]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ocfs2/journal.c
Merge tag 'tty-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(osb->ocfs2_wq);
235
236 /*
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
239 */
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
242
243 kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
248 {
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252 assert_spin_locked(&osb->osb_lock);
253
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
265 {
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
272 }
273
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
276
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
280
281 return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
286 {
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290 spin_lock(&osb->osb_lock);
291
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
295 }
296
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
302 }
303
304 spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
312
313 journal = osb->journal;
314
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
317
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
323 }
324
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
332 }
333
334 ocfs2_inc_trans_id(journal);
335
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
339
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
352
353 BUG_ON(!osb || !osb->journal->j_journal);
354
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
364
365 sb_start_intwrite(osb->sb);
366
367 down_read(&osb->journal->j_trans_barrier);
368
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
373
374 mlog_errno(PTR_ERR(handle));
375
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 handle = ERR_PTR(-EROFS);
379 }
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
383 }
384
385 return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
390 {
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
393
394 BUG_ON(!handle);
395
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
400
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
404 }
405
406 return ret;
407 }
408
409 /*
410 * 'nblocks' is what you want to add to the current transaction.
411 *
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 int status, old_nblocks;
429
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
432
433 if (!nblocks)
434 return 0;
435
436 old_nblocks = handle->h_buffer_credits;
437
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
447 }
448 #endif
449
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
457 }
458 }
459
460 status = 0;
461 bail:
462 return status;
463 }
464
465 /*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495 bail:
496 return status;
497 }
498
499
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
513 {
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516 /*
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
521 */
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
532 {
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
535
536 /*
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
541 */
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
552 {
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
555
556 /*
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
561 */
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
567 {
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
573
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
582 },
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
584 };
585
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
590 },
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
592 };
593
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
598 },
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
606 },
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
608 };
609
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
614 },
615 };
616
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
621 },
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
629 },
630 };
631
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
636 },
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
644 },
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
653 {
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
661
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
665
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu\n",
670 (unsigned long long)bh->b_blocknr);
671
672 lock_buffer(bh);
673 /*
674 * A previous attempt to write this buffer head failed.
675 * Nothing we can do but to retry the write and hope for
676 * the best.
677 */
678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
679 clear_buffer_write_io_error(bh);
680 set_buffer_uptodate(bh);
681 }
682
683 if (!buffer_uptodate(bh)) {
684 unlock_buffer(bh);
685 return -EIO;
686 }
687 unlock_buffer(bh);
688 }
689
690 /* Set the current transaction information on the ci so
691 * that the locking code knows whether it can drop it's locks
692 * on this ci or not. We're protected from the commit
693 * thread updating the current transaction id until
694 * ocfs2_commit_trans() because ocfs2_start_trans() took
695 * j_trans_barrier for us. */
696 ocfs2_set_ci_lock_trans(osb->journal, ci);
697
698 ocfs2_metadata_cache_io_lock(ci);
699 switch (type) {
700 case OCFS2_JOURNAL_ACCESS_CREATE:
701 case OCFS2_JOURNAL_ACCESS_WRITE:
702 status = jbd2_journal_get_write_access(handle, bh);
703 break;
704
705 case OCFS2_JOURNAL_ACCESS_UNDO:
706 status = jbd2_journal_get_undo_access(handle, bh);
707 break;
708
709 default:
710 status = -EINVAL;
711 mlog(ML_ERROR, "Unknown access type!\n");
712 }
713 if (!status && ocfs2_meta_ecc(osb) && triggers)
714 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
715 ocfs2_metadata_cache_io_unlock(ci);
716
717 if (status < 0)
718 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
719 status, type);
720
721 return status;
722 }
723
724 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
725 struct buffer_head *bh, int type)
726 {
727 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
728 }
729
730 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
732 {
733 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
734 }
735
736 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
737 struct buffer_head *bh, int type)
738 {
739 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
740 type);
741 }
742
743 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
744 struct buffer_head *bh, int type)
745 {
746 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
747 }
748
749 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
750 struct buffer_head *bh, int type)
751 {
752 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
753 }
754
755 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
756 struct buffer_head *bh, int type)
757 {
758 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
759 }
760
761 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
762 struct buffer_head *bh, int type)
763 {
764 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
765 }
766
767 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
768 struct buffer_head *bh, int type)
769 {
770 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
771 }
772
773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
774 struct buffer_head *bh, int type)
775 {
776 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
777 }
778
779 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
780 struct buffer_head *bh, int type)
781 {
782 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
783 }
784
785 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
786 {
787 int status;
788
789 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
790
791 status = jbd2_journal_dirty_metadata(handle, bh);
792 if (status) {
793 mlog_errno(status);
794 if (!is_handle_aborted(handle)) {
795 journal_t *journal = handle->h_transaction->t_journal;
796 struct super_block *sb = bh->b_bdev->bd_super;
797
798 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
799 "Aborting transaction and journal.\n");
800 handle->h_err = status;
801 jbd2_journal_abort_handle(handle);
802 jbd2_journal_abort(journal, status);
803 ocfs2_abort(sb, "Journal already aborted.\n");
804 }
805 }
806 }
807
808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
809
810 void ocfs2_set_journal_params(struct ocfs2_super *osb)
811 {
812 journal_t *journal = osb->journal->j_journal;
813 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
814
815 if (osb->osb_commit_interval)
816 commit_interval = osb->osb_commit_interval;
817
818 write_lock(&journal->j_state_lock);
819 journal->j_commit_interval = commit_interval;
820 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
821 journal->j_flags |= JBD2_BARRIER;
822 else
823 journal->j_flags &= ~JBD2_BARRIER;
824 write_unlock(&journal->j_state_lock);
825 }
826
827 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
828 {
829 int status = -1;
830 struct inode *inode = NULL; /* the journal inode */
831 journal_t *j_journal = NULL;
832 struct ocfs2_dinode *di = NULL;
833 struct buffer_head *bh = NULL;
834 struct ocfs2_super *osb;
835 int inode_lock = 0;
836
837 BUG_ON(!journal);
838
839 osb = journal->j_osb;
840
841 /* already have the inode for our journal */
842 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
843 osb->slot_num);
844 if (inode == NULL) {
845 status = -EACCES;
846 mlog_errno(status);
847 goto done;
848 }
849 if (is_bad_inode(inode)) {
850 mlog(ML_ERROR, "access error (bad inode)\n");
851 iput(inode);
852 inode = NULL;
853 status = -EACCES;
854 goto done;
855 }
856
857 SET_INODE_JOURNAL(inode);
858 OCFS2_I(inode)->ip_open_count++;
859
860 /* Skip recovery waits here - journal inode metadata never
861 * changes in a live cluster so it can be considered an
862 * exception to the rule. */
863 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
864 if (status < 0) {
865 if (status != -ERESTARTSYS)
866 mlog(ML_ERROR, "Could not get lock on journal!\n");
867 goto done;
868 }
869
870 inode_lock = 1;
871 di = (struct ocfs2_dinode *)bh->b_data;
872
873 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
874 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
875 i_size_read(inode));
876 status = -EINVAL;
877 goto done;
878 }
879
880 trace_ocfs2_journal_init(i_size_read(inode),
881 (unsigned long long)inode->i_blocks,
882 OCFS2_I(inode)->ip_clusters);
883
884 /* call the kernels journal init function now */
885 j_journal = jbd2_journal_init_inode(inode);
886 if (j_journal == NULL) {
887 mlog(ML_ERROR, "Linux journal layer error\n");
888 status = -EINVAL;
889 goto done;
890 }
891
892 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
893
894 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
895 OCFS2_JOURNAL_DIRTY_FL);
896
897 journal->j_journal = j_journal;
898 journal->j_inode = inode;
899 journal->j_bh = bh;
900
901 ocfs2_set_journal_params(osb);
902
903 journal->j_state = OCFS2_JOURNAL_LOADED;
904
905 status = 0;
906 done:
907 if (status < 0) {
908 if (inode_lock)
909 ocfs2_inode_unlock(inode, 1);
910 brelse(bh);
911 if (inode) {
912 OCFS2_I(inode)->ip_open_count--;
913 iput(inode);
914 }
915 }
916
917 return status;
918 }
919
920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
921 {
922 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
923 }
924
925 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
926 {
927 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
928 }
929
930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
931 int dirty, int replayed)
932 {
933 int status;
934 unsigned int flags;
935 struct ocfs2_journal *journal = osb->journal;
936 struct buffer_head *bh = journal->j_bh;
937 struct ocfs2_dinode *fe;
938
939 fe = (struct ocfs2_dinode *)bh->b_data;
940
941 /* The journal bh on the osb always comes from ocfs2_journal_init()
942 * and was validated there inside ocfs2_inode_lock_full(). It's a
943 * code bug if we mess it up. */
944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
945
946 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
947 if (dirty)
948 flags |= OCFS2_JOURNAL_DIRTY_FL;
949 else
950 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
951 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
952
953 if (replayed)
954 ocfs2_bump_recovery_generation(fe);
955
956 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
957 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
958 if (status < 0)
959 mlog_errno(status);
960
961 return status;
962 }
963
964 /*
965 * If the journal has been kmalloc'd it needs to be freed after this
966 * call.
967 */
968 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
969 {
970 struct ocfs2_journal *journal = NULL;
971 int status = 0;
972 struct inode *inode = NULL;
973 int num_running_trans = 0;
974
975 BUG_ON(!osb);
976
977 journal = osb->journal;
978 if (!journal)
979 goto done;
980
981 inode = journal->j_inode;
982
983 if (journal->j_state != OCFS2_JOURNAL_LOADED)
984 goto done;
985
986 /* need to inc inode use count - jbd2_journal_destroy will iput. */
987 if (!igrab(inode))
988 BUG();
989
990 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
991 trace_ocfs2_journal_shutdown(num_running_trans);
992
993 /* Do a commit_cache here. It will flush our journal, *and*
994 * release any locks that are still held.
995 * set the SHUTDOWN flag and release the trans lock.
996 * the commit thread will take the trans lock for us below. */
997 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
998
999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000 * drop the trans_lock (which we want to hold until we
1001 * completely destroy the journal. */
1002 if (osb->commit_task) {
1003 /* Wait for the commit thread */
1004 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1005 kthread_stop(osb->commit_task);
1006 osb->commit_task = NULL;
1007 }
1008
1009 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1010
1011 if (ocfs2_mount_local(osb)) {
1012 jbd2_journal_lock_updates(journal->j_journal);
1013 status = jbd2_journal_flush(journal->j_journal);
1014 jbd2_journal_unlock_updates(journal->j_journal);
1015 if (status < 0)
1016 mlog_errno(status);
1017 }
1018
1019 if (status == 0) {
1020 /*
1021 * Do not toggle if flush was unsuccessful otherwise
1022 * will leave dirty metadata in a "clean" journal
1023 */
1024 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1025 if (status < 0)
1026 mlog_errno(status);
1027 }
1028
1029 /* Shutdown the kernel journal system */
1030 jbd2_journal_destroy(journal->j_journal);
1031 journal->j_journal = NULL;
1032
1033 OCFS2_I(inode)->ip_open_count--;
1034
1035 /* unlock our journal */
1036 ocfs2_inode_unlock(inode, 1);
1037
1038 brelse(journal->j_bh);
1039 journal->j_bh = NULL;
1040
1041 journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043 // up_write(&journal->j_trans_barrier);
1044 done:
1045 iput(inode);
1046 }
1047
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 journal_t *journal,
1050 int slot)
1051 {
1052 int olderr;
1053
1054 olderr = jbd2_journal_errno(journal);
1055 if (olderr) {
1056 mlog(ML_ERROR, "File system error %d recorded in "
1057 "journal %u.\n", olderr, slot);
1058 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 sb->s_id);
1060
1061 jbd2_journal_ack_err(journal);
1062 jbd2_journal_clear_err(journal);
1063 }
1064 }
1065
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 int status = 0;
1069 struct ocfs2_super *osb;
1070
1071 BUG_ON(!journal);
1072
1073 osb = journal->j_osb;
1074
1075 status = jbd2_journal_load(journal->j_journal);
1076 if (status < 0) {
1077 mlog(ML_ERROR, "Failed to load journal!\n");
1078 goto done;
1079 }
1080
1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto done;
1087 }
1088
1089 /* Launch the commit thread */
1090 if (!local) {
1091 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1092 "ocfs2cmt-%s", osb->uuid_str);
1093 if (IS_ERR(osb->commit_task)) {
1094 status = PTR_ERR(osb->commit_task);
1095 osb->commit_task = NULL;
1096 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1097 "error=%d", status);
1098 goto done;
1099 }
1100 } else
1101 osb->commit_task = NULL;
1102
1103 done:
1104 return status;
1105 }
1106
1107
1108 /* 'full' flag tells us whether we clear out all blocks or if we just
1109 * mark the journal clean */
1110 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1111 {
1112 int status;
1113
1114 BUG_ON(!journal);
1115
1116 status = jbd2_journal_wipe(journal->j_journal, full);
1117 if (status < 0) {
1118 mlog_errno(status);
1119 goto bail;
1120 }
1121
1122 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1123 if (status < 0)
1124 mlog_errno(status);
1125
1126 bail:
1127 return status;
1128 }
1129
1130 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1131 {
1132 int empty;
1133 struct ocfs2_recovery_map *rm = osb->recovery_map;
1134
1135 spin_lock(&osb->osb_lock);
1136 empty = (rm->rm_used == 0);
1137 spin_unlock(&osb->osb_lock);
1138
1139 return empty;
1140 }
1141
1142 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1143 {
1144 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1145 }
1146
1147 /*
1148 * JBD Might read a cached version of another nodes journal file. We
1149 * don't want this as this file changes often and we get no
1150 * notification on those changes. The only way to be sure that we've
1151 * got the most up to date version of those blocks then is to force
1152 * read them off disk. Just searching through the buffer cache won't
1153 * work as there may be pages backing this file which are still marked
1154 * up to date. We know things can't change on this file underneath us
1155 * as we have the lock by now :)
1156 */
1157 static int ocfs2_force_read_journal(struct inode *inode)
1158 {
1159 int status = 0;
1160 int i;
1161 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1162 struct buffer_head *bh = NULL;
1163 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1164
1165 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1166 v_blkno = 0;
1167 while (v_blkno < num_blocks) {
1168 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1169 &p_blkno, &p_blocks, NULL);
1170 if (status < 0) {
1171 mlog_errno(status);
1172 goto bail;
1173 }
1174
1175 for (i = 0; i < p_blocks; i++, p_blkno++) {
1176 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1177 osb->sb->s_blocksize);
1178 /* block not cached. */
1179 if (!bh)
1180 continue;
1181
1182 brelse(bh);
1183 bh = NULL;
1184 /* We are reading journal data which should not
1185 * be put in the uptodate cache.
1186 */
1187 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1188 if (status < 0) {
1189 mlog_errno(status);
1190 goto bail;
1191 }
1192
1193 brelse(bh);
1194 bh = NULL;
1195 }
1196
1197 v_blkno += p_blocks;
1198 }
1199
1200 bail:
1201 return status;
1202 }
1203
1204 struct ocfs2_la_recovery_item {
1205 struct list_head lri_list;
1206 int lri_slot;
1207 struct ocfs2_dinode *lri_la_dinode;
1208 struct ocfs2_dinode *lri_tl_dinode;
1209 struct ocfs2_quota_recovery *lri_qrec;
1210 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1211 };
1212
1213 /* Does the second half of the recovery process. By this point, the
1214 * node is marked clean and can actually be considered recovered,
1215 * hence it's no longer in the recovery map, but there's still some
1216 * cleanup we can do which shouldn't happen within the recovery thread
1217 * as locking in that context becomes very difficult if we are to take
1218 * recovering nodes into account.
1219 *
1220 * NOTE: This function can and will sleep on recovery of other nodes
1221 * during cluster locking, just like any other ocfs2 process.
1222 */
1223 void ocfs2_complete_recovery(struct work_struct *work)
1224 {
1225 int ret = 0;
1226 struct ocfs2_journal *journal =
1227 container_of(work, struct ocfs2_journal, j_recovery_work);
1228 struct ocfs2_super *osb = journal->j_osb;
1229 struct ocfs2_dinode *la_dinode, *tl_dinode;
1230 struct ocfs2_la_recovery_item *item, *n;
1231 struct ocfs2_quota_recovery *qrec;
1232 enum ocfs2_orphan_reco_type orphan_reco_type;
1233 LIST_HEAD(tmp_la_list);
1234
1235 trace_ocfs2_complete_recovery(
1236 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1237
1238 spin_lock(&journal->j_lock);
1239 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1240 spin_unlock(&journal->j_lock);
1241
1242 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1243 list_del_init(&item->lri_list);
1244
1245 ocfs2_wait_on_quotas(osb);
1246
1247 la_dinode = item->lri_la_dinode;
1248 tl_dinode = item->lri_tl_dinode;
1249 qrec = item->lri_qrec;
1250 orphan_reco_type = item->lri_orphan_reco_type;
1251
1252 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1253 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1254 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1255 qrec);
1256
1257 if (la_dinode) {
1258 ret = ocfs2_complete_local_alloc_recovery(osb,
1259 la_dinode);
1260 if (ret < 0)
1261 mlog_errno(ret);
1262
1263 kfree(la_dinode);
1264 }
1265
1266 if (tl_dinode) {
1267 ret = ocfs2_complete_truncate_log_recovery(osb,
1268 tl_dinode);
1269 if (ret < 0)
1270 mlog_errno(ret);
1271
1272 kfree(tl_dinode);
1273 }
1274
1275 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1276 orphan_reco_type);
1277 if (ret < 0)
1278 mlog_errno(ret);
1279
1280 if (qrec) {
1281 ret = ocfs2_finish_quota_recovery(osb, qrec,
1282 item->lri_slot);
1283 if (ret < 0)
1284 mlog_errno(ret);
1285 /* Recovery info is already freed now */
1286 }
1287
1288 kfree(item);
1289 }
1290
1291 trace_ocfs2_complete_recovery_end(ret);
1292 }
1293
1294 /* NOTE: This function always eats your references to la_dinode and
1295 * tl_dinode, either manually on error, or by passing them to
1296 * ocfs2_complete_recovery */
1297 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1298 int slot_num,
1299 struct ocfs2_dinode *la_dinode,
1300 struct ocfs2_dinode *tl_dinode,
1301 struct ocfs2_quota_recovery *qrec,
1302 enum ocfs2_orphan_reco_type orphan_reco_type)
1303 {
1304 struct ocfs2_la_recovery_item *item;
1305
1306 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1307 if (!item) {
1308 /* Though we wish to avoid it, we are in fact safe in
1309 * skipping local alloc cleanup as fsck.ocfs2 is more
1310 * than capable of reclaiming unused space. */
1311 kfree(la_dinode);
1312 kfree(tl_dinode);
1313
1314 if (qrec)
1315 ocfs2_free_quota_recovery(qrec);
1316
1317 mlog_errno(-ENOMEM);
1318 return;
1319 }
1320
1321 INIT_LIST_HEAD(&item->lri_list);
1322 item->lri_la_dinode = la_dinode;
1323 item->lri_slot = slot_num;
1324 item->lri_tl_dinode = tl_dinode;
1325 item->lri_qrec = qrec;
1326 item->lri_orphan_reco_type = orphan_reco_type;
1327
1328 spin_lock(&journal->j_lock);
1329 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1330 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1331 spin_unlock(&journal->j_lock);
1332 }
1333
1334 /* Called by the mount code to queue recovery the last part of
1335 * recovery for it's own and offline slot(s). */
1336 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1337 {
1338 struct ocfs2_journal *journal = osb->journal;
1339
1340 if (ocfs2_is_hard_readonly(osb))
1341 return;
1342
1343 /* No need to queue up our truncate_log as regular cleanup will catch
1344 * that */
1345 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1346 osb->local_alloc_copy, NULL, NULL,
1347 ORPHAN_NEED_TRUNCATE);
1348 ocfs2_schedule_truncate_log_flush(osb, 0);
1349
1350 osb->local_alloc_copy = NULL;
1351 osb->dirty = 0;
1352
1353 /* queue to recover orphan slots for all offline slots */
1354 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356 ocfs2_free_replay_slots(osb);
1357 }
1358
1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1360 {
1361 if (osb->quota_rec) {
1362 ocfs2_queue_recovery_completion(osb->journal,
1363 osb->slot_num,
1364 NULL,
1365 NULL,
1366 osb->quota_rec,
1367 ORPHAN_NEED_TRUNCATE);
1368 osb->quota_rec = NULL;
1369 }
1370 }
1371
1372 static int __ocfs2_recovery_thread(void *arg)
1373 {
1374 int status, node_num, slot_num;
1375 struct ocfs2_super *osb = arg;
1376 struct ocfs2_recovery_map *rm = osb->recovery_map;
1377 int *rm_quota = NULL;
1378 int rm_quota_used = 0, i;
1379 struct ocfs2_quota_recovery *qrec;
1380
1381 status = ocfs2_wait_on_mount(osb);
1382 if (status < 0) {
1383 goto bail;
1384 }
1385
1386 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1387 if (!rm_quota) {
1388 status = -ENOMEM;
1389 goto bail;
1390 }
1391 restart:
1392 status = ocfs2_super_lock(osb, 1);
1393 if (status < 0) {
1394 mlog_errno(status);
1395 goto bail;
1396 }
1397
1398 status = ocfs2_compute_replay_slots(osb);
1399 if (status < 0)
1400 mlog_errno(status);
1401
1402 /* queue recovery for our own slot */
1403 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1405
1406 spin_lock(&osb->osb_lock);
1407 while (rm->rm_used) {
1408 /* It's always safe to remove entry zero, as we won't
1409 * clear it until ocfs2_recover_node() has succeeded. */
1410 node_num = rm->rm_entries[0];
1411 spin_unlock(&osb->osb_lock);
1412 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414 if (slot_num == -ENOENT) {
1415 status = 0;
1416 goto skip_recovery;
1417 }
1418
1419 /* It is a bit subtle with quota recovery. We cannot do it
1420 * immediately because we have to obtain cluster locks from
1421 * quota files and we also don't want to just skip it because
1422 * then quota usage would be out of sync until some node takes
1423 * the slot. So we remember which nodes need quota recovery
1424 * and when everything else is done, we recover quotas. */
1425 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426 if (i == rm_quota_used)
1427 rm_quota[rm_quota_used++] = slot_num;
1428
1429 status = ocfs2_recover_node(osb, node_num, slot_num);
1430 skip_recovery:
1431 if (!status) {
1432 ocfs2_recovery_map_clear(osb, node_num);
1433 } else {
1434 mlog(ML_ERROR,
1435 "Error %d recovering node %d on device (%u,%u)!\n",
1436 status, node_num,
1437 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438 mlog(ML_ERROR, "Volume requires unmount.\n");
1439 }
1440
1441 spin_lock(&osb->osb_lock);
1442 }
1443 spin_unlock(&osb->osb_lock);
1444 trace_ocfs2_recovery_thread_end(status);
1445
1446 /* Refresh all journal recovery generations from disk */
1447 status = ocfs2_check_journals_nolocks(osb);
1448 status = (status == -EROFS) ? 0 : status;
1449 if (status < 0)
1450 mlog_errno(status);
1451
1452 /* Now it is right time to recover quotas... We have to do this under
1453 * superblock lock so that no one can start using the slot (and crash)
1454 * before we recover it */
1455 for (i = 0; i < rm_quota_used; i++) {
1456 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457 if (IS_ERR(qrec)) {
1458 status = PTR_ERR(qrec);
1459 mlog_errno(status);
1460 continue;
1461 }
1462 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463 NULL, NULL, qrec,
1464 ORPHAN_NEED_TRUNCATE);
1465 }
1466
1467 ocfs2_super_unlock(osb, 1);
1468
1469 /* queue recovery for offline slots */
1470 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471
1472 bail:
1473 mutex_lock(&osb->recovery_lock);
1474 if (!status && !ocfs2_recovery_completed(osb)) {
1475 mutex_unlock(&osb->recovery_lock);
1476 goto restart;
1477 }
1478
1479 ocfs2_free_replay_slots(osb);
1480 osb->recovery_thread_task = NULL;
1481 mb(); /* sync with ocfs2_recovery_thread_running */
1482 wake_up(&osb->recovery_event);
1483
1484 mutex_unlock(&osb->recovery_lock);
1485
1486 kfree(rm_quota);
1487
1488 /* no one is callint kthread_stop() for us so the kthread() api
1489 * requires that we call do_exit(). And it isn't exported, but
1490 * complete_and_exit() seems to be a minimal wrapper around it. */
1491 complete_and_exit(NULL, status);
1492 }
1493
1494 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1495 {
1496 mutex_lock(&osb->recovery_lock);
1497
1498 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499 osb->disable_recovery, osb->recovery_thread_task,
1500 osb->disable_recovery ?
1501 -1 : ocfs2_recovery_map_set(osb, node_num));
1502
1503 if (osb->disable_recovery)
1504 goto out;
1505
1506 if (osb->recovery_thread_task)
1507 goto out;
1508
1509 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1510 "ocfs2rec-%s", osb->uuid_str);
1511 if (IS_ERR(osb->recovery_thread_task)) {
1512 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513 osb->recovery_thread_task = NULL;
1514 }
1515
1516 out:
1517 mutex_unlock(&osb->recovery_lock);
1518 wake_up(&osb->recovery_event);
1519 }
1520
1521 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522 int slot_num,
1523 struct buffer_head **bh,
1524 struct inode **ret_inode)
1525 {
1526 int status = -EACCES;
1527 struct inode *inode = NULL;
1528
1529 BUG_ON(slot_num >= osb->max_slots);
1530
1531 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532 slot_num);
1533 if (!inode || is_bad_inode(inode)) {
1534 mlog_errno(status);
1535 goto bail;
1536 }
1537 SET_INODE_JOURNAL(inode);
1538
1539 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540 if (status < 0) {
1541 mlog_errno(status);
1542 goto bail;
1543 }
1544
1545 status = 0;
1546
1547 bail:
1548 if (inode) {
1549 if (status || !ret_inode)
1550 iput(inode);
1551 else
1552 *ret_inode = inode;
1553 }
1554 return status;
1555 }
1556
1557 /* Does the actual journal replay and marks the journal inode as
1558 * clean. Will only replay if the journal inode is marked dirty. */
1559 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560 int node_num,
1561 int slot_num)
1562 {
1563 int status;
1564 int got_lock = 0;
1565 unsigned int flags;
1566 struct inode *inode = NULL;
1567 struct ocfs2_dinode *fe;
1568 journal_t *journal = NULL;
1569 struct buffer_head *bh = NULL;
1570 u32 slot_reco_gen;
1571
1572 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573 if (status) {
1574 mlog_errno(status);
1575 goto done;
1576 }
1577
1578 fe = (struct ocfs2_dinode *)bh->b_data;
1579 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580 brelse(bh);
1581 bh = NULL;
1582
1583 /*
1584 * As the fs recovery is asynchronous, there is a small chance that
1585 * another node mounted (and recovered) the slot before the recovery
1586 * thread could get the lock. To handle that, we dirty read the journal
1587 * inode for that slot to get the recovery generation. If it is
1588 * different than what we expected, the slot has been recovered.
1589 * If not, it needs recovery.
1590 */
1591 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592 trace_ocfs2_replay_journal_recovered(slot_num,
1593 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595 status = -EBUSY;
1596 goto done;
1597 }
1598
1599 /* Continue with recovery as the journal has not yet been recovered */
1600
1601 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602 if (status < 0) {
1603 trace_ocfs2_replay_journal_lock_err(status);
1604 if (status != -ERESTARTSYS)
1605 mlog(ML_ERROR, "Could not lock journal!\n");
1606 goto done;
1607 }
1608 got_lock = 1;
1609
1610 fe = (struct ocfs2_dinode *) bh->b_data;
1611
1612 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1614
1615 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616 trace_ocfs2_replay_journal_skip(node_num);
1617 /* Refresh recovery generation for the slot */
1618 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619 goto done;
1620 }
1621
1622 /* we need to run complete recovery for offline orphan slots */
1623 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1624
1625 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627 MINOR(osb->sb->s_dev));
1628
1629 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1630
1631 status = ocfs2_force_read_journal(inode);
1632 if (status < 0) {
1633 mlog_errno(status);
1634 goto done;
1635 }
1636
1637 journal = jbd2_journal_init_inode(inode);
1638 if (journal == NULL) {
1639 mlog(ML_ERROR, "Linux journal layer error\n");
1640 status = -EIO;
1641 goto done;
1642 }
1643
1644 status = jbd2_journal_load(journal);
1645 if (status < 0) {
1646 mlog_errno(status);
1647 if (!igrab(inode))
1648 BUG();
1649 jbd2_journal_destroy(journal);
1650 goto done;
1651 }
1652
1653 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1654
1655 /* wipe the journal */
1656 jbd2_journal_lock_updates(journal);
1657 status = jbd2_journal_flush(journal);
1658 jbd2_journal_unlock_updates(journal);
1659 if (status < 0)
1660 mlog_errno(status);
1661
1662 /* This will mark the node clean */
1663 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1666
1667 /* Increment recovery generation to indicate successful recovery */
1668 ocfs2_bump_recovery_generation(fe);
1669 osb->slot_recovery_generations[slot_num] =
1670 ocfs2_get_recovery_generation(fe);
1671
1672 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674 if (status < 0)
1675 mlog_errno(status);
1676
1677 if (!igrab(inode))
1678 BUG();
1679
1680 jbd2_journal_destroy(journal);
1681
1682 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684 MINOR(osb->sb->s_dev));
1685 done:
1686 /* drop the lock on this nodes journal */
1687 if (got_lock)
1688 ocfs2_inode_unlock(inode, 1);
1689
1690 iput(inode);
1691 brelse(bh);
1692
1693 return status;
1694 }
1695
1696 /*
1697 * Do the most important parts of node recovery:
1698 * - Replay it's journal
1699 * - Stamp a clean local allocator file
1700 * - Stamp a clean truncate log
1701 * - Mark the node clean
1702 *
1703 * If this function completes without error, a node in OCFS2 can be
1704 * said to have been safely recovered. As a result, failure during the
1705 * second part of a nodes recovery process (local alloc recovery) is
1706 * far less concerning.
1707 */
1708 static int ocfs2_recover_node(struct ocfs2_super *osb,
1709 int node_num, int slot_num)
1710 {
1711 int status = 0;
1712 struct ocfs2_dinode *la_copy = NULL;
1713 struct ocfs2_dinode *tl_copy = NULL;
1714
1715 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1716
1717 /* Should not ever be called to recover ourselves -- in that
1718 * case we should've called ocfs2_journal_load instead. */
1719 BUG_ON(osb->node_num == node_num);
1720
1721 status = ocfs2_replay_journal(osb, node_num, slot_num);
1722 if (status < 0) {
1723 if (status == -EBUSY) {
1724 trace_ocfs2_recover_node_skip(slot_num, node_num);
1725 status = 0;
1726 goto done;
1727 }
1728 mlog_errno(status);
1729 goto done;
1730 }
1731
1732 /* Stamp a clean local alloc file AFTER recovering the journal... */
1733 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1734 if (status < 0) {
1735 mlog_errno(status);
1736 goto done;
1737 }
1738
1739 /* An error from begin_truncate_log_recovery is not
1740 * serious enough to warrant halting the rest of
1741 * recovery. */
1742 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1743 if (status < 0)
1744 mlog_errno(status);
1745
1746 /* Likewise, this would be a strange but ultimately not so
1747 * harmful place to get an error... */
1748 status = ocfs2_clear_slot(osb, slot_num);
1749 if (status < 0)
1750 mlog_errno(status);
1751
1752 /* This will kfree the memory pointed to by la_copy and tl_copy */
1753 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1754 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1755
1756 status = 0;
1757 done:
1758
1759 return status;
1760 }
1761
1762 /* Test node liveness by trylocking his journal. If we get the lock,
1763 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1764 * still alive (we couldn't get the lock) and < 0 on error. */
1765 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1766 int slot_num)
1767 {
1768 int status, flags;
1769 struct inode *inode = NULL;
1770
1771 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1772 slot_num);
1773 if (inode == NULL) {
1774 mlog(ML_ERROR, "access error\n");
1775 status = -EACCES;
1776 goto bail;
1777 }
1778 if (is_bad_inode(inode)) {
1779 mlog(ML_ERROR, "access error (bad inode)\n");
1780 iput(inode);
1781 inode = NULL;
1782 status = -EACCES;
1783 goto bail;
1784 }
1785 SET_INODE_JOURNAL(inode);
1786
1787 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1788 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1789 if (status < 0) {
1790 if (status != -EAGAIN)
1791 mlog_errno(status);
1792 goto bail;
1793 }
1794
1795 ocfs2_inode_unlock(inode, 1);
1796 bail:
1797 iput(inode);
1798
1799 return status;
1800 }
1801
1802 /* Call this underneath ocfs2_super_lock. It also assumes that the
1803 * slot info struct has been updated from disk. */
1804 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1805 {
1806 unsigned int node_num;
1807 int status, i;
1808 u32 gen;
1809 struct buffer_head *bh = NULL;
1810 struct ocfs2_dinode *di;
1811
1812 /* This is called with the super block cluster lock, so we
1813 * know that the slot map can't change underneath us. */
1814
1815 for (i = 0; i < osb->max_slots; i++) {
1816 /* Read journal inode to get the recovery generation */
1817 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1818 if (status) {
1819 mlog_errno(status);
1820 goto bail;
1821 }
1822 di = (struct ocfs2_dinode *)bh->b_data;
1823 gen = ocfs2_get_recovery_generation(di);
1824 brelse(bh);
1825 bh = NULL;
1826
1827 spin_lock(&osb->osb_lock);
1828 osb->slot_recovery_generations[i] = gen;
1829
1830 trace_ocfs2_mark_dead_nodes(i,
1831 osb->slot_recovery_generations[i]);
1832
1833 if (i == osb->slot_num) {
1834 spin_unlock(&osb->osb_lock);
1835 continue;
1836 }
1837
1838 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1839 if (status == -ENOENT) {
1840 spin_unlock(&osb->osb_lock);
1841 continue;
1842 }
1843
1844 if (__ocfs2_recovery_map_test(osb, node_num)) {
1845 spin_unlock(&osb->osb_lock);
1846 continue;
1847 }
1848 spin_unlock(&osb->osb_lock);
1849
1850 /* Ok, we have a slot occupied by another node which
1851 * is not in the recovery map. We trylock his journal
1852 * file here to test if he's alive. */
1853 status = ocfs2_trylock_journal(osb, i);
1854 if (!status) {
1855 /* Since we're called from mount, we know that
1856 * the recovery thread can't race us on
1857 * setting / checking the recovery bits. */
1858 ocfs2_recovery_thread(osb, node_num);
1859 } else if ((status < 0) && (status != -EAGAIN)) {
1860 mlog_errno(status);
1861 goto bail;
1862 }
1863 }
1864
1865 status = 0;
1866 bail:
1867 return status;
1868 }
1869
1870 /*
1871 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1872 * randomness to the timeout to minimize multple nodes firing the timer at the
1873 * same time.
1874 */
1875 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1876 {
1877 unsigned long time;
1878
1879 get_random_bytes(&time, sizeof(time));
1880 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1881 return msecs_to_jiffies(time);
1882 }
1883
1884 /*
1885 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1886 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1887 * is done to catch any orphans that are left over in orphan directories.
1888 *
1889 * It scans all slots, even ones that are in use. It does so to handle the
1890 * case described below:
1891 *
1892 * Node 1 has an inode it was using. The dentry went away due to memory
1893 * pressure. Node 1 closes the inode, but it's on the free list. The node
1894 * has the open lock.
1895 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1896 * but node 1 has no dentry and doesn't get the message. It trylocks the
1897 * open lock, sees that another node has a PR, and does nothing.
1898 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1899 * open lock, sees the PR still, and does nothing.
1900 * Basically, we have to trigger an orphan iput on node 1. The only way
1901 * for this to happen is if node 1 runs node 2's orphan dir.
1902 *
1903 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1904 * seconds. It gets an EX lock on os_lockres and checks sequence number
1905 * stored in LVB. If the sequence number has changed, it means some other
1906 * node has done the scan. This node skips the scan and tracks the
1907 * sequence number. If the sequence number didn't change, it means a scan
1908 * hasn't happened. The node queues a scan and increments the
1909 * sequence number in the LVB.
1910 */
1911 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1912 {
1913 struct ocfs2_orphan_scan *os;
1914 int status, i;
1915 u32 seqno = 0;
1916
1917 os = &osb->osb_orphan_scan;
1918
1919 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1920 goto out;
1921
1922 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1923 atomic_read(&os->os_state));
1924
1925 status = ocfs2_orphan_scan_lock(osb, &seqno);
1926 if (status < 0) {
1927 if (status != -EAGAIN)
1928 mlog_errno(status);
1929 goto out;
1930 }
1931
1932 /* Do no queue the tasks if the volume is being umounted */
1933 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934 goto unlock;
1935
1936 if (os->os_seqno != seqno) {
1937 os->os_seqno = seqno;
1938 goto unlock;
1939 }
1940
1941 for (i = 0; i < osb->max_slots; i++)
1942 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1943 NULL, ORPHAN_NO_NEED_TRUNCATE);
1944 /*
1945 * We queued a recovery on orphan slots, increment the sequence
1946 * number and update LVB so other node will skip the scan for a while
1947 */
1948 seqno++;
1949 os->os_count++;
1950 os->os_scantime = ktime_get_seconds();
1951 unlock:
1952 ocfs2_orphan_scan_unlock(osb, seqno);
1953 out:
1954 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1955 atomic_read(&os->os_state));
1956 return;
1957 }
1958
1959 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1960 static void ocfs2_orphan_scan_work(struct work_struct *work)
1961 {
1962 struct ocfs2_orphan_scan *os;
1963 struct ocfs2_super *osb;
1964
1965 os = container_of(work, struct ocfs2_orphan_scan,
1966 os_orphan_scan_work.work);
1967 osb = os->os_osb;
1968
1969 mutex_lock(&os->os_lock);
1970 ocfs2_queue_orphan_scan(osb);
1971 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1972 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1973 ocfs2_orphan_scan_timeout());
1974 mutex_unlock(&os->os_lock);
1975 }
1976
1977 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1978 {
1979 struct ocfs2_orphan_scan *os;
1980
1981 os = &osb->osb_orphan_scan;
1982 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1983 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1984 mutex_lock(&os->os_lock);
1985 cancel_delayed_work(&os->os_orphan_scan_work);
1986 mutex_unlock(&os->os_lock);
1987 }
1988 }
1989
1990 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1991 {
1992 struct ocfs2_orphan_scan *os;
1993
1994 os = &osb->osb_orphan_scan;
1995 os->os_osb = osb;
1996 os->os_count = 0;
1997 os->os_seqno = 0;
1998 mutex_init(&os->os_lock);
1999 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2000 }
2001
2002 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2003 {
2004 struct ocfs2_orphan_scan *os;
2005
2006 os = &osb->osb_orphan_scan;
2007 os->os_scantime = ktime_get_seconds();
2008 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2009 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2010 else {
2011 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2012 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2013 ocfs2_orphan_scan_timeout());
2014 }
2015 }
2016
2017 struct ocfs2_orphan_filldir_priv {
2018 struct dir_context ctx;
2019 struct inode *head;
2020 struct ocfs2_super *osb;
2021 enum ocfs2_orphan_reco_type orphan_reco_type;
2022 };
2023
2024 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2025 int name_len, loff_t pos, u64 ino,
2026 unsigned type)
2027 {
2028 struct ocfs2_orphan_filldir_priv *p =
2029 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2030 struct inode *iter;
2031
2032 if (name_len == 1 && !strncmp(".", name, 1))
2033 return 0;
2034 if (name_len == 2 && !strncmp("..", name, 2))
2035 return 0;
2036
2037 /* do not include dio entry in case of orphan scan */
2038 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2039 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2040 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2041 return 0;
2042
2043 /* Skip bad inodes so that recovery can continue */
2044 iter = ocfs2_iget(p->osb, ino,
2045 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2046 if (IS_ERR(iter))
2047 return 0;
2048
2049 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2051 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2052
2053 /* Skip inodes which are already added to recover list, since dio may
2054 * happen concurrently with unlink/rename */
2055 if (OCFS2_I(iter)->ip_next_orphan) {
2056 iput(iter);
2057 return 0;
2058 }
2059
2060 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2061 /* No locking is required for the next_orphan queue as there
2062 * is only ever a single process doing orphan recovery. */
2063 OCFS2_I(iter)->ip_next_orphan = p->head;
2064 p->head = iter;
2065
2066 return 0;
2067 }
2068
2069 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2070 int slot,
2071 struct inode **head,
2072 enum ocfs2_orphan_reco_type orphan_reco_type)
2073 {
2074 int status;
2075 struct inode *orphan_dir_inode = NULL;
2076 struct ocfs2_orphan_filldir_priv priv = {
2077 .ctx.actor = ocfs2_orphan_filldir,
2078 .osb = osb,
2079 .head = *head,
2080 .orphan_reco_type = orphan_reco_type
2081 };
2082
2083 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2084 ORPHAN_DIR_SYSTEM_INODE,
2085 slot);
2086 if (!orphan_dir_inode) {
2087 status = -ENOENT;
2088 mlog_errno(status);
2089 return status;
2090 }
2091
2092 inode_lock(orphan_dir_inode);
2093 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2094 if (status < 0) {
2095 mlog_errno(status);
2096 goto out;
2097 }
2098
2099 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2100 if (status) {
2101 mlog_errno(status);
2102 goto out_cluster;
2103 }
2104
2105 *head = priv.head;
2106
2107 out_cluster:
2108 ocfs2_inode_unlock(orphan_dir_inode, 0);
2109 out:
2110 inode_unlock(orphan_dir_inode);
2111 iput(orphan_dir_inode);
2112 return status;
2113 }
2114
2115 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2116 int slot)
2117 {
2118 int ret;
2119
2120 spin_lock(&osb->osb_lock);
2121 ret = !osb->osb_orphan_wipes[slot];
2122 spin_unlock(&osb->osb_lock);
2123 return ret;
2124 }
2125
2126 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2127 int slot)
2128 {
2129 spin_lock(&osb->osb_lock);
2130 /* Mark ourselves such that new processes in delete_inode()
2131 * know to quit early. */
2132 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2133 while (osb->osb_orphan_wipes[slot]) {
2134 /* If any processes are already in the middle of an
2135 * orphan wipe on this dir, then we need to wait for
2136 * them. */
2137 spin_unlock(&osb->osb_lock);
2138 wait_event_interruptible(osb->osb_wipe_event,
2139 ocfs2_orphan_recovery_can_continue(osb, slot));
2140 spin_lock(&osb->osb_lock);
2141 }
2142 spin_unlock(&osb->osb_lock);
2143 }
2144
2145 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2146 int slot)
2147 {
2148 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149 }
2150
2151 /*
2152 * Orphan recovery. Each mounted node has it's own orphan dir which we
2153 * must run during recovery. Our strategy here is to build a list of
2154 * the inodes in the orphan dir and iget/iput them. The VFS does
2155 * (most) of the rest of the work.
2156 *
2157 * Orphan recovery can happen at any time, not just mount so we have a
2158 * couple of extra considerations.
2159 *
2160 * - We grab as many inodes as we can under the orphan dir lock -
2161 * doing iget() outside the orphan dir risks getting a reference on
2162 * an invalid inode.
2163 * - We must be sure not to deadlock with other processes on the
2164 * system wanting to run delete_inode(). This can happen when they go
2165 * to lock the orphan dir and the orphan recovery process attempts to
2166 * iget() inside the orphan dir lock. This can be avoided by
2167 * advertising our state to ocfs2_delete_inode().
2168 */
2169 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2170 int slot,
2171 enum ocfs2_orphan_reco_type orphan_reco_type)
2172 {
2173 int ret = 0;
2174 struct inode *inode = NULL;
2175 struct inode *iter;
2176 struct ocfs2_inode_info *oi;
2177 struct buffer_head *di_bh = NULL;
2178 struct ocfs2_dinode *di = NULL;
2179
2180 trace_ocfs2_recover_orphans(slot);
2181
2182 ocfs2_mark_recovering_orphan_dir(osb, slot);
2183 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2184 ocfs2_clear_recovering_orphan_dir(osb, slot);
2185
2186 /* Error here should be noted, but we want to continue with as
2187 * many queued inodes as we've got. */
2188 if (ret)
2189 mlog_errno(ret);
2190
2191 while (inode) {
2192 oi = OCFS2_I(inode);
2193 trace_ocfs2_recover_orphans_iput(
2194 (unsigned long long)oi->ip_blkno);
2195
2196 iter = oi->ip_next_orphan;
2197 oi->ip_next_orphan = NULL;
2198
2199 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2200 inode_lock(inode);
2201 ret = ocfs2_rw_lock(inode, 1);
2202 if (ret < 0) {
2203 mlog_errno(ret);
2204 goto unlock_mutex;
2205 }
2206 /*
2207 * We need to take and drop the inode lock to
2208 * force read inode from disk.
2209 */
2210 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2211 if (ret) {
2212 mlog_errno(ret);
2213 goto unlock_rw;
2214 }
2215
2216 di = (struct ocfs2_dinode *)di_bh->b_data;
2217
2218 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2219 ret = ocfs2_truncate_file(inode, di_bh,
2220 i_size_read(inode));
2221 if (ret < 0) {
2222 if (ret != -ENOSPC)
2223 mlog_errno(ret);
2224 goto unlock_inode;
2225 }
2226
2227 ret = ocfs2_del_inode_from_orphan(osb, inode,
2228 di_bh, 0, 0);
2229 if (ret)
2230 mlog_errno(ret);
2231 }
2232 unlock_inode:
2233 ocfs2_inode_unlock(inode, 1);
2234 brelse(di_bh);
2235 di_bh = NULL;
2236 unlock_rw:
2237 ocfs2_rw_unlock(inode, 1);
2238 unlock_mutex:
2239 inode_unlock(inode);
2240
2241 /* clear dio flag in ocfs2_inode_info */
2242 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2243 } else {
2244 spin_lock(&oi->ip_lock);
2245 /* Set the proper information to get us going into
2246 * ocfs2_delete_inode. */
2247 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2248 spin_unlock(&oi->ip_lock);
2249 }
2250
2251 iput(inode);
2252 inode = iter;
2253 }
2254
2255 return ret;
2256 }
2257
2258 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2259 {
2260 /* This check is good because ocfs2 will wait on our recovery
2261 * thread before changing it to something other than MOUNTED
2262 * or DISABLED. */
2263 wait_event(osb->osb_mount_event,
2264 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2265 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2266 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2267
2268 /* If there's an error on mount, then we may never get to the
2269 * MOUNTED flag, but this is set right before
2270 * dismount_volume() so we can trust it. */
2271 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2272 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2273 mlog(0, "mount error, exiting!\n");
2274 return -EBUSY;
2275 }
2276
2277 return 0;
2278 }
2279
2280 static int ocfs2_commit_thread(void *arg)
2281 {
2282 int status;
2283 struct ocfs2_super *osb = arg;
2284 struct ocfs2_journal *journal = osb->journal;
2285
2286 /* we can trust j_num_trans here because _should_stop() is only set in
2287 * shutdown and nobody other than ourselves should be able to start
2288 * transactions. committing on shutdown might take a few iterations
2289 * as final transactions put deleted inodes on the list */
2290 while (!(kthread_should_stop() &&
2291 atomic_read(&journal->j_num_trans) == 0)) {
2292
2293 wait_event_interruptible(osb->checkpoint_event,
2294 atomic_read(&journal->j_num_trans)
2295 || kthread_should_stop());
2296
2297 status = ocfs2_commit_cache(osb);
2298 if (status < 0) {
2299 static unsigned long abort_warn_time;
2300
2301 /* Warn about this once per minute */
2302 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2303 mlog(ML_ERROR, "status = %d, journal is "
2304 "already aborted.\n", status);
2305 /*
2306 * After ocfs2_commit_cache() fails, j_num_trans has a
2307 * non-zero value. Sleep here to avoid a busy-wait
2308 * loop.
2309 */
2310 msleep_interruptible(1000);
2311 }
2312
2313 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2314 mlog(ML_KTHREAD,
2315 "commit_thread: %u transactions pending on "
2316 "shutdown\n",
2317 atomic_read(&journal->j_num_trans));
2318 }
2319 }
2320
2321 return 0;
2322 }
2323
2324 /* Reads all the journal inodes without taking any cluster locks. Used
2325 * for hard readonly access to determine whether any journal requires
2326 * recovery. Also used to refresh the recovery generation numbers after
2327 * a journal has been recovered by another node.
2328 */
2329 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2330 {
2331 int ret = 0;
2332 unsigned int slot;
2333 struct buffer_head *di_bh = NULL;
2334 struct ocfs2_dinode *di;
2335 int journal_dirty = 0;
2336
2337 for(slot = 0; slot < osb->max_slots; slot++) {
2338 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2339 if (ret) {
2340 mlog_errno(ret);
2341 goto out;
2342 }
2343
2344 di = (struct ocfs2_dinode *) di_bh->b_data;
2345
2346 osb->slot_recovery_generations[slot] =
2347 ocfs2_get_recovery_generation(di);
2348
2349 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2350 OCFS2_JOURNAL_DIRTY_FL)
2351 journal_dirty = 1;
2352
2353 brelse(di_bh);
2354 di_bh = NULL;
2355 }
2356
2357 out:
2358 if (journal_dirty)
2359 ret = -EROFS;
2360 return ret;
2361 }