947
948 trace_ocfs2_zero_extend_range(
949 (unsigned long long)OCFS2_I(inode)->ip_blkno,
950 (unsigned long long)range_start,
951 (unsigned long long)range_end);
952 BUG_ON(range_start >= range_end);
953
954 while (zero_pos < range_end) {
955 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
956 if (next_pos > range_end)
957 next_pos = range_end;
958 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
959 if (rc < 0) {
960 mlog_errno(rc);
961 break;
962 }
963 zero_pos = next_pos;
964
965 /*
966 * Very large extends have the potential to lock up
967 * the cpu for extended periods of time.
968 */
969 cond_resched();
970 }
971
972 return rc;
973 }
974
975 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
976 loff_t zero_to_size)
977 {
978 int ret = 0;
979 u64 zero_start, range_start = 0, range_end = 0;
980 struct super_block *sb = inode->i_sb;
981
982 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
983 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
984 (unsigned long long)zero_start,
985 (unsigned long long)i_size_read(inode));
986 while (zero_start < zero_to_size) {
987 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
988 zero_to_size,
989 &range_start,
990 &range_end);
991 if (ret) {
992 mlog_errno(ret);
993 break;
994 }
995 if (!range_end)
996 break;
997 /* Trim the ends */
998 if (range_start < zero_start)
999 range_start = zero_start;
1000 if (range_end > zero_to_size)
1001 range_end = zero_to_size;
1002
1003 ret = ocfs2_zero_extend_range(inode, range_start,
1004 range_end, di_bh);
1005 if (ret) {
1006 mlog_errno(ret);
1007 break;
1008 }
1009 zero_start = range_end;
1010 }
1011
1012 return ret;
1013 }
1014
1015 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1016 u64 new_i_size, u64 zero_to)
1017 {
1018 int ret;
1019 u32 clusters_to_add;
1020 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1021
1022 /*
1023 * Only quota files call this without a bh, and they can't be
1024 * refcounted.
1025 */
1026 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1027 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1028
1029 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1030 if (clusters_to_add < oi->ip_clusters)
1031 clusters_to_add = 0;
1032 else
1033 clusters_to_add -= oi->ip_clusters;
1034
1035 if (clusters_to_add) {
1036 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1037 clusters_to_add, 0);
1038 if (ret) {
1039 mlog_errno(ret);
1040 goto out;
1041 }
1042 }
1043
1044 /*
1045 * Call this even if we don't add any clusters to the tree. We
1046 * still need to zero the area between the old i_size and the
1047 * new i_size.
1048 */
1049 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1050 if (ret < 0)
1051 mlog_errno(ret);
1052
1053 out:
1054 return ret;
1055 }
1056
1057 static int ocfs2_extend_file(struct inode *inode,
1058 struct buffer_head *di_bh,
1059 u64 new_i_size)
1060 {
1061 int ret = 0;
1062 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1063
1064 BUG_ON(!di_bh);
1065
1066 /* setattr sometimes calls us like this. */
1067 if (new_i_size == 0)
1068 goto out;
1069
1070 if (i_size_read(inode) == new_i_size)
1071 goto out;
1072 BUG_ON(new_i_size < i_size_read(inode));
1073
1074 /*
1075 * The alloc sem blocks people in read/write from reading our
1076 * allocation until we're done changing it. We depend on
1077 * i_mutex to block other extend/truncate calls while we're
1078 * here. We even have to hold it for sparse files because there
1079 * might be some tail zeroing.
1080 */
1081 down_write(&oi->ip_alloc_sem);
1082
1083 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1084 /*
1085 * We can optimize small extends by keeping the inodes
1086 * inline data.
1087 */
1088 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1089 up_write(&oi->ip_alloc_sem);
1090 goto out_update_size;
1091 }
1092
1093 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1094 if (ret) {
1095 up_write(&oi->ip_alloc_sem);
1096 mlog_errno(ret);
1097 goto out;
1098 }
1099 }
1100
1101 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1102 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1103 else
1104 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1105 new_i_size);
1106
1107 up_write(&oi->ip_alloc_sem);
1108
1109 if (ret < 0) {
1110 mlog_errno(ret);
1111 goto out;
1112 }
1113
1114 out_update_size:
1115 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1116 if (ret < 0)
1117 mlog_errno(ret);
1118
1119 out:
1120 return ret;
1121 }
1122
1123 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1124 {
1125 int status = 0, size_change;
1126 int inode_locked = 0;
1127 struct inode *inode = d_inode(dentry);
1128 struct super_block *sb = inode->i_sb;
1129 struct ocfs2_super *osb = OCFS2_SB(sb);
1130 struct buffer_head *bh = NULL;
1131 handle_t *handle = NULL;
1132 struct dquot *transfer_to[MAXQUOTAS] = { };
1133 int qtype;
1134 int had_lock;
1135 struct ocfs2_lock_holder oh;
1136
1137 trace_ocfs2_setattr(inode, dentry,
1138 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1139 dentry->d_name.len, dentry->d_name.name,
1140 attr->ia_valid, attr->ia_mode,
1141 from_kuid(&init_user_ns, attr->ia_uid),
1142 from_kgid(&init_user_ns, attr->ia_gid));
1143
1144 /* ensuring we don't even attempt to truncate a symlink */
1145 if (S_ISLNK(inode->i_mode))
1146 attr->ia_valid &= ~ATTR_SIZE;
1147
1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1149 | ATTR_GID | ATTR_UID | ATTR_MODE)
1150 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1151 return 0;
1152
1153 status = setattr_prepare(dentry, attr);
1154 if (status)
1155 return status;
1156
1157 if (is_quota_modification(inode, attr)) {
1158 status = dquot_initialize(inode);
1159 if (status)
1160 return status;
1161 }
1162 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1163 if (size_change) {
1164 /*
1165 * Here we should wait dio to finish before inode lock
1166 * to avoid a deadlock between ocfs2_setattr() and
1167 * ocfs2_dio_end_io_write()
1168 */
1169 inode_dio_wait(inode);
1170
1171 status = ocfs2_rw_lock(inode, 1);
1172 if (status < 0) {
1173 mlog_errno(status);
1174 goto bail;
1175 }
1176 }
1177
1178 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1179 if (had_lock < 0) {
1180 status = had_lock;
1181 goto bail_unlock_rw;
1182 } else if (had_lock) {
1183 /*
1184 * As far as we know, ocfs2_setattr() could only be the first
1185 * VFS entry point in the call chain of recursive cluster
1186 * locking issue.
1187 *
1188 * For instance:
1189 * chmod_common()
1190 * notify_change()
1191 * ocfs2_setattr()
1192 * posix_acl_chmod()
1193 * ocfs2_iop_get_acl()
1194 *
1195 * But, we're not 100% sure if it's always true, because the
1196 * ordering of the VFS entry points in the call chain is out
1197 * of our control. So, we'd better dump the stack here to
1198 * catch the other cases of recursive locking.
1199 */
1200 mlog(ML_ERROR, "Another case of recursive locking:\n");
1201 dump_stack();
1202 }
1203 inode_locked = 1;
1204
1205 if (size_change) {
1206 status = inode_newsize_ok(inode, attr->ia_size);
1207 if (status)
1208 goto bail_unlock;
1209
1210 if (i_size_read(inode) >= attr->ia_size) {
1211 if (ocfs2_should_order_data(inode)) {
1212 status = ocfs2_begin_ordered_truncate(inode,
1213 attr->ia_size);
1214 if (status)
1215 goto bail_unlock;
1216 }
1217 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1218 } else
1219 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1220 if (status < 0) {
1221 if (status != -ENOSPC)
1222 mlog_errno(status);
1223 status = -ENOSPC;
1224 goto bail_unlock;
1225 }
1226 }
1227
1228 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1229 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1230 /*
1231 * Gather pointers to quota structures so that allocation /
1232 * freeing of quota structures happens here and not inside
1233 * dquot_transfer() where we have problems with lock ordering
1234 */
1235 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1236 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1237 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1238 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1239 if (IS_ERR(transfer_to[USRQUOTA])) {
1240 status = PTR_ERR(transfer_to[USRQUOTA]);
1241 goto bail_unlock;
1242 }
1243 }
1244 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1245 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1246 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1247 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1248 if (IS_ERR(transfer_to[GRPQUOTA])) {
1249 status = PTR_ERR(transfer_to[GRPQUOTA]);
1250 goto bail_unlock;
1251 }
1252 }
1253 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1254 2 * ocfs2_quota_trans_credits(sb));
1255 if (IS_ERR(handle)) {
1256 status = PTR_ERR(handle);
1257 mlog_errno(status);
1258 goto bail_unlock;
1259 }
1260 status = __dquot_transfer(inode, transfer_to);
1261 if (status < 0)
1262 goto bail_commit;
1263 } else {
1264 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1265 if (IS_ERR(handle)) {
1266 status = PTR_ERR(handle);
1267 mlog_errno(status);
1268 goto bail_unlock;
1269 }
1270 }
1271
1272 setattr_copy(inode, attr);
1273 mark_inode_dirty(inode);
1274
1275 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1276 if (status < 0)
1277 mlog_errno(status);
1278
1279 bail_commit:
1280 ocfs2_commit_trans(osb, handle);
1281 bail_unlock:
1282 if (status && inode_locked) {
1283 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1284 inode_locked = 0;
1285 }
1286 bail_unlock_rw:
1287 if (size_change)
1288 ocfs2_rw_unlock(inode, 1);
1289 bail:
1290
1291 /* Release quota pointers in case we acquired them */
1292 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1293 dqput(transfer_to[qtype]);
1294
1295 if (!status && attr->ia_valid & ATTR_MODE) {
1296 status = ocfs2_acl_chmod(inode, bh);
1297 if (status < 0)
1298 mlog_errno(status);
1299 }
1300 if (inode_locked)
1301 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1302
1303 brelse(bh);
1304 return status;
1305 }
1306
1307 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1308 u32 request_mask, unsigned int flags)
1309 {
1310 struct inode *inode = d_inode(path->dentry);
1311 struct super_block *sb = path->dentry->d_sb;
1312 struct ocfs2_super *osb = sb->s_fs_info;
1313 int err;
1314
1315 err = ocfs2_inode_revalidate(path->dentry);
1316 if (err) {
1317 if (err != -ENOENT)
1318 mlog_errno(err);
1319 goto bail;
1320 }
1321
1322 generic_fillattr(inode, stat);
1323 /*
1324 * If there is inline data in the inode, the inode will normally not
1325 * have data blocks allocated (it may have an external xattr block).
1326 * Report at least one sector for such files, so tools like tar, rsync,
1327 * others don't incorrectly think the file is completely sparse.
1328 */
1329 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1330 stat->blocks += (stat->size + 511)>>9;
1331
1332 /* We set the blksize from the cluster size for performance */
1333 stat->blksize = osb->s_clustersize;
1334
1335 bail:
1336 return err;
1337 }
1338
1339 int ocfs2_permission(struct inode *inode, int mask)
1340 {
1341 int ret, had_lock;
1342 struct ocfs2_lock_holder oh;
1343
1344 if (mask & MAY_NOT_BLOCK)
1345 return -ECHILD;
1346
1347 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1348 if (had_lock < 0) {
1349 ret = had_lock;
1350 goto out;
1351 } else if (had_lock) {
1352 /* See comments in ocfs2_setattr() for details.
1353 * The call chain of this case could be:
1354 * do_sys_open()
1355 * may_open()
1356 * inode_permission()
1357 * ocfs2_permission()
1358 * ocfs2_iop_get_acl()
1359 */
1360 mlog(ML_ERROR, "Another case of recursive locking:\n");
1361 dump_stack();
1362 }
1363
1364 ret = generic_permission(inode, mask);
1365
1366 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1367 out:
1368 return ret;
1369 }
1370
1371 static int __ocfs2_write_remove_suid(struct inode *inode,
1372 struct buffer_head *bh)
1373 {
1374 int ret;
1375 handle_t *handle;
1376 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1377 struct ocfs2_dinode *di;
1378
1379 trace_ocfs2_write_remove_suid(
1380 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1381 inode->i_mode);
1382
1383 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1384 if (IS_ERR(handle)) {
1385 ret = PTR_ERR(handle);
1386 mlog_errno(ret);
1387 goto out;
1388 }
1389
1390 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1391 OCFS2_JOURNAL_ACCESS_WRITE);
1392 if (ret < 0) {
1393 mlog_errno(ret);
1394 goto out_trans;
1395 }
1396
1397 inode->i_mode &= ~S_ISUID;
1398 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1399 inode->i_mode &= ~S_ISGID;
1400
1401 di = (struct ocfs2_dinode *) bh->b_data;
1402 di->i_mode = cpu_to_le16(inode->i_mode);
1403 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1404
1405 ocfs2_journal_dirty(handle, bh);
1406
1407 out_trans:
1408 ocfs2_commit_trans(osb, handle);
1409 out:
1410 return ret;
1411 }
1412
1413 static int ocfs2_write_remove_suid(struct inode *inode)
1414 {
1415 int ret;
1416 struct buffer_head *bh = NULL;
1417
1418 ret = ocfs2_read_inode_block(inode, &bh);
1419 if (ret < 0) {
1420 mlog_errno(ret);
1421 goto out;
1422 }
1423
1424 ret = __ocfs2_write_remove_suid(inode, bh);
1425 out:
1426 brelse(bh);
1427 return ret;
1428 }
1429
1430 /*
1431 * Allocate enough extents to cover the region starting at byte offset
1432 * start for len bytes. Existing extents are skipped, any extents
1433 * added are marked as "unwritten".
1434 */
1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1436 u64 start, u64 len)
1437 {
1438 int ret;
1439 u32 cpos, phys_cpos, clusters, alloc_size;
1440 u64 end = start + len;
1441 struct buffer_head *di_bh = NULL;
1442
1443 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1444 ret = ocfs2_read_inode_block(inode, &di_bh);
1445 if (ret) {
1446 mlog_errno(ret);
1447 goto out;
1448 }
1449
1450 /*
1451 * Nothing to do if the requested reservation range
1452 * fits within the inode.
1453 */
1454 if (ocfs2_size_fits_inline_data(di_bh, end))
1455 goto out;
1456
1457 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1458 if (ret) {
1459 mlog_errno(ret);
1460 goto out;
1461 }
1462 }
1463
1464 /*
1465 * We consider both start and len to be inclusive.
1466 */
1467 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1468 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1469 clusters -= cpos;
1470
1471 while (clusters) {
1472 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1473 &alloc_size, NULL);
1474 if (ret) {
1475 mlog_errno(ret);
1476 goto out;
1477 }
1478
1479 /*
1480 * Hole or existing extent len can be arbitrary, so
1481 * cap it to our own allocation request.
1482 */
1483 if (alloc_size > clusters)
1484 alloc_size = clusters;
1485
1486 if (phys_cpos) {
1487 /*
1488 * We already have an allocation at this
1489 * region so we can safely skip it.
1490 */
1491 goto next;
1492 }
1493
1494 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1495 if (ret) {
1496 if (ret != -ENOSPC)
1497 mlog_errno(ret);
1498 goto out;
1499 }
1500
1501 next:
1502 cpos += alloc_size;
1503 clusters -= alloc_size;
1504 }
1505
1506 ret = 0;
1507 out:
1508
1509 brelse(di_bh);
1510 return ret;
1511 }
1512
1513 /*
1514 * Truncate a byte range, avoiding pages within partial clusters. This
1515 * preserves those pages for the zeroing code to write to.
1516 */
1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1518 u64 byte_len)
1519 {
1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 loff_t start, end;
1522 struct address_space *mapping = inode->i_mapping;
1523
1524 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1525 end = byte_start + byte_len;
1526 end = end & ~(osb->s_clustersize - 1);
1527
1528 if (start < end) {
1529 unmap_mapping_range(mapping, start, end - start, 0);
1530 truncate_inode_pages_range(mapping, start, end - 1);
1531 }
1532 }
1533
1534 static int ocfs2_zero_partial_clusters(struct inode *inode,
1535 u64 start, u64 len)
1536 {
1537 int ret = 0;
1538 u64 tmpend = 0;
1539 u64 end = start + len;
1540 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1541 unsigned int csize = osb->s_clustersize;
1542 handle_t *handle;
1543
1544 /*
1545 * The "start" and "end" values are NOT necessarily part of
1546 * the range whose allocation is being deleted. Rather, this
1547 * is what the user passed in with the request. We must zero
1548 * partial clusters here. There's no need to worry about
1549 * physical allocation - the zeroing code knows to skip holes.
1550 */
1551 trace_ocfs2_zero_partial_clusters(
1552 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1553 (unsigned long long)start, (unsigned long long)end);
1554
1555 /*
1556 * If both edges are on a cluster boundary then there's no
1557 * zeroing required as the region is part of the allocation to
1558 * be truncated.
1559 */
1560 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1561 goto out;
1562
1563 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1564 if (IS_ERR(handle)) {
1565 ret = PTR_ERR(handle);
1566 mlog_errno(ret);
1567 goto out;
1568 }
1569
1570 /*
1571 * If start is on a cluster boundary and end is somewhere in another
1572 * cluster, we have not COWed the cluster starting at start, unless
1573 * end is also within the same cluster. So, in this case, we skip this
1574 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1575 * to the next one.
1576 */
1577 if ((start & (csize - 1)) != 0) {
1578 /*
1579 * We want to get the byte offset of the end of the 1st
1580 * cluster.
1581 */
1582 tmpend = (u64)osb->s_clustersize +
1583 (start & ~(osb->s_clustersize - 1));
1584 if (tmpend > end)
1585 tmpend = end;
1586
1587 trace_ocfs2_zero_partial_clusters_range1(
1588 (unsigned long long)start,
1589 (unsigned long long)tmpend);
1590
1591 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1592 tmpend);
1593 if (ret)
1594 mlog_errno(ret);
1595 }
1596
1597 if (tmpend < end) {
1598 /*
1599 * This may make start and end equal, but the zeroing
1600 * code will skip any work in that case so there's no
1601 * need to catch it up here.
1602 */
1603 start = end & ~(osb->s_clustersize - 1);
1604
1605 trace_ocfs2_zero_partial_clusters_range2(
1606 (unsigned long long)start, (unsigned long long)end);
1607
1608 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1609 if (ret)
1610 mlog_errno(ret);
1611 }
1612 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1613
1614 ocfs2_commit_trans(osb, handle);
1615 out:
1616 return ret;
1617 }
1618
1619 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1620 {
1621 int i;
1622 struct ocfs2_extent_rec *rec = NULL;
1623
1624 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1625
1626 rec = &el->l_recs[i];
1627
1628 if (le32_to_cpu(rec->e_cpos) < pos)
1629 break;
1630 }
1631
1632 return i;
1633 }
1634
1635 /*
1636 * Helper to calculate the punching pos and length in one run, we handle the
1637 * following three cases in order:
1638 *
1639 * - remove the entire record
1640 * - remove a partial record
1641 * - no record needs to be removed (hole-punching completed)
1642 */
1643 static void ocfs2_calc_trunc_pos(struct inode *inode,
1644 struct ocfs2_extent_list *el,
1645 struct ocfs2_extent_rec *rec,
1646 u32 trunc_start, u32 *trunc_cpos,
1647 u32 *trunc_len, u32 *trunc_end,
1648 u64 *blkno, int *done)
1649 {
1650 int ret = 0;
1651 u32 coff, range;
1652
1653 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1654
1655 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1656 /*
1657 * remove an entire extent record.
1658 */
1659 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1660 /*
1661 * Skip holes if any.
1662 */
1663 if (range < *trunc_end)
1664 *trunc_end = range;
1665 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1666 *blkno = le64_to_cpu(rec->e_blkno);
1667 *trunc_end = le32_to_cpu(rec->e_cpos);
1668 } else if (range > trunc_start) {
1669 /*
1670 * remove a partial extent record, which means we're
1671 * removing the last extent record.
1672 */
1673 *trunc_cpos = trunc_start;
1674 /*
1675 * skip hole if any.
1676 */
1677 if (range < *trunc_end)
1678 *trunc_end = range;
1679 *trunc_len = *trunc_end - trunc_start;
1680 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1681 *blkno = le64_to_cpu(rec->e_blkno) +
1682 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1683 *trunc_end = trunc_start;
1684 } else {
1685 /*
1686 * It may have two following possibilities:
1687 *
1688 * - last record has been removed
1689 * - trunc_start was within a hole
1690 *
1691 * both two cases mean the completion of hole punching.
1692 */
1693 ret = 1;
1694 }
1695
1696 *done = ret;
1697 }
1698
1699 int ocfs2_remove_inode_range(struct inode *inode,
1700 struct buffer_head *di_bh, u64 byte_start,
1701 u64 byte_len)
1702 {
1703 int ret = 0, flags = 0, done = 0, i;
1704 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1705 u32 cluster_in_el;
1706 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1707 struct ocfs2_cached_dealloc_ctxt dealloc;
1708 struct address_space *mapping = inode->i_mapping;
1709 struct ocfs2_extent_tree et;
1710 struct ocfs2_path *path = NULL;
1711 struct ocfs2_extent_list *el = NULL;
1712 struct ocfs2_extent_rec *rec = NULL;
1713 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1714 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1715
1716 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1717 ocfs2_init_dealloc_ctxt(&dealloc);
1718
1719 trace_ocfs2_remove_inode_range(
1720 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1721 (unsigned long long)byte_start,
1722 (unsigned long long)byte_len);
1723
1724 if (byte_len == 0)
1725 return 0;
1726
1727 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1728 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1729 byte_start + byte_len, 0);
1730 if (ret) {
1731 mlog_errno(ret);
1732 goto out;
1733 }
1734 /*
1735 * There's no need to get fancy with the page cache
1736 * truncate of an inline-data inode. We're talking
1737 * about less than a page here, which will be cached
1738 * in the dinode buffer anyway.
1739 */
1740 unmap_mapping_range(mapping, 0, 0, 0);
1741 truncate_inode_pages(mapping, 0);
1742 goto out;
1743 }
1744
1745 /*
1746 * For reflinks, we may need to CoW 2 clusters which might be
1747 * partially zero'd later, if hole's start and end offset were
1748 * within one cluster(means is not exactly aligned to clustersize).
1749 */
1750
1751 if (ocfs2_is_refcount_inode(inode)) {
1752 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757
1758 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out;
1762 }
1763 }
1764
1765 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1766 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1767 cluster_in_el = trunc_end;
1768
1769 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1770 if (ret) {
1771 mlog_errno(ret);
1772 goto out;
1773 }
1774
1775 path = ocfs2_new_path_from_et(&et);
1776 if (!path) {
1777 ret = -ENOMEM;
1778 mlog_errno(ret);
1779 goto out;
1780 }
1781
1782 while (trunc_end > trunc_start) {
1783
1784 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1785 cluster_in_el);
1786 if (ret) {
1787 mlog_errno(ret);
1788 goto out;
1789 }
1790
1791 el = path_leaf_el(path);
1792
1793 i = ocfs2_find_rec(el, trunc_end);
1794 /*
1795 * Need to go to previous extent block.
1796 */
1797 if (i < 0) {
1798 if (path->p_tree_depth == 0)
1799 break;
1800
1801 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1802 path,
1803 &cluster_in_el);
1804 if (ret) {
1805 mlog_errno(ret);
1806 goto out;
1807 }
1808
1809 /*
1810 * We've reached the leftmost extent block,
1811 * it's safe to leave.
1812 */
1813 if (cluster_in_el == 0)
1814 break;
1815
1816 /*
1817 * The 'pos' searched for previous extent block is
1818 * always one cluster less than actual trunc_end.
1819 */
1820 trunc_end = cluster_in_el + 1;
1821
1822 ocfs2_reinit_path(path, 1);
1823
1824 continue;
1825
1826 } else
1827 rec = &el->l_recs[i];
1828
1829 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1830 &trunc_len, &trunc_end, &blkno, &done);
1831 if (done)
1832 break;
1833
1834 flags = rec->e_flags;
1835 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1836
1837 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1838 phys_cpos, trunc_len, flags,
1839 &dealloc, refcount_loc, false);
1840 if (ret < 0) {
1841 mlog_errno(ret);
1842 goto out;
1843 }
1844
1845 cluster_in_el = trunc_end;
1846
1847 ocfs2_reinit_path(path, 1);
1848 }
1849
1850 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1851
1852 out:
1853 ocfs2_free_path(path);
1854 ocfs2_schedule_truncate_log_flush(osb, 1);
1855 ocfs2_run_deallocs(osb, &dealloc);
1856
1857 return ret;
1858 }
1859
1860 /*
1861 * Parts of this function taken from xfs_change_file_space()
1862 */
1863 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1864 loff_t f_pos, unsigned int cmd,
1865 struct ocfs2_space_resv *sr,
1866 int change_size)
1867 {
1868 int ret;
1869 s64 llen;
1870 loff_t size;
1871 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1872 struct buffer_head *di_bh = NULL;
1873 handle_t *handle;
1874 unsigned long long max_off = inode->i_sb->s_maxbytes;
1875
1876 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1877 return -EROFS;
1878
1879 inode_lock(inode);
1880
1881 /*
1882 * This prevents concurrent writes on other nodes
1883 */
1884 ret = ocfs2_rw_lock(inode, 1);
1885 if (ret) {
1886 mlog_errno(ret);
1887 goto out;
1888 }
1889
1890 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891 if (ret) {
1892 mlog_errno(ret);
1893 goto out_rw_unlock;
1894 }
1895
1896 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1897 ret = -EPERM;
1898 goto out_inode_unlock;
1899 }
1900
1901 switch (sr->l_whence) {
1902 case 0: /*SEEK_SET*/
1903 break;
1904 case 1: /*SEEK_CUR*/
1905 sr->l_start += f_pos;
1906 break;
1907 case 2: /*SEEK_END*/
1908 sr->l_start += i_size_read(inode);
1909 break;
1910 default:
1911 ret = -EINVAL;
1912 goto out_inode_unlock;
1913 }
1914 sr->l_whence = 0;
1915
1916 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1917
1918 if (sr->l_start < 0
1919 || sr->l_start > max_off
1920 || (sr->l_start + llen) < 0
1921 || (sr->l_start + llen) > max_off) {
1922 ret = -EINVAL;
1923 goto out_inode_unlock;
1924 }
1925 size = sr->l_start + sr->l_len;
1926
1927 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1928 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1929 if (sr->l_len <= 0) {
1930 ret = -EINVAL;
1931 goto out_inode_unlock;
1932 }
1933 }
1934
1935 if (file && should_remove_suid(file->f_path.dentry)) {
1936 ret = __ocfs2_write_remove_suid(inode, di_bh);
1937 if (ret) {
1938 mlog_errno(ret);
1939 goto out_inode_unlock;
1940 }
1941 }
1942
1943 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1944 switch (cmd) {
1945 case OCFS2_IOC_RESVSP:
1946 case OCFS2_IOC_RESVSP64:
1947 /*
1948 * This takes unsigned offsets, but the signed ones we
1949 * pass have been checked against overflow above.
1950 */
1951 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1952 sr->l_len);
1953 break;
1954 case OCFS2_IOC_UNRESVSP:
1955 case OCFS2_IOC_UNRESVSP64:
1956 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1957 sr->l_len);
1958 break;
1959 default:
1960 ret = -EINVAL;
1961 }
1962 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963 if (ret) {
1964 mlog_errno(ret);
1965 goto out_inode_unlock;
1966 }
1967
1968 /*
1969 * We update c/mtime for these changes
1970 */
1971 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1972 if (IS_ERR(handle)) {
1973 ret = PTR_ERR(handle);
1974 mlog_errno(ret);
1975 goto out_inode_unlock;
1976 }
1977
1978 if (change_size && i_size_read(inode) < size)
1979 i_size_write(inode, size);
1980
1981 inode->i_ctime = inode->i_mtime = current_time(inode);
1982 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1983 if (ret < 0)
1984 mlog_errno(ret);
1985
1986 if (file && (file->f_flags & O_SYNC))
1987 handle->h_sync = 1;
1988
1989 ocfs2_commit_trans(osb, handle);
1990
1991 out_inode_unlock:
1992 brelse(di_bh);
1993 ocfs2_inode_unlock(inode, 1);
1994 out_rw_unlock:
1995 ocfs2_rw_unlock(inode, 1);
1996
1997 out:
1998 inode_unlock(inode);
1999 return ret;
2000 }
2001
2002 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2003 struct ocfs2_space_resv *sr)
2004 {
2005 struct inode *inode = file_inode(file);
2006 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2007 int ret;
2008
2009 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2010 !ocfs2_writes_unwritten_extents(osb))
2011 return -ENOTTY;
2012 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2013 !ocfs2_sparse_alloc(osb))
2014 return -ENOTTY;
2015
2016 if (!S_ISREG(inode->i_mode))
2017 return -EINVAL;
2018
2019 if (!(file->f_mode & FMODE_WRITE))
2020 return -EBADF;
2021
2022 ret = mnt_want_write_file(file);
2023 if (ret)
2024 return ret;
2025 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2026 mnt_drop_write_file(file);
2027 return ret;
2028 }
2029
2030 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2031 loff_t len)
2032 {
2033 struct inode *inode = file_inode(file);
2034 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2035 struct ocfs2_space_resv sr;
2036 int change_size = 1;
2037 int cmd = OCFS2_IOC_RESVSP64;
2038
2039 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2040 return -EOPNOTSUPP;
2041 if (!ocfs2_writes_unwritten_extents(osb))
2042 return -EOPNOTSUPP;
2043
2044 if (mode & FALLOC_FL_KEEP_SIZE)
2045 change_size = 0;
2046
2047 if (mode & FALLOC_FL_PUNCH_HOLE)
2048 cmd = OCFS2_IOC_UNRESVSP64;
2049
2050 sr.l_whence = 0;
2051 sr.l_start = (s64)offset;
2052 sr.l_len = (s64)len;
2053
2054 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2055 change_size);
2056 }
2057
2058 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2059 size_t count)
2060 {
2061 int ret = 0;
2062 unsigned int extent_flags;
2063 u32 cpos, clusters, extent_len, phys_cpos;
2064 struct super_block *sb = inode->i_sb;
2065
2066 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2067 !ocfs2_is_refcount_inode(inode) ||
2068 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2069 return 0;
2070
2071 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2072 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2073
2074 while (clusters) {
2075 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2076 &extent_flags);
2077 if (ret < 0) {
2078 mlog_errno(ret);
2079 goto out;
2080 }
2081
2082 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2083 ret = 1;
2084 break;
2085 }
2086
2087 if (extent_len > clusters)
2088 extent_len = clusters;
2089
2090 clusters -= extent_len;
2091 cpos += extent_len;
2092 }
2093 out:
2094 return ret;
2095 }
2096
2097 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2098 {
2099 int blockmask = inode->i_sb->s_blocksize - 1;
2100 loff_t final_size = pos + count;
2101
2102 if ((pos & blockmask) || (final_size & blockmask))
2103 return 1;
2104 return 0;
2105 }
2106
2107 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2108 struct file *file,
2109 loff_t pos, size_t count,
2110 int *meta_level)
2111 {
2112 int ret;
2113 struct buffer_head *di_bh = NULL;
2114 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2115 u32 clusters =
2116 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2117
2118 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2119 if (ret) {
2120 mlog_errno(ret);
2121 goto out;
2122 }
2123
2124 *meta_level = 1;
2125
2126 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2127 if (ret)
2128 mlog_errno(ret);
2129 out:
2130 brelse(di_bh);
2131 return ret;
2132 }
2133
2134 static int ocfs2_prepare_inode_for_write(struct file *file,
2135 loff_t pos,
2136 size_t count)
2137 {
2138 int ret = 0, meta_level = 0;
2139 struct dentry *dentry = file->f_path.dentry;
2140 struct inode *inode = d_inode(dentry);
2141 loff_t end;
2142
2143 /*
2144 * We start with a read level meta lock and only jump to an ex
2145 * if we need to make modifications here.
2146 */
2147 for(;;) {
2148 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2149 if (ret < 0) {
2150 meta_level = -1;
2151 mlog_errno(ret);
2152 goto out;
2153 }
2154
2155 /* Clear suid / sgid if necessary. We do this here
2156 * instead of later in the write path because
2157 * remove_suid() calls ->setattr without any hint that
2158 * we may have already done our cluster locking. Since
2159 * ocfs2_setattr() *must* take cluster locks to
2160 * proceed, this will lead us to recursively lock the
2161 * inode. There's also the dinode i_size state which
2162 * can be lost via setattr during extending writes (we
2163 * set inode->i_size at the end of a write. */
2164 if (should_remove_suid(dentry)) {
2165 if (meta_level == 0) {
2166 ocfs2_inode_unlock(inode, meta_level);
2167 meta_level = 1;
2168 continue;
2169 }
2170
2171 ret = ocfs2_write_remove_suid(inode);
2172 if (ret < 0) {
2173 mlog_errno(ret);
2174 goto out_unlock;
2175 }
2176 }
2177
2178 end = pos + count;
2179
2180 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2181 if (ret == 1) {
2182 ocfs2_inode_unlock(inode, meta_level);
2183 meta_level = -1;
2184
2185 ret = ocfs2_prepare_inode_for_refcount(inode,
2186 file,
2187 pos,
2188 count,
2189 &meta_level);
2190 }
2191
2192 if (ret < 0) {
2193 mlog_errno(ret);
2194 goto out_unlock;
2195 }
2196
2197 break;
2198 }
2199
2200 out_unlock:
2201 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2202 pos, count);
2203
2204 if (meta_level >= 0)
2205 ocfs2_inode_unlock(inode, meta_level);
2206
2207 out:
2208 return ret;
2209 }
2210
2211 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2212 struct iov_iter *from)
2213 {
2214 int direct_io, rw_level;
2215 ssize_t written = 0;
2216 ssize_t ret;
2217 size_t count = iov_iter_count(from);
2218 struct file *file = iocb->ki_filp;
2219 struct inode *inode = file_inode(file);
2220 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2221 int full_coherency = !(osb->s_mount_opt &
2222 OCFS2_MOUNT_COHERENCY_BUFFERED);
2223 void *saved_ki_complete = NULL;
2224 int append_write = ((iocb->ki_pos + count) >=
2225 i_size_read(inode) ? 1 : 0);
2226
2227 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2228 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2229 file->f_path.dentry->d_name.len,
2230 file->f_path.dentry->d_name.name,
2231 (unsigned int)from->nr_segs); /* GRRRRR */
2232
2233 if (count == 0)
2234 return 0;
2235
2236 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2237
2238 inode_lock(inode);
2239
2240 /*
2241 * Concurrent O_DIRECT writes are allowed with
2242 * mount_option "coherency=buffered".
2243 * For append write, we must take rw EX.
2244 */
2245 rw_level = (!direct_io || full_coherency || append_write);
2246
2247 ret = ocfs2_rw_lock(inode, rw_level);
2248 if (ret < 0) {
2249 mlog_errno(ret);
2250 goto out_mutex;
2251 }
2252
2253 /*
2254 * O_DIRECT writes with "coherency=full" need to take EX cluster
2255 * inode_lock to guarantee coherency.
2256 */
2257 if (direct_io && full_coherency) {
2258 /*
2259 * We need to take and drop the inode lock to force
2260 * other nodes to drop their caches. Buffered I/O
2261 * already does this in write_begin().
2262 */
2263 ret = ocfs2_inode_lock(inode, NULL, 1);
2264 if (ret < 0) {
2265 mlog_errno(ret);
2266 goto out;
2267 }
2268
2269 ocfs2_inode_unlock(inode, 1);
2270 }
2271
2272 ret = generic_write_checks(iocb, from);
2273 if (ret <= 0) {
2274 if (ret)
2275 mlog_errno(ret);
2276 goto out;
2277 }
2278 count = ret;
2279
2280 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
2281 if (ret < 0) {
2282 mlog_errno(ret);
2283 goto out;
2284 }
2285
2286 if (direct_io && !is_sync_kiocb(iocb) &&
2287 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2288 /*
2289 * Make it a sync io if it's an unaligned aio.
2290 */
2291 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2292 }
2293
2294 /* communicate with ocfs2_dio_end_io */
2295 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2296
2297 written = __generic_file_write_iter(iocb, from);
2298 /* buffered aio wouldn't have proper lock coverage today */
2299 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2300
2301 /*
2302 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2303 * function pointer which is called when o_direct io completes so that
2304 * it can unlock our rw lock.
2305 * Unfortunately there are error cases which call end_io and others
2306 * that don't. so we don't have to unlock the rw_lock if either an
2307 * async dio is going to do it in the future or an end_io after an
2308 * error has already done it.
2309 */
2310 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2311 rw_level = -1;
2312 }
2313
2314 if (unlikely(written <= 0))
2315 goto out;
2316
2317 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2318 IS_SYNC(inode)) {
2319 ret = filemap_fdatawrite_range(file->f_mapping,
2320 iocb->ki_pos - written,
2321 iocb->ki_pos - 1);
2322 if (ret < 0)
2323 written = ret;
2324
2325 if (!ret) {
2326 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2327 if (ret < 0)
2328 written = ret;
2329 }
2330
2331 if (!ret)
2332 ret = filemap_fdatawait_range(file->f_mapping,
2333 iocb->ki_pos - written,
2334 iocb->ki_pos - 1);
2335 }
2336
2337 out:
2338 if (saved_ki_complete)
2339 xchg(&iocb->ki_complete, saved_ki_complete);
2340
2341 if (rw_level != -1)
2342 ocfs2_rw_unlock(inode, rw_level);
2343
2344 out_mutex:
2345 inode_unlock(inode);
2346
2347 if (written)
2348 ret = written;
2349 return ret;
2350 }
2351
2352 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2353 struct iov_iter *to)
2354 {
2355 int ret = 0, rw_level = -1, lock_level = 0;
2356 struct file *filp = iocb->ki_filp;
2357 struct inode *inode = file_inode(filp);
2358
2359 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2360 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2361 filp->f_path.dentry->d_name.len,
2362 filp->f_path.dentry->d_name.name,
2363 to->nr_segs); /* GRRRRR */
2364
2365
2366 if (!inode) {
2367 ret = -EINVAL;
2368 mlog_errno(ret);
2369 goto bail;
2370 }
2371
2372 /*
2373 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2374 * need locks to protect pending reads from racing with truncate.
2375 */
2376 if (iocb->ki_flags & IOCB_DIRECT) {
2377 ret = ocfs2_rw_lock(inode, 0);
2378 if (ret < 0) {
2379 mlog_errno(ret);
2380 goto bail;
2381 }
2382 rw_level = 0;
2383 /* communicate with ocfs2_dio_end_io */
2384 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2385 }
2386
2387 /*
2388 * We're fine letting folks race truncates and extending
2389 * writes with read across the cluster, just like they can
2390 * locally. Hence no rw_lock during read.
2391 *
2392 * Take and drop the meta data lock to update inode fields
2393 * like i_size. This allows the checks down below
2394 * generic_file_aio_read() a chance of actually working.
2395 */
2396 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2397 if (ret < 0) {
2398 mlog_errno(ret);
2399 goto bail;
2400 }
2401 ocfs2_inode_unlock(inode, lock_level);
2402
2403 ret = generic_file_read_iter(iocb, to);
2404 trace_generic_file_aio_read_ret(ret);
2405
2406 /* buffered aio wouldn't have proper lock coverage today */
2407 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2408
2409 /* see ocfs2_file_write_iter */
2410 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2411 rw_level = -1;
2412 }
2413
2414 bail:
2415 if (rw_level != -1)
2416 ocfs2_rw_unlock(inode, rw_level);
2417
2418 return ret;
2419 }
2420
2421 /* Refer generic_file_llseek_unlocked() */
2422 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2423 {
2424 struct inode *inode = file->f_mapping->host;
2425 int ret = 0;
2426
2427 inode_lock(inode);
2428
2429 switch (whence) {
2430 case SEEK_SET:
2431 break;
2432 case SEEK_END:
2433 /* SEEK_END requires the OCFS2 inode lock for the file
2434 * because it references the file's size.
2435 */
2436 ret = ocfs2_inode_lock(inode, NULL, 0);
2437 if (ret < 0) {
2438 mlog_errno(ret);
2439 goto out;
2440 }
2441 offset += i_size_read(inode);
2442 ocfs2_inode_unlock(inode, 0);
2443 break;
2444 case SEEK_CUR:
2445 if (offset == 0) {
2446 offset = file->f_pos;
2447 goto out;
2448 }
2449 offset += file->f_pos;
2450 break;
2451 case SEEK_DATA:
2452 case SEEK_HOLE:
2453 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2454 if (ret)
2455 goto out;
2456 break;
2457 default:
2458 ret = -EINVAL;
2459 goto out;
2460 }
2461
2462 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2463
2464 out:
2465 inode_unlock(inode);
2466 if (ret)
2467 return ret;
2468 return offset;
2469 }
2470
2471 static int ocfs2_file_clone_range(struct file *file_in,
2472 loff_t pos_in,
2473 struct file *file_out,
2474 loff_t pos_out,
2475 u64 len)
2476 {
2477 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
2478 len, false);
2479 }
2480
2481 static ssize_t ocfs2_file_dedupe_range(struct file *src_file,
2482 u64 loff,
2483 u64 len,
2484 struct file *dst_file,
2485 u64 dst_loff)
2486 {
2487 int error;
2488
2489 error = ocfs2_reflink_remap_range(src_file, loff, dst_file, dst_loff,
2490 len, true);
2491 if (error)
2492 return error;
2493 return len;
2494 }
2495
2496 const struct inode_operations ocfs2_file_iops = {
2497 .setattr = ocfs2_setattr,
2498 .getattr = ocfs2_getattr,
2499 .permission = ocfs2_permission,
2500 .listxattr = ocfs2_listxattr,
2501 .fiemap = ocfs2_fiemap,
2502 .get_acl = ocfs2_iop_get_acl,
2503 .set_acl = ocfs2_iop_set_acl,
2504 };
2505
2506 const struct inode_operations ocfs2_special_file_iops = {
2507 .setattr = ocfs2_setattr,
2508 .getattr = ocfs2_getattr,
2509 .permission = ocfs2_permission,
2510 .get_acl = ocfs2_iop_get_acl,
2511 .set_acl = ocfs2_iop_set_acl,
2512 };
2513
2514 /*
2515 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2516 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2517 */
2518 const struct file_operations ocfs2_fops = {
2519 .llseek = ocfs2_file_llseek,
2520 .mmap = ocfs2_mmap,
2521 .fsync = ocfs2_sync_file,
2522 .release = ocfs2_file_release,
2523 .open = ocfs2_file_open,
2524 .read_iter = ocfs2_file_read_iter,
2525 .write_iter = ocfs2_file_write_iter,
2526 .unlocked_ioctl = ocfs2_ioctl,
2527 #ifdef CONFIG_COMPAT
2528 .compat_ioctl = ocfs2_compat_ioctl,
2529 #endif
2530 .lock = ocfs2_lock,
2531 .flock = ocfs2_flock,
2532 .splice_read = generic_file_splice_read,
2533 .splice_write = iter_file_splice_write,
2534 .fallocate = ocfs2_fallocate,
2535 .clone_file_range = ocfs2_file_clone_range,
2536 .dedupe_file_range = ocfs2_file_dedupe_range,
2537 };
2538
2539 const struct file_operations ocfs2_dops = {
2540 .llseek = generic_file_llseek,
2541 .read = generic_read_dir,
2542 .iterate = ocfs2_readdir,
2543 .fsync = ocfs2_sync_file,
2544 .release = ocfs2_dir_release,
2545 .open = ocfs2_dir_open,
2546 .unlocked_ioctl = ocfs2_ioctl,
2547 #ifdef CONFIG_COMPAT
2548 .compat_ioctl = ocfs2_compat_ioctl,
2549 #endif
2550 .lock = ocfs2_lock,
2551 .flock = ocfs2_flock,
2552 };
2553
2554 /*
2555 * POSIX-lockless variants of our file_operations.
2556 *
2557 * These will be used if the underlying cluster stack does not support
2558 * posix file locking, if the user passes the "localflocks" mount
2559 * option, or if we have a local-only fs.
2560 *
2561 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2562 * so we still want it in the case of no stack support for
2563 * plocks. Internally, it will do the right thing when asked to ignore
2564 * the cluster.
2565 */
2566 const struct file_operations ocfs2_fops_no_plocks = {
2567 .llseek = ocfs2_file_llseek,
2568 .mmap = ocfs2_mmap,
2569 .fsync = ocfs2_sync_file,
2570 .release = ocfs2_file_release,
2571 .open = ocfs2_file_open,
2572 .read_iter = ocfs2_file_read_iter,
2573 .write_iter = ocfs2_file_write_iter,
2574 .unlocked_ioctl = ocfs2_ioctl,
2575 #ifdef CONFIG_COMPAT
2576 .compat_ioctl = ocfs2_compat_ioctl,
2577 #endif
2578 .flock = ocfs2_flock,
2579 .splice_read = generic_file_splice_read,
2580 .splice_write = iter_file_splice_write,
2581 .fallocate = ocfs2_fallocate,
2582 .clone_file_range = ocfs2_file_clone_range,
2583 .dedupe_file_range = ocfs2_file_dedupe_range,
2584 };
2585
2586 const struct file_operations ocfs2_dops_no_plocks = {
2587 .llseek = generic_file_llseek,
2588 .read = generic_read_dir,
2589 .iterate = ocfs2_readdir,
2590 .fsync = ocfs2_sync_file,
2591 .release = ocfs2_dir_release,
2592 .open = ocfs2_dir_open,
2593 .unlocked_ioctl = ocfs2_ioctl,
2594 #ifdef CONFIG_COMPAT
2595 .compat_ioctl = ocfs2_compat_ioctl,
2596 #endif
2597 .flock = ocfs2_flock,
2598 };