]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/journal.c
ocfs2: clear journal dirty flag after shutdown journal
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 if (osb->ocfs2_wq)
235 flush_workqueue(osb->ocfs2_wq);
236
237 /*
238 * Now that recovery is shut down, and the osb is about to be
239 * freed, the osb_lock is not taken here.
240 */
241 rm = osb->recovery_map;
242 /* XXX: Should we bug if there are dirty entries? */
243
244 kfree(rm);
245 }
246
247 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
248 unsigned int node_num)
249 {
250 int i;
251 struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253 assert_spin_locked(&osb->osb_lock);
254
255 for (i = 0; i < rm->rm_used; i++) {
256 if (rm->rm_entries[i] == node_num)
257 return 1;
258 }
259
260 return 0;
261 }
262
263 /* Behaves like test-and-set. Returns the previous value */
264 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
265 unsigned int node_num)
266 {
267 struct ocfs2_recovery_map *rm = osb->recovery_map;
268
269 spin_lock(&osb->osb_lock);
270 if (__ocfs2_recovery_map_test(osb, node_num)) {
271 spin_unlock(&osb->osb_lock);
272 return 1;
273 }
274
275 /* XXX: Can this be exploited? Not from o2dlm... */
276 BUG_ON(rm->rm_used >= osb->max_slots);
277
278 rm->rm_entries[rm->rm_used] = node_num;
279 rm->rm_used++;
280 spin_unlock(&osb->osb_lock);
281
282 return 0;
283 }
284
285 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
286 unsigned int node_num)
287 {
288 int i;
289 struct ocfs2_recovery_map *rm = osb->recovery_map;
290
291 spin_lock(&osb->osb_lock);
292
293 for (i = 0; i < rm->rm_used; i++) {
294 if (rm->rm_entries[i] == node_num)
295 break;
296 }
297
298 if (i < rm->rm_used) {
299 /* XXX: be careful with the pointer math */
300 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
301 (rm->rm_used - i - 1) * sizeof(unsigned int));
302 rm->rm_used--;
303 }
304
305 spin_unlock(&osb->osb_lock);
306 }
307
308 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 {
310 int status = 0;
311 unsigned int flushed;
312 struct ocfs2_journal *journal = NULL;
313
314 journal = osb->journal;
315
316 /* Flush all pending commits and checkpoint the journal. */
317 down_write(&journal->j_trans_barrier);
318
319 flushed = atomic_read(&journal->j_num_trans);
320 trace_ocfs2_commit_cache_begin(flushed);
321 if (flushed == 0) {
322 up_write(&journal->j_trans_barrier);
323 goto finally;
324 }
325
326 jbd2_journal_lock_updates(journal->j_journal);
327 status = jbd2_journal_flush(journal->j_journal);
328 jbd2_journal_unlock_updates(journal->j_journal);
329 if (status < 0) {
330 up_write(&journal->j_trans_barrier);
331 mlog_errno(status);
332 goto finally;
333 }
334
335 ocfs2_inc_trans_id(journal);
336
337 flushed = atomic_read(&journal->j_num_trans);
338 atomic_set(&journal->j_num_trans, 0);
339 up_write(&journal->j_trans_barrier);
340
341 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342
343 ocfs2_wake_downconvert_thread(osb);
344 wake_up(&journal->j_checkpointed);
345 finally:
346 return status;
347 }
348
349 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 {
351 journal_t *journal = osb->journal->j_journal;
352 handle_t *handle;
353
354 BUG_ON(!osb || !osb->journal->j_journal);
355
356 if (ocfs2_is_hard_readonly(osb))
357 return ERR_PTR(-EROFS);
358
359 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
360 BUG_ON(max_buffs <= 0);
361
362 /* Nested transaction? Just return the handle... */
363 if (journal_current_handle())
364 return jbd2_journal_start(journal, max_buffs);
365
366 sb_start_intwrite(osb->sb);
367
368 down_read(&osb->journal->j_trans_barrier);
369
370 handle = jbd2_journal_start(journal, max_buffs);
371 if (IS_ERR(handle)) {
372 up_read(&osb->journal->j_trans_barrier);
373 sb_end_intwrite(osb->sb);
374
375 mlog_errno(PTR_ERR(handle));
376
377 if (is_journal_aborted(journal)) {
378 ocfs2_abort(osb->sb, "Detected aborted journal\n");
379 handle = ERR_PTR(-EROFS);
380 }
381 } else {
382 if (!ocfs2_mount_local(osb))
383 atomic_inc(&(osb->journal->j_num_trans));
384 }
385
386 return handle;
387 }
388
389 int ocfs2_commit_trans(struct ocfs2_super *osb,
390 handle_t *handle)
391 {
392 int ret, nested;
393 struct ocfs2_journal *journal = osb->journal;
394
395 BUG_ON(!handle);
396
397 nested = handle->h_ref > 1;
398 ret = jbd2_journal_stop(handle);
399 if (ret < 0)
400 mlog_errno(ret);
401
402 if (!nested) {
403 up_read(&journal->j_trans_barrier);
404 sb_end_intwrite(osb->sb);
405 }
406
407 return ret;
408 }
409
410 /*
411 * 'nblocks' is what you want to add to the current transaction.
412 *
413 * This might call jbd2_journal_restart() which will commit dirty buffers
414 * and then restart the transaction. Before calling
415 * ocfs2_extend_trans(), any changed blocks should have been
416 * dirtied. After calling it, all blocks which need to be changed must
417 * go through another set of journal_access/journal_dirty calls.
418 *
419 * WARNING: This will not release any semaphores or disk locks taken
420 * during the transaction, so make sure they were taken *before*
421 * start_trans or we'll have ordering deadlocks.
422 *
423 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
424 * good because transaction ids haven't yet been recorded on the
425 * cluster locks associated with this handle.
426 */
427 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 {
429 int status, old_nblocks;
430
431 BUG_ON(!handle);
432 BUG_ON(nblocks < 0);
433
434 if (!nblocks)
435 return 0;
436
437 old_nblocks = handle->h_buffer_credits;
438
439 trace_ocfs2_extend_trans(old_nblocks, nblocks);
440
441 #ifdef CONFIG_OCFS2_DEBUG_FS
442 status = 1;
443 #else
444 status = jbd2_journal_extend(handle, nblocks);
445 if (status < 0) {
446 mlog_errno(status);
447 goto bail;
448 }
449 #endif
450
451 if (status > 0) {
452 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
453 status = jbd2_journal_restart(handle,
454 old_nblocks + nblocks);
455 if (status < 0) {
456 mlog_errno(status);
457 goto bail;
458 }
459 }
460
461 status = 0;
462 bail:
463 return status;
464 }
465
466 /*
467 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
468 * If that fails, restart the transaction & regain write access for the
469 * buffer head which is used for metadata modifications.
470 * Taken from Ext4: extend_or_restart_transaction()
471 */
472 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 {
474 int status, old_nblks;
475
476 BUG_ON(!handle);
477
478 old_nblks = handle->h_buffer_credits;
479 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480
481 if (old_nblks < thresh)
482 return 0;
483
484 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
485 if (status < 0) {
486 mlog_errno(status);
487 goto bail;
488 }
489
490 if (status > 0) {
491 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
492 if (status < 0)
493 mlog_errno(status);
494 }
495
496 bail:
497 return status;
498 }
499
500
501 struct ocfs2_triggers {
502 struct jbd2_buffer_trigger_type ot_triggers;
503 int ot_offset;
504 };
505
506 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 {
508 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
509 }
510
511 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512 struct buffer_head *bh,
513 void *data, size_t size)
514 {
515 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
516
517 /*
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
522 */
523 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
524 }
525
526 /*
527 * Quota blocks have their own trigger because the struct ocfs2_block_check
528 * offset depends on the blocksize.
529 */
530 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
531 struct buffer_head *bh,
532 void *data, size_t size)
533 {
534 struct ocfs2_disk_dqtrailer *dqt =
535 ocfs2_block_dqtrailer(size, data);
536
537 /*
538 * We aren't guaranteed to have the superblock here, so we
539 * must unconditionally compute the ecc data.
540 * __ocfs2_journal_access() will only set the triggers if
541 * metaecc is enabled.
542 */
543 ocfs2_block_check_compute(data, size, &dqt->dq_check);
544 }
545
546 /*
547 * Directory blocks also have their own trigger because the
548 * struct ocfs2_block_check offset depends on the blocksize.
549 */
550 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
551 struct buffer_head *bh,
552 void *data, size_t size)
553 {
554 struct ocfs2_dir_block_trailer *trailer =
555 ocfs2_dir_trailer_from_size(size, data);
556
557 /*
558 * We aren't guaranteed to have the superblock here, so we
559 * must unconditionally compute the ecc data.
560 * __ocfs2_journal_access() will only set the triggers if
561 * metaecc is enabled.
562 */
563 ocfs2_block_check_compute(data, size, &trailer->db_check);
564 }
565
566 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
567 struct buffer_head *bh)
568 {
569 mlog(ML_ERROR,
570 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
571 "bh->b_blocknr = %llu\n",
572 (unsigned long)bh,
573 (unsigned long long)bh->b_blocknr);
574
575 ocfs2_error(bh->b_bdev->bd_super,
576 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
577 }
578
579 static struct ocfs2_triggers di_triggers = {
580 .ot_triggers = {
581 .t_frozen = ocfs2_frozen_trigger,
582 .t_abort = ocfs2_abort_trigger,
583 },
584 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
585 };
586
587 static struct ocfs2_triggers eb_triggers = {
588 .ot_triggers = {
589 .t_frozen = ocfs2_frozen_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
593 };
594
595 static struct ocfs2_triggers rb_triggers = {
596 .ot_triggers = {
597 .t_frozen = ocfs2_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
601 };
602
603 static struct ocfs2_triggers gd_triggers = {
604 .ot_triggers = {
605 .t_frozen = ocfs2_frozen_trigger,
606 .t_abort = ocfs2_abort_trigger,
607 },
608 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
609 };
610
611 static struct ocfs2_triggers db_triggers = {
612 .ot_triggers = {
613 .t_frozen = ocfs2_db_frozen_trigger,
614 .t_abort = ocfs2_abort_trigger,
615 },
616 };
617
618 static struct ocfs2_triggers xb_triggers = {
619 .ot_triggers = {
620 .t_frozen = ocfs2_frozen_trigger,
621 .t_abort = ocfs2_abort_trigger,
622 },
623 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
624 };
625
626 static struct ocfs2_triggers dq_triggers = {
627 .ot_triggers = {
628 .t_frozen = ocfs2_dq_frozen_trigger,
629 .t_abort = ocfs2_abort_trigger,
630 },
631 };
632
633 static struct ocfs2_triggers dr_triggers = {
634 .ot_triggers = {
635 .t_frozen = ocfs2_frozen_trigger,
636 .t_abort = ocfs2_abort_trigger,
637 },
638 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
639 };
640
641 static struct ocfs2_triggers dl_triggers = {
642 .ot_triggers = {
643 .t_frozen = ocfs2_frozen_trigger,
644 .t_abort = ocfs2_abort_trigger,
645 },
646 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
647 };
648
649 static int __ocfs2_journal_access(handle_t *handle,
650 struct ocfs2_caching_info *ci,
651 struct buffer_head *bh,
652 struct ocfs2_triggers *triggers,
653 int type)
654 {
655 int status;
656 struct ocfs2_super *osb =
657 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658
659 BUG_ON(!ci || !ci->ci_ops);
660 BUG_ON(!handle);
661 BUG_ON(!bh);
662
663 trace_ocfs2_journal_access(
664 (unsigned long long)ocfs2_metadata_cache_owner(ci),
665 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666
667 /* we can safely remove this assertion after testing. */
668 if (!buffer_uptodate(bh)) {
669 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
670 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
671 (unsigned long long)bh->b_blocknr, bh->b_state);
672
673 lock_buffer(bh);
674 /*
675 * A previous transaction with a couple of buffer heads fail
676 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
677 * For current transaction, the bh is just among those error
678 * bhs which previous transaction handle. We can't just clear
679 * its BH_Write_EIO and reuse directly, since other bhs are
680 * not written to disk yet and that will cause metadata
681 * inconsistency. So we should set fs read-only to avoid
682 * further damage.
683 */
684 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
685 unlock_buffer(bh);
686 return ocfs2_error(osb->sb, "A previous attempt to "
687 "write this buffer head failed\n");
688 }
689 unlock_buffer(bh);
690 }
691
692 /* Set the current transaction information on the ci so
693 * that the locking code knows whether it can drop it's locks
694 * on this ci or not. We're protected from the commit
695 * thread updating the current transaction id until
696 * ocfs2_commit_trans() because ocfs2_start_trans() took
697 * j_trans_barrier for us. */
698 ocfs2_set_ci_lock_trans(osb->journal, ci);
699
700 ocfs2_metadata_cache_io_lock(ci);
701 switch (type) {
702 case OCFS2_JOURNAL_ACCESS_CREATE:
703 case OCFS2_JOURNAL_ACCESS_WRITE:
704 status = jbd2_journal_get_write_access(handle, bh);
705 break;
706
707 case OCFS2_JOURNAL_ACCESS_UNDO:
708 status = jbd2_journal_get_undo_access(handle, bh);
709 break;
710
711 default:
712 status = -EINVAL;
713 mlog(ML_ERROR, "Unknown access type!\n");
714 }
715 if (!status && ocfs2_meta_ecc(osb) && triggers)
716 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
717 ocfs2_metadata_cache_io_unlock(ci);
718
719 if (status < 0)
720 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
721 status, type);
722
723 return status;
724 }
725
726 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
727 struct buffer_head *bh, int type)
728 {
729 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
730 }
731
732 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
733 struct buffer_head *bh, int type)
734 {
735 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
736 }
737
738 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
739 struct buffer_head *bh, int type)
740 {
741 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
742 type);
743 }
744
745 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
746 struct buffer_head *bh, int type)
747 {
748 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
749 }
750
751 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
752 struct buffer_head *bh, int type)
753 {
754 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
755 }
756
757 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
758 struct buffer_head *bh, int type)
759 {
760 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
761 }
762
763 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
764 struct buffer_head *bh, int type)
765 {
766 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
767 }
768
769 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
770 struct buffer_head *bh, int type)
771 {
772 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
773 }
774
775 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
776 struct buffer_head *bh, int type)
777 {
778 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
779 }
780
781 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
782 struct buffer_head *bh, int type)
783 {
784 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
785 }
786
787 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
788 {
789 int status;
790
791 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
792
793 status = jbd2_journal_dirty_metadata(handle, bh);
794 if (status) {
795 mlog_errno(status);
796 if (!is_handle_aborted(handle)) {
797 journal_t *journal = handle->h_transaction->t_journal;
798 struct super_block *sb = bh->b_bdev->bd_super;
799
800 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
801 "Aborting transaction and journal.\n");
802 handle->h_err = status;
803 jbd2_journal_abort_handle(handle);
804 jbd2_journal_abort(journal, status);
805 ocfs2_abort(sb, "Journal already aborted.\n");
806 }
807 }
808 }
809
810 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
811
812 void ocfs2_set_journal_params(struct ocfs2_super *osb)
813 {
814 journal_t *journal = osb->journal->j_journal;
815 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
816
817 if (osb->osb_commit_interval)
818 commit_interval = osb->osb_commit_interval;
819
820 write_lock(&journal->j_state_lock);
821 journal->j_commit_interval = commit_interval;
822 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
823 journal->j_flags |= JBD2_BARRIER;
824 else
825 journal->j_flags &= ~JBD2_BARRIER;
826 write_unlock(&journal->j_state_lock);
827 }
828
829 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
830 {
831 int status = -1;
832 struct inode *inode = NULL; /* the journal inode */
833 journal_t *j_journal = NULL;
834 struct ocfs2_dinode *di = NULL;
835 struct buffer_head *bh = NULL;
836 struct ocfs2_super *osb;
837 int inode_lock = 0;
838
839 BUG_ON(!journal);
840
841 osb = journal->j_osb;
842
843 /* already have the inode for our journal */
844 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
845 osb->slot_num);
846 if (inode == NULL) {
847 status = -EACCES;
848 mlog_errno(status);
849 goto done;
850 }
851 if (is_bad_inode(inode)) {
852 mlog(ML_ERROR, "access error (bad inode)\n");
853 iput(inode);
854 inode = NULL;
855 status = -EACCES;
856 goto done;
857 }
858
859 SET_INODE_JOURNAL(inode);
860 OCFS2_I(inode)->ip_open_count++;
861
862 /* Skip recovery waits here - journal inode metadata never
863 * changes in a live cluster so it can be considered an
864 * exception to the rule. */
865 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
866 if (status < 0) {
867 if (status != -ERESTARTSYS)
868 mlog(ML_ERROR, "Could not get lock on journal!\n");
869 goto done;
870 }
871
872 inode_lock = 1;
873 di = (struct ocfs2_dinode *)bh->b_data;
874
875 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
876 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
877 i_size_read(inode));
878 status = -EINVAL;
879 goto done;
880 }
881
882 trace_ocfs2_journal_init(i_size_read(inode),
883 (unsigned long long)inode->i_blocks,
884 OCFS2_I(inode)->ip_clusters);
885
886 /* call the kernels journal init function now */
887 j_journal = jbd2_journal_init_inode(inode);
888 if (j_journal == NULL) {
889 mlog(ML_ERROR, "Linux journal layer error\n");
890 status = -EINVAL;
891 goto done;
892 }
893
894 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
895
896 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
897 OCFS2_JOURNAL_DIRTY_FL);
898
899 journal->j_journal = j_journal;
900 journal->j_inode = inode;
901 journal->j_bh = bh;
902
903 ocfs2_set_journal_params(osb);
904
905 journal->j_state = OCFS2_JOURNAL_LOADED;
906
907 status = 0;
908 done:
909 if (status < 0) {
910 if (inode_lock)
911 ocfs2_inode_unlock(inode, 1);
912 brelse(bh);
913 if (inode) {
914 OCFS2_I(inode)->ip_open_count--;
915 iput(inode);
916 }
917 }
918
919 return status;
920 }
921
922 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
923 {
924 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
925 }
926
927 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
928 {
929 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
930 }
931
932 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
933 int dirty, int replayed)
934 {
935 int status;
936 unsigned int flags;
937 struct ocfs2_journal *journal = osb->journal;
938 struct buffer_head *bh = journal->j_bh;
939 struct ocfs2_dinode *fe;
940
941 fe = (struct ocfs2_dinode *)bh->b_data;
942
943 /* The journal bh on the osb always comes from ocfs2_journal_init()
944 * and was validated there inside ocfs2_inode_lock_full(). It's a
945 * code bug if we mess it up. */
946 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
947
948 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
949 if (dirty)
950 flags |= OCFS2_JOURNAL_DIRTY_FL;
951 else
952 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
953 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
954
955 if (replayed)
956 ocfs2_bump_recovery_generation(fe);
957
958 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
959 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
960 if (status < 0)
961 mlog_errno(status);
962
963 return status;
964 }
965
966 /*
967 * If the journal has been kmalloc'd it needs to be freed after this
968 * call.
969 */
970 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
971 {
972 struct ocfs2_journal *journal = NULL;
973 int status = 0;
974 struct inode *inode = NULL;
975 int num_running_trans = 0;
976
977 BUG_ON(!osb);
978
979 journal = osb->journal;
980 if (!journal)
981 goto done;
982
983 inode = journal->j_inode;
984
985 if (journal->j_state != OCFS2_JOURNAL_LOADED)
986 goto done;
987
988 /* need to inc inode use count - jbd2_journal_destroy will iput. */
989 if (!igrab(inode))
990 BUG();
991
992 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
993 trace_ocfs2_journal_shutdown(num_running_trans);
994
995 /* Do a commit_cache here. It will flush our journal, *and*
996 * release any locks that are still held.
997 * set the SHUTDOWN flag and release the trans lock.
998 * the commit thread will take the trans lock for us below. */
999 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1000
1001 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1002 * drop the trans_lock (which we want to hold until we
1003 * completely destroy the journal. */
1004 if (osb->commit_task) {
1005 /* Wait for the commit thread */
1006 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1007 kthread_stop(osb->commit_task);
1008 osb->commit_task = NULL;
1009 }
1010
1011 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1012
1013 if (ocfs2_mount_local(osb)) {
1014 jbd2_journal_lock_updates(journal->j_journal);
1015 status = jbd2_journal_flush(journal->j_journal);
1016 jbd2_journal_unlock_updates(journal->j_journal);
1017 if (status < 0)
1018 mlog_errno(status);
1019 }
1020
1021 /* Shutdown the kernel journal system */
1022 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1023 /*
1024 * Do not toggle if flush was unsuccessful otherwise
1025 * will leave dirty metadata in a "clean" journal
1026 */
1027 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1028 if (status < 0)
1029 mlog_errno(status);
1030 }
1031 journal->j_journal = NULL;
1032
1033 OCFS2_I(inode)->ip_open_count--;
1034
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode, 1);
1037
1038 brelse(journal->j_bh);
1039 journal->j_bh = NULL;
1040
1041 journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043 // up_write(&journal->j_trans_barrier);
1044 done:
1045 iput(inode);
1046 }
1047
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 journal_t *journal,
1050 int slot)
1051 {
1052 int olderr;
1053
1054 olderr = jbd2_journal_errno(journal);
1055 if (olderr) {
1056 mlog(ML_ERROR, "File system error %d recorded in "
1057 "journal %u.\n", olderr, slot);
1058 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 sb->s_id);
1060
1061 jbd2_journal_ack_err(journal);
1062 jbd2_journal_clear_err(journal);
1063 }
1064 }
1065
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 int status = 0;
1069 struct ocfs2_super *osb;
1070
1071 BUG_ON(!journal);
1072
1073 osb = journal->j_osb;
1074
1075 status = jbd2_journal_load(journal->j_journal);
1076 if (status < 0) {
1077 mlog(ML_ERROR, "Failed to load journal!\n");
1078 goto done;
1079 }
1080
1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto done;
1087 }
1088
1089 /* Launch the commit thread */
1090 if (!local) {
1091 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1092 "ocfs2cmt-%s", osb->uuid_str);
1093 if (IS_ERR(osb->commit_task)) {
1094 status = PTR_ERR(osb->commit_task);
1095 osb->commit_task = NULL;
1096 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1097 "error=%d", status);
1098 goto done;
1099 }
1100 } else
1101 osb->commit_task = NULL;
1102
1103 done:
1104 return status;
1105 }
1106
1107
1108 /* 'full' flag tells us whether we clear out all blocks or if we just
1109 * mark the journal clean */
1110 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1111 {
1112 int status;
1113
1114 BUG_ON(!journal);
1115
1116 status = jbd2_journal_wipe(journal->j_journal, full);
1117 if (status < 0) {
1118 mlog_errno(status);
1119 goto bail;
1120 }
1121
1122 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1123 if (status < 0)
1124 mlog_errno(status);
1125
1126 bail:
1127 return status;
1128 }
1129
1130 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1131 {
1132 int empty;
1133 struct ocfs2_recovery_map *rm = osb->recovery_map;
1134
1135 spin_lock(&osb->osb_lock);
1136 empty = (rm->rm_used == 0);
1137 spin_unlock(&osb->osb_lock);
1138
1139 return empty;
1140 }
1141
1142 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1143 {
1144 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1145 }
1146
1147 /*
1148 * JBD Might read a cached version of another nodes journal file. We
1149 * don't want this as this file changes often and we get no
1150 * notification on those changes. The only way to be sure that we've
1151 * got the most up to date version of those blocks then is to force
1152 * read them off disk. Just searching through the buffer cache won't
1153 * work as there may be pages backing this file which are still marked
1154 * up to date. We know things can't change on this file underneath us
1155 * as we have the lock by now :)
1156 */
1157 static int ocfs2_force_read_journal(struct inode *inode)
1158 {
1159 int status = 0;
1160 int i;
1161 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1162 struct buffer_head *bh = NULL;
1163 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1164
1165 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1166 v_blkno = 0;
1167 while (v_blkno < num_blocks) {
1168 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1169 &p_blkno, &p_blocks, NULL);
1170 if (status < 0) {
1171 mlog_errno(status);
1172 goto bail;
1173 }
1174
1175 for (i = 0; i < p_blocks; i++, p_blkno++) {
1176 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1177 osb->sb->s_blocksize);
1178 /* block not cached. */
1179 if (!bh)
1180 continue;
1181
1182 brelse(bh);
1183 bh = NULL;
1184 /* We are reading journal data which should not
1185 * be put in the uptodate cache.
1186 */
1187 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1188 if (status < 0) {
1189 mlog_errno(status);
1190 goto bail;
1191 }
1192
1193 brelse(bh);
1194 bh = NULL;
1195 }
1196
1197 v_blkno += p_blocks;
1198 }
1199
1200 bail:
1201 return status;
1202 }
1203
1204 struct ocfs2_la_recovery_item {
1205 struct list_head lri_list;
1206 int lri_slot;
1207 struct ocfs2_dinode *lri_la_dinode;
1208 struct ocfs2_dinode *lri_tl_dinode;
1209 struct ocfs2_quota_recovery *lri_qrec;
1210 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1211 };
1212
1213 /* Does the second half of the recovery process. By this point, the
1214 * node is marked clean and can actually be considered recovered,
1215 * hence it's no longer in the recovery map, but there's still some
1216 * cleanup we can do which shouldn't happen within the recovery thread
1217 * as locking in that context becomes very difficult if we are to take
1218 * recovering nodes into account.
1219 *
1220 * NOTE: This function can and will sleep on recovery of other nodes
1221 * during cluster locking, just like any other ocfs2 process.
1222 */
1223 void ocfs2_complete_recovery(struct work_struct *work)
1224 {
1225 int ret = 0;
1226 struct ocfs2_journal *journal =
1227 container_of(work, struct ocfs2_journal, j_recovery_work);
1228 struct ocfs2_super *osb = journal->j_osb;
1229 struct ocfs2_dinode *la_dinode, *tl_dinode;
1230 struct ocfs2_la_recovery_item *item, *n;
1231 struct ocfs2_quota_recovery *qrec;
1232 enum ocfs2_orphan_reco_type orphan_reco_type;
1233 LIST_HEAD(tmp_la_list);
1234
1235 trace_ocfs2_complete_recovery(
1236 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1237
1238 spin_lock(&journal->j_lock);
1239 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1240 spin_unlock(&journal->j_lock);
1241
1242 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1243 list_del_init(&item->lri_list);
1244
1245 ocfs2_wait_on_quotas(osb);
1246
1247 la_dinode = item->lri_la_dinode;
1248 tl_dinode = item->lri_tl_dinode;
1249 qrec = item->lri_qrec;
1250 orphan_reco_type = item->lri_orphan_reco_type;
1251
1252 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1253 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1254 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1255 qrec);
1256
1257 if (la_dinode) {
1258 ret = ocfs2_complete_local_alloc_recovery(osb,
1259 la_dinode);
1260 if (ret < 0)
1261 mlog_errno(ret);
1262
1263 kfree(la_dinode);
1264 }
1265
1266 if (tl_dinode) {
1267 ret = ocfs2_complete_truncate_log_recovery(osb,
1268 tl_dinode);
1269 if (ret < 0)
1270 mlog_errno(ret);
1271
1272 kfree(tl_dinode);
1273 }
1274
1275 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1276 orphan_reco_type);
1277 if (ret < 0)
1278 mlog_errno(ret);
1279
1280 if (qrec) {
1281 ret = ocfs2_finish_quota_recovery(osb, qrec,
1282 item->lri_slot);
1283 if (ret < 0)
1284 mlog_errno(ret);
1285 /* Recovery info is already freed now */
1286 }
1287
1288 kfree(item);
1289 }
1290
1291 trace_ocfs2_complete_recovery_end(ret);
1292 }
1293
1294 /* NOTE: This function always eats your references to la_dinode and
1295 * tl_dinode, either manually on error, or by passing them to
1296 * ocfs2_complete_recovery */
1297 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1298 int slot_num,
1299 struct ocfs2_dinode *la_dinode,
1300 struct ocfs2_dinode *tl_dinode,
1301 struct ocfs2_quota_recovery *qrec,
1302 enum ocfs2_orphan_reco_type orphan_reco_type)
1303 {
1304 struct ocfs2_la_recovery_item *item;
1305
1306 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1307 if (!item) {
1308 /* Though we wish to avoid it, we are in fact safe in
1309 * skipping local alloc cleanup as fsck.ocfs2 is more
1310 * than capable of reclaiming unused space. */
1311 kfree(la_dinode);
1312 kfree(tl_dinode);
1313
1314 if (qrec)
1315 ocfs2_free_quota_recovery(qrec);
1316
1317 mlog_errno(-ENOMEM);
1318 return;
1319 }
1320
1321 INIT_LIST_HEAD(&item->lri_list);
1322 item->lri_la_dinode = la_dinode;
1323 item->lri_slot = slot_num;
1324 item->lri_tl_dinode = tl_dinode;
1325 item->lri_qrec = qrec;
1326 item->lri_orphan_reco_type = orphan_reco_type;
1327
1328 spin_lock(&journal->j_lock);
1329 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1330 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1331 spin_unlock(&journal->j_lock);
1332 }
1333
1334 /* Called by the mount code to queue recovery the last part of
1335 * recovery for it's own and offline slot(s). */
1336 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1337 {
1338 struct ocfs2_journal *journal = osb->journal;
1339
1340 if (ocfs2_is_hard_readonly(osb))
1341 return;
1342
1343 /* No need to queue up our truncate_log as regular cleanup will catch
1344 * that */
1345 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1346 osb->local_alloc_copy, NULL, NULL,
1347 ORPHAN_NEED_TRUNCATE);
1348 ocfs2_schedule_truncate_log_flush(osb, 0);
1349
1350 osb->local_alloc_copy = NULL;
1351
1352 /* queue to recover orphan slots for all offline slots */
1353 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1354 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1355 ocfs2_free_replay_slots(osb);
1356 }
1357
1358 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1359 {
1360 if (osb->quota_rec) {
1361 ocfs2_queue_recovery_completion(osb->journal,
1362 osb->slot_num,
1363 NULL,
1364 NULL,
1365 osb->quota_rec,
1366 ORPHAN_NEED_TRUNCATE);
1367 osb->quota_rec = NULL;
1368 }
1369 }
1370
1371 static int __ocfs2_recovery_thread(void *arg)
1372 {
1373 int status, node_num, slot_num;
1374 struct ocfs2_super *osb = arg;
1375 struct ocfs2_recovery_map *rm = osb->recovery_map;
1376 int *rm_quota = NULL;
1377 int rm_quota_used = 0, i;
1378 struct ocfs2_quota_recovery *qrec;
1379
1380 /* Whether the quota supported. */
1381 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1382 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1383 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1384 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1385
1386 status = ocfs2_wait_on_mount(osb);
1387 if (status < 0) {
1388 goto bail;
1389 }
1390
1391 if (quota_enabled) {
1392 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1393 if (!rm_quota) {
1394 status = -ENOMEM;
1395 goto bail;
1396 }
1397 }
1398 restart:
1399 status = ocfs2_super_lock(osb, 1);
1400 if (status < 0) {
1401 mlog_errno(status);
1402 goto bail;
1403 }
1404
1405 status = ocfs2_compute_replay_slots(osb);
1406 if (status < 0)
1407 mlog_errno(status);
1408
1409 /* queue recovery for our own slot */
1410 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1411 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1412
1413 spin_lock(&osb->osb_lock);
1414 while (rm->rm_used) {
1415 /* It's always safe to remove entry zero, as we won't
1416 * clear it until ocfs2_recover_node() has succeeded. */
1417 node_num = rm->rm_entries[0];
1418 spin_unlock(&osb->osb_lock);
1419 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1420 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1421 if (slot_num == -ENOENT) {
1422 status = 0;
1423 goto skip_recovery;
1424 }
1425
1426 /* It is a bit subtle with quota recovery. We cannot do it
1427 * immediately because we have to obtain cluster locks from
1428 * quota files and we also don't want to just skip it because
1429 * then quota usage would be out of sync until some node takes
1430 * the slot. So we remember which nodes need quota recovery
1431 * and when everything else is done, we recover quotas. */
1432 if (quota_enabled) {
1433 for (i = 0; i < rm_quota_used
1434 && rm_quota[i] != slot_num; i++)
1435 ;
1436
1437 if (i == rm_quota_used)
1438 rm_quota[rm_quota_used++] = slot_num;
1439 }
1440
1441 status = ocfs2_recover_node(osb, node_num, slot_num);
1442 skip_recovery:
1443 if (!status) {
1444 ocfs2_recovery_map_clear(osb, node_num);
1445 } else {
1446 mlog(ML_ERROR,
1447 "Error %d recovering node %d on device (%u,%u)!\n",
1448 status, node_num,
1449 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1450 mlog(ML_ERROR, "Volume requires unmount.\n");
1451 }
1452
1453 spin_lock(&osb->osb_lock);
1454 }
1455 spin_unlock(&osb->osb_lock);
1456 trace_ocfs2_recovery_thread_end(status);
1457
1458 /* Refresh all journal recovery generations from disk */
1459 status = ocfs2_check_journals_nolocks(osb);
1460 status = (status == -EROFS) ? 0 : status;
1461 if (status < 0)
1462 mlog_errno(status);
1463
1464 /* Now it is right time to recover quotas... We have to do this under
1465 * superblock lock so that no one can start using the slot (and crash)
1466 * before we recover it */
1467 if (quota_enabled) {
1468 for (i = 0; i < rm_quota_used; i++) {
1469 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1470 if (IS_ERR(qrec)) {
1471 status = PTR_ERR(qrec);
1472 mlog_errno(status);
1473 continue;
1474 }
1475 ocfs2_queue_recovery_completion(osb->journal,
1476 rm_quota[i],
1477 NULL, NULL, qrec,
1478 ORPHAN_NEED_TRUNCATE);
1479 }
1480 }
1481
1482 ocfs2_super_unlock(osb, 1);
1483
1484 /* queue recovery for offline slots */
1485 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1486
1487 bail:
1488 mutex_lock(&osb->recovery_lock);
1489 if (!status && !ocfs2_recovery_completed(osb)) {
1490 mutex_unlock(&osb->recovery_lock);
1491 goto restart;
1492 }
1493
1494 ocfs2_free_replay_slots(osb);
1495 osb->recovery_thread_task = NULL;
1496 mb(); /* sync with ocfs2_recovery_thread_running */
1497 wake_up(&osb->recovery_event);
1498
1499 mutex_unlock(&osb->recovery_lock);
1500
1501 if (quota_enabled)
1502 kfree(rm_quota);
1503
1504 /* no one is callint kthread_stop() for us so the kthread() api
1505 * requires that we call do_exit(). And it isn't exported, but
1506 * complete_and_exit() seems to be a minimal wrapper around it. */
1507 complete_and_exit(NULL, status);
1508 }
1509
1510 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1511 {
1512 mutex_lock(&osb->recovery_lock);
1513
1514 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1515 osb->disable_recovery, osb->recovery_thread_task,
1516 osb->disable_recovery ?
1517 -1 : ocfs2_recovery_map_set(osb, node_num));
1518
1519 if (osb->disable_recovery)
1520 goto out;
1521
1522 if (osb->recovery_thread_task)
1523 goto out;
1524
1525 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1526 "ocfs2rec-%s", osb->uuid_str);
1527 if (IS_ERR(osb->recovery_thread_task)) {
1528 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1529 osb->recovery_thread_task = NULL;
1530 }
1531
1532 out:
1533 mutex_unlock(&osb->recovery_lock);
1534 wake_up(&osb->recovery_event);
1535 }
1536
1537 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1538 int slot_num,
1539 struct buffer_head **bh,
1540 struct inode **ret_inode)
1541 {
1542 int status = -EACCES;
1543 struct inode *inode = NULL;
1544
1545 BUG_ON(slot_num >= osb->max_slots);
1546
1547 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1548 slot_num);
1549 if (!inode || is_bad_inode(inode)) {
1550 mlog_errno(status);
1551 goto bail;
1552 }
1553 SET_INODE_JOURNAL(inode);
1554
1555 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1556 if (status < 0) {
1557 mlog_errno(status);
1558 goto bail;
1559 }
1560
1561 status = 0;
1562
1563 bail:
1564 if (inode) {
1565 if (status || !ret_inode)
1566 iput(inode);
1567 else
1568 *ret_inode = inode;
1569 }
1570 return status;
1571 }
1572
1573 /* Does the actual journal replay and marks the journal inode as
1574 * clean. Will only replay if the journal inode is marked dirty. */
1575 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1576 int node_num,
1577 int slot_num)
1578 {
1579 int status;
1580 int got_lock = 0;
1581 unsigned int flags;
1582 struct inode *inode = NULL;
1583 struct ocfs2_dinode *fe;
1584 journal_t *journal = NULL;
1585 struct buffer_head *bh = NULL;
1586 u32 slot_reco_gen;
1587
1588 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1589 if (status) {
1590 mlog_errno(status);
1591 goto done;
1592 }
1593
1594 fe = (struct ocfs2_dinode *)bh->b_data;
1595 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1596 brelse(bh);
1597 bh = NULL;
1598
1599 /*
1600 * As the fs recovery is asynchronous, there is a small chance that
1601 * another node mounted (and recovered) the slot before the recovery
1602 * thread could get the lock. To handle that, we dirty read the journal
1603 * inode for that slot to get the recovery generation. If it is
1604 * different than what we expected, the slot has been recovered.
1605 * If not, it needs recovery.
1606 */
1607 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1608 trace_ocfs2_replay_journal_recovered(slot_num,
1609 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1610 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1611 status = -EBUSY;
1612 goto done;
1613 }
1614
1615 /* Continue with recovery as the journal has not yet been recovered */
1616
1617 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1618 if (status < 0) {
1619 trace_ocfs2_replay_journal_lock_err(status);
1620 if (status != -ERESTARTSYS)
1621 mlog(ML_ERROR, "Could not lock journal!\n");
1622 goto done;
1623 }
1624 got_lock = 1;
1625
1626 fe = (struct ocfs2_dinode *) bh->b_data;
1627
1628 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1629 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1630
1631 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1632 trace_ocfs2_replay_journal_skip(node_num);
1633 /* Refresh recovery generation for the slot */
1634 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1635 goto done;
1636 }
1637
1638 /* we need to run complete recovery for offline orphan slots */
1639 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1640
1641 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1642 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1643 MINOR(osb->sb->s_dev));
1644
1645 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1646
1647 status = ocfs2_force_read_journal(inode);
1648 if (status < 0) {
1649 mlog_errno(status);
1650 goto done;
1651 }
1652
1653 journal = jbd2_journal_init_inode(inode);
1654 if (journal == NULL) {
1655 mlog(ML_ERROR, "Linux journal layer error\n");
1656 status = -EIO;
1657 goto done;
1658 }
1659
1660 status = jbd2_journal_load(journal);
1661 if (status < 0) {
1662 mlog_errno(status);
1663 if (!igrab(inode))
1664 BUG();
1665 jbd2_journal_destroy(journal);
1666 goto done;
1667 }
1668
1669 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1670
1671 /* wipe the journal */
1672 jbd2_journal_lock_updates(journal);
1673 status = jbd2_journal_flush(journal);
1674 jbd2_journal_unlock_updates(journal);
1675 if (status < 0)
1676 mlog_errno(status);
1677
1678 /* This will mark the node clean */
1679 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1680 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1681 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1682
1683 /* Increment recovery generation to indicate successful recovery */
1684 ocfs2_bump_recovery_generation(fe);
1685 osb->slot_recovery_generations[slot_num] =
1686 ocfs2_get_recovery_generation(fe);
1687
1688 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1689 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1690 if (status < 0)
1691 mlog_errno(status);
1692
1693 if (!igrab(inode))
1694 BUG();
1695
1696 jbd2_journal_destroy(journal);
1697
1698 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1699 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1700 MINOR(osb->sb->s_dev));
1701 done:
1702 /* drop the lock on this nodes journal */
1703 if (got_lock)
1704 ocfs2_inode_unlock(inode, 1);
1705
1706 iput(inode);
1707 brelse(bh);
1708
1709 return status;
1710 }
1711
1712 /*
1713 * Do the most important parts of node recovery:
1714 * - Replay it's journal
1715 * - Stamp a clean local allocator file
1716 * - Stamp a clean truncate log
1717 * - Mark the node clean
1718 *
1719 * If this function completes without error, a node in OCFS2 can be
1720 * said to have been safely recovered. As a result, failure during the
1721 * second part of a nodes recovery process (local alloc recovery) is
1722 * far less concerning.
1723 */
1724 static int ocfs2_recover_node(struct ocfs2_super *osb,
1725 int node_num, int slot_num)
1726 {
1727 int status = 0;
1728 struct ocfs2_dinode *la_copy = NULL;
1729 struct ocfs2_dinode *tl_copy = NULL;
1730
1731 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1732
1733 /* Should not ever be called to recover ourselves -- in that
1734 * case we should've called ocfs2_journal_load instead. */
1735 BUG_ON(osb->node_num == node_num);
1736
1737 status = ocfs2_replay_journal(osb, node_num, slot_num);
1738 if (status < 0) {
1739 if (status == -EBUSY) {
1740 trace_ocfs2_recover_node_skip(slot_num, node_num);
1741 status = 0;
1742 goto done;
1743 }
1744 mlog_errno(status);
1745 goto done;
1746 }
1747
1748 /* Stamp a clean local alloc file AFTER recovering the journal... */
1749 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1750 if (status < 0) {
1751 mlog_errno(status);
1752 goto done;
1753 }
1754
1755 /* An error from begin_truncate_log_recovery is not
1756 * serious enough to warrant halting the rest of
1757 * recovery. */
1758 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1759 if (status < 0)
1760 mlog_errno(status);
1761
1762 /* Likewise, this would be a strange but ultimately not so
1763 * harmful place to get an error... */
1764 status = ocfs2_clear_slot(osb, slot_num);
1765 if (status < 0)
1766 mlog_errno(status);
1767
1768 /* This will kfree the memory pointed to by la_copy and tl_copy */
1769 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1770 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1771
1772 status = 0;
1773 done:
1774
1775 return status;
1776 }
1777
1778 /* Test node liveness by trylocking his journal. If we get the lock,
1779 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1780 * still alive (we couldn't get the lock) and < 0 on error. */
1781 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1782 int slot_num)
1783 {
1784 int status, flags;
1785 struct inode *inode = NULL;
1786
1787 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1788 slot_num);
1789 if (inode == NULL) {
1790 mlog(ML_ERROR, "access error\n");
1791 status = -EACCES;
1792 goto bail;
1793 }
1794 if (is_bad_inode(inode)) {
1795 mlog(ML_ERROR, "access error (bad inode)\n");
1796 iput(inode);
1797 inode = NULL;
1798 status = -EACCES;
1799 goto bail;
1800 }
1801 SET_INODE_JOURNAL(inode);
1802
1803 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1804 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1805 if (status < 0) {
1806 if (status != -EAGAIN)
1807 mlog_errno(status);
1808 goto bail;
1809 }
1810
1811 ocfs2_inode_unlock(inode, 1);
1812 bail:
1813 iput(inode);
1814
1815 return status;
1816 }
1817
1818 /* Call this underneath ocfs2_super_lock. It also assumes that the
1819 * slot info struct has been updated from disk. */
1820 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1821 {
1822 unsigned int node_num;
1823 int status, i;
1824 u32 gen;
1825 struct buffer_head *bh = NULL;
1826 struct ocfs2_dinode *di;
1827
1828 /* This is called with the super block cluster lock, so we
1829 * know that the slot map can't change underneath us. */
1830
1831 for (i = 0; i < osb->max_slots; i++) {
1832 /* Read journal inode to get the recovery generation */
1833 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1834 if (status) {
1835 mlog_errno(status);
1836 goto bail;
1837 }
1838 di = (struct ocfs2_dinode *)bh->b_data;
1839 gen = ocfs2_get_recovery_generation(di);
1840 brelse(bh);
1841 bh = NULL;
1842
1843 spin_lock(&osb->osb_lock);
1844 osb->slot_recovery_generations[i] = gen;
1845
1846 trace_ocfs2_mark_dead_nodes(i,
1847 osb->slot_recovery_generations[i]);
1848
1849 if (i == osb->slot_num) {
1850 spin_unlock(&osb->osb_lock);
1851 continue;
1852 }
1853
1854 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1855 if (status == -ENOENT) {
1856 spin_unlock(&osb->osb_lock);
1857 continue;
1858 }
1859
1860 if (__ocfs2_recovery_map_test(osb, node_num)) {
1861 spin_unlock(&osb->osb_lock);
1862 continue;
1863 }
1864 spin_unlock(&osb->osb_lock);
1865
1866 /* Ok, we have a slot occupied by another node which
1867 * is not in the recovery map. We trylock his journal
1868 * file here to test if he's alive. */
1869 status = ocfs2_trylock_journal(osb, i);
1870 if (!status) {
1871 /* Since we're called from mount, we know that
1872 * the recovery thread can't race us on
1873 * setting / checking the recovery bits. */
1874 ocfs2_recovery_thread(osb, node_num);
1875 } else if ((status < 0) && (status != -EAGAIN)) {
1876 mlog_errno(status);
1877 goto bail;
1878 }
1879 }
1880
1881 status = 0;
1882 bail:
1883 return status;
1884 }
1885
1886 /*
1887 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1888 * randomness to the timeout to minimize multple nodes firing the timer at the
1889 * same time.
1890 */
1891 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1892 {
1893 unsigned long time;
1894
1895 get_random_bytes(&time, sizeof(time));
1896 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1897 return msecs_to_jiffies(time);
1898 }
1899
1900 /*
1901 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1902 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1903 * is done to catch any orphans that are left over in orphan directories.
1904 *
1905 * It scans all slots, even ones that are in use. It does so to handle the
1906 * case described below:
1907 *
1908 * Node 1 has an inode it was using. The dentry went away due to memory
1909 * pressure. Node 1 closes the inode, but it's on the free list. The node
1910 * has the open lock.
1911 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1912 * but node 1 has no dentry and doesn't get the message. It trylocks the
1913 * open lock, sees that another node has a PR, and does nothing.
1914 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1915 * open lock, sees the PR still, and does nothing.
1916 * Basically, we have to trigger an orphan iput on node 1. The only way
1917 * for this to happen is if node 1 runs node 2's orphan dir.
1918 *
1919 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1920 * seconds. It gets an EX lock on os_lockres and checks sequence number
1921 * stored in LVB. If the sequence number has changed, it means some other
1922 * node has done the scan. This node skips the scan and tracks the
1923 * sequence number. If the sequence number didn't change, it means a scan
1924 * hasn't happened. The node queues a scan and increments the
1925 * sequence number in the LVB.
1926 */
1927 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1928 {
1929 struct ocfs2_orphan_scan *os;
1930 int status, i;
1931 u32 seqno = 0;
1932
1933 os = &osb->osb_orphan_scan;
1934
1935 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1936 goto out;
1937
1938 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1939 atomic_read(&os->os_state));
1940
1941 status = ocfs2_orphan_scan_lock(osb, &seqno);
1942 if (status < 0) {
1943 if (status != -EAGAIN)
1944 mlog_errno(status);
1945 goto out;
1946 }
1947
1948 /* Do no queue the tasks if the volume is being umounted */
1949 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1950 goto unlock;
1951
1952 if (os->os_seqno != seqno) {
1953 os->os_seqno = seqno;
1954 goto unlock;
1955 }
1956
1957 for (i = 0; i < osb->max_slots; i++)
1958 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1959 NULL, ORPHAN_NO_NEED_TRUNCATE);
1960 /*
1961 * We queued a recovery on orphan slots, increment the sequence
1962 * number and update LVB so other node will skip the scan for a while
1963 */
1964 seqno++;
1965 os->os_count++;
1966 os->os_scantime = ktime_get_seconds();
1967 unlock:
1968 ocfs2_orphan_scan_unlock(osb, seqno);
1969 out:
1970 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1971 atomic_read(&os->os_state));
1972 return;
1973 }
1974
1975 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1976 static void ocfs2_orphan_scan_work(struct work_struct *work)
1977 {
1978 struct ocfs2_orphan_scan *os;
1979 struct ocfs2_super *osb;
1980
1981 os = container_of(work, struct ocfs2_orphan_scan,
1982 os_orphan_scan_work.work);
1983 osb = os->os_osb;
1984
1985 mutex_lock(&os->os_lock);
1986 ocfs2_queue_orphan_scan(osb);
1987 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1988 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1989 ocfs2_orphan_scan_timeout());
1990 mutex_unlock(&os->os_lock);
1991 }
1992
1993 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1994 {
1995 struct ocfs2_orphan_scan *os;
1996
1997 os = &osb->osb_orphan_scan;
1998 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1999 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2000 mutex_lock(&os->os_lock);
2001 cancel_delayed_work(&os->os_orphan_scan_work);
2002 mutex_unlock(&os->os_lock);
2003 }
2004 }
2005
2006 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2007 {
2008 struct ocfs2_orphan_scan *os;
2009
2010 os = &osb->osb_orphan_scan;
2011 os->os_osb = osb;
2012 os->os_count = 0;
2013 os->os_seqno = 0;
2014 mutex_init(&os->os_lock);
2015 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2016 }
2017
2018 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2019 {
2020 struct ocfs2_orphan_scan *os;
2021
2022 os = &osb->osb_orphan_scan;
2023 os->os_scantime = ktime_get_seconds();
2024 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2025 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2026 else {
2027 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2028 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2029 ocfs2_orphan_scan_timeout());
2030 }
2031 }
2032
2033 struct ocfs2_orphan_filldir_priv {
2034 struct dir_context ctx;
2035 struct inode *head;
2036 struct ocfs2_super *osb;
2037 enum ocfs2_orphan_reco_type orphan_reco_type;
2038 };
2039
2040 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2041 int name_len, loff_t pos, u64 ino,
2042 unsigned type)
2043 {
2044 struct ocfs2_orphan_filldir_priv *p =
2045 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2046 struct inode *iter;
2047
2048 if (name_len == 1 && !strncmp(".", name, 1))
2049 return 0;
2050 if (name_len == 2 && !strncmp("..", name, 2))
2051 return 0;
2052
2053 /* do not include dio entry in case of orphan scan */
2054 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2055 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2056 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2057 return 0;
2058
2059 /* Skip bad inodes so that recovery can continue */
2060 iter = ocfs2_iget(p->osb, ino,
2061 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2062 if (IS_ERR(iter))
2063 return 0;
2064
2065 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2066 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2067 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2068
2069 /* Skip inodes which are already added to recover list, since dio may
2070 * happen concurrently with unlink/rename */
2071 if (OCFS2_I(iter)->ip_next_orphan) {
2072 iput(iter);
2073 return 0;
2074 }
2075
2076 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2077 /* No locking is required for the next_orphan queue as there
2078 * is only ever a single process doing orphan recovery. */
2079 OCFS2_I(iter)->ip_next_orphan = p->head;
2080 p->head = iter;
2081
2082 return 0;
2083 }
2084
2085 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2086 int slot,
2087 struct inode **head,
2088 enum ocfs2_orphan_reco_type orphan_reco_type)
2089 {
2090 int status;
2091 struct inode *orphan_dir_inode = NULL;
2092 struct ocfs2_orphan_filldir_priv priv = {
2093 .ctx.actor = ocfs2_orphan_filldir,
2094 .osb = osb,
2095 .head = *head,
2096 .orphan_reco_type = orphan_reco_type
2097 };
2098
2099 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2100 ORPHAN_DIR_SYSTEM_INODE,
2101 slot);
2102 if (!orphan_dir_inode) {
2103 status = -ENOENT;
2104 mlog_errno(status);
2105 return status;
2106 }
2107
2108 inode_lock(orphan_dir_inode);
2109 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2110 if (status < 0) {
2111 mlog_errno(status);
2112 goto out;
2113 }
2114
2115 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2116 if (status) {
2117 mlog_errno(status);
2118 goto out_cluster;
2119 }
2120
2121 *head = priv.head;
2122
2123 out_cluster:
2124 ocfs2_inode_unlock(orphan_dir_inode, 0);
2125 out:
2126 inode_unlock(orphan_dir_inode);
2127 iput(orphan_dir_inode);
2128 return status;
2129 }
2130
2131 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2132 int slot)
2133 {
2134 int ret;
2135
2136 spin_lock(&osb->osb_lock);
2137 ret = !osb->osb_orphan_wipes[slot];
2138 spin_unlock(&osb->osb_lock);
2139 return ret;
2140 }
2141
2142 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2143 int slot)
2144 {
2145 spin_lock(&osb->osb_lock);
2146 /* Mark ourselves such that new processes in delete_inode()
2147 * know to quit early. */
2148 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149 while (osb->osb_orphan_wipes[slot]) {
2150 /* If any processes are already in the middle of an
2151 * orphan wipe on this dir, then we need to wait for
2152 * them. */
2153 spin_unlock(&osb->osb_lock);
2154 wait_event_interruptible(osb->osb_wipe_event,
2155 ocfs2_orphan_recovery_can_continue(osb, slot));
2156 spin_lock(&osb->osb_lock);
2157 }
2158 spin_unlock(&osb->osb_lock);
2159 }
2160
2161 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2162 int slot)
2163 {
2164 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2165 }
2166
2167 /*
2168 * Orphan recovery. Each mounted node has it's own orphan dir which we
2169 * must run during recovery. Our strategy here is to build a list of
2170 * the inodes in the orphan dir and iget/iput them. The VFS does
2171 * (most) of the rest of the work.
2172 *
2173 * Orphan recovery can happen at any time, not just mount so we have a
2174 * couple of extra considerations.
2175 *
2176 * - We grab as many inodes as we can under the orphan dir lock -
2177 * doing iget() outside the orphan dir risks getting a reference on
2178 * an invalid inode.
2179 * - We must be sure not to deadlock with other processes on the
2180 * system wanting to run delete_inode(). This can happen when they go
2181 * to lock the orphan dir and the orphan recovery process attempts to
2182 * iget() inside the orphan dir lock. This can be avoided by
2183 * advertising our state to ocfs2_delete_inode().
2184 */
2185 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2186 int slot,
2187 enum ocfs2_orphan_reco_type orphan_reco_type)
2188 {
2189 int ret = 0;
2190 struct inode *inode = NULL;
2191 struct inode *iter;
2192 struct ocfs2_inode_info *oi;
2193 struct buffer_head *di_bh = NULL;
2194 struct ocfs2_dinode *di = NULL;
2195
2196 trace_ocfs2_recover_orphans(slot);
2197
2198 ocfs2_mark_recovering_orphan_dir(osb, slot);
2199 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2200 ocfs2_clear_recovering_orphan_dir(osb, slot);
2201
2202 /* Error here should be noted, but we want to continue with as
2203 * many queued inodes as we've got. */
2204 if (ret)
2205 mlog_errno(ret);
2206
2207 while (inode) {
2208 oi = OCFS2_I(inode);
2209 trace_ocfs2_recover_orphans_iput(
2210 (unsigned long long)oi->ip_blkno);
2211
2212 iter = oi->ip_next_orphan;
2213 oi->ip_next_orphan = NULL;
2214
2215 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2216 inode_lock(inode);
2217 ret = ocfs2_rw_lock(inode, 1);
2218 if (ret < 0) {
2219 mlog_errno(ret);
2220 goto unlock_mutex;
2221 }
2222 /*
2223 * We need to take and drop the inode lock to
2224 * force read inode from disk.
2225 */
2226 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2227 if (ret) {
2228 mlog_errno(ret);
2229 goto unlock_rw;
2230 }
2231
2232 di = (struct ocfs2_dinode *)di_bh->b_data;
2233
2234 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2235 ret = ocfs2_truncate_file(inode, di_bh,
2236 i_size_read(inode));
2237 if (ret < 0) {
2238 if (ret != -ENOSPC)
2239 mlog_errno(ret);
2240 goto unlock_inode;
2241 }
2242
2243 ret = ocfs2_del_inode_from_orphan(osb, inode,
2244 di_bh, 0, 0);
2245 if (ret)
2246 mlog_errno(ret);
2247 }
2248 unlock_inode:
2249 ocfs2_inode_unlock(inode, 1);
2250 brelse(di_bh);
2251 di_bh = NULL;
2252 unlock_rw:
2253 ocfs2_rw_unlock(inode, 1);
2254 unlock_mutex:
2255 inode_unlock(inode);
2256
2257 /* clear dio flag in ocfs2_inode_info */
2258 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2259 } else {
2260 spin_lock(&oi->ip_lock);
2261 /* Set the proper information to get us going into
2262 * ocfs2_delete_inode. */
2263 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2264 spin_unlock(&oi->ip_lock);
2265 }
2266
2267 iput(inode);
2268 inode = iter;
2269 }
2270
2271 return ret;
2272 }
2273
2274 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2275 {
2276 /* This check is good because ocfs2 will wait on our recovery
2277 * thread before changing it to something other than MOUNTED
2278 * or DISABLED. */
2279 wait_event(osb->osb_mount_event,
2280 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2281 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2282 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2283
2284 /* If there's an error on mount, then we may never get to the
2285 * MOUNTED flag, but this is set right before
2286 * dismount_volume() so we can trust it. */
2287 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2288 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2289 mlog(0, "mount error, exiting!\n");
2290 return -EBUSY;
2291 }
2292
2293 return 0;
2294 }
2295
2296 static int ocfs2_commit_thread(void *arg)
2297 {
2298 int status;
2299 struct ocfs2_super *osb = arg;
2300 struct ocfs2_journal *journal = osb->journal;
2301
2302 /* we can trust j_num_trans here because _should_stop() is only set in
2303 * shutdown and nobody other than ourselves should be able to start
2304 * transactions. committing on shutdown might take a few iterations
2305 * as final transactions put deleted inodes on the list */
2306 while (!(kthread_should_stop() &&
2307 atomic_read(&journal->j_num_trans) == 0)) {
2308
2309 wait_event_interruptible(osb->checkpoint_event,
2310 atomic_read(&journal->j_num_trans)
2311 || kthread_should_stop());
2312
2313 status = ocfs2_commit_cache(osb);
2314 if (status < 0) {
2315 static unsigned long abort_warn_time;
2316
2317 /* Warn about this once per minute */
2318 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2319 mlog(ML_ERROR, "status = %d, journal is "
2320 "already aborted.\n", status);
2321 /*
2322 * After ocfs2_commit_cache() fails, j_num_trans has a
2323 * non-zero value. Sleep here to avoid a busy-wait
2324 * loop.
2325 */
2326 msleep_interruptible(1000);
2327 }
2328
2329 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2330 mlog(ML_KTHREAD,
2331 "commit_thread: %u transactions pending on "
2332 "shutdown\n",
2333 atomic_read(&journal->j_num_trans));
2334 }
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* Reads all the journal inodes without taking any cluster locks. Used
2341 * for hard readonly access to determine whether any journal requires
2342 * recovery. Also used to refresh the recovery generation numbers after
2343 * a journal has been recovered by another node.
2344 */
2345 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2346 {
2347 int ret = 0;
2348 unsigned int slot;
2349 struct buffer_head *di_bh = NULL;
2350 struct ocfs2_dinode *di;
2351 int journal_dirty = 0;
2352
2353 for(slot = 0; slot < osb->max_slots; slot++) {
2354 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2355 if (ret) {
2356 mlog_errno(ret);
2357 goto out;
2358 }
2359
2360 di = (struct ocfs2_dinode *) di_bh->b_data;
2361
2362 osb->slot_recovery_generations[slot] =
2363 ocfs2_get_recovery_generation(di);
2364
2365 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2366 OCFS2_JOURNAL_DIRTY_FL)
2367 journal_dirty = 1;
2368
2369 brelse(di_bh);
2370 di_bh = NULL;
2371 }
2372
2373 out:
2374 if (journal_dirty)
2375 ret = -EROFS;
2376 return ret;
2377 }