]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/base.c
mm_for_maps: take ->cred_guard_mutex to fix the race with exec
[mirror_ubuntu-bionic-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85
86 /* NOTE:
87 * Implementing inode permission operations in /proc is almost
88 * certainly an error. Permission checks need to happen during
89 * each system call not at open time. The reason is that most of
90 * what we wish to check for permissions in /proc varies at runtime.
91 *
92 * The classic example of a problem is opening file descriptors
93 * in /proc for a task before it execs a suid executable.
94 */
95
96 struct pid_entry {
97 char *name;
98 int len;
99 mode_t mode;
100 const struct inode_operations *iop;
101 const struct file_operations *fop;
102 union proc_op op;
103 };
104
105 #define NOD(NAME, MODE, IOP, FOP, OP) { \
106 .name = (NAME), \
107 .len = sizeof(NAME) - 1, \
108 .mode = MODE, \
109 .iop = IOP, \
110 .fop = FOP, \
111 .op = OP, \
112 }
113
114 #define DIR(NAME, MODE, iops, fops) \
115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = read } )
126 #define ONE(NAME, MODE, show) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = show } )
130
131 /*
132 * Count the number of hardlinks for the pid_entry table, excluding the .
133 * and .. links.
134 */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 unsigned int n)
137 {
138 unsigned int i;
139 unsigned int count;
140
141 count = 0;
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
144 ++count;
145 }
146
147 return count;
148 }
149
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 struct fs_struct *fs;
153 int result = -ENOENT;
154
155 task_lock(task);
156 fs = task->fs;
157 if (fs) {
158 read_lock(&fs->lock);
159 *path = root ? fs->root : fs->pwd;
160 path_get(path);
161 read_unlock(&fs->lock);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166 }
167
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 unsigned long flags;
171 int count = 0;
172
173 if (lock_task_sighand(tsk, &flags)) {
174 count = atomic_read(&tsk->signal->count);
175 unlock_task_sighand(tsk, &flags);
176 }
177 return count;
178 }
179
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 struct task_struct *task = get_proc_task(inode);
183 int result = -ENOENT;
184
185 if (task) {
186 result = get_fs_path(task, path, 0);
187 put_task_struct(task);
188 }
189 return result;
190 }
191
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 struct task_struct *task = get_proc_task(inode);
195 int result = -ENOENT;
196
197 if (task) {
198 result = get_fs_path(task, path, 1);
199 put_task_struct(task);
200 }
201 return result;
202 }
203
204 /*
205 * Return zero if current may access user memory in @task, -error if not.
206 */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 /*
210 * A task can always look at itself, in case it chooses
211 * to use system calls instead of load instructions.
212 */
213 if (task == current)
214 return 0;
215
216 /*
217 * If current is actively ptrace'ing, and would also be
218 * permitted to freshly attach with ptrace now, permit it.
219 */
220 if (task_is_stopped_or_traced(task)) {
221 int match;
222 rcu_read_lock();
223 match = (tracehook_tracer_task(task) == current);
224 rcu_read_unlock();
225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 return 0;
227 }
228
229 /*
230 * Noone else is allowed.
231 */
232 return -EPERM;
233 }
234
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 struct mm_struct *mm;
238
239 if (mutex_lock_killable(&task->cred_guard_mutex))
240 return NULL;
241
242 mm = get_task_mm(task);
243 if (mm && mm != current->mm &&
244 !ptrace_may_access(task, PTRACE_MODE_READ)) {
245 mmput(mm);
246 mm = NULL;
247 }
248 mutex_unlock(&task->cred_guard_mutex);
249
250 return mm;
251 }
252
253 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
254 {
255 int res = 0;
256 unsigned int len;
257 struct mm_struct *mm = get_task_mm(task);
258 if (!mm)
259 goto out;
260 if (!mm->arg_end)
261 goto out_mm; /* Shh! No looking before we're done */
262
263 len = mm->arg_end - mm->arg_start;
264
265 if (len > PAGE_SIZE)
266 len = PAGE_SIZE;
267
268 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
269
270 // If the nul at the end of args has been overwritten, then
271 // assume application is using setproctitle(3).
272 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
273 len = strnlen(buffer, res);
274 if (len < res) {
275 res = len;
276 } else {
277 len = mm->env_end - mm->env_start;
278 if (len > PAGE_SIZE - res)
279 len = PAGE_SIZE - res;
280 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
281 res = strnlen(buffer, res);
282 }
283 }
284 out_mm:
285 mmput(mm);
286 out:
287 return res;
288 }
289
290 static int proc_pid_auxv(struct task_struct *task, char *buffer)
291 {
292 int res = 0;
293 struct mm_struct *mm = get_task_mm(task);
294 if (mm) {
295 unsigned int nwords = 0;
296 do {
297 nwords += 2;
298 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
299 res = nwords * sizeof(mm->saved_auxv[0]);
300 if (res > PAGE_SIZE)
301 res = PAGE_SIZE;
302 memcpy(buffer, mm->saved_auxv, res);
303 mmput(mm);
304 }
305 return res;
306 }
307
308
309 #ifdef CONFIG_KALLSYMS
310 /*
311 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
312 * Returns the resolved symbol. If that fails, simply return the address.
313 */
314 static int proc_pid_wchan(struct task_struct *task, char *buffer)
315 {
316 unsigned long wchan;
317 char symname[KSYM_NAME_LEN];
318
319 wchan = get_wchan(task);
320
321 if (lookup_symbol_name(wchan, symname) < 0)
322 if (!ptrace_may_access(task, PTRACE_MODE_READ))
323 return 0;
324 else
325 return sprintf(buffer, "%lu", wchan);
326 else
327 return sprintf(buffer, "%s", symname);
328 }
329 #endif /* CONFIG_KALLSYMS */
330
331 #ifdef CONFIG_STACKTRACE
332
333 #define MAX_STACK_TRACE_DEPTH 64
334
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 struct pid *pid, struct task_struct *task)
337 {
338 struct stack_trace trace;
339 unsigned long *entries;
340 int i;
341
342 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
343 if (!entries)
344 return -ENOMEM;
345
346 trace.nr_entries = 0;
347 trace.max_entries = MAX_STACK_TRACE_DEPTH;
348 trace.entries = entries;
349 trace.skip = 0;
350 save_stack_trace_tsk(task, &trace);
351
352 for (i = 0; i < trace.nr_entries; i++) {
353 seq_printf(m, "[<%p>] %pS\n",
354 (void *)entries[i], (void *)entries[i]);
355 }
356 kfree(entries);
357
358 return 0;
359 }
360 #endif
361
362 #ifdef CONFIG_SCHEDSTATS
363 /*
364 * Provides /proc/PID/schedstat
365 */
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
367 {
368 return sprintf(buffer, "%llu %llu %lu\n",
369 (unsigned long long)task->se.sum_exec_runtime,
370 (unsigned long long)task->sched_info.run_delay,
371 task->sched_info.pcount);
372 }
373 #endif
374
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
377 {
378 int i;
379 struct inode *inode = m->private;
380 struct task_struct *task = get_proc_task(inode);
381
382 if (!task)
383 return -ESRCH;
384 seq_puts(m, "Latency Top version : v0.1\n");
385 for (i = 0; i < 32; i++) {
386 if (task->latency_record[i].backtrace[0]) {
387 int q;
388 seq_printf(m, "%i %li %li ",
389 task->latency_record[i].count,
390 task->latency_record[i].time,
391 task->latency_record[i].max);
392 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 char sym[KSYM_SYMBOL_LEN];
394 char *c;
395 if (!task->latency_record[i].backtrace[q])
396 break;
397 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
398 break;
399 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 c = strchr(sym, '+');
401 if (c)
402 *c = 0;
403 seq_printf(m, "%s ", sym);
404 }
405 seq_printf(m, "\n");
406 }
407
408 }
409 put_task_struct(task);
410 return 0;
411 }
412
413 static int lstats_open(struct inode *inode, struct file *file)
414 {
415 return single_open(file, lstats_show_proc, inode);
416 }
417
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 size_t count, loff_t *offs)
420 {
421 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
422
423 if (!task)
424 return -ESRCH;
425 clear_all_latency_tracing(task);
426 put_task_struct(task);
427
428 return count;
429 }
430
431 static const struct file_operations proc_lstats_operations = {
432 .open = lstats_open,
433 .read = seq_read,
434 .write = lstats_write,
435 .llseek = seq_lseek,
436 .release = single_release,
437 };
438
439 #endif
440
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
444 {
445 unsigned long points;
446 struct timespec uptime;
447
448 do_posix_clock_monotonic_gettime(&uptime);
449 read_lock(&tasklist_lock);
450 points = badness(task, uptime.tv_sec);
451 read_unlock(&tasklist_lock);
452 return sprintf(buffer, "%lu\n", points);
453 }
454
455 struct limit_names {
456 char *name;
457 char *unit;
458 };
459
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 [RLIMIT_CPU] = {"Max cpu time", "ms"},
462 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 [RLIMIT_DATA] = {"Max data size", "bytes"},
464 [RLIMIT_STACK] = {"Max stack size", "bytes"},
465 [RLIMIT_CORE] = {"Max core file size", "bytes"},
466 [RLIMIT_RSS] = {"Max resident set", "bytes"},
467 [RLIMIT_NPROC] = {"Max processes", "processes"},
468 [RLIMIT_NOFILE] = {"Max open files", "files"},
469 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 [RLIMIT_AS] = {"Max address space", "bytes"},
471 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 [RLIMIT_NICE] = {"Max nice priority", NULL},
475 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
477 };
478
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
481 {
482 unsigned int i;
483 int count = 0;
484 unsigned long flags;
485 char *bufptr = buffer;
486
487 struct rlimit rlim[RLIM_NLIMITS];
488
489 if (!lock_task_sighand(task, &flags))
490 return 0;
491 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 unlock_task_sighand(task, &flags);
493
494 /*
495 * print the file header
496 */
497 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 "Limit", "Soft Limit", "Hard Limit", "Units");
499
500 for (i = 0; i < RLIM_NLIMITS; i++) {
501 if (rlim[i].rlim_cur == RLIM_INFINITY)
502 count += sprintf(&bufptr[count], "%-25s %-20s ",
503 lnames[i].name, "unlimited");
504 else
505 count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 lnames[i].name, rlim[i].rlim_cur);
507
508 if (rlim[i].rlim_max == RLIM_INFINITY)
509 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
510 else
511 count += sprintf(&bufptr[count], "%-20lu ",
512 rlim[i].rlim_max);
513
514 if (lnames[i].unit)
515 count += sprintf(&bufptr[count], "%-10s\n",
516 lnames[i].unit);
517 else
518 count += sprintf(&bufptr[count], "\n");
519 }
520
521 return count;
522 }
523
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
526 {
527 long nr;
528 unsigned long args[6], sp, pc;
529
530 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 return sprintf(buffer, "running\n");
532
533 if (nr < 0)
534 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
535
536 return sprintf(buffer,
537 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
538 nr,
539 args[0], args[1], args[2], args[3], args[4], args[5],
540 sp, pc);
541 }
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
543
544 /************************************************************************/
545 /* Here the fs part begins */
546 /************************************************************************/
547
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
550 {
551 struct task_struct *task;
552 int allowed = 0;
553 /* Allow access to a task's file descriptors if it is us or we
554 * may use ptrace attach to the process and find out that
555 * information.
556 */
557 task = get_proc_task(inode);
558 if (task) {
559 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 put_task_struct(task);
561 }
562 return allowed;
563 }
564
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567 int error;
568 struct inode *inode = dentry->d_inode;
569
570 if (attr->ia_valid & ATTR_MODE)
571 return -EPERM;
572
573 error = inode_change_ok(inode, attr);
574 if (!error)
575 error = inode_setattr(inode, attr);
576 return error;
577 }
578
579 static const struct inode_operations proc_def_inode_operations = {
580 .setattr = proc_setattr,
581 };
582
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 const struct seq_operations *op)
585 {
586 struct task_struct *task = get_proc_task(inode);
587 struct nsproxy *nsp;
588 struct mnt_namespace *ns = NULL;
589 struct path root;
590 struct proc_mounts *p;
591 int ret = -EINVAL;
592
593 if (task) {
594 rcu_read_lock();
595 nsp = task_nsproxy(task);
596 if (nsp) {
597 ns = nsp->mnt_ns;
598 if (ns)
599 get_mnt_ns(ns);
600 }
601 rcu_read_unlock();
602 if (ns && get_fs_path(task, &root, 1) == 0)
603 ret = 0;
604 put_task_struct(task);
605 }
606
607 if (!ns)
608 goto err;
609 if (ret)
610 goto err_put_ns;
611
612 ret = -ENOMEM;
613 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614 if (!p)
615 goto err_put_path;
616
617 file->private_data = &p->m;
618 ret = seq_open(file, op);
619 if (ret)
620 goto err_free;
621
622 p->m.private = p;
623 p->ns = ns;
624 p->root = root;
625 p->event = ns->event;
626
627 return 0;
628
629 err_free:
630 kfree(p);
631 err_put_path:
632 path_put(&root);
633 err_put_ns:
634 put_mnt_ns(ns);
635 err:
636 return ret;
637 }
638
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641 struct proc_mounts *p = file->private_data;
642 path_put(&p->root);
643 put_mnt_ns(p->ns);
644 return seq_release(inode, file);
645 }
646
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649 struct proc_mounts *p = file->private_data;
650 struct mnt_namespace *ns = p->ns;
651 unsigned res = POLLIN | POLLRDNORM;
652
653 poll_wait(file, &ns->poll, wait);
654
655 spin_lock(&vfsmount_lock);
656 if (p->event != ns->event) {
657 p->event = ns->event;
658 res |= POLLERR | POLLPRI;
659 }
660 spin_unlock(&vfsmount_lock);
661
662 return res;
663 }
664
665 static int mounts_open(struct inode *inode, struct file *file)
666 {
667 return mounts_open_common(inode, file, &mounts_op);
668 }
669
670 static const struct file_operations proc_mounts_operations = {
671 .open = mounts_open,
672 .read = seq_read,
673 .llseek = seq_lseek,
674 .release = mounts_release,
675 .poll = mounts_poll,
676 };
677
678 static int mountinfo_open(struct inode *inode, struct file *file)
679 {
680 return mounts_open_common(inode, file, &mountinfo_op);
681 }
682
683 static const struct file_operations proc_mountinfo_operations = {
684 .open = mountinfo_open,
685 .read = seq_read,
686 .llseek = seq_lseek,
687 .release = mounts_release,
688 .poll = mounts_poll,
689 };
690
691 static int mountstats_open(struct inode *inode, struct file *file)
692 {
693 return mounts_open_common(inode, file, &mountstats_op);
694 }
695
696 static const struct file_operations proc_mountstats_operations = {
697 .open = mountstats_open,
698 .read = seq_read,
699 .llseek = seq_lseek,
700 .release = mounts_release,
701 };
702
703 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
704
705 static ssize_t proc_info_read(struct file * file, char __user * buf,
706 size_t count, loff_t *ppos)
707 {
708 struct inode * inode = file->f_path.dentry->d_inode;
709 unsigned long page;
710 ssize_t length;
711 struct task_struct *task = get_proc_task(inode);
712
713 length = -ESRCH;
714 if (!task)
715 goto out_no_task;
716
717 if (count > PROC_BLOCK_SIZE)
718 count = PROC_BLOCK_SIZE;
719
720 length = -ENOMEM;
721 if (!(page = __get_free_page(GFP_TEMPORARY)))
722 goto out;
723
724 length = PROC_I(inode)->op.proc_read(task, (char*)page);
725
726 if (length >= 0)
727 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
728 free_page(page);
729 out:
730 put_task_struct(task);
731 out_no_task:
732 return length;
733 }
734
735 static const struct file_operations proc_info_file_operations = {
736 .read = proc_info_read,
737 };
738
739 static int proc_single_show(struct seq_file *m, void *v)
740 {
741 struct inode *inode = m->private;
742 struct pid_namespace *ns;
743 struct pid *pid;
744 struct task_struct *task;
745 int ret;
746
747 ns = inode->i_sb->s_fs_info;
748 pid = proc_pid(inode);
749 task = get_pid_task(pid, PIDTYPE_PID);
750 if (!task)
751 return -ESRCH;
752
753 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
754
755 put_task_struct(task);
756 return ret;
757 }
758
759 static int proc_single_open(struct inode *inode, struct file *filp)
760 {
761 int ret;
762 ret = single_open(filp, proc_single_show, NULL);
763 if (!ret) {
764 struct seq_file *m = filp->private_data;
765
766 m->private = inode;
767 }
768 return ret;
769 }
770
771 static const struct file_operations proc_single_file_operations = {
772 .open = proc_single_open,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
776 };
777
778 static int mem_open(struct inode* inode, struct file* file)
779 {
780 file->private_data = (void*)((long)current->self_exec_id);
781 return 0;
782 }
783
784 static ssize_t mem_read(struct file * file, char __user * buf,
785 size_t count, loff_t *ppos)
786 {
787 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
788 char *page;
789 unsigned long src = *ppos;
790 int ret = -ESRCH;
791 struct mm_struct *mm;
792
793 if (!task)
794 goto out_no_task;
795
796 if (check_mem_permission(task))
797 goto out;
798
799 ret = -ENOMEM;
800 page = (char *)__get_free_page(GFP_TEMPORARY);
801 if (!page)
802 goto out;
803
804 ret = 0;
805
806 mm = get_task_mm(task);
807 if (!mm)
808 goto out_free;
809
810 ret = -EIO;
811
812 if (file->private_data != (void*)((long)current->self_exec_id))
813 goto out_put;
814
815 ret = 0;
816
817 while (count > 0) {
818 int this_len, retval;
819
820 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
821 retval = access_process_vm(task, src, page, this_len, 0);
822 if (!retval || check_mem_permission(task)) {
823 if (!ret)
824 ret = -EIO;
825 break;
826 }
827
828 if (copy_to_user(buf, page, retval)) {
829 ret = -EFAULT;
830 break;
831 }
832
833 ret += retval;
834 src += retval;
835 buf += retval;
836 count -= retval;
837 }
838 *ppos = src;
839
840 out_put:
841 mmput(mm);
842 out_free:
843 free_page((unsigned long) page);
844 out:
845 put_task_struct(task);
846 out_no_task:
847 return ret;
848 }
849
850 #define mem_write NULL
851
852 #ifndef mem_write
853 /* This is a security hazard */
854 static ssize_t mem_write(struct file * file, const char __user *buf,
855 size_t count, loff_t *ppos)
856 {
857 int copied;
858 char *page;
859 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
860 unsigned long dst = *ppos;
861
862 copied = -ESRCH;
863 if (!task)
864 goto out_no_task;
865
866 if (check_mem_permission(task))
867 goto out;
868
869 copied = -ENOMEM;
870 page = (char *)__get_free_page(GFP_TEMPORARY);
871 if (!page)
872 goto out;
873
874 copied = 0;
875 while (count > 0) {
876 int this_len, retval;
877
878 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
879 if (copy_from_user(page, buf, this_len)) {
880 copied = -EFAULT;
881 break;
882 }
883 retval = access_process_vm(task, dst, page, this_len, 1);
884 if (!retval) {
885 if (!copied)
886 copied = -EIO;
887 break;
888 }
889 copied += retval;
890 buf += retval;
891 dst += retval;
892 count -= retval;
893 }
894 *ppos = dst;
895 free_page((unsigned long) page);
896 out:
897 put_task_struct(task);
898 out_no_task:
899 return copied;
900 }
901 #endif
902
903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 switch (orig) {
906 case 0:
907 file->f_pos = offset;
908 break;
909 case 1:
910 file->f_pos += offset;
911 break;
912 default:
913 return -EINVAL;
914 }
915 force_successful_syscall_return();
916 return file->f_pos;
917 }
918
919 static const struct file_operations proc_mem_operations = {
920 .llseek = mem_lseek,
921 .read = mem_read,
922 .write = mem_write,
923 .open = mem_open,
924 };
925
926 static ssize_t environ_read(struct file *file, char __user *buf,
927 size_t count, loff_t *ppos)
928 {
929 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
930 char *page;
931 unsigned long src = *ppos;
932 int ret = -ESRCH;
933 struct mm_struct *mm;
934
935 if (!task)
936 goto out_no_task;
937
938 if (!ptrace_may_access(task, PTRACE_MODE_READ))
939 goto out;
940
941 ret = -ENOMEM;
942 page = (char *)__get_free_page(GFP_TEMPORARY);
943 if (!page)
944 goto out;
945
946 ret = 0;
947
948 mm = get_task_mm(task);
949 if (!mm)
950 goto out_free;
951
952 while (count > 0) {
953 int this_len, retval, max_len;
954
955 this_len = mm->env_end - (mm->env_start + src);
956
957 if (this_len <= 0)
958 break;
959
960 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
961 this_len = (this_len > max_len) ? max_len : this_len;
962
963 retval = access_process_vm(task, (mm->env_start + src),
964 page, this_len, 0);
965
966 if (retval <= 0) {
967 ret = retval;
968 break;
969 }
970
971 if (copy_to_user(buf, page, retval)) {
972 ret = -EFAULT;
973 break;
974 }
975
976 ret += retval;
977 src += retval;
978 buf += retval;
979 count -= retval;
980 }
981 *ppos = src;
982
983 mmput(mm);
984 out_free:
985 free_page((unsigned long) page);
986 out:
987 put_task_struct(task);
988 out_no_task:
989 return ret;
990 }
991
992 static const struct file_operations proc_environ_operations = {
993 .read = environ_read,
994 };
995
996 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
997 size_t count, loff_t *ppos)
998 {
999 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000 char buffer[PROC_NUMBUF];
1001 size_t len;
1002 int oom_adjust;
1003
1004 if (!task)
1005 return -ESRCH;
1006 task_lock(task);
1007 if (task->mm)
1008 oom_adjust = task->mm->oom_adj;
1009 else
1010 oom_adjust = OOM_DISABLE;
1011 task_unlock(task);
1012 put_task_struct(task);
1013
1014 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1015
1016 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1017 }
1018
1019 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1020 size_t count, loff_t *ppos)
1021 {
1022 struct task_struct *task;
1023 char buffer[PROC_NUMBUF], *end;
1024 int oom_adjust;
1025
1026 memset(buffer, 0, sizeof(buffer));
1027 if (count > sizeof(buffer) - 1)
1028 count = sizeof(buffer) - 1;
1029 if (copy_from_user(buffer, buf, count))
1030 return -EFAULT;
1031 oom_adjust = simple_strtol(buffer, &end, 0);
1032 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1033 oom_adjust != OOM_DISABLE)
1034 return -EINVAL;
1035 if (*end == '\n')
1036 end++;
1037 task = get_proc_task(file->f_path.dentry->d_inode);
1038 if (!task)
1039 return -ESRCH;
1040 task_lock(task);
1041 if (!task->mm) {
1042 task_unlock(task);
1043 put_task_struct(task);
1044 return -EINVAL;
1045 }
1046 if (oom_adjust < task->mm->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1047 task_unlock(task);
1048 put_task_struct(task);
1049 return -EACCES;
1050 }
1051 task->mm->oom_adj = oom_adjust;
1052 task_unlock(task);
1053 put_task_struct(task);
1054 if (end - buffer == 0)
1055 return -EIO;
1056 return end - buffer;
1057 }
1058
1059 static const struct file_operations proc_oom_adjust_operations = {
1060 .read = oom_adjust_read,
1061 .write = oom_adjust_write,
1062 };
1063
1064 #ifdef CONFIG_AUDITSYSCALL
1065 #define TMPBUFLEN 21
1066 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1067 size_t count, loff_t *ppos)
1068 {
1069 struct inode * inode = file->f_path.dentry->d_inode;
1070 struct task_struct *task = get_proc_task(inode);
1071 ssize_t length;
1072 char tmpbuf[TMPBUFLEN];
1073
1074 if (!task)
1075 return -ESRCH;
1076 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1077 audit_get_loginuid(task));
1078 put_task_struct(task);
1079 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1080 }
1081
1082 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1083 size_t count, loff_t *ppos)
1084 {
1085 struct inode * inode = file->f_path.dentry->d_inode;
1086 char *page, *tmp;
1087 ssize_t length;
1088 uid_t loginuid;
1089
1090 if (!capable(CAP_AUDIT_CONTROL))
1091 return -EPERM;
1092
1093 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1094 return -EPERM;
1095
1096 if (count >= PAGE_SIZE)
1097 count = PAGE_SIZE - 1;
1098
1099 if (*ppos != 0) {
1100 /* No partial writes. */
1101 return -EINVAL;
1102 }
1103 page = (char*)__get_free_page(GFP_TEMPORARY);
1104 if (!page)
1105 return -ENOMEM;
1106 length = -EFAULT;
1107 if (copy_from_user(page, buf, count))
1108 goto out_free_page;
1109
1110 page[count] = '\0';
1111 loginuid = simple_strtoul(page, &tmp, 10);
1112 if (tmp == page) {
1113 length = -EINVAL;
1114 goto out_free_page;
1115
1116 }
1117 length = audit_set_loginuid(current, loginuid);
1118 if (likely(length == 0))
1119 length = count;
1120
1121 out_free_page:
1122 free_page((unsigned long) page);
1123 return length;
1124 }
1125
1126 static const struct file_operations proc_loginuid_operations = {
1127 .read = proc_loginuid_read,
1128 .write = proc_loginuid_write,
1129 };
1130
1131 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1132 size_t count, loff_t *ppos)
1133 {
1134 struct inode * inode = file->f_path.dentry->d_inode;
1135 struct task_struct *task = get_proc_task(inode);
1136 ssize_t length;
1137 char tmpbuf[TMPBUFLEN];
1138
1139 if (!task)
1140 return -ESRCH;
1141 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1142 audit_get_sessionid(task));
1143 put_task_struct(task);
1144 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1145 }
1146
1147 static const struct file_operations proc_sessionid_operations = {
1148 .read = proc_sessionid_read,
1149 };
1150 #endif
1151
1152 #ifdef CONFIG_FAULT_INJECTION
1153 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1154 size_t count, loff_t *ppos)
1155 {
1156 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1157 char buffer[PROC_NUMBUF];
1158 size_t len;
1159 int make_it_fail;
1160
1161 if (!task)
1162 return -ESRCH;
1163 make_it_fail = task->make_it_fail;
1164 put_task_struct(task);
1165
1166 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1167
1168 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1169 }
1170
1171 static ssize_t proc_fault_inject_write(struct file * file,
1172 const char __user * buf, size_t count, loff_t *ppos)
1173 {
1174 struct task_struct *task;
1175 char buffer[PROC_NUMBUF], *end;
1176 int make_it_fail;
1177
1178 if (!capable(CAP_SYS_RESOURCE))
1179 return -EPERM;
1180 memset(buffer, 0, sizeof(buffer));
1181 if (count > sizeof(buffer) - 1)
1182 count = sizeof(buffer) - 1;
1183 if (copy_from_user(buffer, buf, count))
1184 return -EFAULT;
1185 make_it_fail = simple_strtol(buffer, &end, 0);
1186 if (*end == '\n')
1187 end++;
1188 task = get_proc_task(file->f_dentry->d_inode);
1189 if (!task)
1190 return -ESRCH;
1191 task->make_it_fail = make_it_fail;
1192 put_task_struct(task);
1193 if (end - buffer == 0)
1194 return -EIO;
1195 return end - buffer;
1196 }
1197
1198 static const struct file_operations proc_fault_inject_operations = {
1199 .read = proc_fault_inject_read,
1200 .write = proc_fault_inject_write,
1201 };
1202 #endif
1203
1204
1205 #ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * Print out various scheduling related per-task fields:
1208 */
1209 static int sched_show(struct seq_file *m, void *v)
1210 {
1211 struct inode *inode = m->private;
1212 struct task_struct *p;
1213
1214 p = get_proc_task(inode);
1215 if (!p)
1216 return -ESRCH;
1217 proc_sched_show_task(p, m);
1218
1219 put_task_struct(p);
1220
1221 return 0;
1222 }
1223
1224 static ssize_t
1225 sched_write(struct file *file, const char __user *buf,
1226 size_t count, loff_t *offset)
1227 {
1228 struct inode *inode = file->f_path.dentry->d_inode;
1229 struct task_struct *p;
1230
1231 p = get_proc_task(inode);
1232 if (!p)
1233 return -ESRCH;
1234 proc_sched_set_task(p);
1235
1236 put_task_struct(p);
1237
1238 return count;
1239 }
1240
1241 static int sched_open(struct inode *inode, struct file *filp)
1242 {
1243 int ret;
1244
1245 ret = single_open(filp, sched_show, NULL);
1246 if (!ret) {
1247 struct seq_file *m = filp->private_data;
1248
1249 m->private = inode;
1250 }
1251 return ret;
1252 }
1253
1254 static const struct file_operations proc_pid_sched_operations = {
1255 .open = sched_open,
1256 .read = seq_read,
1257 .write = sched_write,
1258 .llseek = seq_lseek,
1259 .release = single_release,
1260 };
1261
1262 #endif
1263
1264 /*
1265 * We added or removed a vma mapping the executable. The vmas are only mapped
1266 * during exec and are not mapped with the mmap system call.
1267 * Callers must hold down_write() on the mm's mmap_sem for these
1268 */
1269 void added_exe_file_vma(struct mm_struct *mm)
1270 {
1271 mm->num_exe_file_vmas++;
1272 }
1273
1274 void removed_exe_file_vma(struct mm_struct *mm)
1275 {
1276 mm->num_exe_file_vmas--;
1277 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1278 fput(mm->exe_file);
1279 mm->exe_file = NULL;
1280 }
1281
1282 }
1283
1284 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1285 {
1286 if (new_exe_file)
1287 get_file(new_exe_file);
1288 if (mm->exe_file)
1289 fput(mm->exe_file);
1290 mm->exe_file = new_exe_file;
1291 mm->num_exe_file_vmas = 0;
1292 }
1293
1294 struct file *get_mm_exe_file(struct mm_struct *mm)
1295 {
1296 struct file *exe_file;
1297
1298 /* We need mmap_sem to protect against races with removal of
1299 * VM_EXECUTABLE vmas */
1300 down_read(&mm->mmap_sem);
1301 exe_file = mm->exe_file;
1302 if (exe_file)
1303 get_file(exe_file);
1304 up_read(&mm->mmap_sem);
1305 return exe_file;
1306 }
1307
1308 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1309 {
1310 /* It's safe to write the exe_file pointer without exe_file_lock because
1311 * this is called during fork when the task is not yet in /proc */
1312 newmm->exe_file = get_mm_exe_file(oldmm);
1313 }
1314
1315 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1316 {
1317 struct task_struct *task;
1318 struct mm_struct *mm;
1319 struct file *exe_file;
1320
1321 task = get_proc_task(inode);
1322 if (!task)
1323 return -ENOENT;
1324 mm = get_task_mm(task);
1325 put_task_struct(task);
1326 if (!mm)
1327 return -ENOENT;
1328 exe_file = get_mm_exe_file(mm);
1329 mmput(mm);
1330 if (exe_file) {
1331 *exe_path = exe_file->f_path;
1332 path_get(&exe_file->f_path);
1333 fput(exe_file);
1334 return 0;
1335 } else
1336 return -ENOENT;
1337 }
1338
1339 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1340 {
1341 struct inode *inode = dentry->d_inode;
1342 int error = -EACCES;
1343
1344 /* We don't need a base pointer in the /proc filesystem */
1345 path_put(&nd->path);
1346
1347 /* Are we allowed to snoop on the tasks file descriptors? */
1348 if (!proc_fd_access_allowed(inode))
1349 goto out;
1350
1351 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1352 nd->last_type = LAST_BIND;
1353 out:
1354 return ERR_PTR(error);
1355 }
1356
1357 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1358 {
1359 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1360 char *pathname;
1361 int len;
1362
1363 if (!tmp)
1364 return -ENOMEM;
1365
1366 pathname = d_path(path, tmp, PAGE_SIZE);
1367 len = PTR_ERR(pathname);
1368 if (IS_ERR(pathname))
1369 goto out;
1370 len = tmp + PAGE_SIZE - 1 - pathname;
1371
1372 if (len > buflen)
1373 len = buflen;
1374 if (copy_to_user(buffer, pathname, len))
1375 len = -EFAULT;
1376 out:
1377 free_page((unsigned long)tmp);
1378 return len;
1379 }
1380
1381 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1382 {
1383 int error = -EACCES;
1384 struct inode *inode = dentry->d_inode;
1385 struct path path;
1386
1387 /* Are we allowed to snoop on the tasks file descriptors? */
1388 if (!proc_fd_access_allowed(inode))
1389 goto out;
1390
1391 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1392 if (error)
1393 goto out;
1394
1395 error = do_proc_readlink(&path, buffer, buflen);
1396 path_put(&path);
1397 out:
1398 return error;
1399 }
1400
1401 static const struct inode_operations proc_pid_link_inode_operations = {
1402 .readlink = proc_pid_readlink,
1403 .follow_link = proc_pid_follow_link,
1404 .setattr = proc_setattr,
1405 };
1406
1407
1408 /* building an inode */
1409
1410 static int task_dumpable(struct task_struct *task)
1411 {
1412 int dumpable = 0;
1413 struct mm_struct *mm;
1414
1415 task_lock(task);
1416 mm = task->mm;
1417 if (mm)
1418 dumpable = get_dumpable(mm);
1419 task_unlock(task);
1420 if(dumpable == 1)
1421 return 1;
1422 return 0;
1423 }
1424
1425
1426 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1427 {
1428 struct inode * inode;
1429 struct proc_inode *ei;
1430 const struct cred *cred;
1431
1432 /* We need a new inode */
1433
1434 inode = new_inode(sb);
1435 if (!inode)
1436 goto out;
1437
1438 /* Common stuff */
1439 ei = PROC_I(inode);
1440 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1441 inode->i_op = &proc_def_inode_operations;
1442
1443 /*
1444 * grab the reference to task.
1445 */
1446 ei->pid = get_task_pid(task, PIDTYPE_PID);
1447 if (!ei->pid)
1448 goto out_unlock;
1449
1450 if (task_dumpable(task)) {
1451 rcu_read_lock();
1452 cred = __task_cred(task);
1453 inode->i_uid = cred->euid;
1454 inode->i_gid = cred->egid;
1455 rcu_read_unlock();
1456 }
1457 security_task_to_inode(task, inode);
1458
1459 out:
1460 return inode;
1461
1462 out_unlock:
1463 iput(inode);
1464 return NULL;
1465 }
1466
1467 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1468 {
1469 struct inode *inode = dentry->d_inode;
1470 struct task_struct *task;
1471 const struct cred *cred;
1472
1473 generic_fillattr(inode, stat);
1474
1475 rcu_read_lock();
1476 stat->uid = 0;
1477 stat->gid = 0;
1478 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1479 if (task) {
1480 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1481 task_dumpable(task)) {
1482 cred = __task_cred(task);
1483 stat->uid = cred->euid;
1484 stat->gid = cred->egid;
1485 }
1486 }
1487 rcu_read_unlock();
1488 return 0;
1489 }
1490
1491 /* dentry stuff */
1492
1493 /*
1494 * Exceptional case: normally we are not allowed to unhash a busy
1495 * directory. In this case, however, we can do it - no aliasing problems
1496 * due to the way we treat inodes.
1497 *
1498 * Rewrite the inode's ownerships here because the owning task may have
1499 * performed a setuid(), etc.
1500 *
1501 * Before the /proc/pid/status file was created the only way to read
1502 * the effective uid of a /process was to stat /proc/pid. Reading
1503 * /proc/pid/status is slow enough that procps and other packages
1504 * kept stating /proc/pid. To keep the rules in /proc simple I have
1505 * made this apply to all per process world readable and executable
1506 * directories.
1507 */
1508 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1509 {
1510 struct inode *inode = dentry->d_inode;
1511 struct task_struct *task = get_proc_task(inode);
1512 const struct cred *cred;
1513
1514 if (task) {
1515 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1516 task_dumpable(task)) {
1517 rcu_read_lock();
1518 cred = __task_cred(task);
1519 inode->i_uid = cred->euid;
1520 inode->i_gid = cred->egid;
1521 rcu_read_unlock();
1522 } else {
1523 inode->i_uid = 0;
1524 inode->i_gid = 0;
1525 }
1526 inode->i_mode &= ~(S_ISUID | S_ISGID);
1527 security_task_to_inode(task, inode);
1528 put_task_struct(task);
1529 return 1;
1530 }
1531 d_drop(dentry);
1532 return 0;
1533 }
1534
1535 static int pid_delete_dentry(struct dentry * dentry)
1536 {
1537 /* Is the task we represent dead?
1538 * If so, then don't put the dentry on the lru list,
1539 * kill it immediately.
1540 */
1541 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1542 }
1543
1544 static const struct dentry_operations pid_dentry_operations =
1545 {
1546 .d_revalidate = pid_revalidate,
1547 .d_delete = pid_delete_dentry,
1548 };
1549
1550 /* Lookups */
1551
1552 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1553 struct task_struct *, const void *);
1554
1555 /*
1556 * Fill a directory entry.
1557 *
1558 * If possible create the dcache entry and derive our inode number and
1559 * file type from dcache entry.
1560 *
1561 * Since all of the proc inode numbers are dynamically generated, the inode
1562 * numbers do not exist until the inode is cache. This means creating the
1563 * the dcache entry in readdir is necessary to keep the inode numbers
1564 * reported by readdir in sync with the inode numbers reported
1565 * by stat.
1566 */
1567 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1568 char *name, int len,
1569 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1570 {
1571 struct dentry *child, *dir = filp->f_path.dentry;
1572 struct inode *inode;
1573 struct qstr qname;
1574 ino_t ino = 0;
1575 unsigned type = DT_UNKNOWN;
1576
1577 qname.name = name;
1578 qname.len = len;
1579 qname.hash = full_name_hash(name, len);
1580
1581 child = d_lookup(dir, &qname);
1582 if (!child) {
1583 struct dentry *new;
1584 new = d_alloc(dir, &qname);
1585 if (new) {
1586 child = instantiate(dir->d_inode, new, task, ptr);
1587 if (child)
1588 dput(new);
1589 else
1590 child = new;
1591 }
1592 }
1593 if (!child || IS_ERR(child) || !child->d_inode)
1594 goto end_instantiate;
1595 inode = child->d_inode;
1596 if (inode) {
1597 ino = inode->i_ino;
1598 type = inode->i_mode >> 12;
1599 }
1600 dput(child);
1601 end_instantiate:
1602 if (!ino)
1603 ino = find_inode_number(dir, &qname);
1604 if (!ino)
1605 ino = 1;
1606 return filldir(dirent, name, len, filp->f_pos, ino, type);
1607 }
1608
1609 static unsigned name_to_int(struct dentry *dentry)
1610 {
1611 const char *name = dentry->d_name.name;
1612 int len = dentry->d_name.len;
1613 unsigned n = 0;
1614
1615 if (len > 1 && *name == '0')
1616 goto out;
1617 while (len-- > 0) {
1618 unsigned c = *name++ - '0';
1619 if (c > 9)
1620 goto out;
1621 if (n >= (~0U-9)/10)
1622 goto out;
1623 n *= 10;
1624 n += c;
1625 }
1626 return n;
1627 out:
1628 return ~0U;
1629 }
1630
1631 #define PROC_FDINFO_MAX 64
1632
1633 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1634 {
1635 struct task_struct *task = get_proc_task(inode);
1636 struct files_struct *files = NULL;
1637 struct file *file;
1638 int fd = proc_fd(inode);
1639
1640 if (task) {
1641 files = get_files_struct(task);
1642 put_task_struct(task);
1643 }
1644 if (files) {
1645 /*
1646 * We are not taking a ref to the file structure, so we must
1647 * hold ->file_lock.
1648 */
1649 spin_lock(&files->file_lock);
1650 file = fcheck_files(files, fd);
1651 if (file) {
1652 if (path) {
1653 *path = file->f_path;
1654 path_get(&file->f_path);
1655 }
1656 if (info)
1657 snprintf(info, PROC_FDINFO_MAX,
1658 "pos:\t%lli\n"
1659 "flags:\t0%o\n",
1660 (long long) file->f_pos,
1661 file->f_flags);
1662 spin_unlock(&files->file_lock);
1663 put_files_struct(files);
1664 return 0;
1665 }
1666 spin_unlock(&files->file_lock);
1667 put_files_struct(files);
1668 }
1669 return -ENOENT;
1670 }
1671
1672 static int proc_fd_link(struct inode *inode, struct path *path)
1673 {
1674 return proc_fd_info(inode, path, NULL);
1675 }
1676
1677 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1678 {
1679 struct inode *inode = dentry->d_inode;
1680 struct task_struct *task = get_proc_task(inode);
1681 int fd = proc_fd(inode);
1682 struct files_struct *files;
1683 const struct cred *cred;
1684
1685 if (task) {
1686 files = get_files_struct(task);
1687 if (files) {
1688 rcu_read_lock();
1689 if (fcheck_files(files, fd)) {
1690 rcu_read_unlock();
1691 put_files_struct(files);
1692 if (task_dumpable(task)) {
1693 rcu_read_lock();
1694 cred = __task_cred(task);
1695 inode->i_uid = cred->euid;
1696 inode->i_gid = cred->egid;
1697 rcu_read_unlock();
1698 } else {
1699 inode->i_uid = 0;
1700 inode->i_gid = 0;
1701 }
1702 inode->i_mode &= ~(S_ISUID | S_ISGID);
1703 security_task_to_inode(task, inode);
1704 put_task_struct(task);
1705 return 1;
1706 }
1707 rcu_read_unlock();
1708 put_files_struct(files);
1709 }
1710 put_task_struct(task);
1711 }
1712 d_drop(dentry);
1713 return 0;
1714 }
1715
1716 static const struct dentry_operations tid_fd_dentry_operations =
1717 {
1718 .d_revalidate = tid_fd_revalidate,
1719 .d_delete = pid_delete_dentry,
1720 };
1721
1722 static struct dentry *proc_fd_instantiate(struct inode *dir,
1723 struct dentry *dentry, struct task_struct *task, const void *ptr)
1724 {
1725 unsigned fd = *(const unsigned *)ptr;
1726 struct file *file;
1727 struct files_struct *files;
1728 struct inode *inode;
1729 struct proc_inode *ei;
1730 struct dentry *error = ERR_PTR(-ENOENT);
1731
1732 inode = proc_pid_make_inode(dir->i_sb, task);
1733 if (!inode)
1734 goto out;
1735 ei = PROC_I(inode);
1736 ei->fd = fd;
1737 files = get_files_struct(task);
1738 if (!files)
1739 goto out_iput;
1740 inode->i_mode = S_IFLNK;
1741
1742 /*
1743 * We are not taking a ref to the file structure, so we must
1744 * hold ->file_lock.
1745 */
1746 spin_lock(&files->file_lock);
1747 file = fcheck_files(files, fd);
1748 if (!file)
1749 goto out_unlock;
1750 if (file->f_mode & FMODE_READ)
1751 inode->i_mode |= S_IRUSR | S_IXUSR;
1752 if (file->f_mode & FMODE_WRITE)
1753 inode->i_mode |= S_IWUSR | S_IXUSR;
1754 spin_unlock(&files->file_lock);
1755 put_files_struct(files);
1756
1757 inode->i_op = &proc_pid_link_inode_operations;
1758 inode->i_size = 64;
1759 ei->op.proc_get_link = proc_fd_link;
1760 dentry->d_op = &tid_fd_dentry_operations;
1761 d_add(dentry, inode);
1762 /* Close the race of the process dying before we return the dentry */
1763 if (tid_fd_revalidate(dentry, NULL))
1764 error = NULL;
1765
1766 out:
1767 return error;
1768 out_unlock:
1769 spin_unlock(&files->file_lock);
1770 put_files_struct(files);
1771 out_iput:
1772 iput(inode);
1773 goto out;
1774 }
1775
1776 static struct dentry *proc_lookupfd_common(struct inode *dir,
1777 struct dentry *dentry,
1778 instantiate_t instantiate)
1779 {
1780 struct task_struct *task = get_proc_task(dir);
1781 unsigned fd = name_to_int(dentry);
1782 struct dentry *result = ERR_PTR(-ENOENT);
1783
1784 if (!task)
1785 goto out_no_task;
1786 if (fd == ~0U)
1787 goto out;
1788
1789 result = instantiate(dir, dentry, task, &fd);
1790 out:
1791 put_task_struct(task);
1792 out_no_task:
1793 return result;
1794 }
1795
1796 static int proc_readfd_common(struct file * filp, void * dirent,
1797 filldir_t filldir, instantiate_t instantiate)
1798 {
1799 struct dentry *dentry = filp->f_path.dentry;
1800 struct inode *inode = dentry->d_inode;
1801 struct task_struct *p = get_proc_task(inode);
1802 unsigned int fd, ino;
1803 int retval;
1804 struct files_struct * files;
1805
1806 retval = -ENOENT;
1807 if (!p)
1808 goto out_no_task;
1809 retval = 0;
1810
1811 fd = filp->f_pos;
1812 switch (fd) {
1813 case 0:
1814 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1815 goto out;
1816 filp->f_pos++;
1817 case 1:
1818 ino = parent_ino(dentry);
1819 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1820 goto out;
1821 filp->f_pos++;
1822 default:
1823 files = get_files_struct(p);
1824 if (!files)
1825 goto out;
1826 rcu_read_lock();
1827 for (fd = filp->f_pos-2;
1828 fd < files_fdtable(files)->max_fds;
1829 fd++, filp->f_pos++) {
1830 char name[PROC_NUMBUF];
1831 int len;
1832
1833 if (!fcheck_files(files, fd))
1834 continue;
1835 rcu_read_unlock();
1836
1837 len = snprintf(name, sizeof(name), "%d", fd);
1838 if (proc_fill_cache(filp, dirent, filldir,
1839 name, len, instantiate,
1840 p, &fd) < 0) {
1841 rcu_read_lock();
1842 break;
1843 }
1844 rcu_read_lock();
1845 }
1846 rcu_read_unlock();
1847 put_files_struct(files);
1848 }
1849 out:
1850 put_task_struct(p);
1851 out_no_task:
1852 return retval;
1853 }
1854
1855 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1856 struct nameidata *nd)
1857 {
1858 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1859 }
1860
1861 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1862 {
1863 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1864 }
1865
1866 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1867 size_t len, loff_t *ppos)
1868 {
1869 char tmp[PROC_FDINFO_MAX];
1870 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1871 if (!err)
1872 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1873 return err;
1874 }
1875
1876 static const struct file_operations proc_fdinfo_file_operations = {
1877 .open = nonseekable_open,
1878 .read = proc_fdinfo_read,
1879 };
1880
1881 static const struct file_operations proc_fd_operations = {
1882 .read = generic_read_dir,
1883 .readdir = proc_readfd,
1884 };
1885
1886 /*
1887 * /proc/pid/fd needs a special permission handler so that a process can still
1888 * access /proc/self/fd after it has executed a setuid().
1889 */
1890 static int proc_fd_permission(struct inode *inode, int mask)
1891 {
1892 int rv;
1893
1894 rv = generic_permission(inode, mask, NULL);
1895 if (rv == 0)
1896 return 0;
1897 if (task_pid(current) == proc_pid(inode))
1898 rv = 0;
1899 return rv;
1900 }
1901
1902 /*
1903 * proc directories can do almost nothing..
1904 */
1905 static const struct inode_operations proc_fd_inode_operations = {
1906 .lookup = proc_lookupfd,
1907 .permission = proc_fd_permission,
1908 .setattr = proc_setattr,
1909 };
1910
1911 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1912 struct dentry *dentry, struct task_struct *task, const void *ptr)
1913 {
1914 unsigned fd = *(unsigned *)ptr;
1915 struct inode *inode;
1916 struct proc_inode *ei;
1917 struct dentry *error = ERR_PTR(-ENOENT);
1918
1919 inode = proc_pid_make_inode(dir->i_sb, task);
1920 if (!inode)
1921 goto out;
1922 ei = PROC_I(inode);
1923 ei->fd = fd;
1924 inode->i_mode = S_IFREG | S_IRUSR;
1925 inode->i_fop = &proc_fdinfo_file_operations;
1926 dentry->d_op = &tid_fd_dentry_operations;
1927 d_add(dentry, inode);
1928 /* Close the race of the process dying before we return the dentry */
1929 if (tid_fd_revalidate(dentry, NULL))
1930 error = NULL;
1931
1932 out:
1933 return error;
1934 }
1935
1936 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1937 struct dentry *dentry,
1938 struct nameidata *nd)
1939 {
1940 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1941 }
1942
1943 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1944 {
1945 return proc_readfd_common(filp, dirent, filldir,
1946 proc_fdinfo_instantiate);
1947 }
1948
1949 static const struct file_operations proc_fdinfo_operations = {
1950 .read = generic_read_dir,
1951 .readdir = proc_readfdinfo,
1952 };
1953
1954 /*
1955 * proc directories can do almost nothing..
1956 */
1957 static const struct inode_operations proc_fdinfo_inode_operations = {
1958 .lookup = proc_lookupfdinfo,
1959 .setattr = proc_setattr,
1960 };
1961
1962
1963 static struct dentry *proc_pident_instantiate(struct inode *dir,
1964 struct dentry *dentry, struct task_struct *task, const void *ptr)
1965 {
1966 const struct pid_entry *p = ptr;
1967 struct inode *inode;
1968 struct proc_inode *ei;
1969 struct dentry *error = ERR_PTR(-ENOENT);
1970
1971 inode = proc_pid_make_inode(dir->i_sb, task);
1972 if (!inode)
1973 goto out;
1974
1975 ei = PROC_I(inode);
1976 inode->i_mode = p->mode;
1977 if (S_ISDIR(inode->i_mode))
1978 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1979 if (p->iop)
1980 inode->i_op = p->iop;
1981 if (p->fop)
1982 inode->i_fop = p->fop;
1983 ei->op = p->op;
1984 dentry->d_op = &pid_dentry_operations;
1985 d_add(dentry, inode);
1986 /* Close the race of the process dying before we return the dentry */
1987 if (pid_revalidate(dentry, NULL))
1988 error = NULL;
1989 out:
1990 return error;
1991 }
1992
1993 static struct dentry *proc_pident_lookup(struct inode *dir,
1994 struct dentry *dentry,
1995 const struct pid_entry *ents,
1996 unsigned int nents)
1997 {
1998 struct dentry *error;
1999 struct task_struct *task = get_proc_task(dir);
2000 const struct pid_entry *p, *last;
2001
2002 error = ERR_PTR(-ENOENT);
2003
2004 if (!task)
2005 goto out_no_task;
2006
2007 /*
2008 * Yes, it does not scale. And it should not. Don't add
2009 * new entries into /proc/<tgid>/ without very good reasons.
2010 */
2011 last = &ents[nents - 1];
2012 for (p = ents; p <= last; p++) {
2013 if (p->len != dentry->d_name.len)
2014 continue;
2015 if (!memcmp(dentry->d_name.name, p->name, p->len))
2016 break;
2017 }
2018 if (p > last)
2019 goto out;
2020
2021 error = proc_pident_instantiate(dir, dentry, task, p);
2022 out:
2023 put_task_struct(task);
2024 out_no_task:
2025 return error;
2026 }
2027
2028 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2029 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2030 {
2031 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2032 proc_pident_instantiate, task, p);
2033 }
2034
2035 static int proc_pident_readdir(struct file *filp,
2036 void *dirent, filldir_t filldir,
2037 const struct pid_entry *ents, unsigned int nents)
2038 {
2039 int i;
2040 struct dentry *dentry = filp->f_path.dentry;
2041 struct inode *inode = dentry->d_inode;
2042 struct task_struct *task = get_proc_task(inode);
2043 const struct pid_entry *p, *last;
2044 ino_t ino;
2045 int ret;
2046
2047 ret = -ENOENT;
2048 if (!task)
2049 goto out_no_task;
2050
2051 ret = 0;
2052 i = filp->f_pos;
2053 switch (i) {
2054 case 0:
2055 ino = inode->i_ino;
2056 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2057 goto out;
2058 i++;
2059 filp->f_pos++;
2060 /* fall through */
2061 case 1:
2062 ino = parent_ino(dentry);
2063 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2064 goto out;
2065 i++;
2066 filp->f_pos++;
2067 /* fall through */
2068 default:
2069 i -= 2;
2070 if (i >= nents) {
2071 ret = 1;
2072 goto out;
2073 }
2074 p = ents + i;
2075 last = &ents[nents - 1];
2076 while (p <= last) {
2077 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2078 goto out;
2079 filp->f_pos++;
2080 p++;
2081 }
2082 }
2083
2084 ret = 1;
2085 out:
2086 put_task_struct(task);
2087 out_no_task:
2088 return ret;
2089 }
2090
2091 #ifdef CONFIG_SECURITY
2092 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2093 size_t count, loff_t *ppos)
2094 {
2095 struct inode * inode = file->f_path.dentry->d_inode;
2096 char *p = NULL;
2097 ssize_t length;
2098 struct task_struct *task = get_proc_task(inode);
2099
2100 if (!task)
2101 return -ESRCH;
2102
2103 length = security_getprocattr(task,
2104 (char*)file->f_path.dentry->d_name.name,
2105 &p);
2106 put_task_struct(task);
2107 if (length > 0)
2108 length = simple_read_from_buffer(buf, count, ppos, p, length);
2109 kfree(p);
2110 return length;
2111 }
2112
2113 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2114 size_t count, loff_t *ppos)
2115 {
2116 struct inode * inode = file->f_path.dentry->d_inode;
2117 char *page;
2118 ssize_t length;
2119 struct task_struct *task = get_proc_task(inode);
2120
2121 length = -ESRCH;
2122 if (!task)
2123 goto out_no_task;
2124 if (count > PAGE_SIZE)
2125 count = PAGE_SIZE;
2126
2127 /* No partial writes. */
2128 length = -EINVAL;
2129 if (*ppos != 0)
2130 goto out;
2131
2132 length = -ENOMEM;
2133 page = (char*)__get_free_page(GFP_TEMPORARY);
2134 if (!page)
2135 goto out;
2136
2137 length = -EFAULT;
2138 if (copy_from_user(page, buf, count))
2139 goto out_free;
2140
2141 /* Guard against adverse ptrace interaction */
2142 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2143 if (length < 0)
2144 goto out_free;
2145
2146 length = security_setprocattr(task,
2147 (char*)file->f_path.dentry->d_name.name,
2148 (void*)page, count);
2149 mutex_unlock(&task->cred_guard_mutex);
2150 out_free:
2151 free_page((unsigned long) page);
2152 out:
2153 put_task_struct(task);
2154 out_no_task:
2155 return length;
2156 }
2157
2158 static const struct file_operations proc_pid_attr_operations = {
2159 .read = proc_pid_attr_read,
2160 .write = proc_pid_attr_write,
2161 };
2162
2163 static const struct pid_entry attr_dir_stuff[] = {
2164 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2165 REG("prev", S_IRUGO, proc_pid_attr_operations),
2166 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2167 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2168 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2169 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2170 };
2171
2172 static int proc_attr_dir_readdir(struct file * filp,
2173 void * dirent, filldir_t filldir)
2174 {
2175 return proc_pident_readdir(filp,dirent,filldir,
2176 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2177 }
2178
2179 static const struct file_operations proc_attr_dir_operations = {
2180 .read = generic_read_dir,
2181 .readdir = proc_attr_dir_readdir,
2182 };
2183
2184 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2185 struct dentry *dentry, struct nameidata *nd)
2186 {
2187 return proc_pident_lookup(dir, dentry,
2188 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2189 }
2190
2191 static const struct inode_operations proc_attr_dir_inode_operations = {
2192 .lookup = proc_attr_dir_lookup,
2193 .getattr = pid_getattr,
2194 .setattr = proc_setattr,
2195 };
2196
2197 #endif
2198
2199 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2200 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2201 size_t count, loff_t *ppos)
2202 {
2203 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2204 struct mm_struct *mm;
2205 char buffer[PROC_NUMBUF];
2206 size_t len;
2207 int ret;
2208
2209 if (!task)
2210 return -ESRCH;
2211
2212 ret = 0;
2213 mm = get_task_mm(task);
2214 if (mm) {
2215 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2216 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2217 MMF_DUMP_FILTER_SHIFT));
2218 mmput(mm);
2219 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2220 }
2221
2222 put_task_struct(task);
2223
2224 return ret;
2225 }
2226
2227 static ssize_t proc_coredump_filter_write(struct file *file,
2228 const char __user *buf,
2229 size_t count,
2230 loff_t *ppos)
2231 {
2232 struct task_struct *task;
2233 struct mm_struct *mm;
2234 char buffer[PROC_NUMBUF], *end;
2235 unsigned int val;
2236 int ret;
2237 int i;
2238 unsigned long mask;
2239
2240 ret = -EFAULT;
2241 memset(buffer, 0, sizeof(buffer));
2242 if (count > sizeof(buffer) - 1)
2243 count = sizeof(buffer) - 1;
2244 if (copy_from_user(buffer, buf, count))
2245 goto out_no_task;
2246
2247 ret = -EINVAL;
2248 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2249 if (*end == '\n')
2250 end++;
2251 if (end - buffer == 0)
2252 goto out_no_task;
2253
2254 ret = -ESRCH;
2255 task = get_proc_task(file->f_dentry->d_inode);
2256 if (!task)
2257 goto out_no_task;
2258
2259 ret = end - buffer;
2260 mm = get_task_mm(task);
2261 if (!mm)
2262 goto out_no_mm;
2263
2264 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2265 if (val & mask)
2266 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2267 else
2268 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2269 }
2270
2271 mmput(mm);
2272 out_no_mm:
2273 put_task_struct(task);
2274 out_no_task:
2275 return ret;
2276 }
2277
2278 static const struct file_operations proc_coredump_filter_operations = {
2279 .read = proc_coredump_filter_read,
2280 .write = proc_coredump_filter_write,
2281 };
2282 #endif
2283
2284 /*
2285 * /proc/self:
2286 */
2287 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2288 int buflen)
2289 {
2290 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2291 pid_t tgid = task_tgid_nr_ns(current, ns);
2292 char tmp[PROC_NUMBUF];
2293 if (!tgid)
2294 return -ENOENT;
2295 sprintf(tmp, "%d", tgid);
2296 return vfs_readlink(dentry,buffer,buflen,tmp);
2297 }
2298
2299 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2300 {
2301 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2302 pid_t tgid = task_tgid_nr_ns(current, ns);
2303 char tmp[PROC_NUMBUF];
2304 if (!tgid)
2305 return ERR_PTR(-ENOENT);
2306 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2307 return ERR_PTR(vfs_follow_link(nd,tmp));
2308 }
2309
2310 static const struct inode_operations proc_self_inode_operations = {
2311 .readlink = proc_self_readlink,
2312 .follow_link = proc_self_follow_link,
2313 };
2314
2315 /*
2316 * proc base
2317 *
2318 * These are the directory entries in the root directory of /proc
2319 * that properly belong to the /proc filesystem, as they describe
2320 * describe something that is process related.
2321 */
2322 static const struct pid_entry proc_base_stuff[] = {
2323 NOD("self", S_IFLNK|S_IRWXUGO,
2324 &proc_self_inode_operations, NULL, {}),
2325 };
2326
2327 /*
2328 * Exceptional case: normally we are not allowed to unhash a busy
2329 * directory. In this case, however, we can do it - no aliasing problems
2330 * due to the way we treat inodes.
2331 */
2332 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2333 {
2334 struct inode *inode = dentry->d_inode;
2335 struct task_struct *task = get_proc_task(inode);
2336 if (task) {
2337 put_task_struct(task);
2338 return 1;
2339 }
2340 d_drop(dentry);
2341 return 0;
2342 }
2343
2344 static const struct dentry_operations proc_base_dentry_operations =
2345 {
2346 .d_revalidate = proc_base_revalidate,
2347 .d_delete = pid_delete_dentry,
2348 };
2349
2350 static struct dentry *proc_base_instantiate(struct inode *dir,
2351 struct dentry *dentry, struct task_struct *task, const void *ptr)
2352 {
2353 const struct pid_entry *p = ptr;
2354 struct inode *inode;
2355 struct proc_inode *ei;
2356 struct dentry *error = ERR_PTR(-EINVAL);
2357
2358 /* Allocate the inode */
2359 error = ERR_PTR(-ENOMEM);
2360 inode = new_inode(dir->i_sb);
2361 if (!inode)
2362 goto out;
2363
2364 /* Initialize the inode */
2365 ei = PROC_I(inode);
2366 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2367
2368 /*
2369 * grab the reference to the task.
2370 */
2371 ei->pid = get_task_pid(task, PIDTYPE_PID);
2372 if (!ei->pid)
2373 goto out_iput;
2374
2375 inode->i_mode = p->mode;
2376 if (S_ISDIR(inode->i_mode))
2377 inode->i_nlink = 2;
2378 if (S_ISLNK(inode->i_mode))
2379 inode->i_size = 64;
2380 if (p->iop)
2381 inode->i_op = p->iop;
2382 if (p->fop)
2383 inode->i_fop = p->fop;
2384 ei->op = p->op;
2385 dentry->d_op = &proc_base_dentry_operations;
2386 d_add(dentry, inode);
2387 error = NULL;
2388 out:
2389 return error;
2390 out_iput:
2391 iput(inode);
2392 goto out;
2393 }
2394
2395 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2396 {
2397 struct dentry *error;
2398 struct task_struct *task = get_proc_task(dir);
2399 const struct pid_entry *p, *last;
2400
2401 error = ERR_PTR(-ENOENT);
2402
2403 if (!task)
2404 goto out_no_task;
2405
2406 /* Lookup the directory entry */
2407 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2408 for (p = proc_base_stuff; p <= last; p++) {
2409 if (p->len != dentry->d_name.len)
2410 continue;
2411 if (!memcmp(dentry->d_name.name, p->name, p->len))
2412 break;
2413 }
2414 if (p > last)
2415 goto out;
2416
2417 error = proc_base_instantiate(dir, dentry, task, p);
2418
2419 out:
2420 put_task_struct(task);
2421 out_no_task:
2422 return error;
2423 }
2424
2425 static int proc_base_fill_cache(struct file *filp, void *dirent,
2426 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2427 {
2428 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2429 proc_base_instantiate, task, p);
2430 }
2431
2432 #ifdef CONFIG_TASK_IO_ACCOUNTING
2433 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2434 {
2435 struct task_io_accounting acct = task->ioac;
2436 unsigned long flags;
2437
2438 if (whole && lock_task_sighand(task, &flags)) {
2439 struct task_struct *t = task;
2440
2441 task_io_accounting_add(&acct, &task->signal->ioac);
2442 while_each_thread(task, t)
2443 task_io_accounting_add(&acct, &t->ioac);
2444
2445 unlock_task_sighand(task, &flags);
2446 }
2447 return sprintf(buffer,
2448 "rchar: %llu\n"
2449 "wchar: %llu\n"
2450 "syscr: %llu\n"
2451 "syscw: %llu\n"
2452 "read_bytes: %llu\n"
2453 "write_bytes: %llu\n"
2454 "cancelled_write_bytes: %llu\n",
2455 (unsigned long long)acct.rchar,
2456 (unsigned long long)acct.wchar,
2457 (unsigned long long)acct.syscr,
2458 (unsigned long long)acct.syscw,
2459 (unsigned long long)acct.read_bytes,
2460 (unsigned long long)acct.write_bytes,
2461 (unsigned long long)acct.cancelled_write_bytes);
2462 }
2463
2464 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2465 {
2466 return do_io_accounting(task, buffer, 0);
2467 }
2468
2469 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2470 {
2471 return do_io_accounting(task, buffer, 1);
2472 }
2473 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2474
2475 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2476 struct pid *pid, struct task_struct *task)
2477 {
2478 seq_printf(m, "%08x\n", task->personality);
2479 return 0;
2480 }
2481
2482 /*
2483 * Thread groups
2484 */
2485 static const struct file_operations proc_task_operations;
2486 static const struct inode_operations proc_task_inode_operations;
2487
2488 static const struct pid_entry tgid_base_stuff[] = {
2489 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2490 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2491 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2492 #ifdef CONFIG_NET
2493 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2494 #endif
2495 REG("environ", S_IRUSR, proc_environ_operations),
2496 INF("auxv", S_IRUSR, proc_pid_auxv),
2497 ONE("status", S_IRUGO, proc_pid_status),
2498 ONE("personality", S_IRUSR, proc_pid_personality),
2499 INF("limits", S_IRUSR, proc_pid_limits),
2500 #ifdef CONFIG_SCHED_DEBUG
2501 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2502 #endif
2503 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2504 INF("syscall", S_IRUSR, proc_pid_syscall),
2505 #endif
2506 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2507 ONE("stat", S_IRUGO, proc_tgid_stat),
2508 ONE("statm", S_IRUGO, proc_pid_statm),
2509 REG("maps", S_IRUGO, proc_maps_operations),
2510 #ifdef CONFIG_NUMA
2511 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2512 #endif
2513 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2514 LNK("cwd", proc_cwd_link),
2515 LNK("root", proc_root_link),
2516 LNK("exe", proc_exe_link),
2517 REG("mounts", S_IRUGO, proc_mounts_operations),
2518 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2519 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2520 #ifdef CONFIG_PROC_PAGE_MONITOR
2521 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2522 REG("smaps", S_IRUGO, proc_smaps_operations),
2523 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2524 #endif
2525 #ifdef CONFIG_SECURITY
2526 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2527 #endif
2528 #ifdef CONFIG_KALLSYMS
2529 INF("wchan", S_IRUGO, proc_pid_wchan),
2530 #endif
2531 #ifdef CONFIG_STACKTRACE
2532 ONE("stack", S_IRUSR, proc_pid_stack),
2533 #endif
2534 #ifdef CONFIG_SCHEDSTATS
2535 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2536 #endif
2537 #ifdef CONFIG_LATENCYTOP
2538 REG("latency", S_IRUGO, proc_lstats_operations),
2539 #endif
2540 #ifdef CONFIG_PROC_PID_CPUSET
2541 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2542 #endif
2543 #ifdef CONFIG_CGROUPS
2544 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2545 #endif
2546 INF("oom_score", S_IRUGO, proc_oom_score),
2547 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2548 #ifdef CONFIG_AUDITSYSCALL
2549 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2550 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2551 #endif
2552 #ifdef CONFIG_FAULT_INJECTION
2553 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2554 #endif
2555 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2556 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2557 #endif
2558 #ifdef CONFIG_TASK_IO_ACCOUNTING
2559 INF("io", S_IRUGO, proc_tgid_io_accounting),
2560 #endif
2561 };
2562
2563 static int proc_tgid_base_readdir(struct file * filp,
2564 void * dirent, filldir_t filldir)
2565 {
2566 return proc_pident_readdir(filp,dirent,filldir,
2567 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2568 }
2569
2570 static const struct file_operations proc_tgid_base_operations = {
2571 .read = generic_read_dir,
2572 .readdir = proc_tgid_base_readdir,
2573 };
2574
2575 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2576 return proc_pident_lookup(dir, dentry,
2577 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2578 }
2579
2580 static const struct inode_operations proc_tgid_base_inode_operations = {
2581 .lookup = proc_tgid_base_lookup,
2582 .getattr = pid_getattr,
2583 .setattr = proc_setattr,
2584 };
2585
2586 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2587 {
2588 struct dentry *dentry, *leader, *dir;
2589 char buf[PROC_NUMBUF];
2590 struct qstr name;
2591
2592 name.name = buf;
2593 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2594 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2595 if (dentry) {
2596 if (!(current->flags & PF_EXITING))
2597 shrink_dcache_parent(dentry);
2598 d_drop(dentry);
2599 dput(dentry);
2600 }
2601
2602 if (tgid == 0)
2603 goto out;
2604
2605 name.name = buf;
2606 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2607 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2608 if (!leader)
2609 goto out;
2610
2611 name.name = "task";
2612 name.len = strlen(name.name);
2613 dir = d_hash_and_lookup(leader, &name);
2614 if (!dir)
2615 goto out_put_leader;
2616
2617 name.name = buf;
2618 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2619 dentry = d_hash_and_lookup(dir, &name);
2620 if (dentry) {
2621 shrink_dcache_parent(dentry);
2622 d_drop(dentry);
2623 dput(dentry);
2624 }
2625
2626 dput(dir);
2627 out_put_leader:
2628 dput(leader);
2629 out:
2630 return;
2631 }
2632
2633 /**
2634 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2635 * @task: task that should be flushed.
2636 *
2637 * When flushing dentries from proc, one needs to flush them from global
2638 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2639 * in. This call is supposed to do all of this job.
2640 *
2641 * Looks in the dcache for
2642 * /proc/@pid
2643 * /proc/@tgid/task/@pid
2644 * if either directory is present flushes it and all of it'ts children
2645 * from the dcache.
2646 *
2647 * It is safe and reasonable to cache /proc entries for a task until
2648 * that task exits. After that they just clog up the dcache with
2649 * useless entries, possibly causing useful dcache entries to be
2650 * flushed instead. This routine is proved to flush those useless
2651 * dcache entries at process exit time.
2652 *
2653 * NOTE: This routine is just an optimization so it does not guarantee
2654 * that no dcache entries will exist at process exit time it
2655 * just makes it very unlikely that any will persist.
2656 */
2657
2658 void proc_flush_task(struct task_struct *task)
2659 {
2660 int i;
2661 struct pid *pid, *tgid = NULL;
2662 struct upid *upid;
2663
2664 pid = task_pid(task);
2665 if (thread_group_leader(task))
2666 tgid = task_tgid(task);
2667
2668 for (i = 0; i <= pid->level; i++) {
2669 upid = &pid->numbers[i];
2670 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2671 tgid ? tgid->numbers[i].nr : 0);
2672 }
2673
2674 upid = &pid->numbers[pid->level];
2675 if (upid->nr == 1)
2676 pid_ns_release_proc(upid->ns);
2677 }
2678
2679 static struct dentry *proc_pid_instantiate(struct inode *dir,
2680 struct dentry * dentry,
2681 struct task_struct *task, const void *ptr)
2682 {
2683 struct dentry *error = ERR_PTR(-ENOENT);
2684 struct inode *inode;
2685
2686 inode = proc_pid_make_inode(dir->i_sb, task);
2687 if (!inode)
2688 goto out;
2689
2690 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2691 inode->i_op = &proc_tgid_base_inode_operations;
2692 inode->i_fop = &proc_tgid_base_operations;
2693 inode->i_flags|=S_IMMUTABLE;
2694
2695 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2696 ARRAY_SIZE(tgid_base_stuff));
2697
2698 dentry->d_op = &pid_dentry_operations;
2699
2700 d_add(dentry, inode);
2701 /* Close the race of the process dying before we return the dentry */
2702 if (pid_revalidate(dentry, NULL))
2703 error = NULL;
2704 out:
2705 return error;
2706 }
2707
2708 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2709 {
2710 struct dentry *result = ERR_PTR(-ENOENT);
2711 struct task_struct *task;
2712 unsigned tgid;
2713 struct pid_namespace *ns;
2714
2715 result = proc_base_lookup(dir, dentry);
2716 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2717 goto out;
2718
2719 tgid = name_to_int(dentry);
2720 if (tgid == ~0U)
2721 goto out;
2722
2723 ns = dentry->d_sb->s_fs_info;
2724 rcu_read_lock();
2725 task = find_task_by_pid_ns(tgid, ns);
2726 if (task)
2727 get_task_struct(task);
2728 rcu_read_unlock();
2729 if (!task)
2730 goto out;
2731
2732 result = proc_pid_instantiate(dir, dentry, task, NULL);
2733 put_task_struct(task);
2734 out:
2735 return result;
2736 }
2737
2738 /*
2739 * Find the first task with tgid >= tgid
2740 *
2741 */
2742 struct tgid_iter {
2743 unsigned int tgid;
2744 struct task_struct *task;
2745 };
2746 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2747 {
2748 struct pid *pid;
2749
2750 if (iter.task)
2751 put_task_struct(iter.task);
2752 rcu_read_lock();
2753 retry:
2754 iter.task = NULL;
2755 pid = find_ge_pid(iter.tgid, ns);
2756 if (pid) {
2757 iter.tgid = pid_nr_ns(pid, ns);
2758 iter.task = pid_task(pid, PIDTYPE_PID);
2759 /* What we to know is if the pid we have find is the
2760 * pid of a thread_group_leader. Testing for task
2761 * being a thread_group_leader is the obvious thing
2762 * todo but there is a window when it fails, due to
2763 * the pid transfer logic in de_thread.
2764 *
2765 * So we perform the straight forward test of seeing
2766 * if the pid we have found is the pid of a thread
2767 * group leader, and don't worry if the task we have
2768 * found doesn't happen to be a thread group leader.
2769 * As we don't care in the case of readdir.
2770 */
2771 if (!iter.task || !has_group_leader_pid(iter.task)) {
2772 iter.tgid += 1;
2773 goto retry;
2774 }
2775 get_task_struct(iter.task);
2776 }
2777 rcu_read_unlock();
2778 return iter;
2779 }
2780
2781 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2782
2783 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2784 struct tgid_iter iter)
2785 {
2786 char name[PROC_NUMBUF];
2787 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2788 return proc_fill_cache(filp, dirent, filldir, name, len,
2789 proc_pid_instantiate, iter.task, NULL);
2790 }
2791
2792 /* for the /proc/ directory itself, after non-process stuff has been done */
2793 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2794 {
2795 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2796 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2797 struct tgid_iter iter;
2798 struct pid_namespace *ns;
2799
2800 if (!reaper)
2801 goto out_no_task;
2802
2803 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2804 const struct pid_entry *p = &proc_base_stuff[nr];
2805 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2806 goto out;
2807 }
2808
2809 ns = filp->f_dentry->d_sb->s_fs_info;
2810 iter.task = NULL;
2811 iter.tgid = filp->f_pos - TGID_OFFSET;
2812 for (iter = next_tgid(ns, iter);
2813 iter.task;
2814 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2815 filp->f_pos = iter.tgid + TGID_OFFSET;
2816 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2817 put_task_struct(iter.task);
2818 goto out;
2819 }
2820 }
2821 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2822 out:
2823 put_task_struct(reaper);
2824 out_no_task:
2825 return 0;
2826 }
2827
2828 /*
2829 * Tasks
2830 */
2831 static const struct pid_entry tid_base_stuff[] = {
2832 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2833 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2834 REG("environ", S_IRUSR, proc_environ_operations),
2835 INF("auxv", S_IRUSR, proc_pid_auxv),
2836 ONE("status", S_IRUGO, proc_pid_status),
2837 ONE("personality", S_IRUSR, proc_pid_personality),
2838 INF("limits", S_IRUSR, proc_pid_limits),
2839 #ifdef CONFIG_SCHED_DEBUG
2840 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2841 #endif
2842 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2843 INF("syscall", S_IRUSR, proc_pid_syscall),
2844 #endif
2845 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2846 ONE("stat", S_IRUGO, proc_tid_stat),
2847 ONE("statm", S_IRUGO, proc_pid_statm),
2848 REG("maps", S_IRUGO, proc_maps_operations),
2849 #ifdef CONFIG_NUMA
2850 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2851 #endif
2852 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2853 LNK("cwd", proc_cwd_link),
2854 LNK("root", proc_root_link),
2855 LNK("exe", proc_exe_link),
2856 REG("mounts", S_IRUGO, proc_mounts_operations),
2857 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2858 #ifdef CONFIG_PROC_PAGE_MONITOR
2859 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2860 REG("smaps", S_IRUGO, proc_smaps_operations),
2861 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2862 #endif
2863 #ifdef CONFIG_SECURITY
2864 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2865 #endif
2866 #ifdef CONFIG_KALLSYMS
2867 INF("wchan", S_IRUGO, proc_pid_wchan),
2868 #endif
2869 #ifdef CONFIG_STACKTRACE
2870 ONE("stack", S_IRUSR, proc_pid_stack),
2871 #endif
2872 #ifdef CONFIG_SCHEDSTATS
2873 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2874 #endif
2875 #ifdef CONFIG_LATENCYTOP
2876 REG("latency", S_IRUGO, proc_lstats_operations),
2877 #endif
2878 #ifdef CONFIG_PROC_PID_CPUSET
2879 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2880 #endif
2881 #ifdef CONFIG_CGROUPS
2882 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2883 #endif
2884 INF("oom_score", S_IRUGO, proc_oom_score),
2885 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2886 #ifdef CONFIG_AUDITSYSCALL
2887 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2888 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2889 #endif
2890 #ifdef CONFIG_FAULT_INJECTION
2891 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2892 #endif
2893 #ifdef CONFIG_TASK_IO_ACCOUNTING
2894 INF("io", S_IRUGO, proc_tid_io_accounting),
2895 #endif
2896 };
2897
2898 static int proc_tid_base_readdir(struct file * filp,
2899 void * dirent, filldir_t filldir)
2900 {
2901 return proc_pident_readdir(filp,dirent,filldir,
2902 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2903 }
2904
2905 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2906 return proc_pident_lookup(dir, dentry,
2907 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2908 }
2909
2910 static const struct file_operations proc_tid_base_operations = {
2911 .read = generic_read_dir,
2912 .readdir = proc_tid_base_readdir,
2913 };
2914
2915 static const struct inode_operations proc_tid_base_inode_operations = {
2916 .lookup = proc_tid_base_lookup,
2917 .getattr = pid_getattr,
2918 .setattr = proc_setattr,
2919 };
2920
2921 static struct dentry *proc_task_instantiate(struct inode *dir,
2922 struct dentry *dentry, struct task_struct *task, const void *ptr)
2923 {
2924 struct dentry *error = ERR_PTR(-ENOENT);
2925 struct inode *inode;
2926 inode = proc_pid_make_inode(dir->i_sb, task);
2927
2928 if (!inode)
2929 goto out;
2930 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2931 inode->i_op = &proc_tid_base_inode_operations;
2932 inode->i_fop = &proc_tid_base_operations;
2933 inode->i_flags|=S_IMMUTABLE;
2934
2935 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2936 ARRAY_SIZE(tid_base_stuff));
2937
2938 dentry->d_op = &pid_dentry_operations;
2939
2940 d_add(dentry, inode);
2941 /* Close the race of the process dying before we return the dentry */
2942 if (pid_revalidate(dentry, NULL))
2943 error = NULL;
2944 out:
2945 return error;
2946 }
2947
2948 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2949 {
2950 struct dentry *result = ERR_PTR(-ENOENT);
2951 struct task_struct *task;
2952 struct task_struct *leader = get_proc_task(dir);
2953 unsigned tid;
2954 struct pid_namespace *ns;
2955
2956 if (!leader)
2957 goto out_no_task;
2958
2959 tid = name_to_int(dentry);
2960 if (tid == ~0U)
2961 goto out;
2962
2963 ns = dentry->d_sb->s_fs_info;
2964 rcu_read_lock();
2965 task = find_task_by_pid_ns(tid, ns);
2966 if (task)
2967 get_task_struct(task);
2968 rcu_read_unlock();
2969 if (!task)
2970 goto out;
2971 if (!same_thread_group(leader, task))
2972 goto out_drop_task;
2973
2974 result = proc_task_instantiate(dir, dentry, task, NULL);
2975 out_drop_task:
2976 put_task_struct(task);
2977 out:
2978 put_task_struct(leader);
2979 out_no_task:
2980 return result;
2981 }
2982
2983 /*
2984 * Find the first tid of a thread group to return to user space.
2985 *
2986 * Usually this is just the thread group leader, but if the users
2987 * buffer was too small or there was a seek into the middle of the
2988 * directory we have more work todo.
2989 *
2990 * In the case of a short read we start with find_task_by_pid.
2991 *
2992 * In the case of a seek we start with the leader and walk nr
2993 * threads past it.
2994 */
2995 static struct task_struct *first_tid(struct task_struct *leader,
2996 int tid, int nr, struct pid_namespace *ns)
2997 {
2998 struct task_struct *pos;
2999
3000 rcu_read_lock();
3001 /* Attempt to start with the pid of a thread */
3002 if (tid && (nr > 0)) {
3003 pos = find_task_by_pid_ns(tid, ns);
3004 if (pos && (pos->group_leader == leader))
3005 goto found;
3006 }
3007
3008 /* If nr exceeds the number of threads there is nothing todo */
3009 pos = NULL;
3010 if (nr && nr >= get_nr_threads(leader))
3011 goto out;
3012
3013 /* If we haven't found our starting place yet start
3014 * with the leader and walk nr threads forward.
3015 */
3016 for (pos = leader; nr > 0; --nr) {
3017 pos = next_thread(pos);
3018 if (pos == leader) {
3019 pos = NULL;
3020 goto out;
3021 }
3022 }
3023 found:
3024 get_task_struct(pos);
3025 out:
3026 rcu_read_unlock();
3027 return pos;
3028 }
3029
3030 /*
3031 * Find the next thread in the thread list.
3032 * Return NULL if there is an error or no next thread.
3033 *
3034 * The reference to the input task_struct is released.
3035 */
3036 static struct task_struct *next_tid(struct task_struct *start)
3037 {
3038 struct task_struct *pos = NULL;
3039 rcu_read_lock();
3040 if (pid_alive(start)) {
3041 pos = next_thread(start);
3042 if (thread_group_leader(pos))
3043 pos = NULL;
3044 else
3045 get_task_struct(pos);
3046 }
3047 rcu_read_unlock();
3048 put_task_struct(start);
3049 return pos;
3050 }
3051
3052 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3053 struct task_struct *task, int tid)
3054 {
3055 char name[PROC_NUMBUF];
3056 int len = snprintf(name, sizeof(name), "%d", tid);
3057 return proc_fill_cache(filp, dirent, filldir, name, len,
3058 proc_task_instantiate, task, NULL);
3059 }
3060
3061 /* for the /proc/TGID/task/ directories */
3062 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3063 {
3064 struct dentry *dentry = filp->f_path.dentry;
3065 struct inode *inode = dentry->d_inode;
3066 struct task_struct *leader = NULL;
3067 struct task_struct *task;
3068 int retval = -ENOENT;
3069 ino_t ino;
3070 int tid;
3071 struct pid_namespace *ns;
3072
3073 task = get_proc_task(inode);
3074 if (!task)
3075 goto out_no_task;
3076 rcu_read_lock();
3077 if (pid_alive(task)) {
3078 leader = task->group_leader;
3079 get_task_struct(leader);
3080 }
3081 rcu_read_unlock();
3082 put_task_struct(task);
3083 if (!leader)
3084 goto out_no_task;
3085 retval = 0;
3086
3087 switch ((unsigned long)filp->f_pos) {
3088 case 0:
3089 ino = inode->i_ino;
3090 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3091 goto out;
3092 filp->f_pos++;
3093 /* fall through */
3094 case 1:
3095 ino = parent_ino(dentry);
3096 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3097 goto out;
3098 filp->f_pos++;
3099 /* fall through */
3100 }
3101
3102 /* f_version caches the tgid value that the last readdir call couldn't
3103 * return. lseek aka telldir automagically resets f_version to 0.
3104 */
3105 ns = filp->f_dentry->d_sb->s_fs_info;
3106 tid = (int)filp->f_version;
3107 filp->f_version = 0;
3108 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3109 task;
3110 task = next_tid(task), filp->f_pos++) {
3111 tid = task_pid_nr_ns(task, ns);
3112 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3113 /* returning this tgid failed, save it as the first
3114 * pid for the next readir call */
3115 filp->f_version = (u64)tid;
3116 put_task_struct(task);
3117 break;
3118 }
3119 }
3120 out:
3121 put_task_struct(leader);
3122 out_no_task:
3123 return retval;
3124 }
3125
3126 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3127 {
3128 struct inode *inode = dentry->d_inode;
3129 struct task_struct *p = get_proc_task(inode);
3130 generic_fillattr(inode, stat);
3131
3132 if (p) {
3133 stat->nlink += get_nr_threads(p);
3134 put_task_struct(p);
3135 }
3136
3137 return 0;
3138 }
3139
3140 static const struct inode_operations proc_task_inode_operations = {
3141 .lookup = proc_task_lookup,
3142 .getattr = proc_task_getattr,
3143 .setattr = proc_setattr,
3144 };
3145
3146 static const struct file_operations proc_task_operations = {
3147 .read = generic_read_dir,
3148 .readdir = proc_task_readdir,
3149 };