]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/pipe.c
pipe: set file->private_data to ->i_pipe
[mirror_ubuntu-artful-kernel.git] / fs / pipe.c
1 /*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27
28 #include "internal.h"
29
30 /*
31 * The max size that a non-root user is allowed to grow the pipe. Can
32 * be set by root in /proc/sys/fs/pipe-max-size
33 */
34 unsigned int pipe_max_size = 1048576;
35
36 /*
37 * Minimum pipe size, as required by POSIX
38 */
39 unsigned int pipe_min_size = PAGE_SIZE;
40
41 /*
42 * We use a start+len construction, which provides full use of the
43 * allocated memory.
44 * -- Florian Coosmann (FGC)
45 *
46 * Reads with count = 0 should always return 0.
47 * -- Julian Bradfield 1999-06-07.
48 *
49 * FIFOs and Pipes now generate SIGIO for both readers and writers.
50 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
51 *
52 * pipe_read & write cleanup
53 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
54 */
55
56 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
57 {
58 if (pipe->inode)
59 mutex_lock_nested(&pipe->mutex, subclass);
60 }
61
62 void pipe_lock(struct pipe_inode_info *pipe)
63 {
64 /*
65 * pipe_lock() nests non-pipe inode locks (for writing to a file)
66 */
67 pipe_lock_nested(pipe, I_MUTEX_PARENT);
68 }
69 EXPORT_SYMBOL(pipe_lock);
70
71 void pipe_unlock(struct pipe_inode_info *pipe)
72 {
73 if (pipe->inode)
74 mutex_unlock(&pipe->mutex);
75 }
76 EXPORT_SYMBOL(pipe_unlock);
77
78 void pipe_double_lock(struct pipe_inode_info *pipe1,
79 struct pipe_inode_info *pipe2)
80 {
81 BUG_ON(pipe1 == pipe2);
82
83 if (pipe1 < pipe2) {
84 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
85 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
86 } else {
87 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
88 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
89 }
90 }
91
92 /* Drop the inode semaphore and wait for a pipe event, atomically */
93 void pipe_wait(struct pipe_inode_info *pipe)
94 {
95 DEFINE_WAIT(wait);
96
97 /*
98 * Pipes are system-local resources, so sleeping on them
99 * is considered a noninteractive wait:
100 */
101 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
102 pipe_unlock(pipe);
103 schedule();
104 finish_wait(&pipe->wait, &wait);
105 pipe_lock(pipe);
106 }
107
108 static int
109 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
110 int atomic)
111 {
112 unsigned long copy;
113
114 while (len > 0) {
115 while (!iov->iov_len)
116 iov++;
117 copy = min_t(unsigned long, len, iov->iov_len);
118
119 if (atomic) {
120 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
121 return -EFAULT;
122 } else {
123 if (copy_from_user(to, iov->iov_base, copy))
124 return -EFAULT;
125 }
126 to += copy;
127 len -= copy;
128 iov->iov_base += copy;
129 iov->iov_len -= copy;
130 }
131 return 0;
132 }
133
134 static int
135 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
136 int atomic)
137 {
138 unsigned long copy;
139
140 while (len > 0) {
141 while (!iov->iov_len)
142 iov++;
143 copy = min_t(unsigned long, len, iov->iov_len);
144
145 if (atomic) {
146 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
147 return -EFAULT;
148 } else {
149 if (copy_to_user(iov->iov_base, from, copy))
150 return -EFAULT;
151 }
152 from += copy;
153 len -= copy;
154 iov->iov_base += copy;
155 iov->iov_len -= copy;
156 }
157 return 0;
158 }
159
160 /*
161 * Attempt to pre-fault in the user memory, so we can use atomic copies.
162 * Returns the number of bytes not faulted in.
163 */
164 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
165 {
166 while (!iov->iov_len)
167 iov++;
168
169 while (len > 0) {
170 unsigned long this_len;
171
172 this_len = min_t(unsigned long, len, iov->iov_len);
173 if (fault_in_pages_writeable(iov->iov_base, this_len))
174 break;
175
176 len -= this_len;
177 iov++;
178 }
179
180 return len;
181 }
182
183 /*
184 * Pre-fault in the user memory, so we can use atomic copies.
185 */
186 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
187 {
188 while (!iov->iov_len)
189 iov++;
190
191 while (len > 0) {
192 unsigned long this_len;
193
194 this_len = min_t(unsigned long, len, iov->iov_len);
195 fault_in_pages_readable(iov->iov_base, this_len);
196 len -= this_len;
197 iov++;
198 }
199 }
200
201 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
202 struct pipe_buffer *buf)
203 {
204 struct page *page = buf->page;
205
206 /*
207 * If nobody else uses this page, and we don't already have a
208 * temporary page, let's keep track of it as a one-deep
209 * allocation cache. (Otherwise just release our reference to it)
210 */
211 if (page_count(page) == 1 && !pipe->tmp_page)
212 pipe->tmp_page = page;
213 else
214 page_cache_release(page);
215 }
216
217 /**
218 * generic_pipe_buf_map - virtually map a pipe buffer
219 * @pipe: the pipe that the buffer belongs to
220 * @buf: the buffer that should be mapped
221 * @atomic: whether to use an atomic map
222 *
223 * Description:
224 * This function returns a kernel virtual address mapping for the
225 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
226 * and the caller has to be careful not to fault before calling
227 * the unmap function.
228 *
229 * Note that this function calls kmap_atomic() if @atomic != 0.
230 */
231 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
232 struct pipe_buffer *buf, int atomic)
233 {
234 if (atomic) {
235 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
236 return kmap_atomic(buf->page);
237 }
238
239 return kmap(buf->page);
240 }
241 EXPORT_SYMBOL(generic_pipe_buf_map);
242
243 /**
244 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
245 * @pipe: the pipe that the buffer belongs to
246 * @buf: the buffer that should be unmapped
247 * @map_data: the data that the mapping function returned
248 *
249 * Description:
250 * This function undoes the mapping that ->map() provided.
251 */
252 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
253 struct pipe_buffer *buf, void *map_data)
254 {
255 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
256 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
257 kunmap_atomic(map_data);
258 } else
259 kunmap(buf->page);
260 }
261 EXPORT_SYMBOL(generic_pipe_buf_unmap);
262
263 /**
264 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
265 * @pipe: the pipe that the buffer belongs to
266 * @buf: the buffer to attempt to steal
267 *
268 * Description:
269 * This function attempts to steal the &struct page attached to
270 * @buf. If successful, this function returns 0 and returns with
271 * the page locked. The caller may then reuse the page for whatever
272 * he wishes; the typical use is insertion into a different file
273 * page cache.
274 */
275 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
276 struct pipe_buffer *buf)
277 {
278 struct page *page = buf->page;
279
280 /*
281 * A reference of one is golden, that means that the owner of this
282 * page is the only one holding a reference to it. lock the page
283 * and return OK.
284 */
285 if (page_count(page) == 1) {
286 lock_page(page);
287 return 0;
288 }
289
290 return 1;
291 }
292 EXPORT_SYMBOL(generic_pipe_buf_steal);
293
294 /**
295 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
296 * @pipe: the pipe that the buffer belongs to
297 * @buf: the buffer to get a reference to
298 *
299 * Description:
300 * This function grabs an extra reference to @buf. It's used in
301 * in the tee() system call, when we duplicate the buffers in one
302 * pipe into another.
303 */
304 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
305 {
306 page_cache_get(buf->page);
307 }
308 EXPORT_SYMBOL(generic_pipe_buf_get);
309
310 /**
311 * generic_pipe_buf_confirm - verify contents of the pipe buffer
312 * @info: the pipe that the buffer belongs to
313 * @buf: the buffer to confirm
314 *
315 * Description:
316 * This function does nothing, because the generic pipe code uses
317 * pages that are always good when inserted into the pipe.
318 */
319 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
320 struct pipe_buffer *buf)
321 {
322 return 0;
323 }
324 EXPORT_SYMBOL(generic_pipe_buf_confirm);
325
326 /**
327 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
328 * @pipe: the pipe that the buffer belongs to
329 * @buf: the buffer to put a reference to
330 *
331 * Description:
332 * This function releases a reference to @buf.
333 */
334 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
335 struct pipe_buffer *buf)
336 {
337 page_cache_release(buf->page);
338 }
339 EXPORT_SYMBOL(generic_pipe_buf_release);
340
341 static const struct pipe_buf_operations anon_pipe_buf_ops = {
342 .can_merge = 1,
343 .map = generic_pipe_buf_map,
344 .unmap = generic_pipe_buf_unmap,
345 .confirm = generic_pipe_buf_confirm,
346 .release = anon_pipe_buf_release,
347 .steal = generic_pipe_buf_steal,
348 .get = generic_pipe_buf_get,
349 };
350
351 static const struct pipe_buf_operations packet_pipe_buf_ops = {
352 .can_merge = 0,
353 .map = generic_pipe_buf_map,
354 .unmap = generic_pipe_buf_unmap,
355 .confirm = generic_pipe_buf_confirm,
356 .release = anon_pipe_buf_release,
357 .steal = generic_pipe_buf_steal,
358 .get = generic_pipe_buf_get,
359 };
360
361 static ssize_t
362 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
363 unsigned long nr_segs, loff_t pos)
364 {
365 struct file *filp = iocb->ki_filp;
366 struct pipe_inode_info *pipe = filp->private_data;
367 int do_wakeup;
368 ssize_t ret;
369 struct iovec *iov = (struct iovec *)_iov;
370 size_t total_len;
371
372 total_len = iov_length(iov, nr_segs);
373 /* Null read succeeds. */
374 if (unlikely(total_len == 0))
375 return 0;
376
377 do_wakeup = 0;
378 ret = 0;
379 pipe_lock(pipe);
380 for (;;) {
381 int bufs = pipe->nrbufs;
382 if (bufs) {
383 int curbuf = pipe->curbuf;
384 struct pipe_buffer *buf = pipe->bufs + curbuf;
385 const struct pipe_buf_operations *ops = buf->ops;
386 void *addr;
387 size_t chars = buf->len;
388 int error, atomic;
389
390 if (chars > total_len)
391 chars = total_len;
392
393 error = ops->confirm(pipe, buf);
394 if (error) {
395 if (!ret)
396 ret = error;
397 break;
398 }
399
400 atomic = !iov_fault_in_pages_write(iov, chars);
401 redo:
402 addr = ops->map(pipe, buf, atomic);
403 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
404 ops->unmap(pipe, buf, addr);
405 if (unlikely(error)) {
406 /*
407 * Just retry with the slow path if we failed.
408 */
409 if (atomic) {
410 atomic = 0;
411 goto redo;
412 }
413 if (!ret)
414 ret = error;
415 break;
416 }
417 ret += chars;
418 buf->offset += chars;
419 buf->len -= chars;
420
421 /* Was it a packet buffer? Clean up and exit */
422 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
423 total_len = chars;
424 buf->len = 0;
425 }
426
427 if (!buf->len) {
428 buf->ops = NULL;
429 ops->release(pipe, buf);
430 curbuf = (curbuf + 1) & (pipe->buffers - 1);
431 pipe->curbuf = curbuf;
432 pipe->nrbufs = --bufs;
433 do_wakeup = 1;
434 }
435 total_len -= chars;
436 if (!total_len)
437 break; /* common path: read succeeded */
438 }
439 if (bufs) /* More to do? */
440 continue;
441 if (!pipe->writers)
442 break;
443 if (!pipe->waiting_writers) {
444 /* syscall merging: Usually we must not sleep
445 * if O_NONBLOCK is set, or if we got some data.
446 * But if a writer sleeps in kernel space, then
447 * we can wait for that data without violating POSIX.
448 */
449 if (ret)
450 break;
451 if (filp->f_flags & O_NONBLOCK) {
452 ret = -EAGAIN;
453 break;
454 }
455 }
456 if (signal_pending(current)) {
457 if (!ret)
458 ret = -ERESTARTSYS;
459 break;
460 }
461 if (do_wakeup) {
462 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
463 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
464 }
465 pipe_wait(pipe);
466 }
467 pipe_unlock(pipe);
468
469 /* Signal writers asynchronously that there is more room. */
470 if (do_wakeup) {
471 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
472 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
473 }
474 if (ret > 0)
475 file_accessed(filp);
476 return ret;
477 }
478
479 static inline int is_packetized(struct file *file)
480 {
481 return (file->f_flags & O_DIRECT) != 0;
482 }
483
484 static ssize_t
485 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
486 unsigned long nr_segs, loff_t ppos)
487 {
488 struct file *filp = iocb->ki_filp;
489 struct pipe_inode_info *pipe = filp->private_data;
490 ssize_t ret;
491 int do_wakeup;
492 struct iovec *iov = (struct iovec *)_iov;
493 size_t total_len;
494 ssize_t chars;
495
496 total_len = iov_length(iov, nr_segs);
497 /* Null write succeeds. */
498 if (unlikely(total_len == 0))
499 return 0;
500
501 do_wakeup = 0;
502 ret = 0;
503 pipe_lock(pipe);
504
505 if (!pipe->readers) {
506 send_sig(SIGPIPE, current, 0);
507 ret = -EPIPE;
508 goto out;
509 }
510
511 /* We try to merge small writes */
512 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
513 if (pipe->nrbufs && chars != 0) {
514 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
515 (pipe->buffers - 1);
516 struct pipe_buffer *buf = pipe->bufs + lastbuf;
517 const struct pipe_buf_operations *ops = buf->ops;
518 int offset = buf->offset + buf->len;
519
520 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
521 int error, atomic = 1;
522 void *addr;
523
524 error = ops->confirm(pipe, buf);
525 if (error)
526 goto out;
527
528 iov_fault_in_pages_read(iov, chars);
529 redo1:
530 addr = ops->map(pipe, buf, atomic);
531 error = pipe_iov_copy_from_user(offset + addr, iov,
532 chars, atomic);
533 ops->unmap(pipe, buf, addr);
534 ret = error;
535 do_wakeup = 1;
536 if (error) {
537 if (atomic) {
538 atomic = 0;
539 goto redo1;
540 }
541 goto out;
542 }
543 buf->len += chars;
544 total_len -= chars;
545 ret = chars;
546 if (!total_len)
547 goto out;
548 }
549 }
550
551 for (;;) {
552 int bufs;
553
554 if (!pipe->readers) {
555 send_sig(SIGPIPE, current, 0);
556 if (!ret)
557 ret = -EPIPE;
558 break;
559 }
560 bufs = pipe->nrbufs;
561 if (bufs < pipe->buffers) {
562 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
563 struct pipe_buffer *buf = pipe->bufs + newbuf;
564 struct page *page = pipe->tmp_page;
565 char *src;
566 int error, atomic = 1;
567
568 if (!page) {
569 page = alloc_page(GFP_HIGHUSER);
570 if (unlikely(!page)) {
571 ret = ret ? : -ENOMEM;
572 break;
573 }
574 pipe->tmp_page = page;
575 }
576 /* Always wake up, even if the copy fails. Otherwise
577 * we lock up (O_NONBLOCK-)readers that sleep due to
578 * syscall merging.
579 * FIXME! Is this really true?
580 */
581 do_wakeup = 1;
582 chars = PAGE_SIZE;
583 if (chars > total_len)
584 chars = total_len;
585
586 iov_fault_in_pages_read(iov, chars);
587 redo2:
588 if (atomic)
589 src = kmap_atomic(page);
590 else
591 src = kmap(page);
592
593 error = pipe_iov_copy_from_user(src, iov, chars,
594 atomic);
595 if (atomic)
596 kunmap_atomic(src);
597 else
598 kunmap(page);
599
600 if (unlikely(error)) {
601 if (atomic) {
602 atomic = 0;
603 goto redo2;
604 }
605 if (!ret)
606 ret = error;
607 break;
608 }
609 ret += chars;
610
611 /* Insert it into the buffer array */
612 buf->page = page;
613 buf->ops = &anon_pipe_buf_ops;
614 buf->offset = 0;
615 buf->len = chars;
616 buf->flags = 0;
617 if (is_packetized(filp)) {
618 buf->ops = &packet_pipe_buf_ops;
619 buf->flags = PIPE_BUF_FLAG_PACKET;
620 }
621 pipe->nrbufs = ++bufs;
622 pipe->tmp_page = NULL;
623
624 total_len -= chars;
625 if (!total_len)
626 break;
627 }
628 if (bufs < pipe->buffers)
629 continue;
630 if (filp->f_flags & O_NONBLOCK) {
631 if (!ret)
632 ret = -EAGAIN;
633 break;
634 }
635 if (signal_pending(current)) {
636 if (!ret)
637 ret = -ERESTARTSYS;
638 break;
639 }
640 if (do_wakeup) {
641 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
642 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
643 do_wakeup = 0;
644 }
645 pipe->waiting_writers++;
646 pipe_wait(pipe);
647 pipe->waiting_writers--;
648 }
649 out:
650 pipe_unlock(pipe);
651 if (do_wakeup) {
652 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
653 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
654 }
655 if (ret > 0) {
656 int err = file_update_time(filp);
657 if (err)
658 ret = err;
659 }
660 return ret;
661 }
662
663 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
664 {
665 struct pipe_inode_info *pipe = filp->private_data;
666 int count, buf, nrbufs;
667
668 switch (cmd) {
669 case FIONREAD:
670 pipe_lock(pipe);
671 count = 0;
672 buf = pipe->curbuf;
673 nrbufs = pipe->nrbufs;
674 while (--nrbufs >= 0) {
675 count += pipe->bufs[buf].len;
676 buf = (buf+1) & (pipe->buffers - 1);
677 }
678 pipe_unlock(pipe);
679
680 return put_user(count, (int __user *)arg);
681 default:
682 return -ENOIOCTLCMD;
683 }
684 }
685
686 /* No kernel lock held - fine */
687 static unsigned int
688 pipe_poll(struct file *filp, poll_table *wait)
689 {
690 unsigned int mask;
691 struct pipe_inode_info *pipe = filp->private_data;
692 int nrbufs;
693
694 poll_wait(filp, &pipe->wait, wait);
695
696 /* Reading only -- no need for acquiring the semaphore. */
697 nrbufs = pipe->nrbufs;
698 mask = 0;
699 if (filp->f_mode & FMODE_READ) {
700 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
701 if (!pipe->writers && filp->f_version != pipe->w_counter)
702 mask |= POLLHUP;
703 }
704
705 if (filp->f_mode & FMODE_WRITE) {
706 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
707 /*
708 * Most Unices do not set POLLERR for FIFOs but on Linux they
709 * behave exactly like pipes for poll().
710 */
711 if (!pipe->readers)
712 mask |= POLLERR;
713 }
714
715 return mask;
716 }
717
718 static int
719 pipe_release(struct inode *inode, struct file *file)
720 {
721 struct pipe_inode_info *pipe = inode->i_pipe;
722 int kill = 0;
723
724 pipe_lock(pipe);
725 if (file->f_mode & FMODE_READ)
726 pipe->readers--;
727 if (file->f_mode & FMODE_WRITE)
728 pipe->writers--;
729
730 if (pipe->readers || pipe->writers) {
731 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
732 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
733 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 }
735 spin_lock(&inode->i_lock);
736 if (!--pipe->files) {
737 inode->i_pipe = NULL;
738 kill = 1;
739 }
740 spin_unlock(&inode->i_lock);
741 pipe_unlock(pipe);
742
743 if (kill)
744 __free_pipe_info(pipe);
745
746 return 0;
747 }
748
749 static int
750 pipe_fasync(int fd, struct file *filp, int on)
751 {
752 struct pipe_inode_info *pipe = filp->private_data;
753 int retval = 0;
754
755 pipe_lock(pipe);
756 if (filp->f_mode & FMODE_READ)
757 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
758 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
759 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
760 if (retval < 0 && (filp->f_mode & FMODE_READ))
761 /* this can happen only if on == T */
762 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
763 }
764 pipe_unlock(pipe);
765 return retval;
766 }
767
768 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
769 {
770 struct pipe_inode_info *pipe;
771
772 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
773 if (pipe) {
774 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
775 if (pipe->bufs) {
776 init_waitqueue_head(&pipe->wait);
777 pipe->r_counter = pipe->w_counter = 1;
778 pipe->inode = inode;
779 pipe->buffers = PIPE_DEF_BUFFERS;
780 mutex_init(&pipe->mutex);
781 return pipe;
782 }
783 kfree(pipe);
784 }
785
786 return NULL;
787 }
788
789 void __free_pipe_info(struct pipe_inode_info *pipe)
790 {
791 int i;
792
793 for (i = 0; i < pipe->buffers; i++) {
794 struct pipe_buffer *buf = pipe->bufs + i;
795 if (buf->ops)
796 buf->ops->release(pipe, buf);
797 }
798 if (pipe->tmp_page)
799 __free_page(pipe->tmp_page);
800 kfree(pipe->bufs);
801 kfree(pipe);
802 }
803
804 void free_pipe_info(struct inode *inode)
805 {
806 __free_pipe_info(inode->i_pipe);
807 inode->i_pipe = NULL;
808 }
809
810 static struct vfsmount *pipe_mnt __read_mostly;
811
812 /*
813 * pipefs_dname() is called from d_path().
814 */
815 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
816 {
817 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
818 dentry->d_inode->i_ino);
819 }
820
821 static const struct dentry_operations pipefs_dentry_operations = {
822 .d_dname = pipefs_dname,
823 };
824
825 static struct inode * get_pipe_inode(void)
826 {
827 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
828 struct pipe_inode_info *pipe;
829
830 if (!inode)
831 goto fail_inode;
832
833 inode->i_ino = get_next_ino();
834
835 pipe = alloc_pipe_info(inode);
836 if (!pipe)
837 goto fail_iput;
838
839 inode->i_pipe = pipe;
840 pipe->files = 2;
841 pipe->readers = pipe->writers = 1;
842 inode->i_fop = &pipefifo_fops;
843
844 /*
845 * Mark the inode dirty from the very beginning,
846 * that way it will never be moved to the dirty
847 * list because "mark_inode_dirty()" will think
848 * that it already _is_ on the dirty list.
849 */
850 inode->i_state = I_DIRTY;
851 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
852 inode->i_uid = current_fsuid();
853 inode->i_gid = current_fsgid();
854 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
855
856 return inode;
857
858 fail_iput:
859 iput(inode);
860
861 fail_inode:
862 return NULL;
863 }
864
865 int create_pipe_files(struct file **res, int flags)
866 {
867 int err;
868 struct inode *inode = get_pipe_inode();
869 struct file *f;
870 struct path path;
871 static struct qstr name = { .name = "" };
872
873 if (!inode)
874 return -ENFILE;
875
876 err = -ENOMEM;
877 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
878 if (!path.dentry)
879 goto err_inode;
880 path.mnt = mntget(pipe_mnt);
881
882 d_instantiate(path.dentry, inode);
883
884 err = -ENFILE;
885 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
886 if (IS_ERR(f))
887 goto err_dentry;
888
889 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
890 f->private_data = inode->i_pipe;
891
892 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
893 if (IS_ERR(res[0]))
894 goto err_file;
895
896 path_get(&path);
897 res[0]->private_data = inode->i_pipe;
898 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
899 res[1] = f;
900 return 0;
901
902 err_file:
903 put_filp(f);
904 err_dentry:
905 free_pipe_info(inode);
906 path_put(&path);
907 return err;
908
909 err_inode:
910 free_pipe_info(inode);
911 iput(inode);
912 return err;
913 }
914
915 static int __do_pipe_flags(int *fd, struct file **files, int flags)
916 {
917 int error;
918 int fdw, fdr;
919
920 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
921 return -EINVAL;
922
923 error = create_pipe_files(files, flags);
924 if (error)
925 return error;
926
927 error = get_unused_fd_flags(flags);
928 if (error < 0)
929 goto err_read_pipe;
930 fdr = error;
931
932 error = get_unused_fd_flags(flags);
933 if (error < 0)
934 goto err_fdr;
935 fdw = error;
936
937 audit_fd_pair(fdr, fdw);
938 fd[0] = fdr;
939 fd[1] = fdw;
940 return 0;
941
942 err_fdr:
943 put_unused_fd(fdr);
944 err_read_pipe:
945 fput(files[0]);
946 fput(files[1]);
947 return error;
948 }
949
950 int do_pipe_flags(int *fd, int flags)
951 {
952 struct file *files[2];
953 int error = __do_pipe_flags(fd, files, flags);
954 if (!error) {
955 fd_install(fd[0], files[0]);
956 fd_install(fd[1], files[1]);
957 }
958 return error;
959 }
960
961 /*
962 * sys_pipe() is the normal C calling standard for creating
963 * a pipe. It's not the way Unix traditionally does this, though.
964 */
965 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
966 {
967 struct file *files[2];
968 int fd[2];
969 int error;
970
971 error = __do_pipe_flags(fd, files, flags);
972 if (!error) {
973 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
974 fput(files[0]);
975 fput(files[1]);
976 put_unused_fd(fd[0]);
977 put_unused_fd(fd[1]);
978 error = -EFAULT;
979 } else {
980 fd_install(fd[0], files[0]);
981 fd_install(fd[1], files[1]);
982 }
983 }
984 return error;
985 }
986
987 SYSCALL_DEFINE1(pipe, int __user *, fildes)
988 {
989 return sys_pipe2(fildes, 0);
990 }
991
992 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
993 {
994 int cur = *cnt;
995
996 while (cur == *cnt) {
997 pipe_wait(pipe);
998 if (signal_pending(current))
999 break;
1000 }
1001 return cur == *cnt ? -ERESTARTSYS : 0;
1002 }
1003
1004 static void wake_up_partner(struct pipe_inode_info *pipe)
1005 {
1006 wake_up_interruptible(&pipe->wait);
1007 }
1008
1009 static int fifo_open(struct inode *inode, struct file *filp)
1010 {
1011 struct pipe_inode_info *pipe;
1012 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1013 int kill = 0;
1014 int ret;
1015
1016 filp->f_version = 0;
1017
1018 spin_lock(&inode->i_lock);
1019 if (inode->i_pipe) {
1020 pipe = inode->i_pipe;
1021 pipe->files++;
1022 spin_unlock(&inode->i_lock);
1023 } else {
1024 spin_unlock(&inode->i_lock);
1025 pipe = alloc_pipe_info(inode);
1026 if (!pipe)
1027 return -ENOMEM;
1028 pipe->files = 1;
1029 spin_lock(&inode->i_lock);
1030 if (unlikely(inode->i_pipe)) {
1031 inode->i_pipe->files++;
1032 spin_unlock(&inode->i_lock);
1033 __free_pipe_info(pipe);
1034 pipe = inode->i_pipe;
1035 } else {
1036 inode->i_pipe = pipe;
1037 spin_unlock(&inode->i_lock);
1038 }
1039 }
1040 filp->private_data = pipe;
1041 /* OK, we have a pipe and it's pinned down */
1042
1043 pipe_lock(pipe);
1044
1045 /* We can only do regular read/write on fifos */
1046 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
1047
1048 switch (filp->f_mode) {
1049 case FMODE_READ:
1050 /*
1051 * O_RDONLY
1052 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1053 * opened, even when there is no process writing the FIFO.
1054 */
1055 pipe->r_counter++;
1056 if (pipe->readers++ == 0)
1057 wake_up_partner(pipe);
1058
1059 if (!is_pipe && !pipe->writers) {
1060 if ((filp->f_flags & O_NONBLOCK)) {
1061 /* suppress POLLHUP until we have
1062 * seen a writer */
1063 filp->f_version = pipe->w_counter;
1064 } else {
1065 if (wait_for_partner(pipe, &pipe->w_counter))
1066 goto err_rd;
1067 }
1068 }
1069 break;
1070
1071 case FMODE_WRITE:
1072 /*
1073 * O_WRONLY
1074 * POSIX.1 says that O_NONBLOCK means return -1 with
1075 * errno=ENXIO when there is no process reading the FIFO.
1076 */
1077 ret = -ENXIO;
1078 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1079 goto err;
1080
1081 pipe->w_counter++;
1082 if (!pipe->writers++)
1083 wake_up_partner(pipe);
1084
1085 if (!is_pipe && !pipe->readers) {
1086 if (wait_for_partner(pipe, &pipe->r_counter))
1087 goto err_wr;
1088 }
1089 break;
1090
1091 case FMODE_READ | FMODE_WRITE:
1092 /*
1093 * O_RDWR
1094 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1095 * This implementation will NEVER block on a O_RDWR open, since
1096 * the process can at least talk to itself.
1097 */
1098
1099 pipe->readers++;
1100 pipe->writers++;
1101 pipe->r_counter++;
1102 pipe->w_counter++;
1103 if (pipe->readers == 1 || pipe->writers == 1)
1104 wake_up_partner(pipe);
1105 break;
1106
1107 default:
1108 ret = -EINVAL;
1109 goto err;
1110 }
1111
1112 /* Ok! */
1113 pipe_unlock(pipe);
1114 return 0;
1115
1116 err_rd:
1117 if (!--pipe->readers)
1118 wake_up_interruptible(&pipe->wait);
1119 ret = -ERESTARTSYS;
1120 goto err;
1121
1122 err_wr:
1123 if (!--pipe->writers)
1124 wake_up_interruptible(&pipe->wait);
1125 ret = -ERESTARTSYS;
1126 goto err;
1127
1128 err:
1129 spin_lock(&inode->i_lock);
1130 if (!--pipe->files) {
1131 inode->i_pipe = NULL;
1132 kill = 1;
1133 }
1134 spin_unlock(&inode->i_lock);
1135 pipe_unlock(pipe);
1136 if (kill)
1137 __free_pipe_info(pipe);
1138 return ret;
1139 }
1140
1141 const struct file_operations pipefifo_fops = {
1142 .open = fifo_open,
1143 .llseek = no_llseek,
1144 .read = do_sync_read,
1145 .aio_read = pipe_read,
1146 .write = do_sync_write,
1147 .aio_write = pipe_write,
1148 .poll = pipe_poll,
1149 .unlocked_ioctl = pipe_ioctl,
1150 .release = pipe_release,
1151 .fasync = pipe_fasync,
1152 };
1153
1154 /*
1155 * Allocate a new array of pipe buffers and copy the info over. Returns the
1156 * pipe size if successful, or return -ERROR on error.
1157 */
1158 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1159 {
1160 struct pipe_buffer *bufs;
1161
1162 /*
1163 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1164 * expect a lot of shrink+grow operations, just free and allocate
1165 * again like we would do for growing. If the pipe currently
1166 * contains more buffers than arg, then return busy.
1167 */
1168 if (nr_pages < pipe->nrbufs)
1169 return -EBUSY;
1170
1171 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1172 if (unlikely(!bufs))
1173 return -ENOMEM;
1174
1175 /*
1176 * The pipe array wraps around, so just start the new one at zero
1177 * and adjust the indexes.
1178 */
1179 if (pipe->nrbufs) {
1180 unsigned int tail;
1181 unsigned int head;
1182
1183 tail = pipe->curbuf + pipe->nrbufs;
1184 if (tail < pipe->buffers)
1185 tail = 0;
1186 else
1187 tail &= (pipe->buffers - 1);
1188
1189 head = pipe->nrbufs - tail;
1190 if (head)
1191 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1192 if (tail)
1193 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1194 }
1195
1196 pipe->curbuf = 0;
1197 kfree(pipe->bufs);
1198 pipe->bufs = bufs;
1199 pipe->buffers = nr_pages;
1200 return nr_pages * PAGE_SIZE;
1201 }
1202
1203 /*
1204 * Currently we rely on the pipe array holding a power-of-2 number
1205 * of pages.
1206 */
1207 static inline unsigned int round_pipe_size(unsigned int size)
1208 {
1209 unsigned long nr_pages;
1210
1211 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1212 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1213 }
1214
1215 /*
1216 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1217 * will return an error.
1218 */
1219 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1220 size_t *lenp, loff_t *ppos)
1221 {
1222 int ret;
1223
1224 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1225 if (ret < 0 || !write)
1226 return ret;
1227
1228 pipe_max_size = round_pipe_size(pipe_max_size);
1229 return ret;
1230 }
1231
1232 /*
1233 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1234 * location, so checking ->i_pipe is not enough to verify that this is a
1235 * pipe.
1236 */
1237 struct pipe_inode_info *get_pipe_info(struct file *file)
1238 {
1239 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1240 }
1241
1242 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1243 {
1244 struct pipe_inode_info *pipe;
1245 long ret;
1246
1247 pipe = get_pipe_info(file);
1248 if (!pipe)
1249 return -EBADF;
1250
1251 pipe_lock(pipe);
1252
1253 switch (cmd) {
1254 case F_SETPIPE_SZ: {
1255 unsigned int size, nr_pages;
1256
1257 size = round_pipe_size(arg);
1258 nr_pages = size >> PAGE_SHIFT;
1259
1260 ret = -EINVAL;
1261 if (!nr_pages)
1262 goto out;
1263
1264 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1265 ret = -EPERM;
1266 goto out;
1267 }
1268 ret = pipe_set_size(pipe, nr_pages);
1269 break;
1270 }
1271 case F_GETPIPE_SZ:
1272 ret = pipe->buffers * PAGE_SIZE;
1273 break;
1274 default:
1275 ret = -EINVAL;
1276 break;
1277 }
1278
1279 out:
1280 pipe_unlock(pipe);
1281 return ret;
1282 }
1283
1284 static const struct super_operations pipefs_ops = {
1285 .destroy_inode = free_inode_nonrcu,
1286 .statfs = simple_statfs,
1287 };
1288
1289 /*
1290 * pipefs should _never_ be mounted by userland - too much of security hassle,
1291 * no real gain from having the whole whorehouse mounted. So we don't need
1292 * any operations on the root directory. However, we need a non-trivial
1293 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1294 */
1295 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1296 int flags, const char *dev_name, void *data)
1297 {
1298 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1299 &pipefs_dentry_operations, PIPEFS_MAGIC);
1300 }
1301
1302 static struct file_system_type pipe_fs_type = {
1303 .name = "pipefs",
1304 .mount = pipefs_mount,
1305 .kill_sb = kill_anon_super,
1306 };
1307
1308 static int __init init_pipe_fs(void)
1309 {
1310 int err = register_filesystem(&pipe_fs_type);
1311
1312 if (!err) {
1313 pipe_mnt = kern_mount(&pipe_fs_type);
1314 if (IS_ERR(pipe_mnt)) {
1315 err = PTR_ERR(pipe_mnt);
1316 unregister_filesystem(&pipe_fs_type);
1317 }
1318 }
1319 return err;
1320 }
1321
1322 fs_initcall(init_pipe_fs);