]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ocfs2/journal.c
Merge branch 'iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
97 */
98
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
109 };
110
111 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 if (!osb->replay_map)
114 return;
115
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
119
120 osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
127
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
131
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
138 }
139
140 spin_lock(&osb->osb_lock);
141
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
144
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
149 }
150
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
154 }
155
156 void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
161
162 if (!replay_map)
163 return;
164
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
167
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
174 }
175
176 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180 if (!osb->replay_map)
181 return;
182
183 kfree(replay_map);
184 osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 struct ocfs2_recovery_map *rm;
190
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
195
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
202 }
203
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
207
208 return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 mb();
217 return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 struct ocfs2_recovery_map *rm;
223
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
235
236 /*
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
239 */
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
242
243 kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
248 {
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252 assert_spin_locked(&osb->osb_lock);
253
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
265 {
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
272 }
273
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
276
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
280
281 return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
286 {
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290 spin_lock(&osb->osb_lock);
291
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
295 }
296
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
302 }
303
304 spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
312
313 journal = osb->journal;
314
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
317
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
323 }
324
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
332 }
333
334 ocfs2_inc_trans_id(journal);
335
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
339
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
352
353 BUG_ON(!osb || !osb->journal->j_journal);
354
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
357
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
360
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
364
365 sb_start_intwrite(osb->sb);
366
367 down_read(&osb->journal->j_trans_barrier);
368
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
373
374 mlog_errno(PTR_ERR(handle));
375
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal");
378 handle = ERR_PTR(-EROFS);
379 }
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
383 }
384
385 return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
390 {
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
393
394 BUG_ON(!handle);
395
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
400
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
404 }
405
406 return ret;
407 }
408
409 /*
410 * 'nblocks' is what you want to add to the current transaction.
411 *
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
417 *
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
421 *
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
425 */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 int status, old_nblocks;
429
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
432
433 if (!nblocks)
434 return 0;
435
436 old_nblocks = handle->h_buffer_credits;
437
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
447 }
448 #endif
449
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
457 }
458 }
459
460 status = 0;
461 bail:
462 return status;
463 }
464
465 /*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495 bail:
496 return status;
497 }
498
499
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
513 {
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516 /*
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
521 */
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
528 */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
532 {
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
535
536 /*
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
541 */
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
548 */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
552 {
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
555
556 /*
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
561 */
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
567 {
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
573
574 /* We aren't guaranteed to have the superblock here - but if we
575 * don't, it'll just crash. */
576 ocfs2_error(bh->b_assoc_map->host->i_sb,
577 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 }
579
580 static struct ocfs2_triggers di_triggers = {
581 .ot_triggers = {
582 .t_frozen = ocfs2_frozen_trigger,
583 .t_abort = ocfs2_abort_trigger,
584 },
585 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
586 };
587
588 static struct ocfs2_triggers eb_triggers = {
589 .ot_triggers = {
590 .t_frozen = ocfs2_frozen_trigger,
591 .t_abort = ocfs2_abort_trigger,
592 },
593 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
594 };
595
596 static struct ocfs2_triggers rb_triggers = {
597 .ot_triggers = {
598 .t_frozen = ocfs2_frozen_trigger,
599 .t_abort = ocfs2_abort_trigger,
600 },
601 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
602 };
603
604 static struct ocfs2_triggers gd_triggers = {
605 .ot_triggers = {
606 .t_frozen = ocfs2_frozen_trigger,
607 .t_abort = ocfs2_abort_trigger,
608 },
609 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
610 };
611
612 static struct ocfs2_triggers db_triggers = {
613 .ot_triggers = {
614 .t_frozen = ocfs2_db_frozen_trigger,
615 .t_abort = ocfs2_abort_trigger,
616 },
617 };
618
619 static struct ocfs2_triggers xb_triggers = {
620 .ot_triggers = {
621 .t_frozen = ocfs2_frozen_trigger,
622 .t_abort = ocfs2_abort_trigger,
623 },
624 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
625 };
626
627 static struct ocfs2_triggers dq_triggers = {
628 .ot_triggers = {
629 .t_frozen = ocfs2_dq_frozen_trigger,
630 .t_abort = ocfs2_abort_trigger,
631 },
632 };
633
634 static struct ocfs2_triggers dr_triggers = {
635 .ot_triggers = {
636 .t_frozen = ocfs2_frozen_trigger,
637 .t_abort = ocfs2_abort_trigger,
638 },
639 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
640 };
641
642 static struct ocfs2_triggers dl_triggers = {
643 .ot_triggers = {
644 .t_frozen = ocfs2_frozen_trigger,
645 .t_abort = ocfs2_abort_trigger,
646 },
647 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
648 };
649
650 static int __ocfs2_journal_access(handle_t *handle,
651 struct ocfs2_caching_info *ci,
652 struct buffer_head *bh,
653 struct ocfs2_triggers *triggers,
654 int type)
655 {
656 int status;
657 struct ocfs2_super *osb =
658 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
659
660 BUG_ON(!ci || !ci->ci_ops);
661 BUG_ON(!handle);
662 BUG_ON(!bh);
663
664 trace_ocfs2_journal_access(
665 (unsigned long long)ocfs2_metadata_cache_owner(ci),
666 (unsigned long long)bh->b_blocknr, type, bh->b_size);
667
668 /* we can safely remove this assertion after testing. */
669 if (!buffer_uptodate(bh)) {
670 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
671 mlog(ML_ERROR, "b_blocknr=%llu\n",
672 (unsigned long long)bh->b_blocknr);
673 BUG();
674 }
675
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684 ocfs2_metadata_cache_io_lock(ci);
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
688 status = jbd2_journal_get_write_access(handle, bh);
689 break;
690
691 case OCFS2_JOURNAL_ACCESS_UNDO:
692 status = jbd2_journal_get_undo_access(handle, bh);
693 break;
694
695 default:
696 status = -EINVAL;
697 mlog(ML_ERROR, "Unknown access type!\n");
698 }
699 if (!status && ocfs2_meta_ecc(osb) && triggers)
700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 ocfs2_metadata_cache_io_unlock(ci);
702
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
706
707 return status;
708 }
709
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712 {
713 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717 struct buffer_head *bh, int type)
718 {
719 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 struct buffer_head *bh, int type)
724 {
725 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 type);
727 }
728
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730 struct buffer_head *bh, int type)
731 {
732 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736 struct buffer_head *bh, int type)
737 {
738 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742 struct buffer_head *bh, int type)
743 {
744 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748 struct buffer_head *bh, int type)
749 {
750 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754 struct buffer_head *bh, int type)
755 {
756 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760 struct buffer_head *bh, int type)
761 {
762 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766 struct buffer_head *bh, int type)
767 {
768 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773 int status;
774
775 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777 status = jbd2_journal_dirty_metadata(handle, bh);
778 BUG_ON(status);
779 }
780
781 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
782
783 void ocfs2_set_journal_params(struct ocfs2_super *osb)
784 {
785 journal_t *journal = osb->journal->j_journal;
786 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
787
788 if (osb->osb_commit_interval)
789 commit_interval = osb->osb_commit_interval;
790
791 write_lock(&journal->j_state_lock);
792 journal->j_commit_interval = commit_interval;
793 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
794 journal->j_flags |= JBD2_BARRIER;
795 else
796 journal->j_flags &= ~JBD2_BARRIER;
797 write_unlock(&journal->j_state_lock);
798 }
799
800 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
801 {
802 int status = -1;
803 struct inode *inode = NULL; /* the journal inode */
804 journal_t *j_journal = NULL;
805 struct ocfs2_dinode *di = NULL;
806 struct buffer_head *bh = NULL;
807 struct ocfs2_super *osb;
808 int inode_lock = 0;
809
810 BUG_ON(!journal);
811
812 osb = journal->j_osb;
813
814 /* already have the inode for our journal */
815 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
816 osb->slot_num);
817 if (inode == NULL) {
818 status = -EACCES;
819 mlog_errno(status);
820 goto done;
821 }
822 if (is_bad_inode(inode)) {
823 mlog(ML_ERROR, "access error (bad inode)\n");
824 iput(inode);
825 inode = NULL;
826 status = -EACCES;
827 goto done;
828 }
829
830 SET_INODE_JOURNAL(inode);
831 OCFS2_I(inode)->ip_open_count++;
832
833 /* Skip recovery waits here - journal inode metadata never
834 * changes in a live cluster so it can be considered an
835 * exception to the rule. */
836 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
837 if (status < 0) {
838 if (status != -ERESTARTSYS)
839 mlog(ML_ERROR, "Could not get lock on journal!\n");
840 goto done;
841 }
842
843 inode_lock = 1;
844 di = (struct ocfs2_dinode *)bh->b_data;
845
846 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
847 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
848 i_size_read(inode));
849 status = -EINVAL;
850 goto done;
851 }
852
853 trace_ocfs2_journal_init(i_size_read(inode),
854 (unsigned long long)inode->i_blocks,
855 OCFS2_I(inode)->ip_clusters);
856
857 /* call the kernels journal init function now */
858 j_journal = jbd2_journal_init_inode(inode);
859 if (j_journal == NULL) {
860 mlog(ML_ERROR, "Linux journal layer error\n");
861 status = -EINVAL;
862 goto done;
863 }
864
865 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
866
867 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
868 OCFS2_JOURNAL_DIRTY_FL);
869
870 journal->j_journal = j_journal;
871 journal->j_inode = inode;
872 journal->j_bh = bh;
873
874 ocfs2_set_journal_params(osb);
875
876 journal->j_state = OCFS2_JOURNAL_LOADED;
877
878 status = 0;
879 done:
880 if (status < 0) {
881 if (inode_lock)
882 ocfs2_inode_unlock(inode, 1);
883 brelse(bh);
884 if (inode) {
885 OCFS2_I(inode)->ip_open_count--;
886 iput(inode);
887 }
888 }
889
890 return status;
891 }
892
893 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
894 {
895 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
896 }
897
898 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
899 {
900 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
901 }
902
903 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
904 int dirty, int replayed)
905 {
906 int status;
907 unsigned int flags;
908 struct ocfs2_journal *journal = osb->journal;
909 struct buffer_head *bh = journal->j_bh;
910 struct ocfs2_dinode *fe;
911
912 fe = (struct ocfs2_dinode *)bh->b_data;
913
914 /* The journal bh on the osb always comes from ocfs2_journal_init()
915 * and was validated there inside ocfs2_inode_lock_full(). It's a
916 * code bug if we mess it up. */
917 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
918
919 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
920 if (dirty)
921 flags |= OCFS2_JOURNAL_DIRTY_FL;
922 else
923 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
924 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
925
926 if (replayed)
927 ocfs2_bump_recovery_generation(fe);
928
929 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
930 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
931 if (status < 0)
932 mlog_errno(status);
933
934 return status;
935 }
936
937 /*
938 * If the journal has been kmalloc'd it needs to be freed after this
939 * call.
940 */
941 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
942 {
943 struct ocfs2_journal *journal = NULL;
944 int status = 0;
945 struct inode *inode = NULL;
946 int num_running_trans = 0;
947
948 BUG_ON(!osb);
949
950 journal = osb->journal;
951 if (!journal)
952 goto done;
953
954 inode = journal->j_inode;
955
956 if (journal->j_state != OCFS2_JOURNAL_LOADED)
957 goto done;
958
959 /* need to inc inode use count - jbd2_journal_destroy will iput. */
960 if (!igrab(inode))
961 BUG();
962
963 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
964 trace_ocfs2_journal_shutdown(num_running_trans);
965
966 /* Do a commit_cache here. It will flush our journal, *and*
967 * release any locks that are still held.
968 * set the SHUTDOWN flag and release the trans lock.
969 * the commit thread will take the trans lock for us below. */
970 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
971
972 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
973 * drop the trans_lock (which we want to hold until we
974 * completely destroy the journal. */
975 if (osb->commit_task) {
976 /* Wait for the commit thread */
977 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
978 kthread_stop(osb->commit_task);
979 osb->commit_task = NULL;
980 }
981
982 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
983
984 if (ocfs2_mount_local(osb)) {
985 jbd2_journal_lock_updates(journal->j_journal);
986 status = jbd2_journal_flush(journal->j_journal);
987 jbd2_journal_unlock_updates(journal->j_journal);
988 if (status < 0)
989 mlog_errno(status);
990 }
991
992 if (status == 0) {
993 /*
994 * Do not toggle if flush was unsuccessful otherwise
995 * will leave dirty metadata in a "clean" journal
996 */
997 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
998 if (status < 0)
999 mlog_errno(status);
1000 }
1001
1002 /* Shutdown the kernel journal system */
1003 jbd2_journal_destroy(journal->j_journal);
1004 journal->j_journal = NULL;
1005
1006 OCFS2_I(inode)->ip_open_count--;
1007
1008 /* unlock our journal */
1009 ocfs2_inode_unlock(inode, 1);
1010
1011 brelse(journal->j_bh);
1012 journal->j_bh = NULL;
1013
1014 journal->j_state = OCFS2_JOURNAL_FREE;
1015
1016 // up_write(&journal->j_trans_barrier);
1017 done:
1018 if (inode)
1019 iput(inode);
1020 }
1021
1022 static void ocfs2_clear_journal_error(struct super_block *sb,
1023 journal_t *journal,
1024 int slot)
1025 {
1026 int olderr;
1027
1028 olderr = jbd2_journal_errno(journal);
1029 if (olderr) {
1030 mlog(ML_ERROR, "File system error %d recorded in "
1031 "journal %u.\n", olderr, slot);
1032 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1033 sb->s_id);
1034
1035 jbd2_journal_ack_err(journal);
1036 jbd2_journal_clear_err(journal);
1037 }
1038 }
1039
1040 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1041 {
1042 int status = 0;
1043 struct ocfs2_super *osb;
1044
1045 BUG_ON(!journal);
1046
1047 osb = journal->j_osb;
1048
1049 status = jbd2_journal_load(journal->j_journal);
1050 if (status < 0) {
1051 mlog(ML_ERROR, "Failed to load journal!\n");
1052 goto done;
1053 }
1054
1055 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1056
1057 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1058 if (status < 0) {
1059 mlog_errno(status);
1060 goto done;
1061 }
1062
1063 /* Launch the commit thread */
1064 if (!local) {
1065 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1066 "ocfs2cmt");
1067 if (IS_ERR(osb->commit_task)) {
1068 status = PTR_ERR(osb->commit_task);
1069 osb->commit_task = NULL;
1070 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1071 "error=%d", status);
1072 goto done;
1073 }
1074 } else
1075 osb->commit_task = NULL;
1076
1077 done:
1078 return status;
1079 }
1080
1081
1082 /* 'full' flag tells us whether we clear out all blocks or if we just
1083 * mark the journal clean */
1084 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1085 {
1086 int status;
1087
1088 BUG_ON(!journal);
1089
1090 status = jbd2_journal_wipe(journal->j_journal, full);
1091 if (status < 0) {
1092 mlog_errno(status);
1093 goto bail;
1094 }
1095
1096 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1097 if (status < 0)
1098 mlog_errno(status);
1099
1100 bail:
1101 return status;
1102 }
1103
1104 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1105 {
1106 int empty;
1107 struct ocfs2_recovery_map *rm = osb->recovery_map;
1108
1109 spin_lock(&osb->osb_lock);
1110 empty = (rm->rm_used == 0);
1111 spin_unlock(&osb->osb_lock);
1112
1113 return empty;
1114 }
1115
1116 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1117 {
1118 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1119 }
1120
1121 /*
1122 * JBD Might read a cached version of another nodes journal file. We
1123 * don't want this as this file changes often and we get no
1124 * notification on those changes. The only way to be sure that we've
1125 * got the most up to date version of those blocks then is to force
1126 * read them off disk. Just searching through the buffer cache won't
1127 * work as there may be pages backing this file which are still marked
1128 * up to date. We know things can't change on this file underneath us
1129 * as we have the lock by now :)
1130 */
1131 static int ocfs2_force_read_journal(struct inode *inode)
1132 {
1133 int status = 0;
1134 int i;
1135 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1136 #define CONCURRENT_JOURNAL_FILL 32ULL
1137 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1138
1139 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1140
1141 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1142 v_blkno = 0;
1143 while (v_blkno < num_blocks) {
1144 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1145 &p_blkno, &p_blocks, NULL);
1146 if (status < 0) {
1147 mlog_errno(status);
1148 goto bail;
1149 }
1150
1151 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1152 p_blocks = CONCURRENT_JOURNAL_FILL;
1153
1154 /* We are reading journal data which should not
1155 * be put in the uptodate cache */
1156 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1157 p_blkno, p_blocks, bhs);
1158 if (status < 0) {
1159 mlog_errno(status);
1160 goto bail;
1161 }
1162
1163 for(i = 0; i < p_blocks; i++) {
1164 brelse(bhs[i]);
1165 bhs[i] = NULL;
1166 }
1167
1168 v_blkno += p_blocks;
1169 }
1170
1171 bail:
1172 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1173 brelse(bhs[i]);
1174 return status;
1175 }
1176
1177 struct ocfs2_la_recovery_item {
1178 struct list_head lri_list;
1179 int lri_slot;
1180 struct ocfs2_dinode *lri_la_dinode;
1181 struct ocfs2_dinode *lri_tl_dinode;
1182 struct ocfs2_quota_recovery *lri_qrec;
1183 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1184 };
1185
1186 /* Does the second half of the recovery process. By this point, the
1187 * node is marked clean and can actually be considered recovered,
1188 * hence it's no longer in the recovery map, but there's still some
1189 * cleanup we can do which shouldn't happen within the recovery thread
1190 * as locking in that context becomes very difficult if we are to take
1191 * recovering nodes into account.
1192 *
1193 * NOTE: This function can and will sleep on recovery of other nodes
1194 * during cluster locking, just like any other ocfs2 process.
1195 */
1196 void ocfs2_complete_recovery(struct work_struct *work)
1197 {
1198 int ret = 0;
1199 struct ocfs2_journal *journal =
1200 container_of(work, struct ocfs2_journal, j_recovery_work);
1201 struct ocfs2_super *osb = journal->j_osb;
1202 struct ocfs2_dinode *la_dinode, *tl_dinode;
1203 struct ocfs2_la_recovery_item *item, *n;
1204 struct ocfs2_quota_recovery *qrec;
1205 enum ocfs2_orphan_reco_type orphan_reco_type;
1206 LIST_HEAD(tmp_la_list);
1207
1208 trace_ocfs2_complete_recovery(
1209 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1210
1211 spin_lock(&journal->j_lock);
1212 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1213 spin_unlock(&journal->j_lock);
1214
1215 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1216 list_del_init(&item->lri_list);
1217
1218 ocfs2_wait_on_quotas(osb);
1219
1220 la_dinode = item->lri_la_dinode;
1221 tl_dinode = item->lri_tl_dinode;
1222 qrec = item->lri_qrec;
1223 orphan_reco_type = item->lri_orphan_reco_type;
1224
1225 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1226 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1227 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1228 qrec);
1229
1230 if (la_dinode) {
1231 ret = ocfs2_complete_local_alloc_recovery(osb,
1232 la_dinode);
1233 if (ret < 0)
1234 mlog_errno(ret);
1235
1236 kfree(la_dinode);
1237 }
1238
1239 if (tl_dinode) {
1240 ret = ocfs2_complete_truncate_log_recovery(osb,
1241 tl_dinode);
1242 if (ret < 0)
1243 mlog_errno(ret);
1244
1245 kfree(tl_dinode);
1246 }
1247
1248 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1249 orphan_reco_type);
1250 if (ret < 0)
1251 mlog_errno(ret);
1252
1253 if (qrec) {
1254 ret = ocfs2_finish_quota_recovery(osb, qrec,
1255 item->lri_slot);
1256 if (ret < 0)
1257 mlog_errno(ret);
1258 /* Recovery info is already freed now */
1259 }
1260
1261 kfree(item);
1262 }
1263
1264 trace_ocfs2_complete_recovery_end(ret);
1265 }
1266
1267 /* NOTE: This function always eats your references to la_dinode and
1268 * tl_dinode, either manually on error, or by passing them to
1269 * ocfs2_complete_recovery */
1270 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1271 int slot_num,
1272 struct ocfs2_dinode *la_dinode,
1273 struct ocfs2_dinode *tl_dinode,
1274 struct ocfs2_quota_recovery *qrec,
1275 enum ocfs2_orphan_reco_type orphan_reco_type)
1276 {
1277 struct ocfs2_la_recovery_item *item;
1278
1279 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1280 if (!item) {
1281 /* Though we wish to avoid it, we are in fact safe in
1282 * skipping local alloc cleanup as fsck.ocfs2 is more
1283 * than capable of reclaiming unused space. */
1284 kfree(la_dinode);
1285 kfree(tl_dinode);
1286
1287 if (qrec)
1288 ocfs2_free_quota_recovery(qrec);
1289
1290 mlog_errno(-ENOMEM);
1291 return;
1292 }
1293
1294 INIT_LIST_HEAD(&item->lri_list);
1295 item->lri_la_dinode = la_dinode;
1296 item->lri_slot = slot_num;
1297 item->lri_tl_dinode = tl_dinode;
1298 item->lri_qrec = qrec;
1299 item->lri_orphan_reco_type = orphan_reco_type;
1300
1301 spin_lock(&journal->j_lock);
1302 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1303 queue_work(ocfs2_wq, &journal->j_recovery_work);
1304 spin_unlock(&journal->j_lock);
1305 }
1306
1307 /* Called by the mount code to queue recovery the last part of
1308 * recovery for it's own and offline slot(s). */
1309 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1310 {
1311 struct ocfs2_journal *journal = osb->journal;
1312
1313 if (ocfs2_is_hard_readonly(osb))
1314 return;
1315
1316 /* No need to queue up our truncate_log as regular cleanup will catch
1317 * that */
1318 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1319 osb->local_alloc_copy, NULL, NULL,
1320 ORPHAN_NEED_TRUNCATE);
1321 ocfs2_schedule_truncate_log_flush(osb, 0);
1322
1323 osb->local_alloc_copy = NULL;
1324 osb->dirty = 0;
1325
1326 /* queue to recover orphan slots for all offline slots */
1327 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1328 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1329 ocfs2_free_replay_slots(osb);
1330 }
1331
1332 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1333 {
1334 if (osb->quota_rec) {
1335 ocfs2_queue_recovery_completion(osb->journal,
1336 osb->slot_num,
1337 NULL,
1338 NULL,
1339 osb->quota_rec,
1340 ORPHAN_NEED_TRUNCATE);
1341 osb->quota_rec = NULL;
1342 }
1343 }
1344
1345 static int __ocfs2_recovery_thread(void *arg)
1346 {
1347 int status, node_num, slot_num;
1348 struct ocfs2_super *osb = arg;
1349 struct ocfs2_recovery_map *rm = osb->recovery_map;
1350 int *rm_quota = NULL;
1351 int rm_quota_used = 0, i;
1352 struct ocfs2_quota_recovery *qrec;
1353
1354 status = ocfs2_wait_on_mount(osb);
1355 if (status < 0) {
1356 goto bail;
1357 }
1358
1359 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1360 if (!rm_quota) {
1361 status = -ENOMEM;
1362 goto bail;
1363 }
1364 restart:
1365 status = ocfs2_super_lock(osb, 1);
1366 if (status < 0) {
1367 mlog_errno(status);
1368 goto bail;
1369 }
1370
1371 status = ocfs2_compute_replay_slots(osb);
1372 if (status < 0)
1373 mlog_errno(status);
1374
1375 /* queue recovery for our own slot */
1376 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1377 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1378
1379 spin_lock(&osb->osb_lock);
1380 while (rm->rm_used) {
1381 /* It's always safe to remove entry zero, as we won't
1382 * clear it until ocfs2_recover_node() has succeeded. */
1383 node_num = rm->rm_entries[0];
1384 spin_unlock(&osb->osb_lock);
1385 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1386 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1387 if (slot_num == -ENOENT) {
1388 status = 0;
1389 goto skip_recovery;
1390 }
1391
1392 /* It is a bit subtle with quota recovery. We cannot do it
1393 * immediately because we have to obtain cluster locks from
1394 * quota files and we also don't want to just skip it because
1395 * then quota usage would be out of sync until some node takes
1396 * the slot. So we remember which nodes need quota recovery
1397 * and when everything else is done, we recover quotas. */
1398 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1399 if (i == rm_quota_used)
1400 rm_quota[rm_quota_used++] = slot_num;
1401
1402 status = ocfs2_recover_node(osb, node_num, slot_num);
1403 skip_recovery:
1404 if (!status) {
1405 ocfs2_recovery_map_clear(osb, node_num);
1406 } else {
1407 mlog(ML_ERROR,
1408 "Error %d recovering node %d on device (%u,%u)!\n",
1409 status, node_num,
1410 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1411 mlog(ML_ERROR, "Volume requires unmount.\n");
1412 }
1413
1414 spin_lock(&osb->osb_lock);
1415 }
1416 spin_unlock(&osb->osb_lock);
1417 trace_ocfs2_recovery_thread_end(status);
1418
1419 /* Refresh all journal recovery generations from disk */
1420 status = ocfs2_check_journals_nolocks(osb);
1421 status = (status == -EROFS) ? 0 : status;
1422 if (status < 0)
1423 mlog_errno(status);
1424
1425 /* Now it is right time to recover quotas... We have to do this under
1426 * superblock lock so that no one can start using the slot (and crash)
1427 * before we recover it */
1428 for (i = 0; i < rm_quota_used; i++) {
1429 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1430 if (IS_ERR(qrec)) {
1431 status = PTR_ERR(qrec);
1432 mlog_errno(status);
1433 continue;
1434 }
1435 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1436 NULL, NULL, qrec,
1437 ORPHAN_NEED_TRUNCATE);
1438 }
1439
1440 ocfs2_super_unlock(osb, 1);
1441
1442 /* queue recovery for offline slots */
1443 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1444
1445 bail:
1446 mutex_lock(&osb->recovery_lock);
1447 if (!status && !ocfs2_recovery_completed(osb)) {
1448 mutex_unlock(&osb->recovery_lock);
1449 goto restart;
1450 }
1451
1452 ocfs2_free_replay_slots(osb);
1453 osb->recovery_thread_task = NULL;
1454 mb(); /* sync with ocfs2_recovery_thread_running */
1455 wake_up(&osb->recovery_event);
1456
1457 mutex_unlock(&osb->recovery_lock);
1458
1459 kfree(rm_quota);
1460
1461 /* no one is callint kthread_stop() for us so the kthread() api
1462 * requires that we call do_exit(). And it isn't exported, but
1463 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 complete_and_exit(NULL, status);
1465 }
1466
1467 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1468 {
1469 mutex_lock(&osb->recovery_lock);
1470
1471 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1472 osb->disable_recovery, osb->recovery_thread_task,
1473 osb->disable_recovery ?
1474 -1 : ocfs2_recovery_map_set(osb, node_num));
1475
1476 if (osb->disable_recovery)
1477 goto out;
1478
1479 if (osb->recovery_thread_task)
1480 goto out;
1481
1482 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1483 "ocfs2rec");
1484 if (IS_ERR(osb->recovery_thread_task)) {
1485 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486 osb->recovery_thread_task = NULL;
1487 }
1488
1489 out:
1490 mutex_unlock(&osb->recovery_lock);
1491 wake_up(&osb->recovery_event);
1492 }
1493
1494 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1495 int slot_num,
1496 struct buffer_head **bh,
1497 struct inode **ret_inode)
1498 {
1499 int status = -EACCES;
1500 struct inode *inode = NULL;
1501
1502 BUG_ON(slot_num >= osb->max_slots);
1503
1504 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1505 slot_num);
1506 if (!inode || is_bad_inode(inode)) {
1507 mlog_errno(status);
1508 goto bail;
1509 }
1510 SET_INODE_JOURNAL(inode);
1511
1512 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1513 if (status < 0) {
1514 mlog_errno(status);
1515 goto bail;
1516 }
1517
1518 status = 0;
1519
1520 bail:
1521 if (inode) {
1522 if (status || !ret_inode)
1523 iput(inode);
1524 else
1525 *ret_inode = inode;
1526 }
1527 return status;
1528 }
1529
1530 /* Does the actual journal replay and marks the journal inode as
1531 * clean. Will only replay if the journal inode is marked dirty. */
1532 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1533 int node_num,
1534 int slot_num)
1535 {
1536 int status;
1537 int got_lock = 0;
1538 unsigned int flags;
1539 struct inode *inode = NULL;
1540 struct ocfs2_dinode *fe;
1541 journal_t *journal = NULL;
1542 struct buffer_head *bh = NULL;
1543 u32 slot_reco_gen;
1544
1545 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1546 if (status) {
1547 mlog_errno(status);
1548 goto done;
1549 }
1550
1551 fe = (struct ocfs2_dinode *)bh->b_data;
1552 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1553 brelse(bh);
1554 bh = NULL;
1555
1556 /*
1557 * As the fs recovery is asynchronous, there is a small chance that
1558 * another node mounted (and recovered) the slot before the recovery
1559 * thread could get the lock. To handle that, we dirty read the journal
1560 * inode for that slot to get the recovery generation. If it is
1561 * different than what we expected, the slot has been recovered.
1562 * If not, it needs recovery.
1563 */
1564 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1565 trace_ocfs2_replay_journal_recovered(slot_num,
1566 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1567 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1568 status = -EBUSY;
1569 goto done;
1570 }
1571
1572 /* Continue with recovery as the journal has not yet been recovered */
1573
1574 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1575 if (status < 0) {
1576 trace_ocfs2_replay_journal_lock_err(status);
1577 if (status != -ERESTARTSYS)
1578 mlog(ML_ERROR, "Could not lock journal!\n");
1579 goto done;
1580 }
1581 got_lock = 1;
1582
1583 fe = (struct ocfs2_dinode *) bh->b_data;
1584
1585 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1586 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587
1588 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1589 trace_ocfs2_replay_journal_skip(node_num);
1590 /* Refresh recovery generation for the slot */
1591 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1592 goto done;
1593 }
1594
1595 /* we need to run complete recovery for offline orphan slots */
1596 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1597
1598 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1599 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1600 MINOR(osb->sb->s_dev));
1601
1602 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1603
1604 status = ocfs2_force_read_journal(inode);
1605 if (status < 0) {
1606 mlog_errno(status);
1607 goto done;
1608 }
1609
1610 journal = jbd2_journal_init_inode(inode);
1611 if (journal == NULL) {
1612 mlog(ML_ERROR, "Linux journal layer error\n");
1613 status = -EIO;
1614 goto done;
1615 }
1616
1617 status = jbd2_journal_load(journal);
1618 if (status < 0) {
1619 mlog_errno(status);
1620 if (!igrab(inode))
1621 BUG();
1622 jbd2_journal_destroy(journal);
1623 goto done;
1624 }
1625
1626 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1627
1628 /* wipe the journal */
1629 jbd2_journal_lock_updates(journal);
1630 status = jbd2_journal_flush(journal);
1631 jbd2_journal_unlock_updates(journal);
1632 if (status < 0)
1633 mlog_errno(status);
1634
1635 /* This will mark the node clean */
1636 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1637 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1638 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1639
1640 /* Increment recovery generation to indicate successful recovery */
1641 ocfs2_bump_recovery_generation(fe);
1642 osb->slot_recovery_generations[slot_num] =
1643 ocfs2_get_recovery_generation(fe);
1644
1645 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1646 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1647 if (status < 0)
1648 mlog_errno(status);
1649
1650 if (!igrab(inode))
1651 BUG();
1652
1653 jbd2_journal_destroy(journal);
1654
1655 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1656 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1657 MINOR(osb->sb->s_dev));
1658 done:
1659 /* drop the lock on this nodes journal */
1660 if (got_lock)
1661 ocfs2_inode_unlock(inode, 1);
1662
1663 if (inode)
1664 iput(inode);
1665
1666 brelse(bh);
1667
1668 return status;
1669 }
1670
1671 /*
1672 * Do the most important parts of node recovery:
1673 * - Replay it's journal
1674 * - Stamp a clean local allocator file
1675 * - Stamp a clean truncate log
1676 * - Mark the node clean
1677 *
1678 * If this function completes without error, a node in OCFS2 can be
1679 * said to have been safely recovered. As a result, failure during the
1680 * second part of a nodes recovery process (local alloc recovery) is
1681 * far less concerning.
1682 */
1683 static int ocfs2_recover_node(struct ocfs2_super *osb,
1684 int node_num, int slot_num)
1685 {
1686 int status = 0;
1687 struct ocfs2_dinode *la_copy = NULL;
1688 struct ocfs2_dinode *tl_copy = NULL;
1689
1690 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1691
1692 /* Should not ever be called to recover ourselves -- in that
1693 * case we should've called ocfs2_journal_load instead. */
1694 BUG_ON(osb->node_num == node_num);
1695
1696 status = ocfs2_replay_journal(osb, node_num, slot_num);
1697 if (status < 0) {
1698 if (status == -EBUSY) {
1699 trace_ocfs2_recover_node_skip(slot_num, node_num);
1700 status = 0;
1701 goto done;
1702 }
1703 mlog_errno(status);
1704 goto done;
1705 }
1706
1707 /* Stamp a clean local alloc file AFTER recovering the journal... */
1708 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1709 if (status < 0) {
1710 mlog_errno(status);
1711 goto done;
1712 }
1713
1714 /* An error from begin_truncate_log_recovery is not
1715 * serious enough to warrant halting the rest of
1716 * recovery. */
1717 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1718 if (status < 0)
1719 mlog_errno(status);
1720
1721 /* Likewise, this would be a strange but ultimately not so
1722 * harmful place to get an error... */
1723 status = ocfs2_clear_slot(osb, slot_num);
1724 if (status < 0)
1725 mlog_errno(status);
1726
1727 /* This will kfree the memory pointed to by la_copy and tl_copy */
1728 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1729 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1730
1731 status = 0;
1732 done:
1733
1734 return status;
1735 }
1736
1737 /* Test node liveness by trylocking his journal. If we get the lock,
1738 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1739 * still alive (we couldn't get the lock) and < 0 on error. */
1740 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1741 int slot_num)
1742 {
1743 int status, flags;
1744 struct inode *inode = NULL;
1745
1746 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1747 slot_num);
1748 if (inode == NULL) {
1749 mlog(ML_ERROR, "access error\n");
1750 status = -EACCES;
1751 goto bail;
1752 }
1753 if (is_bad_inode(inode)) {
1754 mlog(ML_ERROR, "access error (bad inode)\n");
1755 iput(inode);
1756 inode = NULL;
1757 status = -EACCES;
1758 goto bail;
1759 }
1760 SET_INODE_JOURNAL(inode);
1761
1762 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1763 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1764 if (status < 0) {
1765 if (status != -EAGAIN)
1766 mlog_errno(status);
1767 goto bail;
1768 }
1769
1770 ocfs2_inode_unlock(inode, 1);
1771 bail:
1772 if (inode)
1773 iput(inode);
1774
1775 return status;
1776 }
1777
1778 /* Call this underneath ocfs2_super_lock. It also assumes that the
1779 * slot info struct has been updated from disk. */
1780 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1781 {
1782 unsigned int node_num;
1783 int status, i;
1784 u32 gen;
1785 struct buffer_head *bh = NULL;
1786 struct ocfs2_dinode *di;
1787
1788 /* This is called with the super block cluster lock, so we
1789 * know that the slot map can't change underneath us. */
1790
1791 for (i = 0; i < osb->max_slots; i++) {
1792 /* Read journal inode to get the recovery generation */
1793 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1794 if (status) {
1795 mlog_errno(status);
1796 goto bail;
1797 }
1798 di = (struct ocfs2_dinode *)bh->b_data;
1799 gen = ocfs2_get_recovery_generation(di);
1800 brelse(bh);
1801 bh = NULL;
1802
1803 spin_lock(&osb->osb_lock);
1804 osb->slot_recovery_generations[i] = gen;
1805
1806 trace_ocfs2_mark_dead_nodes(i,
1807 osb->slot_recovery_generations[i]);
1808
1809 if (i == osb->slot_num) {
1810 spin_unlock(&osb->osb_lock);
1811 continue;
1812 }
1813
1814 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1815 if (status == -ENOENT) {
1816 spin_unlock(&osb->osb_lock);
1817 continue;
1818 }
1819
1820 if (__ocfs2_recovery_map_test(osb, node_num)) {
1821 spin_unlock(&osb->osb_lock);
1822 continue;
1823 }
1824 spin_unlock(&osb->osb_lock);
1825
1826 /* Ok, we have a slot occupied by another node which
1827 * is not in the recovery map. We trylock his journal
1828 * file here to test if he's alive. */
1829 status = ocfs2_trylock_journal(osb, i);
1830 if (!status) {
1831 /* Since we're called from mount, we know that
1832 * the recovery thread can't race us on
1833 * setting / checking the recovery bits. */
1834 ocfs2_recovery_thread(osb, node_num);
1835 } else if ((status < 0) && (status != -EAGAIN)) {
1836 mlog_errno(status);
1837 goto bail;
1838 }
1839 }
1840
1841 status = 0;
1842 bail:
1843 return status;
1844 }
1845
1846 /*
1847 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1848 * randomness to the timeout to minimize multple nodes firing the timer at the
1849 * same time.
1850 */
1851 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1852 {
1853 unsigned long time;
1854
1855 get_random_bytes(&time, sizeof(time));
1856 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1857 return msecs_to_jiffies(time);
1858 }
1859
1860 /*
1861 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1862 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1863 * is done to catch any orphans that are left over in orphan directories.
1864 *
1865 * It scans all slots, even ones that are in use. It does so to handle the
1866 * case described below:
1867 *
1868 * Node 1 has an inode it was using. The dentry went away due to memory
1869 * pressure. Node 1 closes the inode, but it's on the free list. The node
1870 * has the open lock.
1871 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1872 * but node 1 has no dentry and doesn't get the message. It trylocks the
1873 * open lock, sees that another node has a PR, and does nothing.
1874 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1875 * open lock, sees the PR still, and does nothing.
1876 * Basically, we have to trigger an orphan iput on node 1. The only way
1877 * for this to happen is if node 1 runs node 2's orphan dir.
1878 *
1879 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1880 * seconds. It gets an EX lock on os_lockres and checks sequence number
1881 * stored in LVB. If the sequence number has changed, it means some other
1882 * node has done the scan. This node skips the scan and tracks the
1883 * sequence number. If the sequence number didn't change, it means a scan
1884 * hasn't happened. The node queues a scan and increments the
1885 * sequence number in the LVB.
1886 */
1887 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1888 {
1889 struct ocfs2_orphan_scan *os;
1890 int status, i;
1891 u32 seqno = 0;
1892
1893 os = &osb->osb_orphan_scan;
1894
1895 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1896 goto out;
1897
1898 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1899 atomic_read(&os->os_state));
1900
1901 status = ocfs2_orphan_scan_lock(osb, &seqno);
1902 if (status < 0) {
1903 if (status != -EAGAIN)
1904 mlog_errno(status);
1905 goto out;
1906 }
1907
1908 /* Do no queue the tasks if the volume is being umounted */
1909 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1910 goto unlock;
1911
1912 if (os->os_seqno != seqno) {
1913 os->os_seqno = seqno;
1914 goto unlock;
1915 }
1916
1917 for (i = 0; i < osb->max_slots; i++)
1918 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1919 NULL, ORPHAN_NO_NEED_TRUNCATE);
1920 /*
1921 * We queued a recovery on orphan slots, increment the sequence
1922 * number and update LVB so other node will skip the scan for a while
1923 */
1924 seqno++;
1925 os->os_count++;
1926 os->os_scantime = CURRENT_TIME;
1927 unlock:
1928 ocfs2_orphan_scan_unlock(osb, seqno);
1929 out:
1930 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1931 atomic_read(&os->os_state));
1932 return;
1933 }
1934
1935 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1936 void ocfs2_orphan_scan_work(struct work_struct *work)
1937 {
1938 struct ocfs2_orphan_scan *os;
1939 struct ocfs2_super *osb;
1940
1941 os = container_of(work, struct ocfs2_orphan_scan,
1942 os_orphan_scan_work.work);
1943 osb = os->os_osb;
1944
1945 mutex_lock(&os->os_lock);
1946 ocfs2_queue_orphan_scan(osb);
1947 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1948 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1949 ocfs2_orphan_scan_timeout());
1950 mutex_unlock(&os->os_lock);
1951 }
1952
1953 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1954 {
1955 struct ocfs2_orphan_scan *os;
1956
1957 os = &osb->osb_orphan_scan;
1958 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1959 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1960 mutex_lock(&os->os_lock);
1961 cancel_delayed_work(&os->os_orphan_scan_work);
1962 mutex_unlock(&os->os_lock);
1963 }
1964 }
1965
1966 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1967 {
1968 struct ocfs2_orphan_scan *os;
1969
1970 os = &osb->osb_orphan_scan;
1971 os->os_osb = osb;
1972 os->os_count = 0;
1973 os->os_seqno = 0;
1974 mutex_init(&os->os_lock);
1975 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1976 }
1977
1978 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1979 {
1980 struct ocfs2_orphan_scan *os;
1981
1982 os = &osb->osb_orphan_scan;
1983 os->os_scantime = CURRENT_TIME;
1984 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1985 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1986 else {
1987 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1988 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1989 ocfs2_orphan_scan_timeout());
1990 }
1991 }
1992
1993 struct ocfs2_orphan_filldir_priv {
1994 struct dir_context ctx;
1995 struct inode *head;
1996 struct ocfs2_super *osb;
1997 };
1998
1999 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2000 int name_len, loff_t pos, u64 ino,
2001 unsigned type)
2002 {
2003 struct ocfs2_orphan_filldir_priv *p =
2004 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2005 struct inode *iter;
2006
2007 if (name_len == 1 && !strncmp(".", name, 1))
2008 return 0;
2009 if (name_len == 2 && !strncmp("..", name, 2))
2010 return 0;
2011
2012 /* Skip bad inodes so that recovery can continue */
2013 iter = ocfs2_iget(p->osb, ino,
2014 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2015 if (IS_ERR(iter))
2016 return 0;
2017
2018 /* Skip inodes which are already added to recover list, since dio may
2019 * happen concurrently with unlink/rename */
2020 if (OCFS2_I(iter)->ip_next_orphan) {
2021 iput(iter);
2022 return 0;
2023 }
2024
2025 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2026 /* No locking is required for the next_orphan queue as there
2027 * is only ever a single process doing orphan recovery. */
2028 OCFS2_I(iter)->ip_next_orphan = p->head;
2029 p->head = iter;
2030
2031 return 0;
2032 }
2033
2034 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2035 int slot,
2036 struct inode **head)
2037 {
2038 int status;
2039 struct inode *orphan_dir_inode = NULL;
2040 struct ocfs2_orphan_filldir_priv priv = {
2041 .ctx.actor = ocfs2_orphan_filldir,
2042 .osb = osb,
2043 .head = *head
2044 };
2045
2046 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2047 ORPHAN_DIR_SYSTEM_INODE,
2048 slot);
2049 if (!orphan_dir_inode) {
2050 status = -ENOENT;
2051 mlog_errno(status);
2052 return status;
2053 }
2054
2055 mutex_lock(&orphan_dir_inode->i_mutex);
2056 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2057 if (status < 0) {
2058 mlog_errno(status);
2059 goto out;
2060 }
2061
2062 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2063 if (status) {
2064 mlog_errno(status);
2065 goto out_cluster;
2066 }
2067
2068 *head = priv.head;
2069
2070 out_cluster:
2071 ocfs2_inode_unlock(orphan_dir_inode, 0);
2072 out:
2073 mutex_unlock(&orphan_dir_inode->i_mutex);
2074 iput(orphan_dir_inode);
2075 return status;
2076 }
2077
2078 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2079 int slot)
2080 {
2081 int ret;
2082
2083 spin_lock(&osb->osb_lock);
2084 ret = !osb->osb_orphan_wipes[slot];
2085 spin_unlock(&osb->osb_lock);
2086 return ret;
2087 }
2088
2089 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2090 int slot)
2091 {
2092 spin_lock(&osb->osb_lock);
2093 /* Mark ourselves such that new processes in delete_inode()
2094 * know to quit early. */
2095 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2096 while (osb->osb_orphan_wipes[slot]) {
2097 /* If any processes are already in the middle of an
2098 * orphan wipe on this dir, then we need to wait for
2099 * them. */
2100 spin_unlock(&osb->osb_lock);
2101 wait_event_interruptible(osb->osb_wipe_event,
2102 ocfs2_orphan_recovery_can_continue(osb, slot));
2103 spin_lock(&osb->osb_lock);
2104 }
2105 spin_unlock(&osb->osb_lock);
2106 }
2107
2108 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2109 int slot)
2110 {
2111 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2112 }
2113
2114 /*
2115 * Orphan recovery. Each mounted node has it's own orphan dir which we
2116 * must run during recovery. Our strategy here is to build a list of
2117 * the inodes in the orphan dir and iget/iput them. The VFS does
2118 * (most) of the rest of the work.
2119 *
2120 * Orphan recovery can happen at any time, not just mount so we have a
2121 * couple of extra considerations.
2122 *
2123 * - We grab as many inodes as we can under the orphan dir lock -
2124 * doing iget() outside the orphan dir risks getting a reference on
2125 * an invalid inode.
2126 * - We must be sure not to deadlock with other processes on the
2127 * system wanting to run delete_inode(). This can happen when they go
2128 * to lock the orphan dir and the orphan recovery process attempts to
2129 * iget() inside the orphan dir lock. This can be avoided by
2130 * advertising our state to ocfs2_delete_inode().
2131 */
2132 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2133 int slot,
2134 enum ocfs2_orphan_reco_type orphan_reco_type)
2135 {
2136 int ret = 0;
2137 struct inode *inode = NULL;
2138 struct inode *iter;
2139 struct ocfs2_inode_info *oi;
2140
2141 trace_ocfs2_recover_orphans(slot);
2142
2143 ocfs2_mark_recovering_orphan_dir(osb, slot);
2144 ret = ocfs2_queue_orphans(osb, slot, &inode);
2145 ocfs2_clear_recovering_orphan_dir(osb, slot);
2146
2147 /* Error here should be noted, but we want to continue with as
2148 * many queued inodes as we've got. */
2149 if (ret)
2150 mlog_errno(ret);
2151
2152 while (inode) {
2153 oi = OCFS2_I(inode);
2154 trace_ocfs2_recover_orphans_iput(
2155 (unsigned long long)oi->ip_blkno);
2156
2157 iter = oi->ip_next_orphan;
2158 oi->ip_next_orphan = NULL;
2159
2160 /*
2161 * We need to take and drop the inode lock to
2162 * force read inode from disk.
2163 */
2164 ret = ocfs2_inode_lock(inode, NULL, 0);
2165 if (ret) {
2166 mlog_errno(ret);
2167 goto next;
2168 }
2169 ocfs2_inode_unlock(inode, 0);
2170
2171 if (inode->i_nlink == 0) {
2172 spin_lock(&oi->ip_lock);
2173 /* Set the proper information to get us going into
2174 * ocfs2_delete_inode. */
2175 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2176 spin_unlock(&oi->ip_lock);
2177 } else if (orphan_reco_type == ORPHAN_NEED_TRUNCATE) {
2178 struct buffer_head *di_bh = NULL;
2179
2180 ret = ocfs2_rw_lock(inode, 1);
2181 if (ret) {
2182 mlog_errno(ret);
2183 goto next;
2184 }
2185
2186 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2187 if (ret < 0) {
2188 ocfs2_rw_unlock(inode, 1);
2189 mlog_errno(ret);
2190 goto next;
2191 }
2192
2193 ret = ocfs2_truncate_file(inode, di_bh,
2194 i_size_read(inode));
2195 ocfs2_inode_unlock(inode, 1);
2196 ocfs2_rw_unlock(inode, 1);
2197 brelse(di_bh);
2198 if (ret < 0) {
2199 if (ret != -ENOSPC)
2200 mlog_errno(ret);
2201 goto next;
2202 }
2203
2204 ret = ocfs2_del_inode_from_orphan(osb, inode, 0, 0);
2205 if (ret)
2206 mlog_errno(ret);
2207
2208 wake_up(&OCFS2_I(inode)->append_dio_wq);
2209 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2210
2211 next:
2212 iput(inode);
2213
2214 inode = iter;
2215 }
2216
2217 return ret;
2218 }
2219
2220 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2221 {
2222 /* This check is good because ocfs2 will wait on our recovery
2223 * thread before changing it to something other than MOUNTED
2224 * or DISABLED. */
2225 wait_event(osb->osb_mount_event,
2226 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2227 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2228 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2229
2230 /* If there's an error on mount, then we may never get to the
2231 * MOUNTED flag, but this is set right before
2232 * dismount_volume() so we can trust it. */
2233 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2234 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2235 mlog(0, "mount error, exiting!\n");
2236 return -EBUSY;
2237 }
2238
2239 return 0;
2240 }
2241
2242 static int ocfs2_commit_thread(void *arg)
2243 {
2244 int status;
2245 struct ocfs2_super *osb = arg;
2246 struct ocfs2_journal *journal = osb->journal;
2247
2248 /* we can trust j_num_trans here because _should_stop() is only set in
2249 * shutdown and nobody other than ourselves should be able to start
2250 * transactions. committing on shutdown might take a few iterations
2251 * as final transactions put deleted inodes on the list */
2252 while (!(kthread_should_stop() &&
2253 atomic_read(&journal->j_num_trans) == 0)) {
2254
2255 wait_event_interruptible(osb->checkpoint_event,
2256 atomic_read(&journal->j_num_trans)
2257 || kthread_should_stop());
2258
2259 status = ocfs2_commit_cache(osb);
2260 if (status < 0) {
2261 static unsigned long abort_warn_time;
2262
2263 /* Warn about this once per minute */
2264 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2265 mlog(ML_ERROR, "status = %d, journal is "
2266 "already aborted.\n", status);
2267 /*
2268 * After ocfs2_commit_cache() fails, j_num_trans has a
2269 * non-zero value. Sleep here to avoid a busy-wait
2270 * loop.
2271 */
2272 msleep_interruptible(1000);
2273 }
2274
2275 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2276 mlog(ML_KTHREAD,
2277 "commit_thread: %u transactions pending on "
2278 "shutdown\n",
2279 atomic_read(&journal->j_num_trans));
2280 }
2281 }
2282
2283 return 0;
2284 }
2285
2286 /* Reads all the journal inodes without taking any cluster locks. Used
2287 * for hard readonly access to determine whether any journal requires
2288 * recovery. Also used to refresh the recovery generation numbers after
2289 * a journal has been recovered by another node.
2290 */
2291 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2292 {
2293 int ret = 0;
2294 unsigned int slot;
2295 struct buffer_head *di_bh = NULL;
2296 struct ocfs2_dinode *di;
2297 int journal_dirty = 0;
2298
2299 for(slot = 0; slot < osb->max_slots; slot++) {
2300 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2301 if (ret) {
2302 mlog_errno(ret);
2303 goto out;
2304 }
2305
2306 di = (struct ocfs2_dinode *) di_bh->b_data;
2307
2308 osb->slot_recovery_generations[slot] =
2309 ocfs2_get_recovery_generation(di);
2310
2311 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2312 OCFS2_JOURNAL_DIRTY_FL)
2313 journal_dirty = 1;
2314
2315 brelse(di_bh);
2316 di_bh = NULL;
2317 }
2318
2319 out:
2320 if (journal_dirty)
2321 ret = -EROFS;
2322 return ret;
2323 }