]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ocfs2/journal.c
Merge tag 'asoc-fix-v5.0-rc5' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(osb->ocfs2_wq);
235
236 /*
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
239 */
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
242
243 kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
248 {
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252 assert_spin_locked(&osb->osb_lock);
253
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
265 {
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
272 }
273
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
276
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
280
281 return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
286 {
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290 spin_lock(&osb->osb_lock);
291
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
295 }
296
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
302 }
303
304 spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
312
313 journal = osb->journal;
314
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
317
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
323 }
324
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
332 }
333
334 ocfs2_inc_trans_id(journal);
335
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
339
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
352
353 BUG_ON(!osb || !osb->journal->j_journal);
354
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
364
365 sb_start_intwrite(osb->sb);
366
367 down_read(&osb->journal->j_trans_barrier);
368
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
373
374 mlog_errno(PTR_ERR(handle));
375
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 handle = ERR_PTR(-EROFS);
379 }
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
383 }
384
385 return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
390 {
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
393
394 BUG_ON(!handle);
395
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
400
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
404 }
405
406 return ret;
407 }
408
409 /*
410 * 'nblocks' is what you want to add to the current transaction.
411 *
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 int status, old_nblocks;
429
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
432
433 if (!nblocks)
434 return 0;
435
436 old_nblocks = handle->h_buffer_credits;
437
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
447 }
448 #endif
449
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
457 }
458 }
459
460 status = 0;
461 bail:
462 return status;
463 }
464
465 /*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495 bail:
496 return status;
497 }
498
499
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
513 {
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516 /*
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
521 */
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
532 {
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
535
536 /*
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
541 */
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
552 {
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
555
556 /*
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
561 */
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
567 {
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
573
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
582 },
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
584 };
585
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
590 },
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
592 };
593
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
598 },
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
606 },
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
608 };
609
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
614 },
615 };
616
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
621 },
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
629 },
630 };
631
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
636 },
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
644 },
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
653 {
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
661
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
665
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670 (unsigned long long)bh->b_blocknr, bh->b_state);
671
672 lock_buffer(bh);
673 /*
674 * A previous transaction with a couple of buffer heads fail
675 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676 * For current transaction, the bh is just among those error
677 * bhs which previous transaction handle. We can't just clear
678 * its BH_Write_EIO and reuse directly, since other bhs are
679 * not written to disk yet and that will cause metadata
680 * inconsistency. So we should set fs read-only to avoid
681 * further damage.
682 */
683 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684 unlock_buffer(bh);
685 return ocfs2_error(osb->sb, "A previous attempt to "
686 "write this buffer head failed\n");
687 }
688 unlock_buffer(bh);
689 }
690
691 /* Set the current transaction information on the ci so
692 * that the locking code knows whether it can drop it's locks
693 * on this ci or not. We're protected from the commit
694 * thread updating the current transaction id until
695 * ocfs2_commit_trans() because ocfs2_start_trans() took
696 * j_trans_barrier for us. */
697 ocfs2_set_ci_lock_trans(osb->journal, ci);
698
699 ocfs2_metadata_cache_io_lock(ci);
700 switch (type) {
701 case OCFS2_JOURNAL_ACCESS_CREATE:
702 case OCFS2_JOURNAL_ACCESS_WRITE:
703 status = jbd2_journal_get_write_access(handle, bh);
704 break;
705
706 case OCFS2_JOURNAL_ACCESS_UNDO:
707 status = jbd2_journal_get_undo_access(handle, bh);
708 break;
709
710 default:
711 status = -EINVAL;
712 mlog(ML_ERROR, "Unknown access type!\n");
713 }
714 if (!status && ocfs2_meta_ecc(osb) && triggers)
715 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716 ocfs2_metadata_cache_io_unlock(ci);
717
718 if (status < 0)
719 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720 status, type);
721
722 return status;
723 }
724
725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726 struct buffer_head *bh, int type)
727 {
728 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
729 }
730
731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732 struct buffer_head *bh, int type)
733 {
734 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
735 }
736
737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738 struct buffer_head *bh, int type)
739 {
740 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741 type);
742 }
743
744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745 struct buffer_head *bh, int type)
746 {
747 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
748 }
749
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 struct buffer_head *bh, int type)
752 {
753 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
754 }
755
756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757 struct buffer_head *bh, int type)
758 {
759 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
760 }
761
762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763 struct buffer_head *bh, int type)
764 {
765 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
766 }
767
768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769 struct buffer_head *bh, int type)
770 {
771 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
772 }
773
774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775 struct buffer_head *bh, int type)
776 {
777 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
778 }
779
780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781 struct buffer_head *bh, int type)
782 {
783 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
784 }
785
786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 {
788 int status;
789
790 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791
792 status = jbd2_journal_dirty_metadata(handle, bh);
793 if (status) {
794 mlog_errno(status);
795 if (!is_handle_aborted(handle)) {
796 journal_t *journal = handle->h_transaction->t_journal;
797 struct super_block *sb = bh->b_bdev->bd_super;
798
799 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800 "Aborting transaction and journal.\n");
801 handle->h_err = status;
802 jbd2_journal_abort_handle(handle);
803 jbd2_journal_abort(journal, status);
804 ocfs2_abort(sb, "Journal already aborted.\n");
805 }
806 }
807 }
808
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810
811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 {
813 journal_t *journal = osb->journal->j_journal;
814 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815
816 if (osb->osb_commit_interval)
817 commit_interval = osb->osb_commit_interval;
818
819 write_lock(&journal->j_state_lock);
820 journal->j_commit_interval = commit_interval;
821 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822 journal->j_flags |= JBD2_BARRIER;
823 else
824 journal->j_flags &= ~JBD2_BARRIER;
825 write_unlock(&journal->j_state_lock);
826 }
827
828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 {
830 int status = -1;
831 struct inode *inode = NULL; /* the journal inode */
832 journal_t *j_journal = NULL;
833 struct ocfs2_dinode *di = NULL;
834 struct buffer_head *bh = NULL;
835 struct ocfs2_super *osb;
836 int inode_lock = 0;
837
838 BUG_ON(!journal);
839
840 osb = journal->j_osb;
841
842 /* already have the inode for our journal */
843 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 osb->slot_num);
845 if (inode == NULL) {
846 status = -EACCES;
847 mlog_errno(status);
848 goto done;
849 }
850 if (is_bad_inode(inode)) {
851 mlog(ML_ERROR, "access error (bad inode)\n");
852 iput(inode);
853 inode = NULL;
854 status = -EACCES;
855 goto done;
856 }
857
858 SET_INODE_JOURNAL(inode);
859 OCFS2_I(inode)->ip_open_count++;
860
861 /* Skip recovery waits here - journal inode metadata never
862 * changes in a live cluster so it can be considered an
863 * exception to the rule. */
864 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 if (status < 0) {
866 if (status != -ERESTARTSYS)
867 mlog(ML_ERROR, "Could not get lock on journal!\n");
868 goto done;
869 }
870
871 inode_lock = 1;
872 di = (struct ocfs2_dinode *)bh->b_data;
873
874 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
875 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 i_size_read(inode));
877 status = -EINVAL;
878 goto done;
879 }
880
881 trace_ocfs2_journal_init(i_size_read(inode),
882 (unsigned long long)inode->i_blocks,
883 OCFS2_I(inode)->ip_clusters);
884
885 /* call the kernels journal init function now */
886 j_journal = jbd2_journal_init_inode(inode);
887 if (j_journal == NULL) {
888 mlog(ML_ERROR, "Linux journal layer error\n");
889 status = -EINVAL;
890 goto done;
891 }
892
893 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894
895 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 OCFS2_JOURNAL_DIRTY_FL);
897
898 journal->j_journal = j_journal;
899 journal->j_inode = inode;
900 journal->j_bh = bh;
901
902 ocfs2_set_journal_params(osb);
903
904 journal->j_state = OCFS2_JOURNAL_LOADED;
905
906 status = 0;
907 done:
908 if (status < 0) {
909 if (inode_lock)
910 ocfs2_inode_unlock(inode, 1);
911 brelse(bh);
912 if (inode) {
913 OCFS2_I(inode)->ip_open_count--;
914 iput(inode);
915 }
916 }
917
918 return status;
919 }
920
921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 {
923 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
924 }
925
926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 {
928 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
929 }
930
931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932 int dirty, int replayed)
933 {
934 int status;
935 unsigned int flags;
936 struct ocfs2_journal *journal = osb->journal;
937 struct buffer_head *bh = journal->j_bh;
938 struct ocfs2_dinode *fe;
939
940 fe = (struct ocfs2_dinode *)bh->b_data;
941
942 /* The journal bh on the osb always comes from ocfs2_journal_init()
943 * and was validated there inside ocfs2_inode_lock_full(). It's a
944 * code bug if we mess it up. */
945 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946
947 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948 if (dirty)
949 flags |= OCFS2_JOURNAL_DIRTY_FL;
950 else
951 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953
954 if (replayed)
955 ocfs2_bump_recovery_generation(fe);
956
957 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959 if (status < 0)
960 mlog_errno(status);
961
962 return status;
963 }
964
965 /*
966 * If the journal has been kmalloc'd it needs to be freed after this
967 * call.
968 */
969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 {
971 struct ocfs2_journal *journal = NULL;
972 int status = 0;
973 struct inode *inode = NULL;
974 int num_running_trans = 0;
975
976 BUG_ON(!osb);
977
978 journal = osb->journal;
979 if (!journal)
980 goto done;
981
982 inode = journal->j_inode;
983
984 if (journal->j_state != OCFS2_JOURNAL_LOADED)
985 goto done;
986
987 /* need to inc inode use count - jbd2_journal_destroy will iput. */
988 if (!igrab(inode))
989 BUG();
990
991 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992 trace_ocfs2_journal_shutdown(num_running_trans);
993
994 /* Do a commit_cache here. It will flush our journal, *and*
995 * release any locks that are still held.
996 * set the SHUTDOWN flag and release the trans lock.
997 * the commit thread will take the trans lock for us below. */
998 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999
1000 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001 * drop the trans_lock (which we want to hold until we
1002 * completely destroy the journal. */
1003 if (osb->commit_task) {
1004 /* Wait for the commit thread */
1005 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006 kthread_stop(osb->commit_task);
1007 osb->commit_task = NULL;
1008 }
1009
1010 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011
1012 if (ocfs2_mount_local(osb)) {
1013 jbd2_journal_lock_updates(journal->j_journal);
1014 status = jbd2_journal_flush(journal->j_journal);
1015 jbd2_journal_unlock_updates(journal->j_journal);
1016 if (status < 0)
1017 mlog_errno(status);
1018 }
1019
1020 /* Shutdown the kernel journal system */
1021 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1022 /*
1023 * Do not toggle if flush was unsuccessful otherwise
1024 * will leave dirty metadata in a "clean" journal
1025 */
1026 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1027 if (status < 0)
1028 mlog_errno(status);
1029 }
1030 journal->j_journal = NULL;
1031
1032 OCFS2_I(inode)->ip_open_count--;
1033
1034 /* unlock our journal */
1035 ocfs2_inode_unlock(inode, 1);
1036
1037 brelse(journal->j_bh);
1038 journal->j_bh = NULL;
1039
1040 journal->j_state = OCFS2_JOURNAL_FREE;
1041
1042 // up_write(&journal->j_trans_barrier);
1043 done:
1044 iput(inode);
1045 }
1046
1047 static void ocfs2_clear_journal_error(struct super_block *sb,
1048 journal_t *journal,
1049 int slot)
1050 {
1051 int olderr;
1052
1053 olderr = jbd2_journal_errno(journal);
1054 if (olderr) {
1055 mlog(ML_ERROR, "File system error %d recorded in "
1056 "journal %u.\n", olderr, slot);
1057 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1058 sb->s_id);
1059
1060 jbd2_journal_ack_err(journal);
1061 jbd2_journal_clear_err(journal);
1062 }
1063 }
1064
1065 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1066 {
1067 int status = 0;
1068 struct ocfs2_super *osb;
1069
1070 BUG_ON(!journal);
1071
1072 osb = journal->j_osb;
1073
1074 status = jbd2_journal_load(journal->j_journal);
1075 if (status < 0) {
1076 mlog(ML_ERROR, "Failed to load journal!\n");
1077 goto done;
1078 }
1079
1080 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1081
1082 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1083 if (status < 0) {
1084 mlog_errno(status);
1085 goto done;
1086 }
1087
1088 /* Launch the commit thread */
1089 if (!local) {
1090 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1091 "ocfs2cmt-%s", osb->uuid_str);
1092 if (IS_ERR(osb->commit_task)) {
1093 status = PTR_ERR(osb->commit_task);
1094 osb->commit_task = NULL;
1095 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1096 "error=%d", status);
1097 goto done;
1098 }
1099 } else
1100 osb->commit_task = NULL;
1101
1102 done:
1103 return status;
1104 }
1105
1106
1107 /* 'full' flag tells us whether we clear out all blocks or if we just
1108 * mark the journal clean */
1109 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1110 {
1111 int status;
1112
1113 BUG_ON(!journal);
1114
1115 status = jbd2_journal_wipe(journal->j_journal, full);
1116 if (status < 0) {
1117 mlog_errno(status);
1118 goto bail;
1119 }
1120
1121 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1122 if (status < 0)
1123 mlog_errno(status);
1124
1125 bail:
1126 return status;
1127 }
1128
1129 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1130 {
1131 int empty;
1132 struct ocfs2_recovery_map *rm = osb->recovery_map;
1133
1134 spin_lock(&osb->osb_lock);
1135 empty = (rm->rm_used == 0);
1136 spin_unlock(&osb->osb_lock);
1137
1138 return empty;
1139 }
1140
1141 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1142 {
1143 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1144 }
1145
1146 /*
1147 * JBD Might read a cached version of another nodes journal file. We
1148 * don't want this as this file changes often and we get no
1149 * notification on those changes. The only way to be sure that we've
1150 * got the most up to date version of those blocks then is to force
1151 * read them off disk. Just searching through the buffer cache won't
1152 * work as there may be pages backing this file which are still marked
1153 * up to date. We know things can't change on this file underneath us
1154 * as we have the lock by now :)
1155 */
1156 static int ocfs2_force_read_journal(struct inode *inode)
1157 {
1158 int status = 0;
1159 int i;
1160 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1161 struct buffer_head *bh = NULL;
1162 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1163
1164 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1165 v_blkno = 0;
1166 while (v_blkno < num_blocks) {
1167 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1168 &p_blkno, &p_blocks, NULL);
1169 if (status < 0) {
1170 mlog_errno(status);
1171 goto bail;
1172 }
1173
1174 for (i = 0; i < p_blocks; i++, p_blkno++) {
1175 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1176 osb->sb->s_blocksize);
1177 /* block not cached. */
1178 if (!bh)
1179 continue;
1180
1181 brelse(bh);
1182 bh = NULL;
1183 /* We are reading journal data which should not
1184 * be put in the uptodate cache.
1185 */
1186 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1187 if (status < 0) {
1188 mlog_errno(status);
1189 goto bail;
1190 }
1191
1192 brelse(bh);
1193 bh = NULL;
1194 }
1195
1196 v_blkno += p_blocks;
1197 }
1198
1199 bail:
1200 return status;
1201 }
1202
1203 struct ocfs2_la_recovery_item {
1204 struct list_head lri_list;
1205 int lri_slot;
1206 struct ocfs2_dinode *lri_la_dinode;
1207 struct ocfs2_dinode *lri_tl_dinode;
1208 struct ocfs2_quota_recovery *lri_qrec;
1209 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1210 };
1211
1212 /* Does the second half of the recovery process. By this point, the
1213 * node is marked clean and can actually be considered recovered,
1214 * hence it's no longer in the recovery map, but there's still some
1215 * cleanup we can do which shouldn't happen within the recovery thread
1216 * as locking in that context becomes very difficult if we are to take
1217 * recovering nodes into account.
1218 *
1219 * NOTE: This function can and will sleep on recovery of other nodes
1220 * during cluster locking, just like any other ocfs2 process.
1221 */
1222 void ocfs2_complete_recovery(struct work_struct *work)
1223 {
1224 int ret = 0;
1225 struct ocfs2_journal *journal =
1226 container_of(work, struct ocfs2_journal, j_recovery_work);
1227 struct ocfs2_super *osb = journal->j_osb;
1228 struct ocfs2_dinode *la_dinode, *tl_dinode;
1229 struct ocfs2_la_recovery_item *item, *n;
1230 struct ocfs2_quota_recovery *qrec;
1231 enum ocfs2_orphan_reco_type orphan_reco_type;
1232 LIST_HEAD(tmp_la_list);
1233
1234 trace_ocfs2_complete_recovery(
1235 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1236
1237 spin_lock(&journal->j_lock);
1238 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1239 spin_unlock(&journal->j_lock);
1240
1241 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1242 list_del_init(&item->lri_list);
1243
1244 ocfs2_wait_on_quotas(osb);
1245
1246 la_dinode = item->lri_la_dinode;
1247 tl_dinode = item->lri_tl_dinode;
1248 qrec = item->lri_qrec;
1249 orphan_reco_type = item->lri_orphan_reco_type;
1250
1251 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1252 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1253 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1254 qrec);
1255
1256 if (la_dinode) {
1257 ret = ocfs2_complete_local_alloc_recovery(osb,
1258 la_dinode);
1259 if (ret < 0)
1260 mlog_errno(ret);
1261
1262 kfree(la_dinode);
1263 }
1264
1265 if (tl_dinode) {
1266 ret = ocfs2_complete_truncate_log_recovery(osb,
1267 tl_dinode);
1268 if (ret < 0)
1269 mlog_errno(ret);
1270
1271 kfree(tl_dinode);
1272 }
1273
1274 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1275 orphan_reco_type);
1276 if (ret < 0)
1277 mlog_errno(ret);
1278
1279 if (qrec) {
1280 ret = ocfs2_finish_quota_recovery(osb, qrec,
1281 item->lri_slot);
1282 if (ret < 0)
1283 mlog_errno(ret);
1284 /* Recovery info is already freed now */
1285 }
1286
1287 kfree(item);
1288 }
1289
1290 trace_ocfs2_complete_recovery_end(ret);
1291 }
1292
1293 /* NOTE: This function always eats your references to la_dinode and
1294 * tl_dinode, either manually on error, or by passing them to
1295 * ocfs2_complete_recovery */
1296 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1297 int slot_num,
1298 struct ocfs2_dinode *la_dinode,
1299 struct ocfs2_dinode *tl_dinode,
1300 struct ocfs2_quota_recovery *qrec,
1301 enum ocfs2_orphan_reco_type orphan_reco_type)
1302 {
1303 struct ocfs2_la_recovery_item *item;
1304
1305 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1306 if (!item) {
1307 /* Though we wish to avoid it, we are in fact safe in
1308 * skipping local alloc cleanup as fsck.ocfs2 is more
1309 * than capable of reclaiming unused space. */
1310 kfree(la_dinode);
1311 kfree(tl_dinode);
1312
1313 if (qrec)
1314 ocfs2_free_quota_recovery(qrec);
1315
1316 mlog_errno(-ENOMEM);
1317 return;
1318 }
1319
1320 INIT_LIST_HEAD(&item->lri_list);
1321 item->lri_la_dinode = la_dinode;
1322 item->lri_slot = slot_num;
1323 item->lri_tl_dinode = tl_dinode;
1324 item->lri_qrec = qrec;
1325 item->lri_orphan_reco_type = orphan_reco_type;
1326
1327 spin_lock(&journal->j_lock);
1328 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1329 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1330 spin_unlock(&journal->j_lock);
1331 }
1332
1333 /* Called by the mount code to queue recovery the last part of
1334 * recovery for it's own and offline slot(s). */
1335 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1336 {
1337 struct ocfs2_journal *journal = osb->journal;
1338
1339 if (ocfs2_is_hard_readonly(osb))
1340 return;
1341
1342 /* No need to queue up our truncate_log as regular cleanup will catch
1343 * that */
1344 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1345 osb->local_alloc_copy, NULL, NULL,
1346 ORPHAN_NEED_TRUNCATE);
1347 ocfs2_schedule_truncate_log_flush(osb, 0);
1348
1349 osb->local_alloc_copy = NULL;
1350
1351 /* queue to recover orphan slots for all offline slots */
1352 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1353 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1354 ocfs2_free_replay_slots(osb);
1355 }
1356
1357 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1358 {
1359 if (osb->quota_rec) {
1360 ocfs2_queue_recovery_completion(osb->journal,
1361 osb->slot_num,
1362 NULL,
1363 NULL,
1364 osb->quota_rec,
1365 ORPHAN_NEED_TRUNCATE);
1366 osb->quota_rec = NULL;
1367 }
1368 }
1369
1370 static int __ocfs2_recovery_thread(void *arg)
1371 {
1372 int status, node_num, slot_num;
1373 struct ocfs2_super *osb = arg;
1374 struct ocfs2_recovery_map *rm = osb->recovery_map;
1375 int *rm_quota = NULL;
1376 int rm_quota_used = 0, i;
1377 struct ocfs2_quota_recovery *qrec;
1378
1379 /* Whether the quota supported. */
1380 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1381 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1382 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1383 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1384
1385 status = ocfs2_wait_on_mount(osb);
1386 if (status < 0) {
1387 goto bail;
1388 }
1389
1390 if (quota_enabled) {
1391 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1392 if (!rm_quota) {
1393 status = -ENOMEM;
1394 goto bail;
1395 }
1396 }
1397 restart:
1398 status = ocfs2_super_lock(osb, 1);
1399 if (status < 0) {
1400 mlog_errno(status);
1401 goto bail;
1402 }
1403
1404 status = ocfs2_compute_replay_slots(osb);
1405 if (status < 0)
1406 mlog_errno(status);
1407
1408 /* queue recovery for our own slot */
1409 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1410 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1411
1412 spin_lock(&osb->osb_lock);
1413 while (rm->rm_used) {
1414 /* It's always safe to remove entry zero, as we won't
1415 * clear it until ocfs2_recover_node() has succeeded. */
1416 node_num = rm->rm_entries[0];
1417 spin_unlock(&osb->osb_lock);
1418 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1419 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1420 if (slot_num == -ENOENT) {
1421 status = 0;
1422 goto skip_recovery;
1423 }
1424
1425 /* It is a bit subtle with quota recovery. We cannot do it
1426 * immediately because we have to obtain cluster locks from
1427 * quota files and we also don't want to just skip it because
1428 * then quota usage would be out of sync until some node takes
1429 * the slot. So we remember which nodes need quota recovery
1430 * and when everything else is done, we recover quotas. */
1431 if (quota_enabled) {
1432 for (i = 0; i < rm_quota_used
1433 && rm_quota[i] != slot_num; i++)
1434 ;
1435
1436 if (i == rm_quota_used)
1437 rm_quota[rm_quota_used++] = slot_num;
1438 }
1439
1440 status = ocfs2_recover_node(osb, node_num, slot_num);
1441 skip_recovery:
1442 if (!status) {
1443 ocfs2_recovery_map_clear(osb, node_num);
1444 } else {
1445 mlog(ML_ERROR,
1446 "Error %d recovering node %d on device (%u,%u)!\n",
1447 status, node_num,
1448 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1449 mlog(ML_ERROR, "Volume requires unmount.\n");
1450 }
1451
1452 spin_lock(&osb->osb_lock);
1453 }
1454 spin_unlock(&osb->osb_lock);
1455 trace_ocfs2_recovery_thread_end(status);
1456
1457 /* Refresh all journal recovery generations from disk */
1458 status = ocfs2_check_journals_nolocks(osb);
1459 status = (status == -EROFS) ? 0 : status;
1460 if (status < 0)
1461 mlog_errno(status);
1462
1463 /* Now it is right time to recover quotas... We have to do this under
1464 * superblock lock so that no one can start using the slot (and crash)
1465 * before we recover it */
1466 if (quota_enabled) {
1467 for (i = 0; i < rm_quota_used; i++) {
1468 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1469 if (IS_ERR(qrec)) {
1470 status = PTR_ERR(qrec);
1471 mlog_errno(status);
1472 continue;
1473 }
1474 ocfs2_queue_recovery_completion(osb->journal,
1475 rm_quota[i],
1476 NULL, NULL, qrec,
1477 ORPHAN_NEED_TRUNCATE);
1478 }
1479 }
1480
1481 ocfs2_super_unlock(osb, 1);
1482
1483 /* queue recovery for offline slots */
1484 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1485
1486 bail:
1487 mutex_lock(&osb->recovery_lock);
1488 if (!status && !ocfs2_recovery_completed(osb)) {
1489 mutex_unlock(&osb->recovery_lock);
1490 goto restart;
1491 }
1492
1493 ocfs2_free_replay_slots(osb);
1494 osb->recovery_thread_task = NULL;
1495 mb(); /* sync with ocfs2_recovery_thread_running */
1496 wake_up(&osb->recovery_event);
1497
1498 mutex_unlock(&osb->recovery_lock);
1499
1500 if (quota_enabled)
1501 kfree(rm_quota);
1502
1503 /* no one is callint kthread_stop() for us so the kthread() api
1504 * requires that we call do_exit(). And it isn't exported, but
1505 * complete_and_exit() seems to be a minimal wrapper around it. */
1506 complete_and_exit(NULL, status);
1507 }
1508
1509 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1510 {
1511 mutex_lock(&osb->recovery_lock);
1512
1513 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1514 osb->disable_recovery, osb->recovery_thread_task,
1515 osb->disable_recovery ?
1516 -1 : ocfs2_recovery_map_set(osb, node_num));
1517
1518 if (osb->disable_recovery)
1519 goto out;
1520
1521 if (osb->recovery_thread_task)
1522 goto out;
1523
1524 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1525 "ocfs2rec-%s", osb->uuid_str);
1526 if (IS_ERR(osb->recovery_thread_task)) {
1527 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1528 osb->recovery_thread_task = NULL;
1529 }
1530
1531 out:
1532 mutex_unlock(&osb->recovery_lock);
1533 wake_up(&osb->recovery_event);
1534 }
1535
1536 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1537 int slot_num,
1538 struct buffer_head **bh,
1539 struct inode **ret_inode)
1540 {
1541 int status = -EACCES;
1542 struct inode *inode = NULL;
1543
1544 BUG_ON(slot_num >= osb->max_slots);
1545
1546 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1547 slot_num);
1548 if (!inode || is_bad_inode(inode)) {
1549 mlog_errno(status);
1550 goto bail;
1551 }
1552 SET_INODE_JOURNAL(inode);
1553
1554 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1555 if (status < 0) {
1556 mlog_errno(status);
1557 goto bail;
1558 }
1559
1560 status = 0;
1561
1562 bail:
1563 if (inode) {
1564 if (status || !ret_inode)
1565 iput(inode);
1566 else
1567 *ret_inode = inode;
1568 }
1569 return status;
1570 }
1571
1572 /* Does the actual journal replay and marks the journal inode as
1573 * clean. Will only replay if the journal inode is marked dirty. */
1574 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1575 int node_num,
1576 int slot_num)
1577 {
1578 int status;
1579 int got_lock = 0;
1580 unsigned int flags;
1581 struct inode *inode = NULL;
1582 struct ocfs2_dinode *fe;
1583 journal_t *journal = NULL;
1584 struct buffer_head *bh = NULL;
1585 u32 slot_reco_gen;
1586
1587 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1588 if (status) {
1589 mlog_errno(status);
1590 goto done;
1591 }
1592
1593 fe = (struct ocfs2_dinode *)bh->b_data;
1594 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1595 brelse(bh);
1596 bh = NULL;
1597
1598 /*
1599 * As the fs recovery is asynchronous, there is a small chance that
1600 * another node mounted (and recovered) the slot before the recovery
1601 * thread could get the lock. To handle that, we dirty read the journal
1602 * inode for that slot to get the recovery generation. If it is
1603 * different than what we expected, the slot has been recovered.
1604 * If not, it needs recovery.
1605 */
1606 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1607 trace_ocfs2_replay_journal_recovered(slot_num,
1608 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1609 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1610 status = -EBUSY;
1611 goto done;
1612 }
1613
1614 /* Continue with recovery as the journal has not yet been recovered */
1615
1616 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1617 if (status < 0) {
1618 trace_ocfs2_replay_journal_lock_err(status);
1619 if (status != -ERESTARTSYS)
1620 mlog(ML_ERROR, "Could not lock journal!\n");
1621 goto done;
1622 }
1623 got_lock = 1;
1624
1625 fe = (struct ocfs2_dinode *) bh->b_data;
1626
1627 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1628 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1629
1630 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1631 trace_ocfs2_replay_journal_skip(node_num);
1632 /* Refresh recovery generation for the slot */
1633 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1634 goto done;
1635 }
1636
1637 /* we need to run complete recovery for offline orphan slots */
1638 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1639
1640 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1641 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1642 MINOR(osb->sb->s_dev));
1643
1644 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1645
1646 status = ocfs2_force_read_journal(inode);
1647 if (status < 0) {
1648 mlog_errno(status);
1649 goto done;
1650 }
1651
1652 journal = jbd2_journal_init_inode(inode);
1653 if (journal == NULL) {
1654 mlog(ML_ERROR, "Linux journal layer error\n");
1655 status = -EIO;
1656 goto done;
1657 }
1658
1659 status = jbd2_journal_load(journal);
1660 if (status < 0) {
1661 mlog_errno(status);
1662 if (!igrab(inode))
1663 BUG();
1664 jbd2_journal_destroy(journal);
1665 goto done;
1666 }
1667
1668 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1669
1670 /* wipe the journal */
1671 jbd2_journal_lock_updates(journal);
1672 status = jbd2_journal_flush(journal);
1673 jbd2_journal_unlock_updates(journal);
1674 if (status < 0)
1675 mlog_errno(status);
1676
1677 /* This will mark the node clean */
1678 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1679 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1680 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1681
1682 /* Increment recovery generation to indicate successful recovery */
1683 ocfs2_bump_recovery_generation(fe);
1684 osb->slot_recovery_generations[slot_num] =
1685 ocfs2_get_recovery_generation(fe);
1686
1687 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1688 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1689 if (status < 0)
1690 mlog_errno(status);
1691
1692 if (!igrab(inode))
1693 BUG();
1694
1695 jbd2_journal_destroy(journal);
1696
1697 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1698 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1699 MINOR(osb->sb->s_dev));
1700 done:
1701 /* drop the lock on this nodes journal */
1702 if (got_lock)
1703 ocfs2_inode_unlock(inode, 1);
1704
1705 iput(inode);
1706 brelse(bh);
1707
1708 return status;
1709 }
1710
1711 /*
1712 * Do the most important parts of node recovery:
1713 * - Replay it's journal
1714 * - Stamp a clean local allocator file
1715 * - Stamp a clean truncate log
1716 * - Mark the node clean
1717 *
1718 * If this function completes without error, a node in OCFS2 can be
1719 * said to have been safely recovered. As a result, failure during the
1720 * second part of a nodes recovery process (local alloc recovery) is
1721 * far less concerning.
1722 */
1723 static int ocfs2_recover_node(struct ocfs2_super *osb,
1724 int node_num, int slot_num)
1725 {
1726 int status = 0;
1727 struct ocfs2_dinode *la_copy = NULL;
1728 struct ocfs2_dinode *tl_copy = NULL;
1729
1730 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1731
1732 /* Should not ever be called to recover ourselves -- in that
1733 * case we should've called ocfs2_journal_load instead. */
1734 BUG_ON(osb->node_num == node_num);
1735
1736 status = ocfs2_replay_journal(osb, node_num, slot_num);
1737 if (status < 0) {
1738 if (status == -EBUSY) {
1739 trace_ocfs2_recover_node_skip(slot_num, node_num);
1740 status = 0;
1741 goto done;
1742 }
1743 mlog_errno(status);
1744 goto done;
1745 }
1746
1747 /* Stamp a clean local alloc file AFTER recovering the journal... */
1748 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1749 if (status < 0) {
1750 mlog_errno(status);
1751 goto done;
1752 }
1753
1754 /* An error from begin_truncate_log_recovery is not
1755 * serious enough to warrant halting the rest of
1756 * recovery. */
1757 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1758 if (status < 0)
1759 mlog_errno(status);
1760
1761 /* Likewise, this would be a strange but ultimately not so
1762 * harmful place to get an error... */
1763 status = ocfs2_clear_slot(osb, slot_num);
1764 if (status < 0)
1765 mlog_errno(status);
1766
1767 /* This will kfree the memory pointed to by la_copy and tl_copy */
1768 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1769 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1770
1771 status = 0;
1772 done:
1773
1774 return status;
1775 }
1776
1777 /* Test node liveness by trylocking his journal. If we get the lock,
1778 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1779 * still alive (we couldn't get the lock) and < 0 on error. */
1780 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1781 int slot_num)
1782 {
1783 int status, flags;
1784 struct inode *inode = NULL;
1785
1786 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1787 slot_num);
1788 if (inode == NULL) {
1789 mlog(ML_ERROR, "access error\n");
1790 status = -EACCES;
1791 goto bail;
1792 }
1793 if (is_bad_inode(inode)) {
1794 mlog(ML_ERROR, "access error (bad inode)\n");
1795 iput(inode);
1796 inode = NULL;
1797 status = -EACCES;
1798 goto bail;
1799 }
1800 SET_INODE_JOURNAL(inode);
1801
1802 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1803 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1804 if (status < 0) {
1805 if (status != -EAGAIN)
1806 mlog_errno(status);
1807 goto bail;
1808 }
1809
1810 ocfs2_inode_unlock(inode, 1);
1811 bail:
1812 iput(inode);
1813
1814 return status;
1815 }
1816
1817 /* Call this underneath ocfs2_super_lock. It also assumes that the
1818 * slot info struct has been updated from disk. */
1819 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1820 {
1821 unsigned int node_num;
1822 int status, i;
1823 u32 gen;
1824 struct buffer_head *bh = NULL;
1825 struct ocfs2_dinode *di;
1826
1827 /* This is called with the super block cluster lock, so we
1828 * know that the slot map can't change underneath us. */
1829
1830 for (i = 0; i < osb->max_slots; i++) {
1831 /* Read journal inode to get the recovery generation */
1832 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1833 if (status) {
1834 mlog_errno(status);
1835 goto bail;
1836 }
1837 di = (struct ocfs2_dinode *)bh->b_data;
1838 gen = ocfs2_get_recovery_generation(di);
1839 brelse(bh);
1840 bh = NULL;
1841
1842 spin_lock(&osb->osb_lock);
1843 osb->slot_recovery_generations[i] = gen;
1844
1845 trace_ocfs2_mark_dead_nodes(i,
1846 osb->slot_recovery_generations[i]);
1847
1848 if (i == osb->slot_num) {
1849 spin_unlock(&osb->osb_lock);
1850 continue;
1851 }
1852
1853 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1854 if (status == -ENOENT) {
1855 spin_unlock(&osb->osb_lock);
1856 continue;
1857 }
1858
1859 if (__ocfs2_recovery_map_test(osb, node_num)) {
1860 spin_unlock(&osb->osb_lock);
1861 continue;
1862 }
1863 spin_unlock(&osb->osb_lock);
1864
1865 /* Ok, we have a slot occupied by another node which
1866 * is not in the recovery map. We trylock his journal
1867 * file here to test if he's alive. */
1868 status = ocfs2_trylock_journal(osb, i);
1869 if (!status) {
1870 /* Since we're called from mount, we know that
1871 * the recovery thread can't race us on
1872 * setting / checking the recovery bits. */
1873 ocfs2_recovery_thread(osb, node_num);
1874 } else if ((status < 0) && (status != -EAGAIN)) {
1875 mlog_errno(status);
1876 goto bail;
1877 }
1878 }
1879
1880 status = 0;
1881 bail:
1882 return status;
1883 }
1884
1885 /*
1886 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1887 * randomness to the timeout to minimize multple nodes firing the timer at the
1888 * same time.
1889 */
1890 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1891 {
1892 unsigned long time;
1893
1894 get_random_bytes(&time, sizeof(time));
1895 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1896 return msecs_to_jiffies(time);
1897 }
1898
1899 /*
1900 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1901 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1902 * is done to catch any orphans that are left over in orphan directories.
1903 *
1904 * It scans all slots, even ones that are in use. It does so to handle the
1905 * case described below:
1906 *
1907 * Node 1 has an inode it was using. The dentry went away due to memory
1908 * pressure. Node 1 closes the inode, but it's on the free list. The node
1909 * has the open lock.
1910 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1911 * but node 1 has no dentry and doesn't get the message. It trylocks the
1912 * open lock, sees that another node has a PR, and does nothing.
1913 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1914 * open lock, sees the PR still, and does nothing.
1915 * Basically, we have to trigger an orphan iput on node 1. The only way
1916 * for this to happen is if node 1 runs node 2's orphan dir.
1917 *
1918 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1919 * seconds. It gets an EX lock on os_lockres and checks sequence number
1920 * stored in LVB. If the sequence number has changed, it means some other
1921 * node has done the scan. This node skips the scan and tracks the
1922 * sequence number. If the sequence number didn't change, it means a scan
1923 * hasn't happened. The node queues a scan and increments the
1924 * sequence number in the LVB.
1925 */
1926 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1927 {
1928 struct ocfs2_orphan_scan *os;
1929 int status, i;
1930 u32 seqno = 0;
1931
1932 os = &osb->osb_orphan_scan;
1933
1934 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1935 goto out;
1936
1937 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1938 atomic_read(&os->os_state));
1939
1940 status = ocfs2_orphan_scan_lock(osb, &seqno);
1941 if (status < 0) {
1942 if (status != -EAGAIN)
1943 mlog_errno(status);
1944 goto out;
1945 }
1946
1947 /* Do no queue the tasks if the volume is being umounted */
1948 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1949 goto unlock;
1950
1951 if (os->os_seqno != seqno) {
1952 os->os_seqno = seqno;
1953 goto unlock;
1954 }
1955
1956 for (i = 0; i < osb->max_slots; i++)
1957 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1958 NULL, ORPHAN_NO_NEED_TRUNCATE);
1959 /*
1960 * We queued a recovery on orphan slots, increment the sequence
1961 * number and update LVB so other node will skip the scan for a while
1962 */
1963 seqno++;
1964 os->os_count++;
1965 os->os_scantime = ktime_get_seconds();
1966 unlock:
1967 ocfs2_orphan_scan_unlock(osb, seqno);
1968 out:
1969 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1970 atomic_read(&os->os_state));
1971 return;
1972 }
1973
1974 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1975 static void ocfs2_orphan_scan_work(struct work_struct *work)
1976 {
1977 struct ocfs2_orphan_scan *os;
1978 struct ocfs2_super *osb;
1979
1980 os = container_of(work, struct ocfs2_orphan_scan,
1981 os_orphan_scan_work.work);
1982 osb = os->os_osb;
1983
1984 mutex_lock(&os->os_lock);
1985 ocfs2_queue_orphan_scan(osb);
1986 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1987 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1988 ocfs2_orphan_scan_timeout());
1989 mutex_unlock(&os->os_lock);
1990 }
1991
1992 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1993 {
1994 struct ocfs2_orphan_scan *os;
1995
1996 os = &osb->osb_orphan_scan;
1997 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1998 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1999 mutex_lock(&os->os_lock);
2000 cancel_delayed_work(&os->os_orphan_scan_work);
2001 mutex_unlock(&os->os_lock);
2002 }
2003 }
2004
2005 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2006 {
2007 struct ocfs2_orphan_scan *os;
2008
2009 os = &osb->osb_orphan_scan;
2010 os->os_osb = osb;
2011 os->os_count = 0;
2012 os->os_seqno = 0;
2013 mutex_init(&os->os_lock);
2014 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2015 }
2016
2017 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2018 {
2019 struct ocfs2_orphan_scan *os;
2020
2021 os = &osb->osb_orphan_scan;
2022 os->os_scantime = ktime_get_seconds();
2023 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2024 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2025 else {
2026 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2027 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2028 ocfs2_orphan_scan_timeout());
2029 }
2030 }
2031
2032 struct ocfs2_orphan_filldir_priv {
2033 struct dir_context ctx;
2034 struct inode *head;
2035 struct ocfs2_super *osb;
2036 enum ocfs2_orphan_reco_type orphan_reco_type;
2037 };
2038
2039 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2040 int name_len, loff_t pos, u64 ino,
2041 unsigned type)
2042 {
2043 struct ocfs2_orphan_filldir_priv *p =
2044 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2045 struct inode *iter;
2046
2047 if (name_len == 1 && !strncmp(".", name, 1))
2048 return 0;
2049 if (name_len == 2 && !strncmp("..", name, 2))
2050 return 0;
2051
2052 /* do not include dio entry in case of orphan scan */
2053 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2054 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2055 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2056 return 0;
2057
2058 /* Skip bad inodes so that recovery can continue */
2059 iter = ocfs2_iget(p->osb, ino,
2060 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2061 if (IS_ERR(iter))
2062 return 0;
2063
2064 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2065 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2066 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2067
2068 /* Skip inodes which are already added to recover list, since dio may
2069 * happen concurrently with unlink/rename */
2070 if (OCFS2_I(iter)->ip_next_orphan) {
2071 iput(iter);
2072 return 0;
2073 }
2074
2075 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2076 /* No locking is required for the next_orphan queue as there
2077 * is only ever a single process doing orphan recovery. */
2078 OCFS2_I(iter)->ip_next_orphan = p->head;
2079 p->head = iter;
2080
2081 return 0;
2082 }
2083
2084 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2085 int slot,
2086 struct inode **head,
2087 enum ocfs2_orphan_reco_type orphan_reco_type)
2088 {
2089 int status;
2090 struct inode *orphan_dir_inode = NULL;
2091 struct ocfs2_orphan_filldir_priv priv = {
2092 .ctx.actor = ocfs2_orphan_filldir,
2093 .osb = osb,
2094 .head = *head,
2095 .orphan_reco_type = orphan_reco_type
2096 };
2097
2098 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2099 ORPHAN_DIR_SYSTEM_INODE,
2100 slot);
2101 if (!orphan_dir_inode) {
2102 status = -ENOENT;
2103 mlog_errno(status);
2104 return status;
2105 }
2106
2107 inode_lock(orphan_dir_inode);
2108 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2109 if (status < 0) {
2110 mlog_errno(status);
2111 goto out;
2112 }
2113
2114 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2115 if (status) {
2116 mlog_errno(status);
2117 goto out_cluster;
2118 }
2119
2120 *head = priv.head;
2121
2122 out_cluster:
2123 ocfs2_inode_unlock(orphan_dir_inode, 0);
2124 out:
2125 inode_unlock(orphan_dir_inode);
2126 iput(orphan_dir_inode);
2127 return status;
2128 }
2129
2130 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2131 int slot)
2132 {
2133 int ret;
2134
2135 spin_lock(&osb->osb_lock);
2136 ret = !osb->osb_orphan_wipes[slot];
2137 spin_unlock(&osb->osb_lock);
2138 return ret;
2139 }
2140
2141 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2142 int slot)
2143 {
2144 spin_lock(&osb->osb_lock);
2145 /* Mark ourselves such that new processes in delete_inode()
2146 * know to quit early. */
2147 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2148 while (osb->osb_orphan_wipes[slot]) {
2149 /* If any processes are already in the middle of an
2150 * orphan wipe on this dir, then we need to wait for
2151 * them. */
2152 spin_unlock(&osb->osb_lock);
2153 wait_event_interruptible(osb->osb_wipe_event,
2154 ocfs2_orphan_recovery_can_continue(osb, slot));
2155 spin_lock(&osb->osb_lock);
2156 }
2157 spin_unlock(&osb->osb_lock);
2158 }
2159
2160 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2161 int slot)
2162 {
2163 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2164 }
2165
2166 /*
2167 * Orphan recovery. Each mounted node has it's own orphan dir which we
2168 * must run during recovery. Our strategy here is to build a list of
2169 * the inodes in the orphan dir and iget/iput them. The VFS does
2170 * (most) of the rest of the work.
2171 *
2172 * Orphan recovery can happen at any time, not just mount so we have a
2173 * couple of extra considerations.
2174 *
2175 * - We grab as many inodes as we can under the orphan dir lock -
2176 * doing iget() outside the orphan dir risks getting a reference on
2177 * an invalid inode.
2178 * - We must be sure not to deadlock with other processes on the
2179 * system wanting to run delete_inode(). This can happen when they go
2180 * to lock the orphan dir and the orphan recovery process attempts to
2181 * iget() inside the orphan dir lock. This can be avoided by
2182 * advertising our state to ocfs2_delete_inode().
2183 */
2184 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2185 int slot,
2186 enum ocfs2_orphan_reco_type orphan_reco_type)
2187 {
2188 int ret = 0;
2189 struct inode *inode = NULL;
2190 struct inode *iter;
2191 struct ocfs2_inode_info *oi;
2192 struct buffer_head *di_bh = NULL;
2193 struct ocfs2_dinode *di = NULL;
2194
2195 trace_ocfs2_recover_orphans(slot);
2196
2197 ocfs2_mark_recovering_orphan_dir(osb, slot);
2198 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2199 ocfs2_clear_recovering_orphan_dir(osb, slot);
2200
2201 /* Error here should be noted, but we want to continue with as
2202 * many queued inodes as we've got. */
2203 if (ret)
2204 mlog_errno(ret);
2205
2206 while (inode) {
2207 oi = OCFS2_I(inode);
2208 trace_ocfs2_recover_orphans_iput(
2209 (unsigned long long)oi->ip_blkno);
2210
2211 iter = oi->ip_next_orphan;
2212 oi->ip_next_orphan = NULL;
2213
2214 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2215 inode_lock(inode);
2216 ret = ocfs2_rw_lock(inode, 1);
2217 if (ret < 0) {
2218 mlog_errno(ret);
2219 goto unlock_mutex;
2220 }
2221 /*
2222 * We need to take and drop the inode lock to
2223 * force read inode from disk.
2224 */
2225 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2226 if (ret) {
2227 mlog_errno(ret);
2228 goto unlock_rw;
2229 }
2230
2231 di = (struct ocfs2_dinode *)di_bh->b_data;
2232
2233 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2234 ret = ocfs2_truncate_file(inode, di_bh,
2235 i_size_read(inode));
2236 if (ret < 0) {
2237 if (ret != -ENOSPC)
2238 mlog_errno(ret);
2239 goto unlock_inode;
2240 }
2241
2242 ret = ocfs2_del_inode_from_orphan(osb, inode,
2243 di_bh, 0, 0);
2244 if (ret)
2245 mlog_errno(ret);
2246 }
2247 unlock_inode:
2248 ocfs2_inode_unlock(inode, 1);
2249 brelse(di_bh);
2250 di_bh = NULL;
2251 unlock_rw:
2252 ocfs2_rw_unlock(inode, 1);
2253 unlock_mutex:
2254 inode_unlock(inode);
2255
2256 /* clear dio flag in ocfs2_inode_info */
2257 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2258 } else {
2259 spin_lock(&oi->ip_lock);
2260 /* Set the proper information to get us going into
2261 * ocfs2_delete_inode. */
2262 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2263 spin_unlock(&oi->ip_lock);
2264 }
2265
2266 iput(inode);
2267 inode = iter;
2268 }
2269
2270 return ret;
2271 }
2272
2273 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2274 {
2275 /* This check is good because ocfs2 will wait on our recovery
2276 * thread before changing it to something other than MOUNTED
2277 * or DISABLED. */
2278 wait_event(osb->osb_mount_event,
2279 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2280 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2281 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2282
2283 /* If there's an error on mount, then we may never get to the
2284 * MOUNTED flag, but this is set right before
2285 * dismount_volume() so we can trust it. */
2286 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2287 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2288 mlog(0, "mount error, exiting!\n");
2289 return -EBUSY;
2290 }
2291
2292 return 0;
2293 }
2294
2295 static int ocfs2_commit_thread(void *arg)
2296 {
2297 int status;
2298 struct ocfs2_super *osb = arg;
2299 struct ocfs2_journal *journal = osb->journal;
2300
2301 /* we can trust j_num_trans here because _should_stop() is only set in
2302 * shutdown and nobody other than ourselves should be able to start
2303 * transactions. committing on shutdown might take a few iterations
2304 * as final transactions put deleted inodes on the list */
2305 while (!(kthread_should_stop() &&
2306 atomic_read(&journal->j_num_trans) == 0)) {
2307
2308 wait_event_interruptible(osb->checkpoint_event,
2309 atomic_read(&journal->j_num_trans)
2310 || kthread_should_stop());
2311
2312 status = ocfs2_commit_cache(osb);
2313 if (status < 0) {
2314 static unsigned long abort_warn_time;
2315
2316 /* Warn about this once per minute */
2317 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2318 mlog(ML_ERROR, "status = %d, journal is "
2319 "already aborted.\n", status);
2320 /*
2321 * After ocfs2_commit_cache() fails, j_num_trans has a
2322 * non-zero value. Sleep here to avoid a busy-wait
2323 * loop.
2324 */
2325 msleep_interruptible(1000);
2326 }
2327
2328 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2329 mlog(ML_KTHREAD,
2330 "commit_thread: %u transactions pending on "
2331 "shutdown\n",
2332 atomic_read(&journal->j_num_trans));
2333 }
2334 }
2335
2336 return 0;
2337 }
2338
2339 /* Reads all the journal inodes without taking any cluster locks. Used
2340 * for hard readonly access to determine whether any journal requires
2341 * recovery. Also used to refresh the recovery generation numbers after
2342 * a journal has been recovered by another node.
2343 */
2344 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2345 {
2346 int ret = 0;
2347 unsigned int slot;
2348 struct buffer_head *di_bh = NULL;
2349 struct ocfs2_dinode *di;
2350 int journal_dirty = 0;
2351
2352 for(slot = 0; slot < osb->max_slots; slot++) {
2353 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2354 if (ret) {
2355 mlog_errno(ret);
2356 goto out;
2357 }
2358
2359 di = (struct ocfs2_dinode *) di_bh->b_data;
2360
2361 osb->slot_recovery_generations[slot] =
2362 ocfs2_get_recovery_generation(di);
2363
2364 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2365 OCFS2_JOURNAL_DIRTY_FL)
2366 journal_dirty = 1;
2367
2368 brelse(di_bh);
2369 di_bh = NULL;
2370 }
2371
2372 out:
2373 if (journal_dirty)
2374 ret = -EROFS;
2375 return ret;
2376 }