]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - fs/pipe.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-impish-kernel.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35 * The max size that a non-root user is allowed to grow the pipe. Can
36 * be set by root in /proc/sys/fs/pipe-max-size
37 */
38 unsigned int pipe_max_size = 1048576;
39
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41 * matches default values.
42 */
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45
46 /*
47 * We use head and tail indices that aren't masked off, except at the point of
48 * dereference, but rather they're allowed to wrap naturally. This means there
49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 * <= 2^31.
51 * -- David Howells 2019-09-23.
52 *
53 * Reads with count = 0 should always return 0.
54 * -- Julian Bradfield 1999-06-07.
55 *
56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 *
59 * pipe_read & write cleanup
60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61 */
62
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 {
65 if (pipe->files)
66 mutex_lock_nested(&pipe->mutex, subclass);
67 }
68
69 void pipe_lock(struct pipe_inode_info *pipe)
70 {
71 /*
72 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 */
74 pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 }
76 EXPORT_SYMBOL(pipe_lock);
77
78 void pipe_unlock(struct pipe_inode_info *pipe)
79 {
80 if (pipe->files)
81 mutex_unlock(&pipe->mutex);
82 }
83 EXPORT_SYMBOL(pipe_unlock);
84
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 {
87 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 }
89
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 {
92 mutex_unlock(&pipe->mutex);
93 }
94
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96 struct pipe_inode_info *pipe2)
97 {
98 BUG_ON(pipe1 == pipe2);
99
100 if (pipe1 < pipe2) {
101 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103 } else {
104 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106 }
107 }
108
109 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
110 struct pipe_buffer *buf)
111 {
112 struct page *page = buf->page;
113
114 /*
115 * If nobody else uses this page, and we don't already have a
116 * temporary page, let's keep track of it as a one-deep
117 * allocation cache. (Otherwise just release our reference to it)
118 */
119 if (page_count(page) == 1 && !pipe->tmp_page)
120 pipe->tmp_page = page;
121 else
122 put_page(page);
123 }
124
125 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127 {
128 struct page *page = buf->page;
129
130 if (page_count(page) != 1)
131 return false;
132 memcg_kmem_uncharge_page(page, 0);
133 __SetPageLocked(page);
134 return true;
135 }
136
137 /**
138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
139 * @pipe: the pipe that the buffer belongs to
140 * @buf: the buffer to attempt to steal
141 *
142 * Description:
143 * This function attempts to steal the &struct page attached to
144 * @buf. If successful, this function returns 0 and returns with
145 * the page locked. The caller may then reuse the page for whatever
146 * he wishes; the typical use is insertion into a different file
147 * page cache.
148 */
149 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
150 struct pipe_buffer *buf)
151 {
152 struct page *page = buf->page;
153
154 /*
155 * A reference of one is golden, that means that the owner of this
156 * page is the only one holding a reference to it. lock the page
157 * and return OK.
158 */
159 if (page_count(page) == 1) {
160 lock_page(page);
161 return true;
162 }
163 return false;
164 }
165 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
166
167 /**
168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
169 * @pipe: the pipe that the buffer belongs to
170 * @buf: the buffer to get a reference to
171 *
172 * Description:
173 * This function grabs an extra reference to @buf. It's used in
174 * the tee() system call, when we duplicate the buffers in one
175 * pipe into another.
176 */
177 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
178 {
179 return try_get_page(buf->page);
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_get);
182
183 /**
184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to put a reference to
187 *
188 * Description:
189 * This function releases a reference to @buf.
190 */
191 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
192 struct pipe_buffer *buf)
193 {
194 put_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_release);
197
198 static const struct pipe_buf_operations anon_pipe_buf_ops = {
199 .release = anon_pipe_buf_release,
200 .try_steal = anon_pipe_buf_try_steal,
201 .get = generic_pipe_buf_get,
202 };
203
204 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
205 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
206 {
207 unsigned int head = READ_ONCE(pipe->head);
208 unsigned int tail = READ_ONCE(pipe->tail);
209 unsigned int writers = READ_ONCE(pipe->writers);
210
211 return !pipe_empty(head, tail) || !writers;
212 }
213
214 static ssize_t
215 pipe_read(struct kiocb *iocb, struct iov_iter *to)
216 {
217 size_t total_len = iov_iter_count(to);
218 struct file *filp = iocb->ki_filp;
219 struct pipe_inode_info *pipe = filp->private_data;
220 bool was_full, wake_next_reader = false;
221 ssize_t ret;
222
223 /* Null read succeeds. */
224 if (unlikely(total_len == 0))
225 return 0;
226
227 ret = 0;
228 __pipe_lock(pipe);
229
230 /*
231 * We only wake up writers if the pipe was full when we started
232 * reading in order to avoid unnecessary wakeups.
233 *
234 * But when we do wake up writers, we do so using a sync wakeup
235 * (WF_SYNC), because we want them to get going and generate more
236 * data for us.
237 */
238 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
239 for (;;) {
240 unsigned int head = pipe->head;
241 unsigned int tail = pipe->tail;
242 unsigned int mask = pipe->ring_size - 1;
243
244 #ifdef CONFIG_WATCH_QUEUE
245 if (pipe->note_loss) {
246 struct watch_notification n;
247
248 if (total_len < 8) {
249 if (ret == 0)
250 ret = -ENOBUFS;
251 break;
252 }
253
254 n.type = WATCH_TYPE_META;
255 n.subtype = WATCH_META_LOSS_NOTIFICATION;
256 n.info = watch_sizeof(n);
257 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
258 if (ret == 0)
259 ret = -EFAULT;
260 break;
261 }
262 ret += sizeof(n);
263 total_len -= sizeof(n);
264 pipe->note_loss = false;
265 }
266 #endif
267
268 if (!pipe_empty(head, tail)) {
269 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
270 size_t chars = buf->len;
271 size_t written;
272 int error;
273
274 if (chars > total_len) {
275 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
276 if (ret == 0)
277 ret = -ENOBUFS;
278 break;
279 }
280 chars = total_len;
281 }
282
283 error = pipe_buf_confirm(pipe, buf);
284 if (error) {
285 if (!ret)
286 ret = error;
287 break;
288 }
289
290 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
291 if (unlikely(written < chars)) {
292 if (!ret)
293 ret = -EFAULT;
294 break;
295 }
296 ret += chars;
297 buf->offset += chars;
298 buf->len -= chars;
299
300 /* Was it a packet buffer? Clean up and exit */
301 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
302 total_len = chars;
303 buf->len = 0;
304 }
305
306 if (!buf->len) {
307 pipe_buf_release(pipe, buf);
308 spin_lock_irq(&pipe->rd_wait.lock);
309 #ifdef CONFIG_WATCH_QUEUE
310 if (buf->flags & PIPE_BUF_FLAG_LOSS)
311 pipe->note_loss = true;
312 #endif
313 tail++;
314 pipe->tail = tail;
315 spin_unlock_irq(&pipe->rd_wait.lock);
316 }
317 total_len -= chars;
318 if (!total_len)
319 break; /* common path: read succeeded */
320 if (!pipe_empty(head, tail)) /* More to do? */
321 continue;
322 }
323
324 if (!pipe->writers)
325 break;
326 if (ret)
327 break;
328 if (filp->f_flags & O_NONBLOCK) {
329 ret = -EAGAIN;
330 break;
331 }
332 __pipe_unlock(pipe);
333
334 /*
335 * We only get here if we didn't actually read anything.
336 *
337 * However, we could have seen (and removed) a zero-sized
338 * pipe buffer, and might have made space in the buffers
339 * that way.
340 *
341 * You can't make zero-sized pipe buffers by doing an empty
342 * write (not even in packet mode), but they can happen if
343 * the writer gets an EFAULT when trying to fill a buffer
344 * that already got allocated and inserted in the buffer
345 * array.
346 *
347 * So we still need to wake up any pending writers in the
348 * _very_ unlikely case that the pipe was full, but we got
349 * no data.
350 */
351 if (unlikely(was_full)) {
352 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
353 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
354 }
355
356 /*
357 * But because we didn't read anything, at this point we can
358 * just return directly with -ERESTARTSYS if we're interrupted,
359 * since we've done any required wakeups and there's no need
360 * to mark anything accessed. And we've dropped the lock.
361 */
362 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
363 return -ERESTARTSYS;
364
365 __pipe_lock(pipe);
366 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
367 wake_next_reader = true;
368 }
369 if (pipe_empty(pipe->head, pipe->tail))
370 wake_next_reader = false;
371 __pipe_unlock(pipe);
372
373 if (was_full) {
374 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
375 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
376 }
377 if (wake_next_reader)
378 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
379 if (ret > 0)
380 file_accessed(filp);
381 return ret;
382 }
383
384 static inline int is_packetized(struct file *file)
385 {
386 return (file->f_flags & O_DIRECT) != 0;
387 }
388
389 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
390 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
391 {
392 unsigned int head = READ_ONCE(pipe->head);
393 unsigned int tail = READ_ONCE(pipe->tail);
394 unsigned int max_usage = READ_ONCE(pipe->max_usage);
395
396 return !pipe_full(head, tail, max_usage) ||
397 !READ_ONCE(pipe->readers);
398 }
399
400 static ssize_t
401 pipe_write(struct kiocb *iocb, struct iov_iter *from)
402 {
403 struct file *filp = iocb->ki_filp;
404 struct pipe_inode_info *pipe = filp->private_data;
405 unsigned int head;
406 ssize_t ret = 0;
407 size_t total_len = iov_iter_count(from);
408 ssize_t chars;
409 bool was_empty = false;
410 bool wake_next_writer = false;
411
412 /* Null write succeeds. */
413 if (unlikely(total_len == 0))
414 return 0;
415
416 __pipe_lock(pipe);
417
418 if (!pipe->readers) {
419 send_sig(SIGPIPE, current, 0);
420 ret = -EPIPE;
421 goto out;
422 }
423
424 #ifdef CONFIG_WATCH_QUEUE
425 if (pipe->watch_queue) {
426 ret = -EXDEV;
427 goto out;
428 }
429 #endif
430
431 /*
432 * Only wake up if the pipe started out empty, since
433 * otherwise there should be no readers waiting.
434 *
435 * If it wasn't empty we try to merge new data into
436 * the last buffer.
437 *
438 * That naturally merges small writes, but it also
439 * page-aligs the rest of the writes for large writes
440 * spanning multiple pages.
441 */
442 head = pipe->head;
443 was_empty = pipe_empty(head, pipe->tail);
444 chars = total_len & (PAGE_SIZE-1);
445 if (chars && !was_empty) {
446 unsigned int mask = pipe->ring_size - 1;
447 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
448 int offset = buf->offset + buf->len;
449
450 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
451 offset + chars <= PAGE_SIZE) {
452 ret = pipe_buf_confirm(pipe, buf);
453 if (ret)
454 goto out;
455
456 ret = copy_page_from_iter(buf->page, offset, chars, from);
457 if (unlikely(ret < chars)) {
458 ret = -EFAULT;
459 goto out;
460 }
461
462 buf->len += ret;
463 if (!iov_iter_count(from))
464 goto out;
465 }
466 }
467
468 for (;;) {
469 if (!pipe->readers) {
470 send_sig(SIGPIPE, current, 0);
471 if (!ret)
472 ret = -EPIPE;
473 break;
474 }
475
476 head = pipe->head;
477 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
478 unsigned int mask = pipe->ring_size - 1;
479 struct pipe_buffer *buf = &pipe->bufs[head & mask];
480 struct page *page = pipe->tmp_page;
481 int copied;
482
483 if (!page) {
484 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
485 if (unlikely(!page)) {
486 ret = ret ? : -ENOMEM;
487 break;
488 }
489 pipe->tmp_page = page;
490 }
491
492 /* Allocate a slot in the ring in advance and attach an
493 * empty buffer. If we fault or otherwise fail to use
494 * it, either the reader will consume it or it'll still
495 * be there for the next write.
496 */
497 spin_lock_irq(&pipe->rd_wait.lock);
498
499 head = pipe->head;
500 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
501 spin_unlock_irq(&pipe->rd_wait.lock);
502 continue;
503 }
504
505 pipe->head = head + 1;
506 spin_unlock_irq(&pipe->rd_wait.lock);
507
508 /* Insert it into the buffer array */
509 buf = &pipe->bufs[head & mask];
510 buf->page = page;
511 buf->ops = &anon_pipe_buf_ops;
512 buf->offset = 0;
513 buf->len = 0;
514 if (is_packetized(filp))
515 buf->flags = PIPE_BUF_FLAG_PACKET;
516 else
517 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
518 pipe->tmp_page = NULL;
519
520 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
521 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
522 if (!ret)
523 ret = -EFAULT;
524 break;
525 }
526 ret += copied;
527 buf->offset = 0;
528 buf->len = copied;
529
530 if (!iov_iter_count(from))
531 break;
532 }
533
534 if (!pipe_full(head, pipe->tail, pipe->max_usage))
535 continue;
536
537 /* Wait for buffer space to become available. */
538 if (filp->f_flags & O_NONBLOCK) {
539 if (!ret)
540 ret = -EAGAIN;
541 break;
542 }
543 if (signal_pending(current)) {
544 if (!ret)
545 ret = -ERESTARTSYS;
546 break;
547 }
548
549 /*
550 * We're going to release the pipe lock and wait for more
551 * space. We wake up any readers if necessary, and then
552 * after waiting we need to re-check whether the pipe
553 * become empty while we dropped the lock.
554 */
555 __pipe_unlock(pipe);
556 if (was_empty) {
557 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
558 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559 }
560 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
561 __pipe_lock(pipe);
562 was_empty = pipe_empty(pipe->head, pipe->tail);
563 wake_next_writer = true;
564 }
565 out:
566 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
567 wake_next_writer = false;
568 __pipe_unlock(pipe);
569
570 /*
571 * If we do do a wakeup event, we do a 'sync' wakeup, because we
572 * want the reader to start processing things asap, rather than
573 * leave the data pending.
574 *
575 * This is particularly important for small writes, because of
576 * how (for example) the GNU make jobserver uses small writes to
577 * wake up pending jobs
578 */
579 if (was_empty) {
580 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
581 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
582 }
583 if (wake_next_writer)
584 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
585 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
586 int err = file_update_time(filp);
587 if (err)
588 ret = err;
589 sb_end_write(file_inode(filp)->i_sb);
590 }
591 return ret;
592 }
593
594 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
595 {
596 struct pipe_inode_info *pipe = filp->private_data;
597 int count, head, tail, mask;
598
599 switch (cmd) {
600 case FIONREAD:
601 __pipe_lock(pipe);
602 count = 0;
603 head = pipe->head;
604 tail = pipe->tail;
605 mask = pipe->ring_size - 1;
606
607 while (tail != head) {
608 count += pipe->bufs[tail & mask].len;
609 tail++;
610 }
611 __pipe_unlock(pipe);
612
613 return put_user(count, (int __user *)arg);
614
615 #ifdef CONFIG_WATCH_QUEUE
616 case IOC_WATCH_QUEUE_SET_SIZE: {
617 int ret;
618 __pipe_lock(pipe);
619 ret = watch_queue_set_size(pipe, arg);
620 __pipe_unlock(pipe);
621 return ret;
622 }
623
624 case IOC_WATCH_QUEUE_SET_FILTER:
625 return watch_queue_set_filter(
626 pipe, (struct watch_notification_filter __user *)arg);
627 #endif
628
629 default:
630 return -ENOIOCTLCMD;
631 }
632 }
633
634 /* No kernel lock held - fine */
635 static __poll_t
636 pipe_poll(struct file *filp, poll_table *wait)
637 {
638 __poll_t mask;
639 struct pipe_inode_info *pipe = filp->private_data;
640 unsigned int head, tail;
641
642 /*
643 * Reading pipe state only -- no need for acquiring the semaphore.
644 *
645 * But because this is racy, the code has to add the
646 * entry to the poll table _first_ ..
647 */
648 if (filp->f_mode & FMODE_READ)
649 poll_wait(filp, &pipe->rd_wait, wait);
650 if (filp->f_mode & FMODE_WRITE)
651 poll_wait(filp, &pipe->wr_wait, wait);
652
653 /*
654 * .. and only then can you do the racy tests. That way,
655 * if something changes and you got it wrong, the poll
656 * table entry will wake you up and fix it.
657 */
658 head = READ_ONCE(pipe->head);
659 tail = READ_ONCE(pipe->tail);
660
661 mask = 0;
662 if (filp->f_mode & FMODE_READ) {
663 if (!pipe_empty(head, tail))
664 mask |= EPOLLIN | EPOLLRDNORM;
665 if (!pipe->writers && filp->f_version != pipe->w_counter)
666 mask |= EPOLLHUP;
667 }
668
669 if (filp->f_mode & FMODE_WRITE) {
670 if (!pipe_full(head, tail, pipe->max_usage))
671 mask |= EPOLLOUT | EPOLLWRNORM;
672 /*
673 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
674 * behave exactly like pipes for poll().
675 */
676 if (!pipe->readers)
677 mask |= EPOLLERR;
678 }
679
680 return mask;
681 }
682
683 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
684 {
685 int kill = 0;
686
687 spin_lock(&inode->i_lock);
688 if (!--pipe->files) {
689 inode->i_pipe = NULL;
690 kill = 1;
691 }
692 spin_unlock(&inode->i_lock);
693
694 if (kill)
695 free_pipe_info(pipe);
696 }
697
698 static int
699 pipe_release(struct inode *inode, struct file *file)
700 {
701 struct pipe_inode_info *pipe = file->private_data;
702
703 __pipe_lock(pipe);
704 if (file->f_mode & FMODE_READ)
705 pipe->readers--;
706 if (file->f_mode & FMODE_WRITE)
707 pipe->writers--;
708
709 /* Was that the last reader or writer, but not the other side? */
710 if (!pipe->readers != !pipe->writers) {
711 wake_up_interruptible_all(&pipe->rd_wait);
712 wake_up_interruptible_all(&pipe->wr_wait);
713 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
714 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
715 }
716 __pipe_unlock(pipe);
717
718 put_pipe_info(inode, pipe);
719 return 0;
720 }
721
722 static int
723 pipe_fasync(int fd, struct file *filp, int on)
724 {
725 struct pipe_inode_info *pipe = filp->private_data;
726 int retval = 0;
727
728 __pipe_lock(pipe);
729 if (filp->f_mode & FMODE_READ)
730 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
732 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 if (retval < 0 && (filp->f_mode & FMODE_READ))
734 /* this can happen only if on == T */
735 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
736 }
737 __pipe_unlock(pipe);
738 return retval;
739 }
740
741 unsigned long account_pipe_buffers(struct user_struct *user,
742 unsigned long old, unsigned long new)
743 {
744 return atomic_long_add_return(new - old, &user->pipe_bufs);
745 }
746
747 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
748 {
749 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
750
751 return soft_limit && user_bufs > soft_limit;
752 }
753
754 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
755 {
756 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
757
758 return hard_limit && user_bufs > hard_limit;
759 }
760
761 bool pipe_is_unprivileged_user(void)
762 {
763 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
764 }
765
766 struct pipe_inode_info *alloc_pipe_info(void)
767 {
768 struct pipe_inode_info *pipe;
769 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
770 struct user_struct *user = get_current_user();
771 unsigned long user_bufs;
772 unsigned int max_size = READ_ONCE(pipe_max_size);
773
774 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
775 if (pipe == NULL)
776 goto out_free_uid;
777
778 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
779 pipe_bufs = max_size >> PAGE_SHIFT;
780
781 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
782
783 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
784 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
785 pipe_bufs = 1;
786 }
787
788 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
789 goto out_revert_acct;
790
791 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
792 GFP_KERNEL_ACCOUNT);
793
794 if (pipe->bufs) {
795 init_waitqueue_head(&pipe->rd_wait);
796 init_waitqueue_head(&pipe->wr_wait);
797 pipe->r_counter = pipe->w_counter = 1;
798 pipe->max_usage = pipe_bufs;
799 pipe->ring_size = pipe_bufs;
800 pipe->nr_accounted = pipe_bufs;
801 pipe->user = user;
802 mutex_init(&pipe->mutex);
803 return pipe;
804 }
805
806 out_revert_acct:
807 (void) account_pipe_buffers(user, pipe_bufs, 0);
808 kfree(pipe);
809 out_free_uid:
810 free_uid(user);
811 return NULL;
812 }
813
814 void free_pipe_info(struct pipe_inode_info *pipe)
815 {
816 int i;
817
818 #ifdef CONFIG_WATCH_QUEUE
819 if (pipe->watch_queue) {
820 watch_queue_clear(pipe->watch_queue);
821 put_watch_queue(pipe->watch_queue);
822 }
823 #endif
824
825 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
826 free_uid(pipe->user);
827 for (i = 0; i < pipe->ring_size; i++) {
828 struct pipe_buffer *buf = pipe->bufs + i;
829 if (buf->ops)
830 pipe_buf_release(pipe, buf);
831 }
832 if (pipe->tmp_page)
833 __free_page(pipe->tmp_page);
834 kfree(pipe->bufs);
835 kfree(pipe);
836 }
837
838 static struct vfsmount *pipe_mnt __read_mostly;
839
840 /*
841 * pipefs_dname() is called from d_path().
842 */
843 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
844 {
845 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
846 d_inode(dentry)->i_ino);
847 }
848
849 static const struct dentry_operations pipefs_dentry_operations = {
850 .d_dname = pipefs_dname,
851 };
852
853 static struct inode * get_pipe_inode(void)
854 {
855 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
856 struct pipe_inode_info *pipe;
857
858 if (!inode)
859 goto fail_inode;
860
861 inode->i_ino = get_next_ino();
862
863 pipe = alloc_pipe_info();
864 if (!pipe)
865 goto fail_iput;
866
867 inode->i_pipe = pipe;
868 pipe->files = 2;
869 pipe->readers = pipe->writers = 1;
870 inode->i_fop = &pipefifo_fops;
871
872 /*
873 * Mark the inode dirty from the very beginning,
874 * that way it will never be moved to the dirty
875 * list because "mark_inode_dirty()" will think
876 * that it already _is_ on the dirty list.
877 */
878 inode->i_state = I_DIRTY;
879 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
880 inode->i_uid = current_fsuid();
881 inode->i_gid = current_fsgid();
882 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
883
884 return inode;
885
886 fail_iput:
887 iput(inode);
888
889 fail_inode:
890 return NULL;
891 }
892
893 int create_pipe_files(struct file **res, int flags)
894 {
895 struct inode *inode = get_pipe_inode();
896 struct file *f;
897 int error;
898
899 if (!inode)
900 return -ENFILE;
901
902 if (flags & O_NOTIFICATION_PIPE) {
903 error = watch_queue_init(inode->i_pipe);
904 if (error) {
905 free_pipe_info(inode->i_pipe);
906 iput(inode);
907 return error;
908 }
909 }
910
911 f = alloc_file_pseudo(inode, pipe_mnt, "",
912 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
913 &pipefifo_fops);
914 if (IS_ERR(f)) {
915 free_pipe_info(inode->i_pipe);
916 iput(inode);
917 return PTR_ERR(f);
918 }
919
920 f->private_data = inode->i_pipe;
921
922 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
923 &pipefifo_fops);
924 if (IS_ERR(res[0])) {
925 put_pipe_info(inode, inode->i_pipe);
926 fput(f);
927 return PTR_ERR(res[0]);
928 }
929 res[0]->private_data = inode->i_pipe;
930 res[1] = f;
931 stream_open(inode, res[0]);
932 stream_open(inode, res[1]);
933 return 0;
934 }
935
936 static int __do_pipe_flags(int *fd, struct file **files, int flags)
937 {
938 int error;
939 int fdw, fdr;
940
941 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
942 return -EINVAL;
943
944 error = create_pipe_files(files, flags);
945 if (error)
946 return error;
947
948 error = get_unused_fd_flags(flags);
949 if (error < 0)
950 goto err_read_pipe;
951 fdr = error;
952
953 error = get_unused_fd_flags(flags);
954 if (error < 0)
955 goto err_fdr;
956 fdw = error;
957
958 audit_fd_pair(fdr, fdw);
959 fd[0] = fdr;
960 fd[1] = fdw;
961 return 0;
962
963 err_fdr:
964 put_unused_fd(fdr);
965 err_read_pipe:
966 fput(files[0]);
967 fput(files[1]);
968 return error;
969 }
970
971 int do_pipe_flags(int *fd, int flags)
972 {
973 struct file *files[2];
974 int error = __do_pipe_flags(fd, files, flags);
975 if (!error) {
976 fd_install(fd[0], files[0]);
977 fd_install(fd[1], files[1]);
978 }
979 return error;
980 }
981
982 /*
983 * sys_pipe() is the normal C calling standard for creating
984 * a pipe. It's not the way Unix traditionally does this, though.
985 */
986 static int do_pipe2(int __user *fildes, int flags)
987 {
988 struct file *files[2];
989 int fd[2];
990 int error;
991
992 error = __do_pipe_flags(fd, files, flags);
993 if (!error) {
994 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
995 fput(files[0]);
996 fput(files[1]);
997 put_unused_fd(fd[0]);
998 put_unused_fd(fd[1]);
999 error = -EFAULT;
1000 } else {
1001 fd_install(fd[0], files[0]);
1002 fd_install(fd[1], files[1]);
1003 }
1004 }
1005 return error;
1006 }
1007
1008 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1009 {
1010 return do_pipe2(fildes, flags);
1011 }
1012
1013 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1014 {
1015 return do_pipe2(fildes, 0);
1016 }
1017
1018 /*
1019 * This is the stupid "wait for pipe to be readable or writable"
1020 * model.
1021 *
1022 * See pipe_read/write() for the proper kind of exclusive wait,
1023 * but that requires that we wake up any other readers/writers
1024 * if we then do not end up reading everything (ie the whole
1025 * "wake_next_reader/writer" logic in pipe_read/write()).
1026 */
1027 void pipe_wait_readable(struct pipe_inode_info *pipe)
1028 {
1029 pipe_unlock(pipe);
1030 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1031 pipe_lock(pipe);
1032 }
1033
1034 void pipe_wait_writable(struct pipe_inode_info *pipe)
1035 {
1036 pipe_unlock(pipe);
1037 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1038 pipe_lock(pipe);
1039 }
1040
1041 /*
1042 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 * race with the count check and waitqueue prep.
1045 *
1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 * then check the condition you're waiting for, and only then sleep. But
1048 * because of the pipe lock, we can check the condition before being on
1049 * the wait queue.
1050 *
1051 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1052 */
1053 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1054 {
1055 DEFINE_WAIT(rdwait);
1056 int cur = *cnt;
1057
1058 while (cur == *cnt) {
1059 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1060 pipe_unlock(pipe);
1061 schedule();
1062 finish_wait(&pipe->rd_wait, &rdwait);
1063 pipe_lock(pipe);
1064 if (signal_pending(current))
1065 break;
1066 }
1067 return cur == *cnt ? -ERESTARTSYS : 0;
1068 }
1069
1070 static void wake_up_partner(struct pipe_inode_info *pipe)
1071 {
1072 wake_up_interruptible_all(&pipe->rd_wait);
1073 }
1074
1075 static int fifo_open(struct inode *inode, struct file *filp)
1076 {
1077 struct pipe_inode_info *pipe;
1078 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1079 int ret;
1080
1081 filp->f_version = 0;
1082
1083 spin_lock(&inode->i_lock);
1084 if (inode->i_pipe) {
1085 pipe = inode->i_pipe;
1086 pipe->files++;
1087 spin_unlock(&inode->i_lock);
1088 } else {
1089 spin_unlock(&inode->i_lock);
1090 pipe = alloc_pipe_info();
1091 if (!pipe)
1092 return -ENOMEM;
1093 pipe->files = 1;
1094 spin_lock(&inode->i_lock);
1095 if (unlikely(inode->i_pipe)) {
1096 inode->i_pipe->files++;
1097 spin_unlock(&inode->i_lock);
1098 free_pipe_info(pipe);
1099 pipe = inode->i_pipe;
1100 } else {
1101 inode->i_pipe = pipe;
1102 spin_unlock(&inode->i_lock);
1103 }
1104 }
1105 filp->private_data = pipe;
1106 /* OK, we have a pipe and it's pinned down */
1107
1108 __pipe_lock(pipe);
1109
1110 /* We can only do regular read/write on fifos */
1111 stream_open(inode, filp);
1112
1113 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1114 case FMODE_READ:
1115 /*
1116 * O_RDONLY
1117 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1118 * opened, even when there is no process writing the FIFO.
1119 */
1120 pipe->r_counter++;
1121 if (pipe->readers++ == 0)
1122 wake_up_partner(pipe);
1123
1124 if (!is_pipe && !pipe->writers) {
1125 if ((filp->f_flags & O_NONBLOCK)) {
1126 /* suppress EPOLLHUP until we have
1127 * seen a writer */
1128 filp->f_version = pipe->w_counter;
1129 } else {
1130 if (wait_for_partner(pipe, &pipe->w_counter))
1131 goto err_rd;
1132 }
1133 }
1134 break;
1135
1136 case FMODE_WRITE:
1137 /*
1138 * O_WRONLY
1139 * POSIX.1 says that O_NONBLOCK means return -1 with
1140 * errno=ENXIO when there is no process reading the FIFO.
1141 */
1142 ret = -ENXIO;
1143 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1144 goto err;
1145
1146 pipe->w_counter++;
1147 if (!pipe->writers++)
1148 wake_up_partner(pipe);
1149
1150 if (!is_pipe && !pipe->readers) {
1151 if (wait_for_partner(pipe, &pipe->r_counter))
1152 goto err_wr;
1153 }
1154 break;
1155
1156 case FMODE_READ | FMODE_WRITE:
1157 /*
1158 * O_RDWR
1159 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160 * This implementation will NEVER block on a O_RDWR open, since
1161 * the process can at least talk to itself.
1162 */
1163
1164 pipe->readers++;
1165 pipe->writers++;
1166 pipe->r_counter++;
1167 pipe->w_counter++;
1168 if (pipe->readers == 1 || pipe->writers == 1)
1169 wake_up_partner(pipe);
1170 break;
1171
1172 default:
1173 ret = -EINVAL;
1174 goto err;
1175 }
1176
1177 /* Ok! */
1178 __pipe_unlock(pipe);
1179 return 0;
1180
1181 err_rd:
1182 if (!--pipe->readers)
1183 wake_up_interruptible(&pipe->wr_wait);
1184 ret = -ERESTARTSYS;
1185 goto err;
1186
1187 err_wr:
1188 if (!--pipe->writers)
1189 wake_up_interruptible_all(&pipe->rd_wait);
1190 ret = -ERESTARTSYS;
1191 goto err;
1192
1193 err:
1194 __pipe_unlock(pipe);
1195
1196 put_pipe_info(inode, pipe);
1197 return ret;
1198 }
1199
1200 const struct file_operations pipefifo_fops = {
1201 .open = fifo_open,
1202 .llseek = no_llseek,
1203 .read_iter = pipe_read,
1204 .write_iter = pipe_write,
1205 .poll = pipe_poll,
1206 .unlocked_ioctl = pipe_ioctl,
1207 .release = pipe_release,
1208 .fasync = pipe_fasync,
1209 .splice_write = iter_file_splice_write,
1210 };
1211
1212 /*
1213 * Currently we rely on the pipe array holding a power-of-2 number
1214 * of pages. Returns 0 on error.
1215 */
1216 unsigned int round_pipe_size(unsigned long size)
1217 {
1218 if (size > (1U << 31))
1219 return 0;
1220
1221 /* Minimum pipe size, as required by POSIX */
1222 if (size < PAGE_SIZE)
1223 return PAGE_SIZE;
1224
1225 return roundup_pow_of_two(size);
1226 }
1227
1228 /*
1229 * Resize the pipe ring to a number of slots.
1230 */
1231 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1232 {
1233 struct pipe_buffer *bufs;
1234 unsigned int head, tail, mask, n;
1235
1236 /*
1237 * We can shrink the pipe, if arg is greater than the ring occupancy.
1238 * Since we don't expect a lot of shrink+grow operations, just free and
1239 * allocate again like we would do for growing. If the pipe currently
1240 * contains more buffers than arg, then return busy.
1241 */
1242 mask = pipe->ring_size - 1;
1243 head = pipe->head;
1244 tail = pipe->tail;
1245 n = pipe_occupancy(pipe->head, pipe->tail);
1246 if (nr_slots < n)
1247 return -EBUSY;
1248
1249 bufs = kcalloc(nr_slots, sizeof(*bufs),
1250 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1251 if (unlikely(!bufs))
1252 return -ENOMEM;
1253
1254 /*
1255 * The pipe array wraps around, so just start the new one at zero
1256 * and adjust the indices.
1257 */
1258 if (n > 0) {
1259 unsigned int h = head & mask;
1260 unsigned int t = tail & mask;
1261 if (h > t) {
1262 memcpy(bufs, pipe->bufs + t,
1263 n * sizeof(struct pipe_buffer));
1264 } else {
1265 unsigned int tsize = pipe->ring_size - t;
1266 if (h > 0)
1267 memcpy(bufs + tsize, pipe->bufs,
1268 h * sizeof(struct pipe_buffer));
1269 memcpy(bufs, pipe->bufs + t,
1270 tsize * sizeof(struct pipe_buffer));
1271 }
1272 }
1273
1274 head = n;
1275 tail = 0;
1276
1277 kfree(pipe->bufs);
1278 pipe->bufs = bufs;
1279 pipe->ring_size = nr_slots;
1280 if (pipe->max_usage > nr_slots)
1281 pipe->max_usage = nr_slots;
1282 pipe->tail = tail;
1283 pipe->head = head;
1284
1285 /* This might have made more room for writers */
1286 wake_up_interruptible(&pipe->wr_wait);
1287 return 0;
1288 }
1289
1290 /*
1291 * Allocate a new array of pipe buffers and copy the info over. Returns the
1292 * pipe size if successful, or return -ERROR on error.
1293 */
1294 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1295 {
1296 unsigned long user_bufs;
1297 unsigned int nr_slots, size;
1298 long ret = 0;
1299
1300 #ifdef CONFIG_WATCH_QUEUE
1301 if (pipe->watch_queue)
1302 return -EBUSY;
1303 #endif
1304
1305 size = round_pipe_size(arg);
1306 nr_slots = size >> PAGE_SHIFT;
1307
1308 if (!nr_slots)
1309 return -EINVAL;
1310
1311 /*
1312 * If trying to increase the pipe capacity, check that an
1313 * unprivileged user is not trying to exceed various limits
1314 * (soft limit check here, hard limit check just below).
1315 * Decreasing the pipe capacity is always permitted, even
1316 * if the user is currently over a limit.
1317 */
1318 if (nr_slots > pipe->max_usage &&
1319 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1320 return -EPERM;
1321
1322 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1323
1324 if (nr_slots > pipe->max_usage &&
1325 (too_many_pipe_buffers_hard(user_bufs) ||
1326 too_many_pipe_buffers_soft(user_bufs)) &&
1327 pipe_is_unprivileged_user()) {
1328 ret = -EPERM;
1329 goto out_revert_acct;
1330 }
1331
1332 ret = pipe_resize_ring(pipe, nr_slots);
1333 if (ret < 0)
1334 goto out_revert_acct;
1335
1336 pipe->max_usage = nr_slots;
1337 pipe->nr_accounted = nr_slots;
1338 return pipe->max_usage * PAGE_SIZE;
1339
1340 out_revert_acct:
1341 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1342 return ret;
1343 }
1344
1345 /*
1346 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1347 * not enough to verify that this is a pipe.
1348 */
1349 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1350 {
1351 struct pipe_inode_info *pipe = file->private_data;
1352
1353 if (file->f_op != &pipefifo_fops || !pipe)
1354 return NULL;
1355 #ifdef CONFIG_WATCH_QUEUE
1356 if (for_splice && pipe->watch_queue)
1357 return NULL;
1358 #endif
1359 return pipe;
1360 }
1361
1362 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1363 {
1364 struct pipe_inode_info *pipe;
1365 long ret;
1366
1367 pipe = get_pipe_info(file, false);
1368 if (!pipe)
1369 return -EBADF;
1370
1371 __pipe_lock(pipe);
1372
1373 switch (cmd) {
1374 case F_SETPIPE_SZ:
1375 ret = pipe_set_size(pipe, arg);
1376 break;
1377 case F_GETPIPE_SZ:
1378 ret = pipe->max_usage * PAGE_SIZE;
1379 break;
1380 default:
1381 ret = -EINVAL;
1382 break;
1383 }
1384
1385 __pipe_unlock(pipe);
1386 return ret;
1387 }
1388
1389 static const struct super_operations pipefs_ops = {
1390 .destroy_inode = free_inode_nonrcu,
1391 .statfs = simple_statfs,
1392 };
1393
1394 /*
1395 * pipefs should _never_ be mounted by userland - too much of security hassle,
1396 * no real gain from having the whole whorehouse mounted. So we don't need
1397 * any operations on the root directory. However, we need a non-trivial
1398 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1399 */
1400
1401 static int pipefs_init_fs_context(struct fs_context *fc)
1402 {
1403 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1404 if (!ctx)
1405 return -ENOMEM;
1406 ctx->ops = &pipefs_ops;
1407 ctx->dops = &pipefs_dentry_operations;
1408 return 0;
1409 }
1410
1411 static struct file_system_type pipe_fs_type = {
1412 .name = "pipefs",
1413 .init_fs_context = pipefs_init_fs_context,
1414 .kill_sb = kill_anon_super,
1415 };
1416
1417 static int __init init_pipe_fs(void)
1418 {
1419 int err = register_filesystem(&pipe_fs_type);
1420
1421 if (!err) {
1422 pipe_mnt = kern_mount(&pipe_fs_type);
1423 if (IS_ERR(pipe_mnt)) {
1424 err = PTR_ERR(pipe_mnt);
1425 unregister_filesystem(&pipe_fs_type);
1426 }
1427 }
1428 return err;
1429 }
1430
1431 fs_initcall(init_pipe_fs);