]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/journal.c
btrfs: log message when rw remount is attempted with unclean tree-log
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 if (osb->ocfs2_wq)
235 flush_workqueue(osb->ocfs2_wq);
236
237 /*
238 * Now that recovery is shut down, and the osb is about to be
239 * freed, the osb_lock is not taken here.
240 */
241 rm = osb->recovery_map;
242 /* XXX: Should we bug if there are dirty entries? */
243
244 kfree(rm);
245 }
246
247 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
248 unsigned int node_num)
249 {
250 int i;
251 struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253 assert_spin_locked(&osb->osb_lock);
254
255 for (i = 0; i < rm->rm_used; i++) {
256 if (rm->rm_entries[i] == node_num)
257 return 1;
258 }
259
260 return 0;
261 }
262
263 /* Behaves like test-and-set. Returns the previous value */
264 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
265 unsigned int node_num)
266 {
267 struct ocfs2_recovery_map *rm = osb->recovery_map;
268
269 spin_lock(&osb->osb_lock);
270 if (__ocfs2_recovery_map_test(osb, node_num)) {
271 spin_unlock(&osb->osb_lock);
272 return 1;
273 }
274
275 /* XXX: Can this be exploited? Not from o2dlm... */
276 BUG_ON(rm->rm_used >= osb->max_slots);
277
278 rm->rm_entries[rm->rm_used] = node_num;
279 rm->rm_used++;
280 spin_unlock(&osb->osb_lock);
281
282 return 0;
283 }
284
285 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
286 unsigned int node_num)
287 {
288 int i;
289 struct ocfs2_recovery_map *rm = osb->recovery_map;
290
291 spin_lock(&osb->osb_lock);
292
293 for (i = 0; i < rm->rm_used; i++) {
294 if (rm->rm_entries[i] == node_num)
295 break;
296 }
297
298 if (i < rm->rm_used) {
299 /* XXX: be careful with the pointer math */
300 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
301 (rm->rm_used - i - 1) * sizeof(unsigned int));
302 rm->rm_used--;
303 }
304
305 spin_unlock(&osb->osb_lock);
306 }
307
308 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 {
310 int status = 0;
311 unsigned int flushed;
312 struct ocfs2_journal *journal = NULL;
313
314 journal = osb->journal;
315
316 /* Flush all pending commits and checkpoint the journal. */
317 down_write(&journal->j_trans_barrier);
318
319 flushed = atomic_read(&journal->j_num_trans);
320 trace_ocfs2_commit_cache_begin(flushed);
321 if (flushed == 0) {
322 up_write(&journal->j_trans_barrier);
323 goto finally;
324 }
325
326 jbd2_journal_lock_updates(journal->j_journal);
327 status = jbd2_journal_flush(journal->j_journal);
328 jbd2_journal_unlock_updates(journal->j_journal);
329 if (status < 0) {
330 up_write(&journal->j_trans_barrier);
331 mlog_errno(status);
332 goto finally;
333 }
334
335 ocfs2_inc_trans_id(journal);
336
337 flushed = atomic_read(&journal->j_num_trans);
338 atomic_set(&journal->j_num_trans, 0);
339 up_write(&journal->j_trans_barrier);
340
341 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342
343 ocfs2_wake_downconvert_thread(osb);
344 wake_up(&journal->j_checkpointed);
345 finally:
346 return status;
347 }
348
349 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 {
351 journal_t *journal = osb->journal->j_journal;
352 handle_t *handle;
353
354 BUG_ON(!osb || !osb->journal->j_journal);
355
356 if (ocfs2_is_hard_readonly(osb))
357 return ERR_PTR(-EROFS);
358
359 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
360 BUG_ON(max_buffs <= 0);
361
362 /* Nested transaction? Just return the handle... */
363 if (journal_current_handle())
364 return jbd2_journal_start(journal, max_buffs);
365
366 sb_start_intwrite(osb->sb);
367
368 down_read(&osb->journal->j_trans_barrier);
369
370 handle = jbd2_journal_start(journal, max_buffs);
371 if (IS_ERR(handle)) {
372 up_read(&osb->journal->j_trans_barrier);
373 sb_end_intwrite(osb->sb);
374
375 mlog_errno(PTR_ERR(handle));
376
377 if (is_journal_aborted(journal)) {
378 ocfs2_abort(osb->sb, "Detected aborted journal\n");
379 handle = ERR_PTR(-EROFS);
380 }
381 } else {
382 if (!ocfs2_mount_local(osb))
383 atomic_inc(&(osb->journal->j_num_trans));
384 }
385
386 return handle;
387 }
388
389 int ocfs2_commit_trans(struct ocfs2_super *osb,
390 handle_t *handle)
391 {
392 int ret, nested;
393 struct ocfs2_journal *journal = osb->journal;
394
395 BUG_ON(!handle);
396
397 nested = handle->h_ref > 1;
398 ret = jbd2_journal_stop(handle);
399 if (ret < 0)
400 mlog_errno(ret);
401
402 if (!nested) {
403 up_read(&journal->j_trans_barrier);
404 sb_end_intwrite(osb->sb);
405 }
406
407 return ret;
408 }
409
410 /*
411 * 'nblocks' is what you want to add to the current transaction.
412 *
413 * This might call jbd2_journal_restart() which will commit dirty buffers
414 * and then restart the transaction. Before calling
415 * ocfs2_extend_trans(), any changed blocks should have been
416 * dirtied. After calling it, all blocks which need to be changed must
417 * go through another set of journal_access/journal_dirty calls.
418 *
419 * WARNING: This will not release any semaphores or disk locks taken
420 * during the transaction, so make sure they were taken *before*
421 * start_trans or we'll have ordering deadlocks.
422 *
423 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
424 * good because transaction ids haven't yet been recorded on the
425 * cluster locks associated with this handle.
426 */
427 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 {
429 int status, old_nblocks;
430
431 BUG_ON(!handle);
432 BUG_ON(nblocks < 0);
433
434 if (!nblocks)
435 return 0;
436
437 old_nblocks = handle->h_buffer_credits;
438
439 trace_ocfs2_extend_trans(old_nblocks, nblocks);
440
441 #ifdef CONFIG_OCFS2_DEBUG_FS
442 status = 1;
443 #else
444 status = jbd2_journal_extend(handle, nblocks);
445 if (status < 0) {
446 mlog_errno(status);
447 goto bail;
448 }
449 #endif
450
451 if (status > 0) {
452 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
453 status = jbd2_journal_restart(handle,
454 old_nblocks + nblocks);
455 if (status < 0) {
456 mlog_errno(status);
457 goto bail;
458 }
459 }
460
461 status = 0;
462 bail:
463 return status;
464 }
465
466 /*
467 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
468 * If that fails, restart the transaction & regain write access for the
469 * buffer head which is used for metadata modifications.
470 * Taken from Ext4: extend_or_restart_transaction()
471 */
472 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 {
474 int status, old_nblks;
475
476 BUG_ON(!handle);
477
478 old_nblks = handle->h_buffer_credits;
479 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480
481 if (old_nblks < thresh)
482 return 0;
483
484 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
485 if (status < 0) {
486 mlog_errno(status);
487 goto bail;
488 }
489
490 if (status > 0) {
491 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
492 if (status < 0)
493 mlog_errno(status);
494 }
495
496 bail:
497 return status;
498 }
499
500
501 struct ocfs2_triggers {
502 struct jbd2_buffer_trigger_type ot_triggers;
503 int ot_offset;
504 };
505
506 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 {
508 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
509 }
510
511 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512 struct buffer_head *bh,
513 void *data, size_t size)
514 {
515 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
516
517 /*
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
522 */
523 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
524 }
525
526 /*
527 * Quota blocks have their own trigger because the struct ocfs2_block_check
528 * offset depends on the blocksize.
529 */
530 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
531 struct buffer_head *bh,
532 void *data, size_t size)
533 {
534 struct ocfs2_disk_dqtrailer *dqt =
535 ocfs2_block_dqtrailer(size, data);
536
537 /*
538 * We aren't guaranteed to have the superblock here, so we
539 * must unconditionally compute the ecc data.
540 * __ocfs2_journal_access() will only set the triggers if
541 * metaecc is enabled.
542 */
543 ocfs2_block_check_compute(data, size, &dqt->dq_check);
544 }
545
546 /*
547 * Directory blocks also have their own trigger because the
548 * struct ocfs2_block_check offset depends on the blocksize.
549 */
550 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
551 struct buffer_head *bh,
552 void *data, size_t size)
553 {
554 struct ocfs2_dir_block_trailer *trailer =
555 ocfs2_dir_trailer_from_size(size, data);
556
557 /*
558 * We aren't guaranteed to have the superblock here, so we
559 * must unconditionally compute the ecc data.
560 * __ocfs2_journal_access() will only set the triggers if
561 * metaecc is enabled.
562 */
563 ocfs2_block_check_compute(data, size, &trailer->db_check);
564 }
565
566 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
567 struct buffer_head *bh)
568 {
569 mlog(ML_ERROR,
570 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
571 "bh->b_blocknr = %llu\n",
572 (unsigned long)bh,
573 (unsigned long long)bh->b_blocknr);
574
575 ocfs2_error(bh->b_bdev->bd_super,
576 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
577 }
578
579 static struct ocfs2_triggers di_triggers = {
580 .ot_triggers = {
581 .t_frozen = ocfs2_frozen_trigger,
582 .t_abort = ocfs2_abort_trigger,
583 },
584 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
585 };
586
587 static struct ocfs2_triggers eb_triggers = {
588 .ot_triggers = {
589 .t_frozen = ocfs2_frozen_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
593 };
594
595 static struct ocfs2_triggers rb_triggers = {
596 .ot_triggers = {
597 .t_frozen = ocfs2_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
601 };
602
603 static struct ocfs2_triggers gd_triggers = {
604 .ot_triggers = {
605 .t_frozen = ocfs2_frozen_trigger,
606 .t_abort = ocfs2_abort_trigger,
607 },
608 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
609 };
610
611 static struct ocfs2_triggers db_triggers = {
612 .ot_triggers = {
613 .t_frozen = ocfs2_db_frozen_trigger,
614 .t_abort = ocfs2_abort_trigger,
615 },
616 };
617
618 static struct ocfs2_triggers xb_triggers = {
619 .ot_triggers = {
620 .t_frozen = ocfs2_frozen_trigger,
621 .t_abort = ocfs2_abort_trigger,
622 },
623 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
624 };
625
626 static struct ocfs2_triggers dq_triggers = {
627 .ot_triggers = {
628 .t_frozen = ocfs2_dq_frozen_trigger,
629 .t_abort = ocfs2_abort_trigger,
630 },
631 };
632
633 static struct ocfs2_triggers dr_triggers = {
634 .ot_triggers = {
635 .t_frozen = ocfs2_frozen_trigger,
636 .t_abort = ocfs2_abort_trigger,
637 },
638 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
639 };
640
641 static struct ocfs2_triggers dl_triggers = {
642 .ot_triggers = {
643 .t_frozen = ocfs2_frozen_trigger,
644 .t_abort = ocfs2_abort_trigger,
645 },
646 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
647 };
648
649 static int __ocfs2_journal_access(handle_t *handle,
650 struct ocfs2_caching_info *ci,
651 struct buffer_head *bh,
652 struct ocfs2_triggers *triggers,
653 int type)
654 {
655 int status;
656 struct ocfs2_super *osb =
657 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658
659 BUG_ON(!ci || !ci->ci_ops);
660 BUG_ON(!handle);
661 BUG_ON(!bh);
662
663 trace_ocfs2_journal_access(
664 (unsigned long long)ocfs2_metadata_cache_owner(ci),
665 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666
667 /* we can safely remove this assertion after testing. */
668 if (!buffer_uptodate(bh)) {
669 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
670 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
671 (unsigned long long)bh->b_blocknr, bh->b_state);
672
673 lock_buffer(bh);
674 /*
675 * A previous transaction with a couple of buffer heads fail
676 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
677 * For current transaction, the bh is just among those error
678 * bhs which previous transaction handle. We can't just clear
679 * its BH_Write_EIO and reuse directly, since other bhs are
680 * not written to disk yet and that will cause metadata
681 * inconsistency. So we should set fs read-only to avoid
682 * further damage.
683 */
684 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
685 unlock_buffer(bh);
686 return ocfs2_error(osb->sb, "A previous attempt to "
687 "write this buffer head failed\n");
688 }
689 unlock_buffer(bh);
690 }
691
692 /* Set the current transaction information on the ci so
693 * that the locking code knows whether it can drop it's locks
694 * on this ci or not. We're protected from the commit
695 * thread updating the current transaction id until
696 * ocfs2_commit_trans() because ocfs2_start_trans() took
697 * j_trans_barrier for us. */
698 ocfs2_set_ci_lock_trans(osb->journal, ci);
699
700 ocfs2_metadata_cache_io_lock(ci);
701 switch (type) {
702 case OCFS2_JOURNAL_ACCESS_CREATE:
703 case OCFS2_JOURNAL_ACCESS_WRITE:
704 status = jbd2_journal_get_write_access(handle, bh);
705 break;
706
707 case OCFS2_JOURNAL_ACCESS_UNDO:
708 status = jbd2_journal_get_undo_access(handle, bh);
709 break;
710
711 default:
712 status = -EINVAL;
713 mlog(ML_ERROR, "Unknown access type!\n");
714 }
715 if (!status && ocfs2_meta_ecc(osb) && triggers)
716 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
717 ocfs2_metadata_cache_io_unlock(ci);
718
719 if (status < 0)
720 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
721 status, type);
722
723 return status;
724 }
725
726 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
727 struct buffer_head *bh, int type)
728 {
729 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
730 }
731
732 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
733 struct buffer_head *bh, int type)
734 {
735 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
736 }
737
738 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
739 struct buffer_head *bh, int type)
740 {
741 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
742 type);
743 }
744
745 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
746 struct buffer_head *bh, int type)
747 {
748 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
749 }
750
751 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
752 struct buffer_head *bh, int type)
753 {
754 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
755 }
756
757 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
758 struct buffer_head *bh, int type)
759 {
760 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
761 }
762
763 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
764 struct buffer_head *bh, int type)
765 {
766 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
767 }
768
769 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
770 struct buffer_head *bh, int type)
771 {
772 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
773 }
774
775 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
776 struct buffer_head *bh, int type)
777 {
778 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
779 }
780
781 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
782 struct buffer_head *bh, int type)
783 {
784 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
785 }
786
787 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
788 {
789 int status;
790
791 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
792
793 status = jbd2_journal_dirty_metadata(handle, bh);
794 if (status) {
795 mlog_errno(status);
796 if (!is_handle_aborted(handle)) {
797 journal_t *journal = handle->h_transaction->t_journal;
798 struct super_block *sb = bh->b_bdev->bd_super;
799
800 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
801 "Aborting transaction and journal.\n");
802 handle->h_err = status;
803 jbd2_journal_abort_handle(handle);
804 jbd2_journal_abort(journal, status);
805 ocfs2_abort(sb, "Journal already aborted.\n");
806 }
807 }
808 }
809
810 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
811
812 void ocfs2_set_journal_params(struct ocfs2_super *osb)
813 {
814 journal_t *journal = osb->journal->j_journal;
815 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
816
817 if (osb->osb_commit_interval)
818 commit_interval = osb->osb_commit_interval;
819
820 write_lock(&journal->j_state_lock);
821 journal->j_commit_interval = commit_interval;
822 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
823 journal->j_flags |= JBD2_BARRIER;
824 else
825 journal->j_flags &= ~JBD2_BARRIER;
826 write_unlock(&journal->j_state_lock);
827 }
828
829 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
830 {
831 int status = -1;
832 struct inode *inode = NULL; /* the journal inode */
833 journal_t *j_journal = NULL;
834 struct ocfs2_dinode *di = NULL;
835 struct buffer_head *bh = NULL;
836 struct ocfs2_super *osb;
837 int inode_lock = 0;
838
839 BUG_ON(!journal);
840
841 osb = journal->j_osb;
842
843 /* already have the inode for our journal */
844 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
845 osb->slot_num);
846 if (inode == NULL) {
847 status = -EACCES;
848 mlog_errno(status);
849 goto done;
850 }
851 if (is_bad_inode(inode)) {
852 mlog(ML_ERROR, "access error (bad inode)\n");
853 iput(inode);
854 inode = NULL;
855 status = -EACCES;
856 goto done;
857 }
858
859 SET_INODE_JOURNAL(inode);
860 OCFS2_I(inode)->ip_open_count++;
861
862 /* Skip recovery waits here - journal inode metadata never
863 * changes in a live cluster so it can be considered an
864 * exception to the rule. */
865 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
866 if (status < 0) {
867 if (status != -ERESTARTSYS)
868 mlog(ML_ERROR, "Could not get lock on journal!\n");
869 goto done;
870 }
871
872 inode_lock = 1;
873 di = (struct ocfs2_dinode *)bh->b_data;
874
875 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
876 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
877 i_size_read(inode));
878 status = -EINVAL;
879 goto done;
880 }
881
882 trace_ocfs2_journal_init(i_size_read(inode),
883 (unsigned long long)inode->i_blocks,
884 OCFS2_I(inode)->ip_clusters);
885
886 /* call the kernels journal init function now */
887 j_journal = jbd2_journal_init_inode(inode);
888 if (j_journal == NULL) {
889 mlog(ML_ERROR, "Linux journal layer error\n");
890 status = -EINVAL;
891 goto done;
892 }
893
894 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
895
896 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
897 OCFS2_JOURNAL_DIRTY_FL);
898
899 journal->j_journal = j_journal;
900 journal->j_inode = inode;
901 journal->j_bh = bh;
902
903 ocfs2_set_journal_params(osb);
904
905 journal->j_state = OCFS2_JOURNAL_LOADED;
906
907 status = 0;
908 done:
909 if (status < 0) {
910 if (inode_lock)
911 ocfs2_inode_unlock(inode, 1);
912 brelse(bh);
913 if (inode) {
914 OCFS2_I(inode)->ip_open_count--;
915 iput(inode);
916 }
917 }
918
919 return status;
920 }
921
922 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
923 {
924 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
925 }
926
927 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
928 {
929 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
930 }
931
932 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
933 int dirty, int replayed)
934 {
935 int status;
936 unsigned int flags;
937 struct ocfs2_journal *journal = osb->journal;
938 struct buffer_head *bh = journal->j_bh;
939 struct ocfs2_dinode *fe;
940
941 fe = (struct ocfs2_dinode *)bh->b_data;
942
943 /* The journal bh on the osb always comes from ocfs2_journal_init()
944 * and was validated there inside ocfs2_inode_lock_full(). It's a
945 * code bug if we mess it up. */
946 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
947
948 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
949 if (dirty)
950 flags |= OCFS2_JOURNAL_DIRTY_FL;
951 else
952 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
953 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
954
955 if (replayed)
956 ocfs2_bump_recovery_generation(fe);
957
958 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
959 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
960 if (status < 0)
961 mlog_errno(status);
962
963 return status;
964 }
965
966 /*
967 * If the journal has been kmalloc'd it needs to be freed after this
968 * call.
969 */
970 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
971 {
972 struct ocfs2_journal *journal = NULL;
973 int status = 0;
974 struct inode *inode = NULL;
975 int num_running_trans = 0;
976
977 BUG_ON(!osb);
978
979 journal = osb->journal;
980 if (!journal)
981 goto done;
982
983 inode = journal->j_inode;
984
985 if (journal->j_state != OCFS2_JOURNAL_LOADED)
986 goto done;
987
988 /* need to inc inode use count - jbd2_journal_destroy will iput. */
989 if (!igrab(inode))
990 BUG();
991
992 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
993 trace_ocfs2_journal_shutdown(num_running_trans);
994
995 /* Do a commit_cache here. It will flush our journal, *and*
996 * release any locks that are still held.
997 * set the SHUTDOWN flag and release the trans lock.
998 * the commit thread will take the trans lock for us below. */
999 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1000
1001 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1002 * drop the trans_lock (which we want to hold until we
1003 * completely destroy the journal. */
1004 if (osb->commit_task) {
1005 /* Wait for the commit thread */
1006 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1007 kthread_stop(osb->commit_task);
1008 osb->commit_task = NULL;
1009 }
1010
1011 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1012
1013 if (ocfs2_mount_local(osb)) {
1014 jbd2_journal_lock_updates(journal->j_journal);
1015 status = jbd2_journal_flush(journal->j_journal);
1016 jbd2_journal_unlock_updates(journal->j_journal);
1017 if (status < 0)
1018 mlog_errno(status);
1019 }
1020
1021 /* Shutdown the kernel journal system */
1022 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1023 /*
1024 * Do not toggle if flush was unsuccessful otherwise
1025 * will leave dirty metadata in a "clean" journal
1026 */
1027 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1028 if (status < 0)
1029 mlog_errno(status);
1030 }
1031 journal->j_journal = NULL;
1032
1033 OCFS2_I(inode)->ip_open_count--;
1034
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode, 1);
1037
1038 brelse(journal->j_bh);
1039 journal->j_bh = NULL;
1040
1041 journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043 // up_write(&journal->j_trans_barrier);
1044 done:
1045 iput(inode);
1046 }
1047
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 journal_t *journal,
1050 int slot)
1051 {
1052 int olderr;
1053
1054 olderr = jbd2_journal_errno(journal);
1055 if (olderr) {
1056 mlog(ML_ERROR, "File system error %d recorded in "
1057 "journal %u.\n", olderr, slot);
1058 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 sb->s_id);
1060
1061 jbd2_journal_ack_err(journal);
1062 jbd2_journal_clear_err(journal);
1063 }
1064 }
1065
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 int status = 0;
1069 struct ocfs2_super *osb;
1070
1071 BUG_ON(!journal);
1072
1073 osb = journal->j_osb;
1074
1075 status = jbd2_journal_load(journal->j_journal);
1076 if (status < 0) {
1077 mlog(ML_ERROR, "Failed to load journal!\n");
1078 goto done;
1079 }
1080
1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083 if (replayed) {
1084 jbd2_journal_lock_updates(journal->j_journal);
1085 status = jbd2_journal_flush(journal->j_journal);
1086 jbd2_journal_unlock_updates(journal->j_journal);
1087 if (status < 0)
1088 mlog_errno(status);
1089 }
1090
1091 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1092 if (status < 0) {
1093 mlog_errno(status);
1094 goto done;
1095 }
1096
1097 /* Launch the commit thread */
1098 if (!local) {
1099 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1100 "ocfs2cmt-%s", osb->uuid_str);
1101 if (IS_ERR(osb->commit_task)) {
1102 status = PTR_ERR(osb->commit_task);
1103 osb->commit_task = NULL;
1104 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1105 "error=%d", status);
1106 goto done;
1107 }
1108 } else
1109 osb->commit_task = NULL;
1110
1111 done:
1112 return status;
1113 }
1114
1115
1116 /* 'full' flag tells us whether we clear out all blocks or if we just
1117 * mark the journal clean */
1118 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1119 {
1120 int status;
1121
1122 BUG_ON(!journal);
1123
1124 status = jbd2_journal_wipe(journal->j_journal, full);
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto bail;
1128 }
1129
1130 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1131 if (status < 0)
1132 mlog_errno(status);
1133
1134 bail:
1135 return status;
1136 }
1137
1138 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1139 {
1140 int empty;
1141 struct ocfs2_recovery_map *rm = osb->recovery_map;
1142
1143 spin_lock(&osb->osb_lock);
1144 empty = (rm->rm_used == 0);
1145 spin_unlock(&osb->osb_lock);
1146
1147 return empty;
1148 }
1149
1150 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1151 {
1152 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1153 }
1154
1155 /*
1156 * JBD Might read a cached version of another nodes journal file. We
1157 * don't want this as this file changes often and we get no
1158 * notification on those changes. The only way to be sure that we've
1159 * got the most up to date version of those blocks then is to force
1160 * read them off disk. Just searching through the buffer cache won't
1161 * work as there may be pages backing this file which are still marked
1162 * up to date. We know things can't change on this file underneath us
1163 * as we have the lock by now :)
1164 */
1165 static int ocfs2_force_read_journal(struct inode *inode)
1166 {
1167 int status = 0;
1168 int i;
1169 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1170 struct buffer_head *bh = NULL;
1171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1172
1173 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1174 v_blkno = 0;
1175 while (v_blkno < num_blocks) {
1176 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1177 &p_blkno, &p_blocks, NULL);
1178 if (status < 0) {
1179 mlog_errno(status);
1180 goto bail;
1181 }
1182
1183 for (i = 0; i < p_blocks; i++, p_blkno++) {
1184 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1185 osb->sb->s_blocksize);
1186 /* block not cached. */
1187 if (!bh)
1188 continue;
1189
1190 brelse(bh);
1191 bh = NULL;
1192 /* We are reading journal data which should not
1193 * be put in the uptodate cache.
1194 */
1195 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1196 if (status < 0) {
1197 mlog_errno(status);
1198 goto bail;
1199 }
1200
1201 brelse(bh);
1202 bh = NULL;
1203 }
1204
1205 v_blkno += p_blocks;
1206 }
1207
1208 bail:
1209 return status;
1210 }
1211
1212 struct ocfs2_la_recovery_item {
1213 struct list_head lri_list;
1214 int lri_slot;
1215 struct ocfs2_dinode *lri_la_dinode;
1216 struct ocfs2_dinode *lri_tl_dinode;
1217 struct ocfs2_quota_recovery *lri_qrec;
1218 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1219 };
1220
1221 /* Does the second half of the recovery process. By this point, the
1222 * node is marked clean and can actually be considered recovered,
1223 * hence it's no longer in the recovery map, but there's still some
1224 * cleanup we can do which shouldn't happen within the recovery thread
1225 * as locking in that context becomes very difficult if we are to take
1226 * recovering nodes into account.
1227 *
1228 * NOTE: This function can and will sleep on recovery of other nodes
1229 * during cluster locking, just like any other ocfs2 process.
1230 */
1231 void ocfs2_complete_recovery(struct work_struct *work)
1232 {
1233 int ret = 0;
1234 struct ocfs2_journal *journal =
1235 container_of(work, struct ocfs2_journal, j_recovery_work);
1236 struct ocfs2_super *osb = journal->j_osb;
1237 struct ocfs2_dinode *la_dinode, *tl_dinode;
1238 struct ocfs2_la_recovery_item *item, *n;
1239 struct ocfs2_quota_recovery *qrec;
1240 enum ocfs2_orphan_reco_type orphan_reco_type;
1241 LIST_HEAD(tmp_la_list);
1242
1243 trace_ocfs2_complete_recovery(
1244 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1245
1246 spin_lock(&journal->j_lock);
1247 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1248 spin_unlock(&journal->j_lock);
1249
1250 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1251 list_del_init(&item->lri_list);
1252
1253 ocfs2_wait_on_quotas(osb);
1254
1255 la_dinode = item->lri_la_dinode;
1256 tl_dinode = item->lri_tl_dinode;
1257 qrec = item->lri_qrec;
1258 orphan_reco_type = item->lri_orphan_reco_type;
1259
1260 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1261 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1262 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1263 qrec);
1264
1265 if (la_dinode) {
1266 ret = ocfs2_complete_local_alloc_recovery(osb,
1267 la_dinode);
1268 if (ret < 0)
1269 mlog_errno(ret);
1270
1271 kfree(la_dinode);
1272 }
1273
1274 if (tl_dinode) {
1275 ret = ocfs2_complete_truncate_log_recovery(osb,
1276 tl_dinode);
1277 if (ret < 0)
1278 mlog_errno(ret);
1279
1280 kfree(tl_dinode);
1281 }
1282
1283 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1284 orphan_reco_type);
1285 if (ret < 0)
1286 mlog_errno(ret);
1287
1288 if (qrec) {
1289 ret = ocfs2_finish_quota_recovery(osb, qrec,
1290 item->lri_slot);
1291 if (ret < 0)
1292 mlog_errno(ret);
1293 /* Recovery info is already freed now */
1294 }
1295
1296 kfree(item);
1297 }
1298
1299 trace_ocfs2_complete_recovery_end(ret);
1300 }
1301
1302 /* NOTE: This function always eats your references to la_dinode and
1303 * tl_dinode, either manually on error, or by passing them to
1304 * ocfs2_complete_recovery */
1305 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1306 int slot_num,
1307 struct ocfs2_dinode *la_dinode,
1308 struct ocfs2_dinode *tl_dinode,
1309 struct ocfs2_quota_recovery *qrec,
1310 enum ocfs2_orphan_reco_type orphan_reco_type)
1311 {
1312 struct ocfs2_la_recovery_item *item;
1313
1314 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1315 if (!item) {
1316 /* Though we wish to avoid it, we are in fact safe in
1317 * skipping local alloc cleanup as fsck.ocfs2 is more
1318 * than capable of reclaiming unused space. */
1319 kfree(la_dinode);
1320 kfree(tl_dinode);
1321
1322 if (qrec)
1323 ocfs2_free_quota_recovery(qrec);
1324
1325 mlog_errno(-ENOMEM);
1326 return;
1327 }
1328
1329 INIT_LIST_HEAD(&item->lri_list);
1330 item->lri_la_dinode = la_dinode;
1331 item->lri_slot = slot_num;
1332 item->lri_tl_dinode = tl_dinode;
1333 item->lri_qrec = qrec;
1334 item->lri_orphan_reco_type = orphan_reco_type;
1335
1336 spin_lock(&journal->j_lock);
1337 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1338 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1339 spin_unlock(&journal->j_lock);
1340 }
1341
1342 /* Called by the mount code to queue recovery the last part of
1343 * recovery for it's own and offline slot(s). */
1344 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1345 {
1346 struct ocfs2_journal *journal = osb->journal;
1347
1348 if (ocfs2_is_hard_readonly(osb))
1349 return;
1350
1351 /* No need to queue up our truncate_log as regular cleanup will catch
1352 * that */
1353 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1354 osb->local_alloc_copy, NULL, NULL,
1355 ORPHAN_NEED_TRUNCATE);
1356 ocfs2_schedule_truncate_log_flush(osb, 0);
1357
1358 osb->local_alloc_copy = NULL;
1359
1360 /* queue to recover orphan slots for all offline slots */
1361 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1362 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1363 ocfs2_free_replay_slots(osb);
1364 }
1365
1366 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1367 {
1368 if (osb->quota_rec) {
1369 ocfs2_queue_recovery_completion(osb->journal,
1370 osb->slot_num,
1371 NULL,
1372 NULL,
1373 osb->quota_rec,
1374 ORPHAN_NEED_TRUNCATE);
1375 osb->quota_rec = NULL;
1376 }
1377 }
1378
1379 static int __ocfs2_recovery_thread(void *arg)
1380 {
1381 int status, node_num, slot_num;
1382 struct ocfs2_super *osb = arg;
1383 struct ocfs2_recovery_map *rm = osb->recovery_map;
1384 int *rm_quota = NULL;
1385 int rm_quota_used = 0, i;
1386 struct ocfs2_quota_recovery *qrec;
1387
1388 /* Whether the quota supported. */
1389 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1390 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1391 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1392 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1393
1394 status = ocfs2_wait_on_mount(osb);
1395 if (status < 0) {
1396 goto bail;
1397 }
1398
1399 if (quota_enabled) {
1400 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1401 if (!rm_quota) {
1402 status = -ENOMEM;
1403 goto bail;
1404 }
1405 }
1406 restart:
1407 status = ocfs2_super_lock(osb, 1);
1408 if (status < 0) {
1409 mlog_errno(status);
1410 goto bail;
1411 }
1412
1413 status = ocfs2_compute_replay_slots(osb);
1414 if (status < 0)
1415 mlog_errno(status);
1416
1417 /* queue recovery for our own slot */
1418 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1419 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1420
1421 spin_lock(&osb->osb_lock);
1422 while (rm->rm_used) {
1423 /* It's always safe to remove entry zero, as we won't
1424 * clear it until ocfs2_recover_node() has succeeded. */
1425 node_num = rm->rm_entries[0];
1426 spin_unlock(&osb->osb_lock);
1427 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1428 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1429 if (slot_num == -ENOENT) {
1430 status = 0;
1431 goto skip_recovery;
1432 }
1433
1434 /* It is a bit subtle with quota recovery. We cannot do it
1435 * immediately because we have to obtain cluster locks from
1436 * quota files and we also don't want to just skip it because
1437 * then quota usage would be out of sync until some node takes
1438 * the slot. So we remember which nodes need quota recovery
1439 * and when everything else is done, we recover quotas. */
1440 if (quota_enabled) {
1441 for (i = 0; i < rm_quota_used
1442 && rm_quota[i] != slot_num; i++)
1443 ;
1444
1445 if (i == rm_quota_used)
1446 rm_quota[rm_quota_used++] = slot_num;
1447 }
1448
1449 status = ocfs2_recover_node(osb, node_num, slot_num);
1450 skip_recovery:
1451 if (!status) {
1452 ocfs2_recovery_map_clear(osb, node_num);
1453 } else {
1454 mlog(ML_ERROR,
1455 "Error %d recovering node %d on device (%u,%u)!\n",
1456 status, node_num,
1457 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1458 mlog(ML_ERROR, "Volume requires unmount.\n");
1459 }
1460
1461 spin_lock(&osb->osb_lock);
1462 }
1463 spin_unlock(&osb->osb_lock);
1464 trace_ocfs2_recovery_thread_end(status);
1465
1466 /* Refresh all journal recovery generations from disk */
1467 status = ocfs2_check_journals_nolocks(osb);
1468 status = (status == -EROFS) ? 0 : status;
1469 if (status < 0)
1470 mlog_errno(status);
1471
1472 /* Now it is right time to recover quotas... We have to do this under
1473 * superblock lock so that no one can start using the slot (and crash)
1474 * before we recover it */
1475 if (quota_enabled) {
1476 for (i = 0; i < rm_quota_used; i++) {
1477 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1478 if (IS_ERR(qrec)) {
1479 status = PTR_ERR(qrec);
1480 mlog_errno(status);
1481 continue;
1482 }
1483 ocfs2_queue_recovery_completion(osb->journal,
1484 rm_quota[i],
1485 NULL, NULL, qrec,
1486 ORPHAN_NEED_TRUNCATE);
1487 }
1488 }
1489
1490 ocfs2_super_unlock(osb, 1);
1491
1492 /* queue recovery for offline slots */
1493 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1494
1495 bail:
1496 mutex_lock(&osb->recovery_lock);
1497 if (!status && !ocfs2_recovery_completed(osb)) {
1498 mutex_unlock(&osb->recovery_lock);
1499 goto restart;
1500 }
1501
1502 ocfs2_free_replay_slots(osb);
1503 osb->recovery_thread_task = NULL;
1504 mb(); /* sync with ocfs2_recovery_thread_running */
1505 wake_up(&osb->recovery_event);
1506
1507 mutex_unlock(&osb->recovery_lock);
1508
1509 if (quota_enabled)
1510 kfree(rm_quota);
1511
1512 /* no one is callint kthread_stop() for us so the kthread() api
1513 * requires that we call do_exit(). And it isn't exported, but
1514 * complete_and_exit() seems to be a minimal wrapper around it. */
1515 complete_and_exit(NULL, status);
1516 }
1517
1518 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1519 {
1520 mutex_lock(&osb->recovery_lock);
1521
1522 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1523 osb->disable_recovery, osb->recovery_thread_task,
1524 osb->disable_recovery ?
1525 -1 : ocfs2_recovery_map_set(osb, node_num));
1526
1527 if (osb->disable_recovery)
1528 goto out;
1529
1530 if (osb->recovery_thread_task)
1531 goto out;
1532
1533 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1534 "ocfs2rec-%s", osb->uuid_str);
1535 if (IS_ERR(osb->recovery_thread_task)) {
1536 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1537 osb->recovery_thread_task = NULL;
1538 }
1539
1540 out:
1541 mutex_unlock(&osb->recovery_lock);
1542 wake_up(&osb->recovery_event);
1543 }
1544
1545 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1546 int slot_num,
1547 struct buffer_head **bh,
1548 struct inode **ret_inode)
1549 {
1550 int status = -EACCES;
1551 struct inode *inode = NULL;
1552
1553 BUG_ON(slot_num >= osb->max_slots);
1554
1555 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1556 slot_num);
1557 if (!inode || is_bad_inode(inode)) {
1558 mlog_errno(status);
1559 goto bail;
1560 }
1561 SET_INODE_JOURNAL(inode);
1562
1563 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1564 if (status < 0) {
1565 mlog_errno(status);
1566 goto bail;
1567 }
1568
1569 status = 0;
1570
1571 bail:
1572 if (inode) {
1573 if (status || !ret_inode)
1574 iput(inode);
1575 else
1576 *ret_inode = inode;
1577 }
1578 return status;
1579 }
1580
1581 /* Does the actual journal replay and marks the journal inode as
1582 * clean. Will only replay if the journal inode is marked dirty. */
1583 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1584 int node_num,
1585 int slot_num)
1586 {
1587 int status;
1588 int got_lock = 0;
1589 unsigned int flags;
1590 struct inode *inode = NULL;
1591 struct ocfs2_dinode *fe;
1592 journal_t *journal = NULL;
1593 struct buffer_head *bh = NULL;
1594 u32 slot_reco_gen;
1595
1596 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1597 if (status) {
1598 mlog_errno(status);
1599 goto done;
1600 }
1601
1602 fe = (struct ocfs2_dinode *)bh->b_data;
1603 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1604 brelse(bh);
1605 bh = NULL;
1606
1607 /*
1608 * As the fs recovery is asynchronous, there is a small chance that
1609 * another node mounted (and recovered) the slot before the recovery
1610 * thread could get the lock. To handle that, we dirty read the journal
1611 * inode for that slot to get the recovery generation. If it is
1612 * different than what we expected, the slot has been recovered.
1613 * If not, it needs recovery.
1614 */
1615 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1616 trace_ocfs2_replay_journal_recovered(slot_num,
1617 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1618 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619 status = -EBUSY;
1620 goto done;
1621 }
1622
1623 /* Continue with recovery as the journal has not yet been recovered */
1624
1625 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1626 if (status < 0) {
1627 trace_ocfs2_replay_journal_lock_err(status);
1628 if (status != -ERESTARTSYS)
1629 mlog(ML_ERROR, "Could not lock journal!\n");
1630 goto done;
1631 }
1632 got_lock = 1;
1633
1634 fe = (struct ocfs2_dinode *) bh->b_data;
1635
1636 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1637 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1638
1639 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1640 trace_ocfs2_replay_journal_skip(node_num);
1641 /* Refresh recovery generation for the slot */
1642 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1643 goto done;
1644 }
1645
1646 /* we need to run complete recovery for offline orphan slots */
1647 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1648
1649 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1650 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1651 MINOR(osb->sb->s_dev));
1652
1653 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1654
1655 status = ocfs2_force_read_journal(inode);
1656 if (status < 0) {
1657 mlog_errno(status);
1658 goto done;
1659 }
1660
1661 journal = jbd2_journal_init_inode(inode);
1662 if (journal == NULL) {
1663 mlog(ML_ERROR, "Linux journal layer error\n");
1664 status = -EIO;
1665 goto done;
1666 }
1667
1668 status = jbd2_journal_load(journal);
1669 if (status < 0) {
1670 mlog_errno(status);
1671 if (!igrab(inode))
1672 BUG();
1673 jbd2_journal_destroy(journal);
1674 goto done;
1675 }
1676
1677 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1678
1679 /* wipe the journal */
1680 jbd2_journal_lock_updates(journal);
1681 status = jbd2_journal_flush(journal);
1682 jbd2_journal_unlock_updates(journal);
1683 if (status < 0)
1684 mlog_errno(status);
1685
1686 /* This will mark the node clean */
1687 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1688 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1689 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1690
1691 /* Increment recovery generation to indicate successful recovery */
1692 ocfs2_bump_recovery_generation(fe);
1693 osb->slot_recovery_generations[slot_num] =
1694 ocfs2_get_recovery_generation(fe);
1695
1696 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1697 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1698 if (status < 0)
1699 mlog_errno(status);
1700
1701 if (!igrab(inode))
1702 BUG();
1703
1704 jbd2_journal_destroy(journal);
1705
1706 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1707 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1708 MINOR(osb->sb->s_dev));
1709 done:
1710 /* drop the lock on this nodes journal */
1711 if (got_lock)
1712 ocfs2_inode_unlock(inode, 1);
1713
1714 iput(inode);
1715 brelse(bh);
1716
1717 return status;
1718 }
1719
1720 /*
1721 * Do the most important parts of node recovery:
1722 * - Replay it's journal
1723 * - Stamp a clean local allocator file
1724 * - Stamp a clean truncate log
1725 * - Mark the node clean
1726 *
1727 * If this function completes without error, a node in OCFS2 can be
1728 * said to have been safely recovered. As a result, failure during the
1729 * second part of a nodes recovery process (local alloc recovery) is
1730 * far less concerning.
1731 */
1732 static int ocfs2_recover_node(struct ocfs2_super *osb,
1733 int node_num, int slot_num)
1734 {
1735 int status = 0;
1736 struct ocfs2_dinode *la_copy = NULL;
1737 struct ocfs2_dinode *tl_copy = NULL;
1738
1739 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1740
1741 /* Should not ever be called to recover ourselves -- in that
1742 * case we should've called ocfs2_journal_load instead. */
1743 BUG_ON(osb->node_num == node_num);
1744
1745 status = ocfs2_replay_journal(osb, node_num, slot_num);
1746 if (status < 0) {
1747 if (status == -EBUSY) {
1748 trace_ocfs2_recover_node_skip(slot_num, node_num);
1749 status = 0;
1750 goto done;
1751 }
1752 mlog_errno(status);
1753 goto done;
1754 }
1755
1756 /* Stamp a clean local alloc file AFTER recovering the journal... */
1757 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1758 if (status < 0) {
1759 mlog_errno(status);
1760 goto done;
1761 }
1762
1763 /* An error from begin_truncate_log_recovery is not
1764 * serious enough to warrant halting the rest of
1765 * recovery. */
1766 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1767 if (status < 0)
1768 mlog_errno(status);
1769
1770 /* Likewise, this would be a strange but ultimately not so
1771 * harmful place to get an error... */
1772 status = ocfs2_clear_slot(osb, slot_num);
1773 if (status < 0)
1774 mlog_errno(status);
1775
1776 /* This will kfree the memory pointed to by la_copy and tl_copy */
1777 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1778 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1779
1780 status = 0;
1781 done:
1782
1783 return status;
1784 }
1785
1786 /* Test node liveness by trylocking his journal. If we get the lock,
1787 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1788 * still alive (we couldn't get the lock) and < 0 on error. */
1789 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1790 int slot_num)
1791 {
1792 int status, flags;
1793 struct inode *inode = NULL;
1794
1795 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1796 slot_num);
1797 if (inode == NULL) {
1798 mlog(ML_ERROR, "access error\n");
1799 status = -EACCES;
1800 goto bail;
1801 }
1802 if (is_bad_inode(inode)) {
1803 mlog(ML_ERROR, "access error (bad inode)\n");
1804 iput(inode);
1805 inode = NULL;
1806 status = -EACCES;
1807 goto bail;
1808 }
1809 SET_INODE_JOURNAL(inode);
1810
1811 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1812 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1813 if (status < 0) {
1814 if (status != -EAGAIN)
1815 mlog_errno(status);
1816 goto bail;
1817 }
1818
1819 ocfs2_inode_unlock(inode, 1);
1820 bail:
1821 iput(inode);
1822
1823 return status;
1824 }
1825
1826 /* Call this underneath ocfs2_super_lock. It also assumes that the
1827 * slot info struct has been updated from disk. */
1828 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1829 {
1830 unsigned int node_num;
1831 int status, i;
1832 u32 gen;
1833 struct buffer_head *bh = NULL;
1834 struct ocfs2_dinode *di;
1835
1836 /* This is called with the super block cluster lock, so we
1837 * know that the slot map can't change underneath us. */
1838
1839 for (i = 0; i < osb->max_slots; i++) {
1840 /* Read journal inode to get the recovery generation */
1841 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1842 if (status) {
1843 mlog_errno(status);
1844 goto bail;
1845 }
1846 di = (struct ocfs2_dinode *)bh->b_data;
1847 gen = ocfs2_get_recovery_generation(di);
1848 brelse(bh);
1849 bh = NULL;
1850
1851 spin_lock(&osb->osb_lock);
1852 osb->slot_recovery_generations[i] = gen;
1853
1854 trace_ocfs2_mark_dead_nodes(i,
1855 osb->slot_recovery_generations[i]);
1856
1857 if (i == osb->slot_num) {
1858 spin_unlock(&osb->osb_lock);
1859 continue;
1860 }
1861
1862 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1863 if (status == -ENOENT) {
1864 spin_unlock(&osb->osb_lock);
1865 continue;
1866 }
1867
1868 if (__ocfs2_recovery_map_test(osb, node_num)) {
1869 spin_unlock(&osb->osb_lock);
1870 continue;
1871 }
1872 spin_unlock(&osb->osb_lock);
1873
1874 /* Ok, we have a slot occupied by another node which
1875 * is not in the recovery map. We trylock his journal
1876 * file here to test if he's alive. */
1877 status = ocfs2_trylock_journal(osb, i);
1878 if (!status) {
1879 /* Since we're called from mount, we know that
1880 * the recovery thread can't race us on
1881 * setting / checking the recovery bits. */
1882 ocfs2_recovery_thread(osb, node_num);
1883 } else if ((status < 0) && (status != -EAGAIN)) {
1884 mlog_errno(status);
1885 goto bail;
1886 }
1887 }
1888
1889 status = 0;
1890 bail:
1891 return status;
1892 }
1893
1894 /*
1895 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1896 * randomness to the timeout to minimize multple nodes firing the timer at the
1897 * same time.
1898 */
1899 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1900 {
1901 unsigned long time;
1902
1903 get_random_bytes(&time, sizeof(time));
1904 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1905 return msecs_to_jiffies(time);
1906 }
1907
1908 /*
1909 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1910 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1911 * is done to catch any orphans that are left over in orphan directories.
1912 *
1913 * It scans all slots, even ones that are in use. It does so to handle the
1914 * case described below:
1915 *
1916 * Node 1 has an inode it was using. The dentry went away due to memory
1917 * pressure. Node 1 closes the inode, but it's on the free list. The node
1918 * has the open lock.
1919 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1920 * but node 1 has no dentry and doesn't get the message. It trylocks the
1921 * open lock, sees that another node has a PR, and does nothing.
1922 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1923 * open lock, sees the PR still, and does nothing.
1924 * Basically, we have to trigger an orphan iput on node 1. The only way
1925 * for this to happen is if node 1 runs node 2's orphan dir.
1926 *
1927 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1928 * seconds. It gets an EX lock on os_lockres and checks sequence number
1929 * stored in LVB. If the sequence number has changed, it means some other
1930 * node has done the scan. This node skips the scan and tracks the
1931 * sequence number. If the sequence number didn't change, it means a scan
1932 * hasn't happened. The node queues a scan and increments the
1933 * sequence number in the LVB.
1934 */
1935 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1936 {
1937 struct ocfs2_orphan_scan *os;
1938 int status, i;
1939 u32 seqno = 0;
1940
1941 os = &osb->osb_orphan_scan;
1942
1943 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1944 goto out;
1945
1946 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1947 atomic_read(&os->os_state));
1948
1949 status = ocfs2_orphan_scan_lock(osb, &seqno);
1950 if (status < 0) {
1951 if (status != -EAGAIN)
1952 mlog_errno(status);
1953 goto out;
1954 }
1955
1956 /* Do no queue the tasks if the volume is being umounted */
1957 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1958 goto unlock;
1959
1960 if (os->os_seqno != seqno) {
1961 os->os_seqno = seqno;
1962 goto unlock;
1963 }
1964
1965 for (i = 0; i < osb->max_slots; i++)
1966 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1967 NULL, ORPHAN_NO_NEED_TRUNCATE);
1968 /*
1969 * We queued a recovery on orphan slots, increment the sequence
1970 * number and update LVB so other node will skip the scan for a while
1971 */
1972 seqno++;
1973 os->os_count++;
1974 os->os_scantime = ktime_get_seconds();
1975 unlock:
1976 ocfs2_orphan_scan_unlock(osb, seqno);
1977 out:
1978 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1979 atomic_read(&os->os_state));
1980 return;
1981 }
1982
1983 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1984 static void ocfs2_orphan_scan_work(struct work_struct *work)
1985 {
1986 struct ocfs2_orphan_scan *os;
1987 struct ocfs2_super *osb;
1988
1989 os = container_of(work, struct ocfs2_orphan_scan,
1990 os_orphan_scan_work.work);
1991 osb = os->os_osb;
1992
1993 mutex_lock(&os->os_lock);
1994 ocfs2_queue_orphan_scan(osb);
1995 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1996 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1997 ocfs2_orphan_scan_timeout());
1998 mutex_unlock(&os->os_lock);
1999 }
2000
2001 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2002 {
2003 struct ocfs2_orphan_scan *os;
2004
2005 os = &osb->osb_orphan_scan;
2006 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2007 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2008 mutex_lock(&os->os_lock);
2009 cancel_delayed_work(&os->os_orphan_scan_work);
2010 mutex_unlock(&os->os_lock);
2011 }
2012 }
2013
2014 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2015 {
2016 struct ocfs2_orphan_scan *os;
2017
2018 os = &osb->osb_orphan_scan;
2019 os->os_osb = osb;
2020 os->os_count = 0;
2021 os->os_seqno = 0;
2022 mutex_init(&os->os_lock);
2023 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2024 }
2025
2026 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2027 {
2028 struct ocfs2_orphan_scan *os;
2029
2030 os = &osb->osb_orphan_scan;
2031 os->os_scantime = ktime_get_seconds();
2032 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2033 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2034 else {
2035 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2036 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2037 ocfs2_orphan_scan_timeout());
2038 }
2039 }
2040
2041 struct ocfs2_orphan_filldir_priv {
2042 struct dir_context ctx;
2043 struct inode *head;
2044 struct ocfs2_super *osb;
2045 enum ocfs2_orphan_reco_type orphan_reco_type;
2046 };
2047
2048 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2049 int name_len, loff_t pos, u64 ino,
2050 unsigned type)
2051 {
2052 struct ocfs2_orphan_filldir_priv *p =
2053 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2054 struct inode *iter;
2055
2056 if (name_len == 1 && !strncmp(".", name, 1))
2057 return 0;
2058 if (name_len == 2 && !strncmp("..", name, 2))
2059 return 0;
2060
2061 /* do not include dio entry in case of orphan scan */
2062 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2063 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2065 return 0;
2066
2067 /* Skip bad inodes so that recovery can continue */
2068 iter = ocfs2_iget(p->osb, ino,
2069 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2070 if (IS_ERR(iter))
2071 return 0;
2072
2073 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2074 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2075 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2076
2077 /* Skip inodes which are already added to recover list, since dio may
2078 * happen concurrently with unlink/rename */
2079 if (OCFS2_I(iter)->ip_next_orphan) {
2080 iput(iter);
2081 return 0;
2082 }
2083
2084 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2085 /* No locking is required for the next_orphan queue as there
2086 * is only ever a single process doing orphan recovery. */
2087 OCFS2_I(iter)->ip_next_orphan = p->head;
2088 p->head = iter;
2089
2090 return 0;
2091 }
2092
2093 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2094 int slot,
2095 struct inode **head,
2096 enum ocfs2_orphan_reco_type orphan_reco_type)
2097 {
2098 int status;
2099 struct inode *orphan_dir_inode = NULL;
2100 struct ocfs2_orphan_filldir_priv priv = {
2101 .ctx.actor = ocfs2_orphan_filldir,
2102 .osb = osb,
2103 .head = *head,
2104 .orphan_reco_type = orphan_reco_type
2105 };
2106
2107 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2108 ORPHAN_DIR_SYSTEM_INODE,
2109 slot);
2110 if (!orphan_dir_inode) {
2111 status = -ENOENT;
2112 mlog_errno(status);
2113 return status;
2114 }
2115
2116 inode_lock(orphan_dir_inode);
2117 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2118 if (status < 0) {
2119 mlog_errno(status);
2120 goto out;
2121 }
2122
2123 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2124 if (status) {
2125 mlog_errno(status);
2126 goto out_cluster;
2127 }
2128
2129 *head = priv.head;
2130
2131 out_cluster:
2132 ocfs2_inode_unlock(orphan_dir_inode, 0);
2133 out:
2134 inode_unlock(orphan_dir_inode);
2135 iput(orphan_dir_inode);
2136 return status;
2137 }
2138
2139 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2140 int slot)
2141 {
2142 int ret;
2143
2144 spin_lock(&osb->osb_lock);
2145 ret = !osb->osb_orphan_wipes[slot];
2146 spin_unlock(&osb->osb_lock);
2147 return ret;
2148 }
2149
2150 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2151 int slot)
2152 {
2153 spin_lock(&osb->osb_lock);
2154 /* Mark ourselves such that new processes in delete_inode()
2155 * know to quit early. */
2156 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2157 while (osb->osb_orphan_wipes[slot]) {
2158 /* If any processes are already in the middle of an
2159 * orphan wipe on this dir, then we need to wait for
2160 * them. */
2161 spin_unlock(&osb->osb_lock);
2162 wait_event_interruptible(osb->osb_wipe_event,
2163 ocfs2_orphan_recovery_can_continue(osb, slot));
2164 spin_lock(&osb->osb_lock);
2165 }
2166 spin_unlock(&osb->osb_lock);
2167 }
2168
2169 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2170 int slot)
2171 {
2172 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2173 }
2174
2175 /*
2176 * Orphan recovery. Each mounted node has it's own orphan dir which we
2177 * must run during recovery. Our strategy here is to build a list of
2178 * the inodes in the orphan dir and iget/iput them. The VFS does
2179 * (most) of the rest of the work.
2180 *
2181 * Orphan recovery can happen at any time, not just mount so we have a
2182 * couple of extra considerations.
2183 *
2184 * - We grab as many inodes as we can under the orphan dir lock -
2185 * doing iget() outside the orphan dir risks getting a reference on
2186 * an invalid inode.
2187 * - We must be sure not to deadlock with other processes on the
2188 * system wanting to run delete_inode(). This can happen when they go
2189 * to lock the orphan dir and the orphan recovery process attempts to
2190 * iget() inside the orphan dir lock. This can be avoided by
2191 * advertising our state to ocfs2_delete_inode().
2192 */
2193 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2194 int slot,
2195 enum ocfs2_orphan_reco_type orphan_reco_type)
2196 {
2197 int ret = 0;
2198 struct inode *inode = NULL;
2199 struct inode *iter;
2200 struct ocfs2_inode_info *oi;
2201 struct buffer_head *di_bh = NULL;
2202 struct ocfs2_dinode *di = NULL;
2203
2204 trace_ocfs2_recover_orphans(slot);
2205
2206 ocfs2_mark_recovering_orphan_dir(osb, slot);
2207 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2208 ocfs2_clear_recovering_orphan_dir(osb, slot);
2209
2210 /* Error here should be noted, but we want to continue with as
2211 * many queued inodes as we've got. */
2212 if (ret)
2213 mlog_errno(ret);
2214
2215 while (inode) {
2216 oi = OCFS2_I(inode);
2217 trace_ocfs2_recover_orphans_iput(
2218 (unsigned long long)oi->ip_blkno);
2219
2220 iter = oi->ip_next_orphan;
2221 oi->ip_next_orphan = NULL;
2222
2223 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2224 inode_lock(inode);
2225 ret = ocfs2_rw_lock(inode, 1);
2226 if (ret < 0) {
2227 mlog_errno(ret);
2228 goto unlock_mutex;
2229 }
2230 /*
2231 * We need to take and drop the inode lock to
2232 * force read inode from disk.
2233 */
2234 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2235 if (ret) {
2236 mlog_errno(ret);
2237 goto unlock_rw;
2238 }
2239
2240 di = (struct ocfs2_dinode *)di_bh->b_data;
2241
2242 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2243 ret = ocfs2_truncate_file(inode, di_bh,
2244 i_size_read(inode));
2245 if (ret < 0) {
2246 if (ret != -ENOSPC)
2247 mlog_errno(ret);
2248 goto unlock_inode;
2249 }
2250
2251 ret = ocfs2_del_inode_from_orphan(osb, inode,
2252 di_bh, 0, 0);
2253 if (ret)
2254 mlog_errno(ret);
2255 }
2256 unlock_inode:
2257 ocfs2_inode_unlock(inode, 1);
2258 brelse(di_bh);
2259 di_bh = NULL;
2260 unlock_rw:
2261 ocfs2_rw_unlock(inode, 1);
2262 unlock_mutex:
2263 inode_unlock(inode);
2264
2265 /* clear dio flag in ocfs2_inode_info */
2266 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2267 } else {
2268 spin_lock(&oi->ip_lock);
2269 /* Set the proper information to get us going into
2270 * ocfs2_delete_inode. */
2271 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2272 spin_unlock(&oi->ip_lock);
2273 }
2274
2275 iput(inode);
2276 inode = iter;
2277 }
2278
2279 return ret;
2280 }
2281
2282 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2283 {
2284 /* This check is good because ocfs2 will wait on our recovery
2285 * thread before changing it to something other than MOUNTED
2286 * or DISABLED. */
2287 wait_event(osb->osb_mount_event,
2288 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2289 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2290 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2291
2292 /* If there's an error on mount, then we may never get to the
2293 * MOUNTED flag, but this is set right before
2294 * dismount_volume() so we can trust it. */
2295 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2296 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2297 mlog(0, "mount error, exiting!\n");
2298 return -EBUSY;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static int ocfs2_commit_thread(void *arg)
2305 {
2306 int status;
2307 struct ocfs2_super *osb = arg;
2308 struct ocfs2_journal *journal = osb->journal;
2309
2310 /* we can trust j_num_trans here because _should_stop() is only set in
2311 * shutdown and nobody other than ourselves should be able to start
2312 * transactions. committing on shutdown might take a few iterations
2313 * as final transactions put deleted inodes on the list */
2314 while (!(kthread_should_stop() &&
2315 atomic_read(&journal->j_num_trans) == 0)) {
2316
2317 wait_event_interruptible(osb->checkpoint_event,
2318 atomic_read(&journal->j_num_trans)
2319 || kthread_should_stop());
2320
2321 status = ocfs2_commit_cache(osb);
2322 if (status < 0) {
2323 static unsigned long abort_warn_time;
2324
2325 /* Warn about this once per minute */
2326 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2327 mlog(ML_ERROR, "status = %d, journal is "
2328 "already aborted.\n", status);
2329 /*
2330 * After ocfs2_commit_cache() fails, j_num_trans has a
2331 * non-zero value. Sleep here to avoid a busy-wait
2332 * loop.
2333 */
2334 msleep_interruptible(1000);
2335 }
2336
2337 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2338 mlog(ML_KTHREAD,
2339 "commit_thread: %u transactions pending on "
2340 "shutdown\n",
2341 atomic_read(&journal->j_num_trans));
2342 }
2343 }
2344
2345 return 0;
2346 }
2347
2348 /* Reads all the journal inodes without taking any cluster locks. Used
2349 * for hard readonly access to determine whether any journal requires
2350 * recovery. Also used to refresh the recovery generation numbers after
2351 * a journal has been recovered by another node.
2352 */
2353 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2354 {
2355 int ret = 0;
2356 unsigned int slot;
2357 struct buffer_head *di_bh = NULL;
2358 struct ocfs2_dinode *di;
2359 int journal_dirty = 0;
2360
2361 for(slot = 0; slot < osb->max_slots; slot++) {
2362 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2363 if (ret) {
2364 mlog_errno(ret);
2365 goto out;
2366 }
2367
2368 di = (struct ocfs2_dinode *) di_bh->b_data;
2369
2370 osb->slot_recovery_generations[slot] =
2371 ocfs2_get_recovery_generation(di);
2372
2373 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2374 OCFS2_JOURNAL_DIRTY_FL)
2375 journal_dirty = 1;
2376
2377 brelse(di_bh);
2378 di_bh = NULL;
2379 }
2380
2381 out:
2382 if (journal_dirty)
2383 ret = -EROFS;
2384 return ret;
2385 }