]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/ocfs2/journal.c
ocfs2: Remove struct ocfs2_journal_handle in favor of handle_t
[mirror_ubuntu-focal-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49
50 #include "buffer_head_io.h"
51
52 DEFINE_SPINLOCK(trans_inc_lock);
53
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 int slot);
66 static int ocfs2_commit_thread(void *arg);
67
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
69 {
70 int status = 0;
71 unsigned int flushed;
72 unsigned long old_id;
73 struct ocfs2_journal *journal = NULL;
74
75 mlog_entry_void();
76
77 journal = osb->journal;
78
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
81
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
85 goto finally;
86 }
87
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
91 if (status < 0) {
92 up_write(&journal->j_trans_barrier);
93 mlog_errno(status);
94 goto finally;
95 }
96
97 old_id = ocfs2_inc_trans_id(journal);
98
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
102
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
105
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
108 finally:
109 mlog_exit(status);
110 return status;
111 }
112
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
117 {
118 journal_t *journal = osb->journal->j_journal;
119 handle_t *handle;
120
121 BUG_ON(!osb || !osb->journal->j_journal);
122
123 if (ocfs2_is_hard_readonly(osb))
124 return ERR_PTR(-EROFS);
125
126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 BUG_ON(max_buffs <= 0);
128
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR, "Recursive transaction attempted!\n");
132 BUG();
133 }
134
135 down_read(&osb->journal->j_trans_barrier);
136
137 handle = journal_start(journal, max_buffs);
138 if (IS_ERR(handle)) {
139 up_read(&osb->journal->j_trans_barrier);
140
141 mlog_errno(PTR_ERR(handle));
142
143 if (is_journal_aborted(journal)) {
144 ocfs2_abort(osb->sb, "Detected aborted journal");
145 handle = ERR_PTR(-EROFS);
146 }
147 } else
148 atomic_inc(&(osb->journal->j_num_trans));
149
150 return handle;
151 }
152
153 int ocfs2_commit_trans(struct ocfs2_super *osb,
154 handle_t *handle)
155 {
156 int ret;
157 struct ocfs2_journal *journal = osb->journal;
158
159 BUG_ON(!handle);
160
161 ret = journal_stop(handle);
162 if (ret < 0)
163 mlog_errno(ret);
164
165 up_read(&journal->j_trans_barrier);
166
167 return ret;
168 }
169
170 /*
171 * 'nblocks' is what you want to add to the current
172 * transaction. extend_trans will either extend the current handle by
173 * nblocks, or commit it and start a new one with nblocks credits.
174 *
175 * WARNING: This will not release any semaphores or disk locks taken
176 * during the transaction, so make sure they were taken *before*
177 * start_trans or we'll have ordering deadlocks.
178 *
179 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
180 * good because transaction ids haven't yet been recorded on the
181 * cluster locks associated with this handle.
182 */
183 int ocfs2_extend_trans(handle_t *handle, int nblocks)
184 {
185 int status;
186
187 BUG_ON(!handle);
188 BUG_ON(!nblocks);
189
190 mlog_entry_void();
191
192 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
193
194 status = journal_extend(handle, nblocks);
195 if (status < 0) {
196 mlog_errno(status);
197 goto bail;
198 }
199
200 if (status > 0) {
201 mlog(0, "journal_extend failed, trying journal_restart\n");
202 status = journal_restart(handle, nblocks);
203 if (status < 0) {
204 mlog_errno(status);
205 goto bail;
206 }
207 }
208
209 status = 0;
210 bail:
211
212 mlog_exit(status);
213 return status;
214 }
215
216 int ocfs2_journal_access(handle_t *handle,
217 struct inode *inode,
218 struct buffer_head *bh,
219 int type)
220 {
221 int status;
222
223 BUG_ON(!inode);
224 BUG_ON(!handle);
225 BUG_ON(!bh);
226
227 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
228 (unsigned long long)bh->b_blocknr, type,
229 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
230 "OCFS2_JOURNAL_ACCESS_CREATE" :
231 "OCFS2_JOURNAL_ACCESS_WRITE",
232 bh->b_size);
233
234 /* we can safely remove this assertion after testing. */
235 if (!buffer_uptodate(bh)) {
236 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
237 mlog(ML_ERROR, "b_blocknr=%llu\n",
238 (unsigned long long)bh->b_blocknr);
239 BUG();
240 }
241
242 /* Set the current transaction information on the inode so
243 * that the locking code knows whether it can drop it's locks
244 * on this inode or not. We're protected from the commit
245 * thread updating the current transaction id until
246 * ocfs2_commit_trans() because ocfs2_start_trans() took
247 * j_trans_barrier for us. */
248 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
249
250 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
251 switch (type) {
252 case OCFS2_JOURNAL_ACCESS_CREATE:
253 case OCFS2_JOURNAL_ACCESS_WRITE:
254 status = journal_get_write_access(handle, bh);
255 break;
256
257 case OCFS2_JOURNAL_ACCESS_UNDO:
258 status = journal_get_undo_access(handle, bh);
259 break;
260
261 default:
262 status = -EINVAL;
263 mlog(ML_ERROR, "Uknown access type!\n");
264 }
265 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
266
267 if (status < 0)
268 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
269 status, type);
270
271 mlog_exit(status);
272 return status;
273 }
274
275 int ocfs2_journal_dirty(handle_t *handle,
276 struct buffer_head *bh)
277 {
278 int status;
279
280 mlog_entry("(bh->b_blocknr=%llu)\n",
281 (unsigned long long)bh->b_blocknr);
282
283 status = journal_dirty_metadata(handle, bh);
284 if (status < 0)
285 mlog(ML_ERROR, "Could not dirty metadata buffer. "
286 "(bh->b_blocknr=%llu)\n",
287 (unsigned long long)bh->b_blocknr);
288
289 mlog_exit(status);
290 return status;
291 }
292
293 int ocfs2_journal_dirty_data(handle_t *handle,
294 struct buffer_head *bh)
295 {
296 int err = journal_dirty_data(handle, bh);
297 if (err)
298 mlog_errno(err);
299 /* TODO: When we can handle it, abort the handle and go RO on
300 * error here. */
301
302 return err;
303 }
304
305 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
306
307 void ocfs2_set_journal_params(struct ocfs2_super *osb)
308 {
309 journal_t *journal = osb->journal->j_journal;
310
311 spin_lock(&journal->j_state_lock);
312 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
313 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
314 journal->j_flags |= JFS_BARRIER;
315 else
316 journal->j_flags &= ~JFS_BARRIER;
317 spin_unlock(&journal->j_state_lock);
318 }
319
320 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
321 {
322 int status = -1;
323 struct inode *inode = NULL; /* the journal inode */
324 journal_t *j_journal = NULL;
325 struct ocfs2_dinode *di = NULL;
326 struct buffer_head *bh = NULL;
327 struct ocfs2_super *osb;
328 int meta_lock = 0;
329
330 mlog_entry_void();
331
332 BUG_ON(!journal);
333
334 osb = journal->j_osb;
335
336 /* already have the inode for our journal */
337 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
338 osb->slot_num);
339 if (inode == NULL) {
340 status = -EACCES;
341 mlog_errno(status);
342 goto done;
343 }
344 if (is_bad_inode(inode)) {
345 mlog(ML_ERROR, "access error (bad inode)\n");
346 iput(inode);
347 inode = NULL;
348 status = -EACCES;
349 goto done;
350 }
351
352 SET_INODE_JOURNAL(inode);
353 OCFS2_I(inode)->ip_open_count++;
354
355 /* Skip recovery waits here - journal inode metadata never
356 * changes in a live cluster so it can be considered an
357 * exception to the rule. */
358 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
359 if (status < 0) {
360 if (status != -ERESTARTSYS)
361 mlog(ML_ERROR, "Could not get lock on journal!\n");
362 goto done;
363 }
364
365 meta_lock = 1;
366 di = (struct ocfs2_dinode *)bh->b_data;
367
368 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
369 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
370 inode->i_size);
371 status = -EINVAL;
372 goto done;
373 }
374
375 mlog(0, "inode->i_size = %lld\n", inode->i_size);
376 mlog(0, "inode->i_blocks = %llu\n",
377 (unsigned long long)inode->i_blocks);
378 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
379
380 /* call the kernels journal init function now */
381 j_journal = journal_init_inode(inode);
382 if (j_journal == NULL) {
383 mlog(ML_ERROR, "Linux journal layer error\n");
384 status = -EINVAL;
385 goto done;
386 }
387
388 mlog(0, "Returned from journal_init_inode\n");
389 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
390
391 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
392 OCFS2_JOURNAL_DIRTY_FL);
393
394 journal->j_journal = j_journal;
395 journal->j_inode = inode;
396 journal->j_bh = bh;
397
398 ocfs2_set_journal_params(osb);
399
400 journal->j_state = OCFS2_JOURNAL_LOADED;
401
402 status = 0;
403 done:
404 if (status < 0) {
405 if (meta_lock)
406 ocfs2_meta_unlock(inode, 1);
407 if (bh != NULL)
408 brelse(bh);
409 if (inode) {
410 OCFS2_I(inode)->ip_open_count--;
411 iput(inode);
412 }
413 }
414
415 mlog_exit(status);
416 return status;
417 }
418
419 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
420 int dirty)
421 {
422 int status;
423 unsigned int flags;
424 struct ocfs2_journal *journal = osb->journal;
425 struct buffer_head *bh = journal->j_bh;
426 struct ocfs2_dinode *fe;
427
428 mlog_entry_void();
429
430 fe = (struct ocfs2_dinode *)bh->b_data;
431 if (!OCFS2_IS_VALID_DINODE(fe)) {
432 /* This is called from startup/shutdown which will
433 * handle the errors in a specific manner, so no need
434 * to call ocfs2_error() here. */
435 mlog(ML_ERROR, "Journal dinode %llu has invalid "
436 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
437 fe->i_signature);
438 status = -EIO;
439 goto out;
440 }
441
442 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
443 if (dirty)
444 flags |= OCFS2_JOURNAL_DIRTY_FL;
445 else
446 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
447 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
448
449 status = ocfs2_write_block(osb, bh, journal->j_inode);
450 if (status < 0)
451 mlog_errno(status);
452
453 out:
454 mlog_exit(status);
455 return status;
456 }
457
458 /*
459 * If the journal has been kmalloc'd it needs to be freed after this
460 * call.
461 */
462 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
463 {
464 struct ocfs2_journal *journal = NULL;
465 int status = 0;
466 struct inode *inode = NULL;
467 int num_running_trans = 0;
468
469 mlog_entry_void();
470
471 BUG_ON(!osb);
472
473 journal = osb->journal;
474 if (!journal)
475 goto done;
476
477 inode = journal->j_inode;
478
479 if (journal->j_state != OCFS2_JOURNAL_LOADED)
480 goto done;
481
482 /* need to inc inode use count as journal_destroy will iput. */
483 if (!igrab(inode))
484 BUG();
485
486 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
487 if (num_running_trans > 0)
488 mlog(0, "Shutting down journal: must wait on %d "
489 "running transactions!\n",
490 num_running_trans);
491
492 /* Do a commit_cache here. It will flush our journal, *and*
493 * release any locks that are still held.
494 * set the SHUTDOWN flag and release the trans lock.
495 * the commit thread will take the trans lock for us below. */
496 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
497
498 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
499 * drop the trans_lock (which we want to hold until we
500 * completely destroy the journal. */
501 if (osb->commit_task) {
502 /* Wait for the commit thread */
503 mlog(0, "Waiting for ocfs2commit to exit....\n");
504 kthread_stop(osb->commit_task);
505 osb->commit_task = NULL;
506 }
507
508 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
509
510 status = ocfs2_journal_toggle_dirty(osb, 0);
511 if (status < 0)
512 mlog_errno(status);
513
514 /* Shutdown the kernel journal system */
515 journal_destroy(journal->j_journal);
516
517 OCFS2_I(inode)->ip_open_count--;
518
519 /* unlock our journal */
520 ocfs2_meta_unlock(inode, 1);
521
522 brelse(journal->j_bh);
523 journal->j_bh = NULL;
524
525 journal->j_state = OCFS2_JOURNAL_FREE;
526
527 // up_write(&journal->j_trans_barrier);
528 done:
529 if (inode)
530 iput(inode);
531 mlog_exit_void();
532 }
533
534 static void ocfs2_clear_journal_error(struct super_block *sb,
535 journal_t *journal,
536 int slot)
537 {
538 int olderr;
539
540 olderr = journal_errno(journal);
541 if (olderr) {
542 mlog(ML_ERROR, "File system error %d recorded in "
543 "journal %u.\n", olderr, slot);
544 mlog(ML_ERROR, "File system on device %s needs checking.\n",
545 sb->s_id);
546
547 journal_ack_err(journal);
548 journal_clear_err(journal);
549 }
550 }
551
552 int ocfs2_journal_load(struct ocfs2_journal *journal)
553 {
554 int status = 0;
555 struct ocfs2_super *osb;
556
557 mlog_entry_void();
558
559 if (!journal)
560 BUG();
561
562 osb = journal->j_osb;
563
564 status = journal_load(journal->j_journal);
565 if (status < 0) {
566 mlog(ML_ERROR, "Failed to load journal!\n");
567 goto done;
568 }
569
570 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
571
572 status = ocfs2_journal_toggle_dirty(osb, 1);
573 if (status < 0) {
574 mlog_errno(status);
575 goto done;
576 }
577
578 /* Launch the commit thread */
579 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
580 if (IS_ERR(osb->commit_task)) {
581 status = PTR_ERR(osb->commit_task);
582 osb->commit_task = NULL;
583 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
584 status);
585 goto done;
586 }
587
588 done:
589 mlog_exit(status);
590 return status;
591 }
592
593
594 /* 'full' flag tells us whether we clear out all blocks or if we just
595 * mark the journal clean */
596 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
597 {
598 int status;
599
600 mlog_entry_void();
601
602 BUG_ON(!journal);
603
604 status = journal_wipe(journal->j_journal, full);
605 if (status < 0) {
606 mlog_errno(status);
607 goto bail;
608 }
609
610 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
611 if (status < 0)
612 mlog_errno(status);
613
614 bail:
615 mlog_exit(status);
616 return status;
617 }
618
619 /*
620 * JBD Might read a cached version of another nodes journal file. We
621 * don't want this as this file changes often and we get no
622 * notification on those changes. The only way to be sure that we've
623 * got the most up to date version of those blocks then is to force
624 * read them off disk. Just searching through the buffer cache won't
625 * work as there may be pages backing this file which are still marked
626 * up to date. We know things can't change on this file underneath us
627 * as we have the lock by now :)
628 */
629 static int ocfs2_force_read_journal(struct inode *inode)
630 {
631 int status = 0;
632 int i, p_blocks;
633 u64 v_blkno, p_blkno;
634 #define CONCURRENT_JOURNAL_FILL 32
635 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
636
637 mlog_entry_void();
638
639 BUG_ON(inode->i_blocks !=
640 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
641
642 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
643
644 mlog(0, "Force reading %llu blocks\n",
645 (unsigned long long)(inode->i_blocks >>
646 (inode->i_sb->s_blocksize_bits - 9)));
647
648 v_blkno = 0;
649 while (v_blkno <
650 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
651
652 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
653 1, &p_blkno,
654 &p_blocks);
655 if (status < 0) {
656 mlog_errno(status);
657 goto bail;
658 }
659
660 if (p_blocks > CONCURRENT_JOURNAL_FILL)
661 p_blocks = CONCURRENT_JOURNAL_FILL;
662
663 /* We are reading journal data which should not
664 * be put in the uptodate cache */
665 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
666 p_blkno, p_blocks, bhs, 0,
667 NULL);
668 if (status < 0) {
669 mlog_errno(status);
670 goto bail;
671 }
672
673 for(i = 0; i < p_blocks; i++) {
674 brelse(bhs[i]);
675 bhs[i] = NULL;
676 }
677
678 v_blkno += p_blocks;
679 }
680
681 bail:
682 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
683 if (bhs[i])
684 brelse(bhs[i]);
685 mlog_exit(status);
686 return status;
687 }
688
689 struct ocfs2_la_recovery_item {
690 struct list_head lri_list;
691 int lri_slot;
692 struct ocfs2_dinode *lri_la_dinode;
693 struct ocfs2_dinode *lri_tl_dinode;
694 };
695
696 /* Does the second half of the recovery process. By this point, the
697 * node is marked clean and can actually be considered recovered,
698 * hence it's no longer in the recovery map, but there's still some
699 * cleanup we can do which shouldn't happen within the recovery thread
700 * as locking in that context becomes very difficult if we are to take
701 * recovering nodes into account.
702 *
703 * NOTE: This function can and will sleep on recovery of other nodes
704 * during cluster locking, just like any other ocfs2 process.
705 */
706 void ocfs2_complete_recovery(void *data)
707 {
708 int ret;
709 struct ocfs2_super *osb = data;
710 struct ocfs2_journal *journal = osb->journal;
711 struct ocfs2_dinode *la_dinode, *tl_dinode;
712 struct ocfs2_la_recovery_item *item;
713 struct list_head *p, *n;
714 LIST_HEAD(tmp_la_list);
715
716 mlog_entry_void();
717
718 mlog(0, "completing recovery from keventd\n");
719
720 spin_lock(&journal->j_lock);
721 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
722 spin_unlock(&journal->j_lock);
723
724 list_for_each_safe(p, n, &tmp_la_list) {
725 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
726 list_del_init(&item->lri_list);
727
728 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
729
730 la_dinode = item->lri_la_dinode;
731 if (la_dinode) {
732 mlog(0, "Clean up local alloc %llu\n",
733 (unsigned long long)la_dinode->i_blkno);
734
735 ret = ocfs2_complete_local_alloc_recovery(osb,
736 la_dinode);
737 if (ret < 0)
738 mlog_errno(ret);
739
740 kfree(la_dinode);
741 }
742
743 tl_dinode = item->lri_tl_dinode;
744 if (tl_dinode) {
745 mlog(0, "Clean up truncate log %llu\n",
746 (unsigned long long)tl_dinode->i_blkno);
747
748 ret = ocfs2_complete_truncate_log_recovery(osb,
749 tl_dinode);
750 if (ret < 0)
751 mlog_errno(ret);
752
753 kfree(tl_dinode);
754 }
755
756 ret = ocfs2_recover_orphans(osb, item->lri_slot);
757 if (ret < 0)
758 mlog_errno(ret);
759
760 kfree(item);
761 }
762
763 mlog(0, "Recovery completion\n");
764 mlog_exit_void();
765 }
766
767 /* NOTE: This function always eats your references to la_dinode and
768 * tl_dinode, either manually on error, or by passing them to
769 * ocfs2_complete_recovery */
770 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
771 int slot_num,
772 struct ocfs2_dinode *la_dinode,
773 struct ocfs2_dinode *tl_dinode)
774 {
775 struct ocfs2_la_recovery_item *item;
776
777 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
778 if (!item) {
779 /* Though we wish to avoid it, we are in fact safe in
780 * skipping local alloc cleanup as fsck.ocfs2 is more
781 * than capable of reclaiming unused space. */
782 if (la_dinode)
783 kfree(la_dinode);
784
785 if (tl_dinode)
786 kfree(tl_dinode);
787
788 mlog_errno(-ENOMEM);
789 return;
790 }
791
792 INIT_LIST_HEAD(&item->lri_list);
793 item->lri_la_dinode = la_dinode;
794 item->lri_slot = slot_num;
795 item->lri_tl_dinode = tl_dinode;
796
797 spin_lock(&journal->j_lock);
798 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
799 queue_work(ocfs2_wq, &journal->j_recovery_work);
800 spin_unlock(&journal->j_lock);
801 }
802
803 /* Called by the mount code to queue recovery the last part of
804 * recovery for it's own slot. */
805 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
806 {
807 struct ocfs2_journal *journal = osb->journal;
808
809 if (osb->dirty) {
810 /* No need to queue up our truncate_log as regular
811 * cleanup will catch that. */
812 ocfs2_queue_recovery_completion(journal,
813 osb->slot_num,
814 osb->local_alloc_copy,
815 NULL);
816 ocfs2_schedule_truncate_log_flush(osb, 0);
817
818 osb->local_alloc_copy = NULL;
819 osb->dirty = 0;
820 }
821 }
822
823 static int __ocfs2_recovery_thread(void *arg)
824 {
825 int status, node_num;
826 struct ocfs2_super *osb = arg;
827
828 mlog_entry_void();
829
830 status = ocfs2_wait_on_mount(osb);
831 if (status < 0) {
832 goto bail;
833 }
834
835 restart:
836 status = ocfs2_super_lock(osb, 1);
837 if (status < 0) {
838 mlog_errno(status);
839 goto bail;
840 }
841
842 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
843 node_num = ocfs2_node_map_first_set_bit(osb,
844 &osb->recovery_map);
845 if (node_num == O2NM_INVALID_NODE_NUM) {
846 mlog(0, "Out of nodes to recover.\n");
847 break;
848 }
849
850 status = ocfs2_recover_node(osb, node_num);
851 if (status < 0) {
852 mlog(ML_ERROR,
853 "Error %d recovering node %d on device (%u,%u)!\n",
854 status, node_num,
855 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
856 mlog(ML_ERROR, "Volume requires unmount.\n");
857 continue;
858 }
859
860 ocfs2_recovery_map_clear(osb, node_num);
861 }
862 ocfs2_super_unlock(osb, 1);
863
864 /* We always run recovery on our own orphan dir - the dead
865 * node(s) may have voted "no" on an inode delete earlier. A
866 * revote is therefore required. */
867 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
868 NULL);
869
870 bail:
871 mutex_lock(&osb->recovery_lock);
872 if (!status &&
873 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
874 mutex_unlock(&osb->recovery_lock);
875 goto restart;
876 }
877
878 osb->recovery_thread_task = NULL;
879 mb(); /* sync with ocfs2_recovery_thread_running */
880 wake_up(&osb->recovery_event);
881
882 mutex_unlock(&osb->recovery_lock);
883
884 mlog_exit(status);
885 /* no one is callint kthread_stop() for us so the kthread() api
886 * requires that we call do_exit(). And it isn't exported, but
887 * complete_and_exit() seems to be a minimal wrapper around it. */
888 complete_and_exit(NULL, status);
889 return status;
890 }
891
892 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
893 {
894 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
895 node_num, osb->node_num);
896
897 mutex_lock(&osb->recovery_lock);
898 if (osb->disable_recovery)
899 goto out;
900
901 /* People waiting on recovery will wait on
902 * the recovery map to empty. */
903 if (!ocfs2_recovery_map_set(osb, node_num))
904 mlog(0, "node %d already be in recovery.\n", node_num);
905
906 mlog(0, "starting recovery thread...\n");
907
908 if (osb->recovery_thread_task)
909 goto out;
910
911 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
912 "ocfs2rec");
913 if (IS_ERR(osb->recovery_thread_task)) {
914 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
915 osb->recovery_thread_task = NULL;
916 }
917
918 out:
919 mutex_unlock(&osb->recovery_lock);
920 wake_up(&osb->recovery_event);
921
922 mlog_exit_void();
923 }
924
925 /* Does the actual journal replay and marks the journal inode as
926 * clean. Will only replay if the journal inode is marked dirty. */
927 static int ocfs2_replay_journal(struct ocfs2_super *osb,
928 int node_num,
929 int slot_num)
930 {
931 int status;
932 int got_lock = 0;
933 unsigned int flags;
934 struct inode *inode = NULL;
935 struct ocfs2_dinode *fe;
936 journal_t *journal = NULL;
937 struct buffer_head *bh = NULL;
938
939 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
940 slot_num);
941 if (inode == NULL) {
942 status = -EACCES;
943 mlog_errno(status);
944 goto done;
945 }
946 if (is_bad_inode(inode)) {
947 status = -EACCES;
948 iput(inode);
949 inode = NULL;
950 mlog_errno(status);
951 goto done;
952 }
953 SET_INODE_JOURNAL(inode);
954
955 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
956 if (status < 0) {
957 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
958 if (status != -ERESTARTSYS)
959 mlog(ML_ERROR, "Could not lock journal!\n");
960 goto done;
961 }
962 got_lock = 1;
963
964 fe = (struct ocfs2_dinode *) bh->b_data;
965
966 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
967
968 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
969 mlog(0, "No recovery required for node %d\n", node_num);
970 goto done;
971 }
972
973 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
974 node_num, slot_num,
975 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
976
977 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
978
979 status = ocfs2_force_read_journal(inode);
980 if (status < 0) {
981 mlog_errno(status);
982 goto done;
983 }
984
985 mlog(0, "calling journal_init_inode\n");
986 journal = journal_init_inode(inode);
987 if (journal == NULL) {
988 mlog(ML_ERROR, "Linux journal layer error\n");
989 status = -EIO;
990 goto done;
991 }
992
993 status = journal_load(journal);
994 if (status < 0) {
995 mlog_errno(status);
996 if (!igrab(inode))
997 BUG();
998 journal_destroy(journal);
999 goto done;
1000 }
1001
1002 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1003
1004 /* wipe the journal */
1005 mlog(0, "flushing the journal.\n");
1006 journal_lock_updates(journal);
1007 status = journal_flush(journal);
1008 journal_unlock_updates(journal);
1009 if (status < 0)
1010 mlog_errno(status);
1011
1012 /* This will mark the node clean */
1013 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1014 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1015 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1016
1017 status = ocfs2_write_block(osb, bh, inode);
1018 if (status < 0)
1019 mlog_errno(status);
1020
1021 if (!igrab(inode))
1022 BUG();
1023
1024 journal_destroy(journal);
1025
1026 done:
1027 /* drop the lock on this nodes journal */
1028 if (got_lock)
1029 ocfs2_meta_unlock(inode, 1);
1030
1031 if (inode)
1032 iput(inode);
1033
1034 if (bh)
1035 brelse(bh);
1036
1037 mlog_exit(status);
1038 return status;
1039 }
1040
1041 /*
1042 * Do the most important parts of node recovery:
1043 * - Replay it's journal
1044 * - Stamp a clean local allocator file
1045 * - Stamp a clean truncate log
1046 * - Mark the node clean
1047 *
1048 * If this function completes without error, a node in OCFS2 can be
1049 * said to have been safely recovered. As a result, failure during the
1050 * second part of a nodes recovery process (local alloc recovery) is
1051 * far less concerning.
1052 */
1053 static int ocfs2_recover_node(struct ocfs2_super *osb,
1054 int node_num)
1055 {
1056 int status = 0;
1057 int slot_num;
1058 struct ocfs2_slot_info *si = osb->slot_info;
1059 struct ocfs2_dinode *la_copy = NULL;
1060 struct ocfs2_dinode *tl_copy = NULL;
1061
1062 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1063 node_num, osb->node_num);
1064
1065 mlog(0, "checking node %d\n", node_num);
1066
1067 /* Should not ever be called to recover ourselves -- in that
1068 * case we should've called ocfs2_journal_load instead. */
1069 BUG_ON(osb->node_num == node_num);
1070
1071 slot_num = ocfs2_node_num_to_slot(si, node_num);
1072 if (slot_num == OCFS2_INVALID_SLOT) {
1073 status = 0;
1074 mlog(0, "no slot for this node, so no recovery required.\n");
1075 goto done;
1076 }
1077
1078 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1079
1080 status = ocfs2_replay_journal(osb, node_num, slot_num);
1081 if (status < 0) {
1082 mlog_errno(status);
1083 goto done;
1084 }
1085
1086 /* Stamp a clean local alloc file AFTER recovering the journal... */
1087 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1088 if (status < 0) {
1089 mlog_errno(status);
1090 goto done;
1091 }
1092
1093 /* An error from begin_truncate_log_recovery is not
1094 * serious enough to warrant halting the rest of
1095 * recovery. */
1096 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1097 if (status < 0)
1098 mlog_errno(status);
1099
1100 /* Likewise, this would be a strange but ultimately not so
1101 * harmful place to get an error... */
1102 ocfs2_clear_slot(si, slot_num);
1103 status = ocfs2_update_disk_slots(osb, si);
1104 if (status < 0)
1105 mlog_errno(status);
1106
1107 /* This will kfree the memory pointed to by la_copy and tl_copy */
1108 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1109 tl_copy);
1110
1111 status = 0;
1112 done:
1113
1114 mlog_exit(status);
1115 return status;
1116 }
1117
1118 /* Test node liveness by trylocking his journal. If we get the lock,
1119 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1120 * still alive (we couldn't get the lock) and < 0 on error. */
1121 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1122 int slot_num)
1123 {
1124 int status, flags;
1125 struct inode *inode = NULL;
1126
1127 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1128 slot_num);
1129 if (inode == NULL) {
1130 mlog(ML_ERROR, "access error\n");
1131 status = -EACCES;
1132 goto bail;
1133 }
1134 if (is_bad_inode(inode)) {
1135 mlog(ML_ERROR, "access error (bad inode)\n");
1136 iput(inode);
1137 inode = NULL;
1138 status = -EACCES;
1139 goto bail;
1140 }
1141 SET_INODE_JOURNAL(inode);
1142
1143 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1144 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1145 if (status < 0) {
1146 if (status != -EAGAIN)
1147 mlog_errno(status);
1148 goto bail;
1149 }
1150
1151 ocfs2_meta_unlock(inode, 1);
1152 bail:
1153 if (inode)
1154 iput(inode);
1155
1156 return status;
1157 }
1158
1159 /* Call this underneath ocfs2_super_lock. It also assumes that the
1160 * slot info struct has been updated from disk. */
1161 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1162 {
1163 int status, i, node_num;
1164 struct ocfs2_slot_info *si = osb->slot_info;
1165
1166 /* This is called with the super block cluster lock, so we
1167 * know that the slot map can't change underneath us. */
1168
1169 spin_lock(&si->si_lock);
1170 for(i = 0; i < si->si_num_slots; i++) {
1171 if (i == osb->slot_num)
1172 continue;
1173 if (ocfs2_is_empty_slot(si, i))
1174 continue;
1175
1176 node_num = si->si_global_node_nums[i];
1177 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1178 continue;
1179 spin_unlock(&si->si_lock);
1180
1181 /* Ok, we have a slot occupied by another node which
1182 * is not in the recovery map. We trylock his journal
1183 * file here to test if he's alive. */
1184 status = ocfs2_trylock_journal(osb, i);
1185 if (!status) {
1186 /* Since we're called from mount, we know that
1187 * the recovery thread can't race us on
1188 * setting / checking the recovery bits. */
1189 ocfs2_recovery_thread(osb, node_num);
1190 } else if ((status < 0) && (status != -EAGAIN)) {
1191 mlog_errno(status);
1192 goto bail;
1193 }
1194
1195 spin_lock(&si->si_lock);
1196 }
1197 spin_unlock(&si->si_lock);
1198
1199 status = 0;
1200 bail:
1201 mlog_exit(status);
1202 return status;
1203 }
1204
1205 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1206 int slot,
1207 struct inode **head)
1208 {
1209 int status;
1210 struct inode *orphan_dir_inode = NULL;
1211 struct inode *iter;
1212 unsigned long offset, blk, local;
1213 struct buffer_head *bh = NULL;
1214 struct ocfs2_dir_entry *de;
1215 struct super_block *sb = osb->sb;
1216
1217 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1218 ORPHAN_DIR_SYSTEM_INODE,
1219 slot);
1220 if (!orphan_dir_inode) {
1221 status = -ENOENT;
1222 mlog_errno(status);
1223 return status;
1224 }
1225
1226 mutex_lock(&orphan_dir_inode->i_mutex);
1227 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1228 if (status < 0) {
1229 mlog_errno(status);
1230 goto out;
1231 }
1232
1233 offset = 0;
1234 iter = NULL;
1235 while(offset < i_size_read(orphan_dir_inode)) {
1236 blk = offset >> sb->s_blocksize_bits;
1237
1238 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1239 if (!bh)
1240 status = -EINVAL;
1241 if (status < 0) {
1242 if (bh)
1243 brelse(bh);
1244 mlog_errno(status);
1245 goto out_unlock;
1246 }
1247
1248 local = 0;
1249 while(offset < i_size_read(orphan_dir_inode)
1250 && local < sb->s_blocksize) {
1251 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1252
1253 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1254 de, bh, local)) {
1255 status = -EINVAL;
1256 mlog_errno(status);
1257 brelse(bh);
1258 goto out_unlock;
1259 }
1260
1261 local += le16_to_cpu(de->rec_len);
1262 offset += le16_to_cpu(de->rec_len);
1263
1264 /* I guess we silently fail on no inode? */
1265 if (!le64_to_cpu(de->inode))
1266 continue;
1267 if (de->file_type > OCFS2_FT_MAX) {
1268 mlog(ML_ERROR,
1269 "block %llu contains invalid de: "
1270 "inode = %llu, rec_len = %u, "
1271 "name_len = %u, file_type = %u, "
1272 "name='%.*s'\n",
1273 (unsigned long long)bh->b_blocknr,
1274 (unsigned long long)le64_to_cpu(de->inode),
1275 le16_to_cpu(de->rec_len),
1276 de->name_len,
1277 de->file_type,
1278 de->name_len,
1279 de->name);
1280 continue;
1281 }
1282 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1283 continue;
1284 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1285 continue;
1286
1287 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1288 OCFS2_FI_FLAG_NOLOCK);
1289 if (IS_ERR(iter))
1290 continue;
1291
1292 mlog(0, "queue orphan %llu\n",
1293 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1294 /* No locking is required for the next_orphan
1295 * queue as there is only ever a single
1296 * process doing orphan recovery. */
1297 OCFS2_I(iter)->ip_next_orphan = *head;
1298 *head = iter;
1299 }
1300 brelse(bh);
1301 }
1302
1303 out_unlock:
1304 ocfs2_meta_unlock(orphan_dir_inode, 0);
1305 out:
1306 mutex_unlock(&orphan_dir_inode->i_mutex);
1307 iput(orphan_dir_inode);
1308 return status;
1309 }
1310
1311 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1312 int slot)
1313 {
1314 int ret;
1315
1316 spin_lock(&osb->osb_lock);
1317 ret = !osb->osb_orphan_wipes[slot];
1318 spin_unlock(&osb->osb_lock);
1319 return ret;
1320 }
1321
1322 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1323 int slot)
1324 {
1325 spin_lock(&osb->osb_lock);
1326 /* Mark ourselves such that new processes in delete_inode()
1327 * know to quit early. */
1328 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1329 while (osb->osb_orphan_wipes[slot]) {
1330 /* If any processes are already in the middle of an
1331 * orphan wipe on this dir, then we need to wait for
1332 * them. */
1333 spin_unlock(&osb->osb_lock);
1334 wait_event_interruptible(osb->osb_wipe_event,
1335 ocfs2_orphan_recovery_can_continue(osb, slot));
1336 spin_lock(&osb->osb_lock);
1337 }
1338 spin_unlock(&osb->osb_lock);
1339 }
1340
1341 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1342 int slot)
1343 {
1344 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1345 }
1346
1347 /*
1348 * Orphan recovery. Each mounted node has it's own orphan dir which we
1349 * must run during recovery. Our strategy here is to build a list of
1350 * the inodes in the orphan dir and iget/iput them. The VFS does
1351 * (most) of the rest of the work.
1352 *
1353 * Orphan recovery can happen at any time, not just mount so we have a
1354 * couple of extra considerations.
1355 *
1356 * - We grab as many inodes as we can under the orphan dir lock -
1357 * doing iget() outside the orphan dir risks getting a reference on
1358 * an invalid inode.
1359 * - We must be sure not to deadlock with other processes on the
1360 * system wanting to run delete_inode(). This can happen when they go
1361 * to lock the orphan dir and the orphan recovery process attempts to
1362 * iget() inside the orphan dir lock. This can be avoided by
1363 * advertising our state to ocfs2_delete_inode().
1364 */
1365 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1366 int slot)
1367 {
1368 int ret = 0;
1369 struct inode *inode = NULL;
1370 struct inode *iter;
1371 struct ocfs2_inode_info *oi;
1372
1373 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1374
1375 ocfs2_mark_recovering_orphan_dir(osb, slot);
1376 ret = ocfs2_queue_orphans(osb, slot, &inode);
1377 ocfs2_clear_recovering_orphan_dir(osb, slot);
1378
1379 /* Error here should be noted, but we want to continue with as
1380 * many queued inodes as we've got. */
1381 if (ret)
1382 mlog_errno(ret);
1383
1384 while (inode) {
1385 oi = OCFS2_I(inode);
1386 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1387
1388 iter = oi->ip_next_orphan;
1389
1390 spin_lock(&oi->ip_lock);
1391 /* Delete voting may have set these on the assumption
1392 * that the other node would wipe them successfully.
1393 * If they are still in the node's orphan dir, we need
1394 * to reset that state. */
1395 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1396
1397 /* Set the proper information to get us going into
1398 * ocfs2_delete_inode. */
1399 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1400 oi->ip_orphaned_slot = slot;
1401 spin_unlock(&oi->ip_lock);
1402
1403 iput(inode);
1404
1405 inode = iter;
1406 }
1407
1408 return ret;
1409 }
1410
1411 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1412 {
1413 /* This check is good because ocfs2 will wait on our recovery
1414 * thread before changing it to something other than MOUNTED
1415 * or DISABLED. */
1416 wait_event(osb->osb_mount_event,
1417 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1418 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1419
1420 /* If there's an error on mount, then we may never get to the
1421 * MOUNTED flag, but this is set right before
1422 * dismount_volume() so we can trust it. */
1423 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1424 mlog(0, "mount error, exiting!\n");
1425 return -EBUSY;
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int ocfs2_commit_thread(void *arg)
1432 {
1433 int status;
1434 struct ocfs2_super *osb = arg;
1435 struct ocfs2_journal *journal = osb->journal;
1436
1437 /* we can trust j_num_trans here because _should_stop() is only set in
1438 * shutdown and nobody other than ourselves should be able to start
1439 * transactions. committing on shutdown might take a few iterations
1440 * as final transactions put deleted inodes on the list */
1441 while (!(kthread_should_stop() &&
1442 atomic_read(&journal->j_num_trans) == 0)) {
1443
1444 wait_event_interruptible(osb->checkpoint_event,
1445 atomic_read(&journal->j_num_trans)
1446 || kthread_should_stop());
1447
1448 status = ocfs2_commit_cache(osb);
1449 if (status < 0)
1450 mlog_errno(status);
1451
1452 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1453 mlog(ML_KTHREAD,
1454 "commit_thread: %u transactions pending on "
1455 "shutdown\n",
1456 atomic_read(&journal->j_num_trans));
1457 }
1458 }
1459
1460 return 0;
1461 }
1462
1463 /* Look for a dirty journal without taking any cluster locks. Used for
1464 * hard readonly access to determine whether the file system journals
1465 * require recovery. */
1466 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1467 {
1468 int ret = 0;
1469 unsigned int slot;
1470 struct buffer_head *di_bh;
1471 struct ocfs2_dinode *di;
1472 struct inode *journal = NULL;
1473
1474 for(slot = 0; slot < osb->max_slots; slot++) {
1475 journal = ocfs2_get_system_file_inode(osb,
1476 JOURNAL_SYSTEM_INODE,
1477 slot);
1478 if (!journal || is_bad_inode(journal)) {
1479 ret = -EACCES;
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483
1484 di_bh = NULL;
1485 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1486 0, journal);
1487 if (ret < 0) {
1488 mlog_errno(ret);
1489 goto out;
1490 }
1491
1492 di = (struct ocfs2_dinode *) di_bh->b_data;
1493
1494 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1495 OCFS2_JOURNAL_DIRTY_FL)
1496 ret = -EROFS;
1497
1498 brelse(di_bh);
1499 if (ret)
1500 break;
1501 }
1502
1503 out:
1504 if (journal)
1505 iput(journal);
1506
1507 return ret;
1508 }