]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/journal.c
NFS: introduce generic decode_getattr function
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53
54 #include "buffer_head_io.h"
55
56 DEFINE_SPINLOCK(trans_inc_lock);
57
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
78
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 return __ocfs2_wait_on_mount(osb, 0);
82 }
83
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 1);
87 }
88
89 /*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98 };
99
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104 };
105
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116 }
117
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149 }
150
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167 }
168
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178 }
179
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202 }
203
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 mb();
210 return osb->recovery_thread_task != NULL;
211 }
212
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237 }
238
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241 {
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253 }
254
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258 {
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275 }
276
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279 {
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298 }
299
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 int status = 0;
303 unsigned int flushed;
304 unsigned long old_id;
305 struct ocfs2_journal *journal = NULL;
306
307 mlog_entry_void();
308
309 journal = osb->journal;
310
311 /* Flush all pending commits and checkpoint the journal. */
312 down_write(&journal->j_trans_barrier);
313
314 if (atomic_read(&journal->j_num_trans) == 0) {
315 up_write(&journal->j_trans_barrier);
316 mlog(0, "No transactions for me to flush!\n");
317 goto finally;
318 }
319
320 jbd2_journal_lock_updates(journal->j_journal);
321 status = jbd2_journal_flush(journal->j_journal);
322 jbd2_journal_unlock_updates(journal->j_journal);
323 if (status < 0) {
324 up_write(&journal->j_trans_barrier);
325 mlog_errno(status);
326 goto finally;
327 }
328
329 old_id = ocfs2_inc_trans_id(journal);
330
331 flushed = atomic_read(&journal->j_num_trans);
332 atomic_set(&journal->j_num_trans, 0);
333 up_write(&journal->j_trans_barrier);
334
335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 journal->j_trans_id, flushed);
337
338 ocfs2_wake_downconvert_thread(osb);
339 wake_up(&journal->j_checkpointed);
340 finally:
341 mlog_exit(status);
342 return status;
343 }
344
345 /* pass it NULL and it will allocate a new handle object for you. If
346 * you pass it a handle however, it may still return error, in which
347 * case it has free'd the passed handle for you. */
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
352
353 BUG_ON(!osb || !osb->journal->j_journal);
354
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
364
365 down_read(&osb->journal->j_trans_barrier);
366
367 handle = jbd2_journal_start(journal, max_buffs);
368 if (IS_ERR(handle)) {
369 up_read(&osb->journal->j_trans_barrier);
370
371 mlog_errno(PTR_ERR(handle));
372
373 if (is_journal_aborted(journal)) {
374 ocfs2_abort(osb->sb, "Detected aborted journal");
375 handle = ERR_PTR(-EROFS);
376 }
377 } else {
378 if (!ocfs2_mount_local(osb))
379 atomic_inc(&(osb->journal->j_num_trans));
380 }
381
382 return handle;
383 }
384
385 int ocfs2_commit_trans(struct ocfs2_super *osb,
386 handle_t *handle)
387 {
388 int ret, nested;
389 struct ocfs2_journal *journal = osb->journal;
390
391 BUG_ON(!handle);
392
393 nested = handle->h_ref > 1;
394 ret = jbd2_journal_stop(handle);
395 if (ret < 0)
396 mlog_errno(ret);
397
398 if (!nested)
399 up_read(&journal->j_trans_barrier);
400
401 return ret;
402 }
403
404 /*
405 * 'nblocks' is what you want to add to the current transaction.
406 *
407 * This might call jbd2_journal_restart() which will commit dirty buffers
408 * and then restart the transaction. Before calling
409 * ocfs2_extend_trans(), any changed blocks should have been
410 * dirtied. After calling it, all blocks which need to be changed must
411 * go through another set of journal_access/journal_dirty calls.
412 *
413 * WARNING: This will not release any semaphores or disk locks taken
414 * during the transaction, so make sure they were taken *before*
415 * start_trans or we'll have ordering deadlocks.
416 *
417 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
418 * good because transaction ids haven't yet been recorded on the
419 * cluster locks associated with this handle.
420 */
421 int ocfs2_extend_trans(handle_t *handle, int nblocks)
422 {
423 int status, old_nblocks;
424
425 BUG_ON(!handle);
426 BUG_ON(nblocks < 0);
427
428 if (!nblocks)
429 return 0;
430
431 old_nblocks = handle->h_buffer_credits;
432 mlog_entry_void();
433
434 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
435
436 #ifdef CONFIG_OCFS2_DEBUG_FS
437 status = 1;
438 #else
439 status = jbd2_journal_extend(handle, nblocks);
440 if (status < 0) {
441 mlog_errno(status);
442 goto bail;
443 }
444 #endif
445
446 if (status > 0) {
447 mlog(0,
448 "jbd2_journal_extend failed, trying "
449 "jbd2_journal_restart\n");
450 status = jbd2_journal_restart(handle,
451 old_nblocks + nblocks);
452 if (status < 0) {
453 mlog_errno(status);
454 goto bail;
455 }
456 }
457
458 status = 0;
459 bail:
460
461 mlog_exit(status);
462 return status;
463 }
464
465 struct ocfs2_triggers {
466 struct jbd2_buffer_trigger_type ot_triggers;
467 int ot_offset;
468 };
469
470 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
471 {
472 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
473 }
474
475 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
476 struct buffer_head *bh,
477 void *data, size_t size)
478 {
479 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
480
481 /*
482 * We aren't guaranteed to have the superblock here, so we
483 * must unconditionally compute the ecc data.
484 * __ocfs2_journal_access() will only set the triggers if
485 * metaecc is enabled.
486 */
487 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
488 }
489
490 /*
491 * Quota blocks have their own trigger because the struct ocfs2_block_check
492 * offset depends on the blocksize.
493 */
494 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
495 struct buffer_head *bh,
496 void *data, size_t size)
497 {
498 struct ocfs2_disk_dqtrailer *dqt =
499 ocfs2_block_dqtrailer(size, data);
500
501 /*
502 * We aren't guaranteed to have the superblock here, so we
503 * must unconditionally compute the ecc data.
504 * __ocfs2_journal_access() will only set the triggers if
505 * metaecc is enabled.
506 */
507 ocfs2_block_check_compute(data, size, &dqt->dq_check);
508 }
509
510 /*
511 * Directory blocks also have their own trigger because the
512 * struct ocfs2_block_check offset depends on the blocksize.
513 */
514 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515 struct buffer_head *bh,
516 void *data, size_t size)
517 {
518 struct ocfs2_dir_block_trailer *trailer =
519 ocfs2_dir_trailer_from_size(size, data);
520
521 /*
522 * We aren't guaranteed to have the superblock here, so we
523 * must unconditionally compute the ecc data.
524 * __ocfs2_journal_access() will only set the triggers if
525 * metaecc is enabled.
526 */
527 ocfs2_block_check_compute(data, size, &trailer->db_check);
528 }
529
530 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
531 struct buffer_head *bh)
532 {
533 mlog(ML_ERROR,
534 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
535 "bh->b_blocknr = %llu\n",
536 (unsigned long)bh,
537 (unsigned long long)bh->b_blocknr);
538
539 /* We aren't guaranteed to have the superblock here - but if we
540 * don't, it'll just crash. */
541 ocfs2_error(bh->b_assoc_map->host->i_sb,
542 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
543 }
544
545 static struct ocfs2_triggers di_triggers = {
546 .ot_triggers = {
547 .t_frozen = ocfs2_frozen_trigger,
548 .t_abort = ocfs2_abort_trigger,
549 },
550 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
551 };
552
553 static struct ocfs2_triggers eb_triggers = {
554 .ot_triggers = {
555 .t_frozen = ocfs2_frozen_trigger,
556 .t_abort = ocfs2_abort_trigger,
557 },
558 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
559 };
560
561 static struct ocfs2_triggers rb_triggers = {
562 .ot_triggers = {
563 .t_frozen = ocfs2_frozen_trigger,
564 .t_abort = ocfs2_abort_trigger,
565 },
566 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
567 };
568
569 static struct ocfs2_triggers gd_triggers = {
570 .ot_triggers = {
571 .t_frozen = ocfs2_frozen_trigger,
572 .t_abort = ocfs2_abort_trigger,
573 },
574 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
575 };
576
577 static struct ocfs2_triggers db_triggers = {
578 .ot_triggers = {
579 .t_frozen = ocfs2_db_frozen_trigger,
580 .t_abort = ocfs2_abort_trigger,
581 },
582 };
583
584 static struct ocfs2_triggers xb_triggers = {
585 .ot_triggers = {
586 .t_frozen = ocfs2_frozen_trigger,
587 .t_abort = ocfs2_abort_trigger,
588 },
589 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
590 };
591
592 static struct ocfs2_triggers dq_triggers = {
593 .ot_triggers = {
594 .t_frozen = ocfs2_dq_frozen_trigger,
595 .t_abort = ocfs2_abort_trigger,
596 },
597 };
598
599 static struct ocfs2_triggers dr_triggers = {
600 .ot_triggers = {
601 .t_frozen = ocfs2_frozen_trigger,
602 .t_abort = ocfs2_abort_trigger,
603 },
604 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
605 };
606
607 static struct ocfs2_triggers dl_triggers = {
608 .ot_triggers = {
609 .t_frozen = ocfs2_frozen_trigger,
610 .t_abort = ocfs2_abort_trigger,
611 },
612 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
613 };
614
615 static int __ocfs2_journal_access(handle_t *handle,
616 struct ocfs2_caching_info *ci,
617 struct buffer_head *bh,
618 struct ocfs2_triggers *triggers,
619 int type)
620 {
621 int status;
622 struct ocfs2_super *osb =
623 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
624
625 BUG_ON(!ci || !ci->ci_ops);
626 BUG_ON(!handle);
627 BUG_ON(!bh);
628
629 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
630 (unsigned long long)bh->b_blocknr, type,
631 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
632 "OCFS2_JOURNAL_ACCESS_CREATE" :
633 "OCFS2_JOURNAL_ACCESS_WRITE",
634 bh->b_size);
635
636 /* we can safely remove this assertion after testing. */
637 if (!buffer_uptodate(bh)) {
638 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
639 mlog(ML_ERROR, "b_blocknr=%llu\n",
640 (unsigned long long)bh->b_blocknr);
641 BUG();
642 }
643
644 /* Set the current transaction information on the ci so
645 * that the locking code knows whether it can drop it's locks
646 * on this ci or not. We're protected from the commit
647 * thread updating the current transaction id until
648 * ocfs2_commit_trans() because ocfs2_start_trans() took
649 * j_trans_barrier for us. */
650 ocfs2_set_ci_lock_trans(osb->journal, ci);
651
652 ocfs2_metadata_cache_io_lock(ci);
653 switch (type) {
654 case OCFS2_JOURNAL_ACCESS_CREATE:
655 case OCFS2_JOURNAL_ACCESS_WRITE:
656 status = jbd2_journal_get_write_access(handle, bh);
657 break;
658
659 case OCFS2_JOURNAL_ACCESS_UNDO:
660 status = jbd2_journal_get_undo_access(handle, bh);
661 break;
662
663 default:
664 status = -EINVAL;
665 mlog(ML_ERROR, "Unknown access type!\n");
666 }
667 if (!status && ocfs2_meta_ecc(osb) && triggers)
668 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
669 ocfs2_metadata_cache_io_unlock(ci);
670
671 if (status < 0)
672 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
673 status, type);
674
675 mlog_exit(status);
676 return status;
677 }
678
679 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
680 struct buffer_head *bh, int type)
681 {
682 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
683 }
684
685 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
686 struct buffer_head *bh, int type)
687 {
688 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
689 }
690
691 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
692 struct buffer_head *bh, int type)
693 {
694 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
695 type);
696 }
697
698 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
699 struct buffer_head *bh, int type)
700 {
701 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
702 }
703
704 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
705 struct buffer_head *bh, int type)
706 {
707 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
708 }
709
710 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712 {
713 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
714 }
715
716 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
717 struct buffer_head *bh, int type)
718 {
719 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
720 }
721
722 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
723 struct buffer_head *bh, int type)
724 {
725 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
726 }
727
728 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
729 struct buffer_head *bh, int type)
730 {
731 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
732 }
733
734 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
735 struct buffer_head *bh, int type)
736 {
737 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
738 }
739
740 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
741 {
742 int status;
743
744 mlog_entry("(bh->b_blocknr=%llu)\n",
745 (unsigned long long)bh->b_blocknr);
746
747 status = jbd2_journal_dirty_metadata(handle, bh);
748 BUG_ON(status);
749
750 mlog_exit_void();
751 }
752
753 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
754
755 void ocfs2_set_journal_params(struct ocfs2_super *osb)
756 {
757 journal_t *journal = osb->journal->j_journal;
758 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
759
760 if (osb->osb_commit_interval)
761 commit_interval = osb->osb_commit_interval;
762
763 write_lock(&journal->j_state_lock);
764 journal->j_commit_interval = commit_interval;
765 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
766 journal->j_flags |= JBD2_BARRIER;
767 else
768 journal->j_flags &= ~JBD2_BARRIER;
769 write_unlock(&journal->j_state_lock);
770 }
771
772 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
773 {
774 int status = -1;
775 struct inode *inode = NULL; /* the journal inode */
776 journal_t *j_journal = NULL;
777 struct ocfs2_dinode *di = NULL;
778 struct buffer_head *bh = NULL;
779 struct ocfs2_super *osb;
780 int inode_lock = 0;
781
782 mlog_entry_void();
783
784 BUG_ON(!journal);
785
786 osb = journal->j_osb;
787
788 /* already have the inode for our journal */
789 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
790 osb->slot_num);
791 if (inode == NULL) {
792 status = -EACCES;
793 mlog_errno(status);
794 goto done;
795 }
796 if (is_bad_inode(inode)) {
797 mlog(ML_ERROR, "access error (bad inode)\n");
798 iput(inode);
799 inode = NULL;
800 status = -EACCES;
801 goto done;
802 }
803
804 SET_INODE_JOURNAL(inode);
805 OCFS2_I(inode)->ip_open_count++;
806
807 /* Skip recovery waits here - journal inode metadata never
808 * changes in a live cluster so it can be considered an
809 * exception to the rule. */
810 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
811 if (status < 0) {
812 if (status != -ERESTARTSYS)
813 mlog(ML_ERROR, "Could not get lock on journal!\n");
814 goto done;
815 }
816
817 inode_lock = 1;
818 di = (struct ocfs2_dinode *)bh->b_data;
819
820 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
821 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
822 inode->i_size);
823 status = -EINVAL;
824 goto done;
825 }
826
827 mlog(0, "inode->i_size = %lld\n", inode->i_size);
828 mlog(0, "inode->i_blocks = %llu\n",
829 (unsigned long long)inode->i_blocks);
830 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
831
832 /* call the kernels journal init function now */
833 j_journal = jbd2_journal_init_inode(inode);
834 if (j_journal == NULL) {
835 mlog(ML_ERROR, "Linux journal layer error\n");
836 status = -EINVAL;
837 goto done;
838 }
839
840 mlog(0, "Returned from jbd2_journal_init_inode\n");
841 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
842
843 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
844 OCFS2_JOURNAL_DIRTY_FL);
845
846 journal->j_journal = j_journal;
847 journal->j_inode = inode;
848 journal->j_bh = bh;
849
850 ocfs2_set_journal_params(osb);
851
852 journal->j_state = OCFS2_JOURNAL_LOADED;
853
854 status = 0;
855 done:
856 if (status < 0) {
857 if (inode_lock)
858 ocfs2_inode_unlock(inode, 1);
859 brelse(bh);
860 if (inode) {
861 OCFS2_I(inode)->ip_open_count--;
862 iput(inode);
863 }
864 }
865
866 mlog_exit(status);
867 return status;
868 }
869
870 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
871 {
872 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
873 }
874
875 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
876 {
877 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
878 }
879
880 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
881 int dirty, int replayed)
882 {
883 int status;
884 unsigned int flags;
885 struct ocfs2_journal *journal = osb->journal;
886 struct buffer_head *bh = journal->j_bh;
887 struct ocfs2_dinode *fe;
888
889 mlog_entry_void();
890
891 fe = (struct ocfs2_dinode *)bh->b_data;
892
893 /* The journal bh on the osb always comes from ocfs2_journal_init()
894 * and was validated there inside ocfs2_inode_lock_full(). It's a
895 * code bug if we mess it up. */
896 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
897
898 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
899 if (dirty)
900 flags |= OCFS2_JOURNAL_DIRTY_FL;
901 else
902 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
903 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
904
905 if (replayed)
906 ocfs2_bump_recovery_generation(fe);
907
908 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
909 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
910 if (status < 0)
911 mlog_errno(status);
912
913 mlog_exit(status);
914 return status;
915 }
916
917 /*
918 * If the journal has been kmalloc'd it needs to be freed after this
919 * call.
920 */
921 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
922 {
923 struct ocfs2_journal *journal = NULL;
924 int status = 0;
925 struct inode *inode = NULL;
926 int num_running_trans = 0;
927
928 mlog_entry_void();
929
930 BUG_ON(!osb);
931
932 journal = osb->journal;
933 if (!journal)
934 goto done;
935
936 inode = journal->j_inode;
937
938 if (journal->j_state != OCFS2_JOURNAL_LOADED)
939 goto done;
940
941 /* need to inc inode use count - jbd2_journal_destroy will iput. */
942 if (!igrab(inode))
943 BUG();
944
945 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
946 if (num_running_trans > 0)
947 mlog(0, "Shutting down journal: must wait on %d "
948 "running transactions!\n",
949 num_running_trans);
950
951 /* Do a commit_cache here. It will flush our journal, *and*
952 * release any locks that are still held.
953 * set the SHUTDOWN flag and release the trans lock.
954 * the commit thread will take the trans lock for us below. */
955 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
956
957 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
958 * drop the trans_lock (which we want to hold until we
959 * completely destroy the journal. */
960 if (osb->commit_task) {
961 /* Wait for the commit thread */
962 mlog(0, "Waiting for ocfs2commit to exit....\n");
963 kthread_stop(osb->commit_task);
964 osb->commit_task = NULL;
965 }
966
967 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
968
969 if (ocfs2_mount_local(osb)) {
970 jbd2_journal_lock_updates(journal->j_journal);
971 status = jbd2_journal_flush(journal->j_journal);
972 jbd2_journal_unlock_updates(journal->j_journal);
973 if (status < 0)
974 mlog_errno(status);
975 }
976
977 if (status == 0) {
978 /*
979 * Do not toggle if flush was unsuccessful otherwise
980 * will leave dirty metadata in a "clean" journal
981 */
982 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
983 if (status < 0)
984 mlog_errno(status);
985 }
986
987 /* Shutdown the kernel journal system */
988 jbd2_journal_destroy(journal->j_journal);
989 journal->j_journal = NULL;
990
991 OCFS2_I(inode)->ip_open_count--;
992
993 /* unlock our journal */
994 ocfs2_inode_unlock(inode, 1);
995
996 brelse(journal->j_bh);
997 journal->j_bh = NULL;
998
999 journal->j_state = OCFS2_JOURNAL_FREE;
1000
1001 // up_write(&journal->j_trans_barrier);
1002 done:
1003 if (inode)
1004 iput(inode);
1005 mlog_exit_void();
1006 }
1007
1008 static void ocfs2_clear_journal_error(struct super_block *sb,
1009 journal_t *journal,
1010 int slot)
1011 {
1012 int olderr;
1013
1014 olderr = jbd2_journal_errno(journal);
1015 if (olderr) {
1016 mlog(ML_ERROR, "File system error %d recorded in "
1017 "journal %u.\n", olderr, slot);
1018 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1019 sb->s_id);
1020
1021 jbd2_journal_ack_err(journal);
1022 jbd2_journal_clear_err(journal);
1023 }
1024 }
1025
1026 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1027 {
1028 int status = 0;
1029 struct ocfs2_super *osb;
1030
1031 mlog_entry_void();
1032
1033 BUG_ON(!journal);
1034
1035 osb = journal->j_osb;
1036
1037 status = jbd2_journal_load(journal->j_journal);
1038 if (status < 0) {
1039 mlog(ML_ERROR, "Failed to load journal!\n");
1040 goto done;
1041 }
1042
1043 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1044
1045 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1046 if (status < 0) {
1047 mlog_errno(status);
1048 goto done;
1049 }
1050
1051 /* Launch the commit thread */
1052 if (!local) {
1053 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1054 "ocfs2cmt");
1055 if (IS_ERR(osb->commit_task)) {
1056 status = PTR_ERR(osb->commit_task);
1057 osb->commit_task = NULL;
1058 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1059 "error=%d", status);
1060 goto done;
1061 }
1062 } else
1063 osb->commit_task = NULL;
1064
1065 done:
1066 mlog_exit(status);
1067 return status;
1068 }
1069
1070
1071 /* 'full' flag tells us whether we clear out all blocks or if we just
1072 * mark the journal clean */
1073 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1074 {
1075 int status;
1076
1077 mlog_entry_void();
1078
1079 BUG_ON(!journal);
1080
1081 status = jbd2_journal_wipe(journal->j_journal, full);
1082 if (status < 0) {
1083 mlog_errno(status);
1084 goto bail;
1085 }
1086
1087 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1088 if (status < 0)
1089 mlog_errno(status);
1090
1091 bail:
1092 mlog_exit(status);
1093 return status;
1094 }
1095
1096 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1097 {
1098 int empty;
1099 struct ocfs2_recovery_map *rm = osb->recovery_map;
1100
1101 spin_lock(&osb->osb_lock);
1102 empty = (rm->rm_used == 0);
1103 spin_unlock(&osb->osb_lock);
1104
1105 return empty;
1106 }
1107
1108 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1109 {
1110 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1111 }
1112
1113 /*
1114 * JBD Might read a cached version of another nodes journal file. We
1115 * don't want this as this file changes often and we get no
1116 * notification on those changes. The only way to be sure that we've
1117 * got the most up to date version of those blocks then is to force
1118 * read them off disk. Just searching through the buffer cache won't
1119 * work as there may be pages backing this file which are still marked
1120 * up to date. We know things can't change on this file underneath us
1121 * as we have the lock by now :)
1122 */
1123 static int ocfs2_force_read_journal(struct inode *inode)
1124 {
1125 int status = 0;
1126 int i;
1127 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1128 #define CONCURRENT_JOURNAL_FILL 32ULL
1129 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1130
1131 mlog_entry_void();
1132
1133 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1134
1135 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1136 v_blkno = 0;
1137 while (v_blkno < num_blocks) {
1138 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1139 &p_blkno, &p_blocks, NULL);
1140 if (status < 0) {
1141 mlog_errno(status);
1142 goto bail;
1143 }
1144
1145 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1146 p_blocks = CONCURRENT_JOURNAL_FILL;
1147
1148 /* We are reading journal data which should not
1149 * be put in the uptodate cache */
1150 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1151 p_blkno, p_blocks, bhs);
1152 if (status < 0) {
1153 mlog_errno(status);
1154 goto bail;
1155 }
1156
1157 for(i = 0; i < p_blocks; i++) {
1158 brelse(bhs[i]);
1159 bhs[i] = NULL;
1160 }
1161
1162 v_blkno += p_blocks;
1163 }
1164
1165 bail:
1166 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1167 brelse(bhs[i]);
1168 mlog_exit(status);
1169 return status;
1170 }
1171
1172 struct ocfs2_la_recovery_item {
1173 struct list_head lri_list;
1174 int lri_slot;
1175 struct ocfs2_dinode *lri_la_dinode;
1176 struct ocfs2_dinode *lri_tl_dinode;
1177 struct ocfs2_quota_recovery *lri_qrec;
1178 };
1179
1180 /* Does the second half of the recovery process. By this point, the
1181 * node is marked clean and can actually be considered recovered,
1182 * hence it's no longer in the recovery map, but there's still some
1183 * cleanup we can do which shouldn't happen within the recovery thread
1184 * as locking in that context becomes very difficult if we are to take
1185 * recovering nodes into account.
1186 *
1187 * NOTE: This function can and will sleep on recovery of other nodes
1188 * during cluster locking, just like any other ocfs2 process.
1189 */
1190 void ocfs2_complete_recovery(struct work_struct *work)
1191 {
1192 int ret;
1193 struct ocfs2_journal *journal =
1194 container_of(work, struct ocfs2_journal, j_recovery_work);
1195 struct ocfs2_super *osb = journal->j_osb;
1196 struct ocfs2_dinode *la_dinode, *tl_dinode;
1197 struct ocfs2_la_recovery_item *item, *n;
1198 struct ocfs2_quota_recovery *qrec;
1199 LIST_HEAD(tmp_la_list);
1200
1201 mlog_entry_void();
1202
1203 mlog(0, "completing recovery from keventd\n");
1204
1205 spin_lock(&journal->j_lock);
1206 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1207 spin_unlock(&journal->j_lock);
1208
1209 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1210 list_del_init(&item->lri_list);
1211
1212 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1213
1214 ocfs2_wait_on_quotas(osb);
1215
1216 la_dinode = item->lri_la_dinode;
1217 if (la_dinode) {
1218 mlog(0, "Clean up local alloc %llu\n",
1219 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1220
1221 ret = ocfs2_complete_local_alloc_recovery(osb,
1222 la_dinode);
1223 if (ret < 0)
1224 mlog_errno(ret);
1225
1226 kfree(la_dinode);
1227 }
1228
1229 tl_dinode = item->lri_tl_dinode;
1230 if (tl_dinode) {
1231 mlog(0, "Clean up truncate log %llu\n",
1232 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1233
1234 ret = ocfs2_complete_truncate_log_recovery(osb,
1235 tl_dinode);
1236 if (ret < 0)
1237 mlog_errno(ret);
1238
1239 kfree(tl_dinode);
1240 }
1241
1242 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1243 if (ret < 0)
1244 mlog_errno(ret);
1245
1246 qrec = item->lri_qrec;
1247 if (qrec) {
1248 mlog(0, "Recovering quota files");
1249 ret = ocfs2_finish_quota_recovery(osb, qrec,
1250 item->lri_slot);
1251 if (ret < 0)
1252 mlog_errno(ret);
1253 /* Recovery info is already freed now */
1254 }
1255
1256 kfree(item);
1257 }
1258
1259 mlog(0, "Recovery completion\n");
1260 mlog_exit_void();
1261 }
1262
1263 /* NOTE: This function always eats your references to la_dinode and
1264 * tl_dinode, either manually on error, or by passing them to
1265 * ocfs2_complete_recovery */
1266 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1267 int slot_num,
1268 struct ocfs2_dinode *la_dinode,
1269 struct ocfs2_dinode *tl_dinode,
1270 struct ocfs2_quota_recovery *qrec)
1271 {
1272 struct ocfs2_la_recovery_item *item;
1273
1274 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1275 if (!item) {
1276 /* Though we wish to avoid it, we are in fact safe in
1277 * skipping local alloc cleanup as fsck.ocfs2 is more
1278 * than capable of reclaiming unused space. */
1279 if (la_dinode)
1280 kfree(la_dinode);
1281
1282 if (tl_dinode)
1283 kfree(tl_dinode);
1284
1285 if (qrec)
1286 ocfs2_free_quota_recovery(qrec);
1287
1288 mlog_errno(-ENOMEM);
1289 return;
1290 }
1291
1292 INIT_LIST_HEAD(&item->lri_list);
1293 item->lri_la_dinode = la_dinode;
1294 item->lri_slot = slot_num;
1295 item->lri_tl_dinode = tl_dinode;
1296 item->lri_qrec = qrec;
1297
1298 spin_lock(&journal->j_lock);
1299 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1300 queue_work(ocfs2_wq, &journal->j_recovery_work);
1301 spin_unlock(&journal->j_lock);
1302 }
1303
1304 /* Called by the mount code to queue recovery the last part of
1305 * recovery for it's own and offline slot(s). */
1306 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1307 {
1308 struct ocfs2_journal *journal = osb->journal;
1309
1310 /* No need to queue up our truncate_log as regular cleanup will catch
1311 * that */
1312 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1313 osb->local_alloc_copy, NULL, NULL);
1314 ocfs2_schedule_truncate_log_flush(osb, 0);
1315
1316 osb->local_alloc_copy = NULL;
1317 osb->dirty = 0;
1318
1319 /* queue to recover orphan slots for all offline slots */
1320 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1321 ocfs2_queue_replay_slots(osb);
1322 ocfs2_free_replay_slots(osb);
1323 }
1324
1325 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1326 {
1327 if (osb->quota_rec) {
1328 ocfs2_queue_recovery_completion(osb->journal,
1329 osb->slot_num,
1330 NULL,
1331 NULL,
1332 osb->quota_rec);
1333 osb->quota_rec = NULL;
1334 }
1335 }
1336
1337 static int __ocfs2_recovery_thread(void *arg)
1338 {
1339 int status, node_num, slot_num;
1340 struct ocfs2_super *osb = arg;
1341 struct ocfs2_recovery_map *rm = osb->recovery_map;
1342 int *rm_quota = NULL;
1343 int rm_quota_used = 0, i;
1344 struct ocfs2_quota_recovery *qrec;
1345
1346 mlog_entry_void();
1347
1348 status = ocfs2_wait_on_mount(osb);
1349 if (status < 0) {
1350 goto bail;
1351 }
1352
1353 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1354 if (!rm_quota) {
1355 status = -ENOMEM;
1356 goto bail;
1357 }
1358 restart:
1359 status = ocfs2_super_lock(osb, 1);
1360 if (status < 0) {
1361 mlog_errno(status);
1362 goto bail;
1363 }
1364
1365 status = ocfs2_compute_replay_slots(osb);
1366 if (status < 0)
1367 mlog_errno(status);
1368
1369 /* queue recovery for our own slot */
1370 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1371 NULL, NULL);
1372
1373 spin_lock(&osb->osb_lock);
1374 while (rm->rm_used) {
1375 /* It's always safe to remove entry zero, as we won't
1376 * clear it until ocfs2_recover_node() has succeeded. */
1377 node_num = rm->rm_entries[0];
1378 spin_unlock(&osb->osb_lock);
1379 mlog(0, "checking node %d\n", node_num);
1380 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1381 if (slot_num == -ENOENT) {
1382 status = 0;
1383 mlog(0, "no slot for this node, so no recovery"
1384 "required.\n");
1385 goto skip_recovery;
1386 }
1387 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1388
1389 /* It is a bit subtle with quota recovery. We cannot do it
1390 * immediately because we have to obtain cluster locks from
1391 * quota files and we also don't want to just skip it because
1392 * then quota usage would be out of sync until some node takes
1393 * the slot. So we remember which nodes need quota recovery
1394 * and when everything else is done, we recover quotas. */
1395 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1396 if (i == rm_quota_used)
1397 rm_quota[rm_quota_used++] = slot_num;
1398
1399 status = ocfs2_recover_node(osb, node_num, slot_num);
1400 skip_recovery:
1401 if (!status) {
1402 ocfs2_recovery_map_clear(osb, node_num);
1403 } else {
1404 mlog(ML_ERROR,
1405 "Error %d recovering node %d on device (%u,%u)!\n",
1406 status, node_num,
1407 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1408 mlog(ML_ERROR, "Volume requires unmount.\n");
1409 }
1410
1411 spin_lock(&osb->osb_lock);
1412 }
1413 spin_unlock(&osb->osb_lock);
1414 mlog(0, "All nodes recovered\n");
1415
1416 /* Refresh all journal recovery generations from disk */
1417 status = ocfs2_check_journals_nolocks(osb);
1418 status = (status == -EROFS) ? 0 : status;
1419 if (status < 0)
1420 mlog_errno(status);
1421
1422 /* Now it is right time to recover quotas... We have to do this under
1423 * superblock lock so that noone can start using the slot (and crash)
1424 * before we recover it */
1425 for (i = 0; i < rm_quota_used; i++) {
1426 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1427 if (IS_ERR(qrec)) {
1428 status = PTR_ERR(qrec);
1429 mlog_errno(status);
1430 continue;
1431 }
1432 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1433 NULL, NULL, qrec);
1434 }
1435
1436 ocfs2_super_unlock(osb, 1);
1437
1438 /* queue recovery for offline slots */
1439 ocfs2_queue_replay_slots(osb);
1440
1441 bail:
1442 mutex_lock(&osb->recovery_lock);
1443 if (!status && !ocfs2_recovery_completed(osb)) {
1444 mutex_unlock(&osb->recovery_lock);
1445 goto restart;
1446 }
1447
1448 ocfs2_free_replay_slots(osb);
1449 osb->recovery_thread_task = NULL;
1450 mb(); /* sync with ocfs2_recovery_thread_running */
1451 wake_up(&osb->recovery_event);
1452
1453 mutex_unlock(&osb->recovery_lock);
1454
1455 if (rm_quota)
1456 kfree(rm_quota);
1457
1458 mlog_exit(status);
1459 /* no one is callint kthread_stop() for us so the kthread() api
1460 * requires that we call do_exit(). And it isn't exported, but
1461 * complete_and_exit() seems to be a minimal wrapper around it. */
1462 complete_and_exit(NULL, status);
1463 return status;
1464 }
1465
1466 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1467 {
1468 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1469 node_num, osb->node_num);
1470
1471 mutex_lock(&osb->recovery_lock);
1472 if (osb->disable_recovery)
1473 goto out;
1474
1475 /* People waiting on recovery will wait on
1476 * the recovery map to empty. */
1477 if (ocfs2_recovery_map_set(osb, node_num))
1478 mlog(0, "node %d already in recovery map.\n", node_num);
1479
1480 mlog(0, "starting recovery thread...\n");
1481
1482 if (osb->recovery_thread_task)
1483 goto out;
1484
1485 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1486 "ocfs2rec");
1487 if (IS_ERR(osb->recovery_thread_task)) {
1488 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1489 osb->recovery_thread_task = NULL;
1490 }
1491
1492 out:
1493 mutex_unlock(&osb->recovery_lock);
1494 wake_up(&osb->recovery_event);
1495
1496 mlog_exit_void();
1497 }
1498
1499 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1500 int slot_num,
1501 struct buffer_head **bh,
1502 struct inode **ret_inode)
1503 {
1504 int status = -EACCES;
1505 struct inode *inode = NULL;
1506
1507 BUG_ON(slot_num >= osb->max_slots);
1508
1509 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1510 slot_num);
1511 if (!inode || is_bad_inode(inode)) {
1512 mlog_errno(status);
1513 goto bail;
1514 }
1515 SET_INODE_JOURNAL(inode);
1516
1517 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1518 if (status < 0) {
1519 mlog_errno(status);
1520 goto bail;
1521 }
1522
1523 status = 0;
1524
1525 bail:
1526 if (inode) {
1527 if (status || !ret_inode)
1528 iput(inode);
1529 else
1530 *ret_inode = inode;
1531 }
1532 return status;
1533 }
1534
1535 /* Does the actual journal replay and marks the journal inode as
1536 * clean. Will only replay if the journal inode is marked dirty. */
1537 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1538 int node_num,
1539 int slot_num)
1540 {
1541 int status;
1542 int got_lock = 0;
1543 unsigned int flags;
1544 struct inode *inode = NULL;
1545 struct ocfs2_dinode *fe;
1546 journal_t *journal = NULL;
1547 struct buffer_head *bh = NULL;
1548 u32 slot_reco_gen;
1549
1550 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1551 if (status) {
1552 mlog_errno(status);
1553 goto done;
1554 }
1555
1556 fe = (struct ocfs2_dinode *)bh->b_data;
1557 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1558 brelse(bh);
1559 bh = NULL;
1560
1561 /*
1562 * As the fs recovery is asynchronous, there is a small chance that
1563 * another node mounted (and recovered) the slot before the recovery
1564 * thread could get the lock. To handle that, we dirty read the journal
1565 * inode for that slot to get the recovery generation. If it is
1566 * different than what we expected, the slot has been recovered.
1567 * If not, it needs recovery.
1568 */
1569 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1570 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1571 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1572 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1573 status = -EBUSY;
1574 goto done;
1575 }
1576
1577 /* Continue with recovery as the journal has not yet been recovered */
1578
1579 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1580 if (status < 0) {
1581 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1582 if (status != -ERESTARTSYS)
1583 mlog(ML_ERROR, "Could not lock journal!\n");
1584 goto done;
1585 }
1586 got_lock = 1;
1587
1588 fe = (struct ocfs2_dinode *) bh->b_data;
1589
1590 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1591 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1592
1593 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1594 mlog(0, "No recovery required for node %d\n", node_num);
1595 /* Refresh recovery generation for the slot */
1596 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1597 goto done;
1598 }
1599
1600 /* we need to run complete recovery for offline orphan slots */
1601 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1602
1603 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1604 node_num, slot_num,
1605 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1606
1607 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1608
1609 status = ocfs2_force_read_journal(inode);
1610 if (status < 0) {
1611 mlog_errno(status);
1612 goto done;
1613 }
1614
1615 mlog(0, "calling journal_init_inode\n");
1616 journal = jbd2_journal_init_inode(inode);
1617 if (journal == NULL) {
1618 mlog(ML_ERROR, "Linux journal layer error\n");
1619 status = -EIO;
1620 goto done;
1621 }
1622
1623 status = jbd2_journal_load(journal);
1624 if (status < 0) {
1625 mlog_errno(status);
1626 if (!igrab(inode))
1627 BUG();
1628 jbd2_journal_destroy(journal);
1629 goto done;
1630 }
1631
1632 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1633
1634 /* wipe the journal */
1635 mlog(0, "flushing the journal.\n");
1636 jbd2_journal_lock_updates(journal);
1637 status = jbd2_journal_flush(journal);
1638 jbd2_journal_unlock_updates(journal);
1639 if (status < 0)
1640 mlog_errno(status);
1641
1642 /* This will mark the node clean */
1643 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1644 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1645 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1646
1647 /* Increment recovery generation to indicate successful recovery */
1648 ocfs2_bump_recovery_generation(fe);
1649 osb->slot_recovery_generations[slot_num] =
1650 ocfs2_get_recovery_generation(fe);
1651
1652 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1653 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1654 if (status < 0)
1655 mlog_errno(status);
1656
1657 if (!igrab(inode))
1658 BUG();
1659
1660 jbd2_journal_destroy(journal);
1661
1662 done:
1663 /* drop the lock on this nodes journal */
1664 if (got_lock)
1665 ocfs2_inode_unlock(inode, 1);
1666
1667 if (inode)
1668 iput(inode);
1669
1670 brelse(bh);
1671
1672 mlog_exit(status);
1673 return status;
1674 }
1675
1676 /*
1677 * Do the most important parts of node recovery:
1678 * - Replay it's journal
1679 * - Stamp a clean local allocator file
1680 * - Stamp a clean truncate log
1681 * - Mark the node clean
1682 *
1683 * If this function completes without error, a node in OCFS2 can be
1684 * said to have been safely recovered. As a result, failure during the
1685 * second part of a nodes recovery process (local alloc recovery) is
1686 * far less concerning.
1687 */
1688 static int ocfs2_recover_node(struct ocfs2_super *osb,
1689 int node_num, int slot_num)
1690 {
1691 int status = 0;
1692 struct ocfs2_dinode *la_copy = NULL;
1693 struct ocfs2_dinode *tl_copy = NULL;
1694
1695 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1696 node_num, slot_num, osb->node_num);
1697
1698 /* Should not ever be called to recover ourselves -- in that
1699 * case we should've called ocfs2_journal_load instead. */
1700 BUG_ON(osb->node_num == node_num);
1701
1702 status = ocfs2_replay_journal(osb, node_num, slot_num);
1703 if (status < 0) {
1704 if (status == -EBUSY) {
1705 mlog(0, "Skipping recovery for slot %u (node %u) "
1706 "as another node has recovered it\n", slot_num,
1707 node_num);
1708 status = 0;
1709 goto done;
1710 }
1711 mlog_errno(status);
1712 goto done;
1713 }
1714
1715 /* Stamp a clean local alloc file AFTER recovering the journal... */
1716 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1717 if (status < 0) {
1718 mlog_errno(status);
1719 goto done;
1720 }
1721
1722 /* An error from begin_truncate_log_recovery is not
1723 * serious enough to warrant halting the rest of
1724 * recovery. */
1725 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1726 if (status < 0)
1727 mlog_errno(status);
1728
1729 /* Likewise, this would be a strange but ultimately not so
1730 * harmful place to get an error... */
1731 status = ocfs2_clear_slot(osb, slot_num);
1732 if (status < 0)
1733 mlog_errno(status);
1734
1735 /* This will kfree the memory pointed to by la_copy and tl_copy */
1736 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1737 tl_copy, NULL);
1738
1739 status = 0;
1740 done:
1741
1742 mlog_exit(status);
1743 return status;
1744 }
1745
1746 /* Test node liveness by trylocking his journal. If we get the lock,
1747 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1748 * still alive (we couldn't get the lock) and < 0 on error. */
1749 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1750 int slot_num)
1751 {
1752 int status, flags;
1753 struct inode *inode = NULL;
1754
1755 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1756 slot_num);
1757 if (inode == NULL) {
1758 mlog(ML_ERROR, "access error\n");
1759 status = -EACCES;
1760 goto bail;
1761 }
1762 if (is_bad_inode(inode)) {
1763 mlog(ML_ERROR, "access error (bad inode)\n");
1764 iput(inode);
1765 inode = NULL;
1766 status = -EACCES;
1767 goto bail;
1768 }
1769 SET_INODE_JOURNAL(inode);
1770
1771 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1772 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1773 if (status < 0) {
1774 if (status != -EAGAIN)
1775 mlog_errno(status);
1776 goto bail;
1777 }
1778
1779 ocfs2_inode_unlock(inode, 1);
1780 bail:
1781 if (inode)
1782 iput(inode);
1783
1784 return status;
1785 }
1786
1787 /* Call this underneath ocfs2_super_lock. It also assumes that the
1788 * slot info struct has been updated from disk. */
1789 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1790 {
1791 unsigned int node_num;
1792 int status, i;
1793 u32 gen;
1794 struct buffer_head *bh = NULL;
1795 struct ocfs2_dinode *di;
1796
1797 /* This is called with the super block cluster lock, so we
1798 * know that the slot map can't change underneath us. */
1799
1800 for (i = 0; i < osb->max_slots; i++) {
1801 /* Read journal inode to get the recovery generation */
1802 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1803 if (status) {
1804 mlog_errno(status);
1805 goto bail;
1806 }
1807 di = (struct ocfs2_dinode *)bh->b_data;
1808 gen = ocfs2_get_recovery_generation(di);
1809 brelse(bh);
1810 bh = NULL;
1811
1812 spin_lock(&osb->osb_lock);
1813 osb->slot_recovery_generations[i] = gen;
1814
1815 mlog(0, "Slot %u recovery generation is %u\n", i,
1816 osb->slot_recovery_generations[i]);
1817
1818 if (i == osb->slot_num) {
1819 spin_unlock(&osb->osb_lock);
1820 continue;
1821 }
1822
1823 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1824 if (status == -ENOENT) {
1825 spin_unlock(&osb->osb_lock);
1826 continue;
1827 }
1828
1829 if (__ocfs2_recovery_map_test(osb, node_num)) {
1830 spin_unlock(&osb->osb_lock);
1831 continue;
1832 }
1833 spin_unlock(&osb->osb_lock);
1834
1835 /* Ok, we have a slot occupied by another node which
1836 * is not in the recovery map. We trylock his journal
1837 * file here to test if he's alive. */
1838 status = ocfs2_trylock_journal(osb, i);
1839 if (!status) {
1840 /* Since we're called from mount, we know that
1841 * the recovery thread can't race us on
1842 * setting / checking the recovery bits. */
1843 ocfs2_recovery_thread(osb, node_num);
1844 } else if ((status < 0) && (status != -EAGAIN)) {
1845 mlog_errno(status);
1846 goto bail;
1847 }
1848 }
1849
1850 status = 0;
1851 bail:
1852 mlog_exit(status);
1853 return status;
1854 }
1855
1856 /*
1857 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1858 * randomness to the timeout to minimize multple nodes firing the timer at the
1859 * same time.
1860 */
1861 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1862 {
1863 unsigned long time;
1864
1865 get_random_bytes(&time, sizeof(time));
1866 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1867 return msecs_to_jiffies(time);
1868 }
1869
1870 /*
1871 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1872 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1873 * is done to catch any orphans that are left over in orphan directories.
1874 *
1875 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1876 * seconds. It gets an EX lock on os_lockres and checks sequence number
1877 * stored in LVB. If the sequence number has changed, it means some other
1878 * node has done the scan. This node skips the scan and tracks the
1879 * sequence number. If the sequence number didn't change, it means a scan
1880 * hasn't happened. The node queues a scan and increments the
1881 * sequence number in the LVB.
1882 */
1883 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1884 {
1885 struct ocfs2_orphan_scan *os;
1886 int status, i;
1887 u32 seqno = 0;
1888
1889 os = &osb->osb_orphan_scan;
1890
1891 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1892 goto out;
1893
1894 status = ocfs2_orphan_scan_lock(osb, &seqno);
1895 if (status < 0) {
1896 if (status != -EAGAIN)
1897 mlog_errno(status);
1898 goto out;
1899 }
1900
1901 /* Do no queue the tasks if the volume is being umounted */
1902 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1903 goto unlock;
1904
1905 if (os->os_seqno != seqno) {
1906 os->os_seqno = seqno;
1907 goto unlock;
1908 }
1909
1910 for (i = 0; i < osb->max_slots; i++)
1911 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1912 NULL);
1913 /*
1914 * We queued a recovery on orphan slots, increment the sequence
1915 * number and update LVB so other node will skip the scan for a while
1916 */
1917 seqno++;
1918 os->os_count++;
1919 os->os_scantime = CURRENT_TIME;
1920 unlock:
1921 ocfs2_orphan_scan_unlock(osb, seqno);
1922 out:
1923 return;
1924 }
1925
1926 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1927 void ocfs2_orphan_scan_work(struct work_struct *work)
1928 {
1929 struct ocfs2_orphan_scan *os;
1930 struct ocfs2_super *osb;
1931
1932 os = container_of(work, struct ocfs2_orphan_scan,
1933 os_orphan_scan_work.work);
1934 osb = os->os_osb;
1935
1936 mutex_lock(&os->os_lock);
1937 ocfs2_queue_orphan_scan(osb);
1938 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1939 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1940 ocfs2_orphan_scan_timeout());
1941 mutex_unlock(&os->os_lock);
1942 }
1943
1944 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1945 {
1946 struct ocfs2_orphan_scan *os;
1947
1948 os = &osb->osb_orphan_scan;
1949 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1950 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1951 mutex_lock(&os->os_lock);
1952 cancel_delayed_work(&os->os_orphan_scan_work);
1953 mutex_unlock(&os->os_lock);
1954 }
1955 }
1956
1957 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1958 {
1959 struct ocfs2_orphan_scan *os;
1960
1961 os = &osb->osb_orphan_scan;
1962 os->os_osb = osb;
1963 os->os_count = 0;
1964 os->os_seqno = 0;
1965 mutex_init(&os->os_lock);
1966 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1967 }
1968
1969 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1970 {
1971 struct ocfs2_orphan_scan *os;
1972
1973 os = &osb->osb_orphan_scan;
1974 os->os_scantime = CURRENT_TIME;
1975 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1976 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1977 else {
1978 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1979 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1980 ocfs2_orphan_scan_timeout());
1981 }
1982 }
1983
1984 struct ocfs2_orphan_filldir_priv {
1985 struct inode *head;
1986 struct ocfs2_super *osb;
1987 };
1988
1989 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1990 loff_t pos, u64 ino, unsigned type)
1991 {
1992 struct ocfs2_orphan_filldir_priv *p = priv;
1993 struct inode *iter;
1994
1995 if (name_len == 1 && !strncmp(".", name, 1))
1996 return 0;
1997 if (name_len == 2 && !strncmp("..", name, 2))
1998 return 0;
1999
2000 /* Skip bad inodes so that recovery can continue */
2001 iter = ocfs2_iget(p->osb, ino,
2002 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2003 if (IS_ERR(iter))
2004 return 0;
2005
2006 mlog(0, "queue orphan %llu\n",
2007 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2008 /* No locking is required for the next_orphan queue as there
2009 * is only ever a single process doing orphan recovery. */
2010 OCFS2_I(iter)->ip_next_orphan = p->head;
2011 p->head = iter;
2012
2013 return 0;
2014 }
2015
2016 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2017 int slot,
2018 struct inode **head)
2019 {
2020 int status;
2021 struct inode *orphan_dir_inode = NULL;
2022 struct ocfs2_orphan_filldir_priv priv;
2023 loff_t pos = 0;
2024
2025 priv.osb = osb;
2026 priv.head = *head;
2027
2028 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2029 ORPHAN_DIR_SYSTEM_INODE,
2030 slot);
2031 if (!orphan_dir_inode) {
2032 status = -ENOENT;
2033 mlog_errno(status);
2034 return status;
2035 }
2036
2037 mutex_lock(&orphan_dir_inode->i_mutex);
2038 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2039 if (status < 0) {
2040 mlog_errno(status);
2041 goto out;
2042 }
2043
2044 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2045 ocfs2_orphan_filldir);
2046 if (status) {
2047 mlog_errno(status);
2048 goto out_cluster;
2049 }
2050
2051 *head = priv.head;
2052
2053 out_cluster:
2054 ocfs2_inode_unlock(orphan_dir_inode, 0);
2055 out:
2056 mutex_unlock(&orphan_dir_inode->i_mutex);
2057 iput(orphan_dir_inode);
2058 return status;
2059 }
2060
2061 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2062 int slot)
2063 {
2064 int ret;
2065
2066 spin_lock(&osb->osb_lock);
2067 ret = !osb->osb_orphan_wipes[slot];
2068 spin_unlock(&osb->osb_lock);
2069 return ret;
2070 }
2071
2072 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2073 int slot)
2074 {
2075 spin_lock(&osb->osb_lock);
2076 /* Mark ourselves such that new processes in delete_inode()
2077 * know to quit early. */
2078 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2079 while (osb->osb_orphan_wipes[slot]) {
2080 /* If any processes are already in the middle of an
2081 * orphan wipe on this dir, then we need to wait for
2082 * them. */
2083 spin_unlock(&osb->osb_lock);
2084 wait_event_interruptible(osb->osb_wipe_event,
2085 ocfs2_orphan_recovery_can_continue(osb, slot));
2086 spin_lock(&osb->osb_lock);
2087 }
2088 spin_unlock(&osb->osb_lock);
2089 }
2090
2091 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2092 int slot)
2093 {
2094 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2095 }
2096
2097 /*
2098 * Orphan recovery. Each mounted node has it's own orphan dir which we
2099 * must run during recovery. Our strategy here is to build a list of
2100 * the inodes in the orphan dir and iget/iput them. The VFS does
2101 * (most) of the rest of the work.
2102 *
2103 * Orphan recovery can happen at any time, not just mount so we have a
2104 * couple of extra considerations.
2105 *
2106 * - We grab as many inodes as we can under the orphan dir lock -
2107 * doing iget() outside the orphan dir risks getting a reference on
2108 * an invalid inode.
2109 * - We must be sure not to deadlock with other processes on the
2110 * system wanting to run delete_inode(). This can happen when they go
2111 * to lock the orphan dir and the orphan recovery process attempts to
2112 * iget() inside the orphan dir lock. This can be avoided by
2113 * advertising our state to ocfs2_delete_inode().
2114 */
2115 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2116 int slot)
2117 {
2118 int ret = 0;
2119 struct inode *inode = NULL;
2120 struct inode *iter;
2121 struct ocfs2_inode_info *oi;
2122
2123 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2124
2125 ocfs2_mark_recovering_orphan_dir(osb, slot);
2126 ret = ocfs2_queue_orphans(osb, slot, &inode);
2127 ocfs2_clear_recovering_orphan_dir(osb, slot);
2128
2129 /* Error here should be noted, but we want to continue with as
2130 * many queued inodes as we've got. */
2131 if (ret)
2132 mlog_errno(ret);
2133
2134 while (inode) {
2135 oi = OCFS2_I(inode);
2136 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2137
2138 iter = oi->ip_next_orphan;
2139
2140 spin_lock(&oi->ip_lock);
2141 /* The remote delete code may have set these on the
2142 * assumption that the other node would wipe them
2143 * successfully. If they are still in the node's
2144 * orphan dir, we need to reset that state. */
2145 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2146
2147 /* Set the proper information to get us going into
2148 * ocfs2_delete_inode. */
2149 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2150 spin_unlock(&oi->ip_lock);
2151
2152 iput(inode);
2153
2154 inode = iter;
2155 }
2156
2157 return ret;
2158 }
2159
2160 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2161 {
2162 /* This check is good because ocfs2 will wait on our recovery
2163 * thread before changing it to something other than MOUNTED
2164 * or DISABLED. */
2165 wait_event(osb->osb_mount_event,
2166 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2167 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2168 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2169
2170 /* If there's an error on mount, then we may never get to the
2171 * MOUNTED flag, but this is set right before
2172 * dismount_volume() so we can trust it. */
2173 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2174 mlog(0, "mount error, exiting!\n");
2175 return -EBUSY;
2176 }
2177
2178 return 0;
2179 }
2180
2181 static int ocfs2_commit_thread(void *arg)
2182 {
2183 int status;
2184 struct ocfs2_super *osb = arg;
2185 struct ocfs2_journal *journal = osb->journal;
2186
2187 /* we can trust j_num_trans here because _should_stop() is only set in
2188 * shutdown and nobody other than ourselves should be able to start
2189 * transactions. committing on shutdown might take a few iterations
2190 * as final transactions put deleted inodes on the list */
2191 while (!(kthread_should_stop() &&
2192 atomic_read(&journal->j_num_trans) == 0)) {
2193
2194 wait_event_interruptible(osb->checkpoint_event,
2195 atomic_read(&journal->j_num_trans)
2196 || kthread_should_stop());
2197
2198 status = ocfs2_commit_cache(osb);
2199 if (status < 0)
2200 mlog_errno(status);
2201
2202 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2203 mlog(ML_KTHREAD,
2204 "commit_thread: %u transactions pending on "
2205 "shutdown\n",
2206 atomic_read(&journal->j_num_trans));
2207 }
2208 }
2209
2210 return 0;
2211 }
2212
2213 /* Reads all the journal inodes without taking any cluster locks. Used
2214 * for hard readonly access to determine whether any journal requires
2215 * recovery. Also used to refresh the recovery generation numbers after
2216 * a journal has been recovered by another node.
2217 */
2218 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2219 {
2220 int ret = 0;
2221 unsigned int slot;
2222 struct buffer_head *di_bh = NULL;
2223 struct ocfs2_dinode *di;
2224 int journal_dirty = 0;
2225
2226 for(slot = 0; slot < osb->max_slots; slot++) {
2227 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2228 if (ret) {
2229 mlog_errno(ret);
2230 goto out;
2231 }
2232
2233 di = (struct ocfs2_dinode *) di_bh->b_data;
2234
2235 osb->slot_recovery_generations[slot] =
2236 ocfs2_get_recovery_generation(di);
2237
2238 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2239 OCFS2_JOURNAL_DIRTY_FL)
2240 journal_dirty = 1;
2241
2242 brelse(di_bh);
2243 di_bh = NULL;
2244 }
2245
2246 out:
2247 if (journal_dirty)
2248 ret = -EROFS;
2249 return ret;
2250 }