]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/base.c
oom: rewrite error handling for oom_adj and oom_score_adj tunables
[mirror_ubuntu-artful-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89 * Implementing inode permission operations in /proc is almost
90 * certainly an error. Permission checks need to happen during
91 * each system call not at open time. The reason is that most of
92 * what we wish to check for permissions in /proc varies at runtime.
93 *
94 * The classic example of a problem is opening file descriptors
95 * in /proc for a task before it execs a suid executable.
96 */
97
98 struct pid_entry {
99 char *name;
100 int len;
101 mode_t mode;
102 const struct inode_operations *iop;
103 const struct file_operations *fop;
104 union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) { \
108 .name = (NAME), \
109 .len = sizeof(NAME) - 1, \
110 .mode = MODE, \
111 .iop = IOP, \
112 .fop = FOP, \
113 .op = OP, \
114 }
115
116 #define DIR(NAME, MODE, iops, fops) \
117 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link) \
119 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
120 &proc_pid_link_inode_operations, NULL, \
121 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops) \
123 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_info_file_operations, \
127 { .proc_read = read } )
128 #define ONE(NAME, MODE, show) \
129 NOD(NAME, (S_IFREG|(MODE)), \
130 NULL, &proc_single_file_operations, \
131 { .proc_show = show } )
132
133 /*
134 * Count the number of hardlinks for the pid_entry table, excluding the .
135 * and .. links.
136 */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 unsigned int n)
139 {
140 unsigned int i;
141 unsigned int count;
142
143 count = 0;
144 for (i = 0; i < n; ++i) {
145 if (S_ISDIR(entries[i].mode))
146 ++count;
147 }
148
149 return count;
150 }
151
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 int result = -ENOENT;
155
156 task_lock(task);
157 if (task->fs) {
158 get_fs_root(task->fs, root);
159 result = 0;
160 }
161 task_unlock(task);
162 return result;
163 }
164
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 struct task_struct *task = get_proc_task(inode);
168 int result = -ENOENT;
169
170 if (task) {
171 task_lock(task);
172 if (task->fs) {
173 get_fs_pwd(task->fs, path);
174 result = 0;
175 }
176 task_unlock(task);
177 put_task_struct(task);
178 }
179 return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 struct task_struct *task = get_proc_task(inode);
185 int result = -ENOENT;
186
187 if (task) {
188 result = get_task_root(task, path);
189 put_task_struct(task);
190 }
191 return result;
192 }
193
194 /*
195 * Return zero if current may access user memory in @task, -error if not.
196 */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 /*
200 * A task can always look at itself, in case it chooses
201 * to use system calls instead of load instructions.
202 */
203 if (task == current)
204 return 0;
205
206 /*
207 * If current is actively ptrace'ing, and would also be
208 * permitted to freshly attach with ptrace now, permit it.
209 */
210 if (task_is_stopped_or_traced(task)) {
211 int match;
212 rcu_read_lock();
213 match = (tracehook_tracer_task(task) == current);
214 rcu_read_unlock();
215 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 return 0;
217 }
218
219 /*
220 * Noone else is allowed.
221 */
222 return -EPERM;
223 }
224
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 struct mm_struct *mm;
228
229 if (mutex_lock_killable(&task->cred_guard_mutex))
230 return NULL;
231
232 mm = get_task_mm(task);
233 if (mm && mm != current->mm &&
234 !ptrace_may_access(task, PTRACE_MODE_READ)) {
235 mmput(mm);
236 mm = NULL;
237 }
238 mutex_unlock(&task->cred_guard_mutex);
239
240 return mm;
241 }
242
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 int res = 0;
246 unsigned int len;
247 struct mm_struct *mm = get_task_mm(task);
248 if (!mm)
249 goto out;
250 if (!mm->arg_end)
251 goto out_mm; /* Shh! No looking before we're done */
252
253 len = mm->arg_end - mm->arg_start;
254
255 if (len > PAGE_SIZE)
256 len = PAGE_SIZE;
257
258 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259
260 // If the nul at the end of args has been overwritten, then
261 // assume application is using setproctitle(3).
262 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 len = strnlen(buffer, res);
264 if (len < res) {
265 res = len;
266 } else {
267 len = mm->env_end - mm->env_start;
268 if (len > PAGE_SIZE - res)
269 len = PAGE_SIZE - res;
270 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 res = strnlen(buffer, res);
272 }
273 }
274 out_mm:
275 mmput(mm);
276 out:
277 return res;
278 }
279
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 int res = 0;
283 struct mm_struct *mm = get_task_mm(task);
284 if (mm) {
285 unsigned int nwords = 0;
286 do {
287 nwords += 2;
288 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 res = nwords * sizeof(mm->saved_auxv[0]);
290 if (res > PAGE_SIZE)
291 res = PAGE_SIZE;
292 memcpy(buffer, mm->saved_auxv, res);
293 mmput(mm);
294 }
295 return res;
296 }
297
298
299 #ifdef CONFIG_KALLSYMS
300 /*
301 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302 * Returns the resolved symbol. If that fails, simply return the address.
303 */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 unsigned long wchan;
307 char symname[KSYM_NAME_LEN];
308
309 wchan = get_wchan(task);
310
311 if (lookup_symbol_name(wchan, symname) < 0)
312 if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 return 0;
314 else
315 return sprintf(buffer, "%lu", wchan);
316 else
317 return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320
321 #ifdef CONFIG_STACKTRACE
322
323 #define MAX_STACK_TRACE_DEPTH 64
324
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 struct pid *pid, struct task_struct *task)
327 {
328 struct stack_trace trace;
329 unsigned long *entries;
330 int i;
331
332 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 if (!entries)
334 return -ENOMEM;
335
336 trace.nr_entries = 0;
337 trace.max_entries = MAX_STACK_TRACE_DEPTH;
338 trace.entries = entries;
339 trace.skip = 0;
340 save_stack_trace_tsk(task, &trace);
341
342 for (i = 0; i < trace.nr_entries; i++) {
343 seq_printf(m, "[<%p>] %pS\n",
344 (void *)entries[i], (void *)entries[i]);
345 }
346 kfree(entries);
347
348 return 0;
349 }
350 #endif
351
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354 * Provides /proc/PID/schedstat
355 */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 return sprintf(buffer, "%llu %llu %lu\n",
359 (unsigned long long)task->se.sum_exec_runtime,
360 (unsigned long long)task->sched_info.run_delay,
361 task->sched_info.pcount);
362 }
363 #endif
364
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 int i;
369 struct inode *inode = m->private;
370 struct task_struct *task = get_proc_task(inode);
371
372 if (!task)
373 return -ESRCH;
374 seq_puts(m, "Latency Top version : v0.1\n");
375 for (i = 0; i < 32; i++) {
376 if (task->latency_record[i].backtrace[0]) {
377 int q;
378 seq_printf(m, "%i %li %li ",
379 task->latency_record[i].count,
380 task->latency_record[i].time,
381 task->latency_record[i].max);
382 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 char sym[KSYM_SYMBOL_LEN];
384 char *c;
385 if (!task->latency_record[i].backtrace[q])
386 break;
387 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 break;
389 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 c = strchr(sym, '+');
391 if (c)
392 *c = 0;
393 seq_printf(m, "%s ", sym);
394 }
395 seq_printf(m, "\n");
396 }
397
398 }
399 put_task_struct(task);
400 return 0;
401 }
402
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 return single_open(file, lstats_show_proc, inode);
406 }
407
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 size_t count, loff_t *offs)
410 {
411 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412
413 if (!task)
414 return -ESRCH;
415 clear_all_latency_tracing(task);
416 put_task_struct(task);
417
418 return count;
419 }
420
421 static const struct file_operations proc_lstats_operations = {
422 .open = lstats_open,
423 .read = seq_read,
424 .write = lstats_write,
425 .llseek = seq_lseek,
426 .release = single_release,
427 };
428
429 #endif
430
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 unsigned long points = 0;
434
435 read_lock(&tasklist_lock);
436 if (pid_alive(task))
437 points = oom_badness(task, NULL, NULL,
438 totalram_pages + total_swap_pages);
439 read_unlock(&tasklist_lock);
440 return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444 char *name;
445 char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 [RLIMIT_DATA] = {"Max data size", "bytes"},
452 [RLIMIT_STACK] = {"Max stack size", "bytes"},
453 [RLIMIT_CORE] = {"Max core file size", "bytes"},
454 [RLIMIT_RSS] = {"Max resident set", "bytes"},
455 [RLIMIT_NPROC] = {"Max processes", "processes"},
456 [RLIMIT_NOFILE] = {"Max open files", "files"},
457 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 [RLIMIT_AS] = {"Max address space", "bytes"},
459 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 [RLIMIT_NICE] = {"Max nice priority", NULL},
463 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 unsigned int i;
471 int count = 0;
472 unsigned long flags;
473 char *bufptr = buffer;
474
475 struct rlimit rlim[RLIM_NLIMITS];
476
477 if (!lock_task_sighand(task, &flags))
478 return 0;
479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 unlock_task_sighand(task, &flags);
481
482 /*
483 * print the file header
484 */
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
487
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
495
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 else
499 count += sprintf(&bufptr[count], "%-20lu ",
500 rlim[i].rlim_max);
501
502 if (lnames[i].unit)
503 count += sprintf(&bufptr[count], "%-10s\n",
504 lnames[i].unit);
505 else
506 count += sprintf(&bufptr[count], "\n");
507 }
508
509 return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 long nr;
516 unsigned long args[6], sp, pc;
517
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
520
521 if (nr < 0)
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 nr,
527 args[0], args[1], args[2], args[3], args[4], args[5],
528 sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 struct task_struct *task;
540 int allowed = 0;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
543 * information.
544 */
545 task = get_proc_task(inode);
546 if (task) {
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
549 }
550 return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 int error;
556 struct inode *inode = dentry->d_inode;
557
558 if (attr->ia_valid & ATTR_MODE)
559 return -EPERM;
560
561 error = inode_change_ok(inode, attr);
562 if (error)
563 return error;
564
565 if ((attr->ia_valid & ATTR_SIZE) &&
566 attr->ia_size != i_size_read(inode)) {
567 error = vmtruncate(inode, attr->ia_size);
568 if (error)
569 return error;
570 }
571
572 setattr_copy(inode, attr);
573 mark_inode_dirty(inode);
574 return 0;
575 }
576
577 static const struct inode_operations proc_def_inode_operations = {
578 .setattr = proc_setattr,
579 };
580
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 const struct seq_operations *op)
583 {
584 struct task_struct *task = get_proc_task(inode);
585 struct nsproxy *nsp;
586 struct mnt_namespace *ns = NULL;
587 struct path root;
588 struct proc_mounts *p;
589 int ret = -EINVAL;
590
591 if (task) {
592 rcu_read_lock();
593 nsp = task_nsproxy(task);
594 if (nsp) {
595 ns = nsp->mnt_ns;
596 if (ns)
597 get_mnt_ns(ns);
598 }
599 rcu_read_unlock();
600 if (ns && get_task_root(task, &root) == 0)
601 ret = 0;
602 put_task_struct(task);
603 }
604
605 if (!ns)
606 goto err;
607 if (ret)
608 goto err_put_ns;
609
610 ret = -ENOMEM;
611 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 if (!p)
613 goto err_put_path;
614
615 file->private_data = &p->m;
616 ret = seq_open(file, op);
617 if (ret)
618 goto err_free;
619
620 p->m.private = p;
621 p->ns = ns;
622 p->root = root;
623 p->event = ns->event;
624
625 return 0;
626
627 err_free:
628 kfree(p);
629 err_put_path:
630 path_put(&root);
631 err_put_ns:
632 put_mnt_ns(ns);
633 err:
634 return ret;
635 }
636
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 struct proc_mounts *p = file->private_data;
640 path_put(&p->root);
641 put_mnt_ns(p->ns);
642 return seq_release(inode, file);
643 }
644
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 struct proc_mounts *p = file->private_data;
648 unsigned res = POLLIN | POLLRDNORM;
649
650 poll_wait(file, &p->ns->poll, wait);
651 if (mnt_had_events(p))
652 res |= POLLERR | POLLPRI;
653
654 return res;
655 }
656
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 return mounts_open_common(inode, file, &mounts_op);
660 }
661
662 static const struct file_operations proc_mounts_operations = {
663 .open = mounts_open,
664 .read = seq_read,
665 .llseek = seq_lseek,
666 .release = mounts_release,
667 .poll = mounts_poll,
668 };
669
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 return mounts_open_common(inode, file, &mountinfo_op);
673 }
674
675 static const struct file_operations proc_mountinfo_operations = {
676 .open = mountinfo_open,
677 .read = seq_read,
678 .llseek = seq_lseek,
679 .release = mounts_release,
680 .poll = mounts_poll,
681 };
682
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 return mounts_open_common(inode, file, &mountstats_op);
686 }
687
688 static const struct file_operations proc_mountstats_operations = {
689 .open = mountstats_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = mounts_release,
693 };
694
695 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
696
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 size_t count, loff_t *ppos)
699 {
700 struct inode * inode = file->f_path.dentry->d_inode;
701 unsigned long page;
702 ssize_t length;
703 struct task_struct *task = get_proc_task(inode);
704
705 length = -ESRCH;
706 if (!task)
707 goto out_no_task;
708
709 if (count > PROC_BLOCK_SIZE)
710 count = PROC_BLOCK_SIZE;
711
712 length = -ENOMEM;
713 if (!(page = __get_free_page(GFP_TEMPORARY)))
714 goto out;
715
716 length = PROC_I(inode)->op.proc_read(task, (char*)page);
717
718 if (length >= 0)
719 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 free_page(page);
721 out:
722 put_task_struct(task);
723 out_no_task:
724 return length;
725 }
726
727 static const struct file_operations proc_info_file_operations = {
728 .read = proc_info_read,
729 .llseek = generic_file_llseek,
730 };
731
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 struct inode *inode = m->private;
735 struct pid_namespace *ns;
736 struct pid *pid;
737 struct task_struct *task;
738 int ret;
739
740 ns = inode->i_sb->s_fs_info;
741 pid = proc_pid(inode);
742 task = get_pid_task(pid, PIDTYPE_PID);
743 if (!task)
744 return -ESRCH;
745
746 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747
748 put_task_struct(task);
749 return ret;
750 }
751
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 int ret;
755 ret = single_open(filp, proc_single_show, NULL);
756 if (!ret) {
757 struct seq_file *m = filp->private_data;
758
759 m->private = inode;
760 }
761 return ret;
762 }
763
764 static const struct file_operations proc_single_file_operations = {
765 .open = proc_single_open,
766 .read = seq_read,
767 .llseek = seq_lseek,
768 .release = single_release,
769 };
770
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 file->private_data = (void*)((long)current->self_exec_id);
774 return 0;
775 }
776
777 static ssize_t mem_read(struct file * file, char __user * buf,
778 size_t count, loff_t *ppos)
779 {
780 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
781 char *page;
782 unsigned long src = *ppos;
783 int ret = -ESRCH;
784 struct mm_struct *mm;
785
786 if (!task)
787 goto out_no_task;
788
789 if (check_mem_permission(task))
790 goto out;
791
792 ret = -ENOMEM;
793 page = (char *)__get_free_page(GFP_TEMPORARY);
794 if (!page)
795 goto out;
796
797 ret = 0;
798
799 mm = get_task_mm(task);
800 if (!mm)
801 goto out_free;
802
803 ret = -EIO;
804
805 if (file->private_data != (void*)((long)current->self_exec_id))
806 goto out_put;
807
808 ret = 0;
809
810 while (count > 0) {
811 int this_len, retval;
812
813 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
814 retval = access_process_vm(task, src, page, this_len, 0);
815 if (!retval || check_mem_permission(task)) {
816 if (!ret)
817 ret = -EIO;
818 break;
819 }
820
821 if (copy_to_user(buf, page, retval)) {
822 ret = -EFAULT;
823 break;
824 }
825
826 ret += retval;
827 src += retval;
828 buf += retval;
829 count -= retval;
830 }
831 *ppos = src;
832
833 out_put:
834 mmput(mm);
835 out_free:
836 free_page((unsigned long) page);
837 out:
838 put_task_struct(task);
839 out_no_task:
840 return ret;
841 }
842
843 #define mem_write NULL
844
845 #ifndef mem_write
846 /* This is a security hazard */
847 static ssize_t mem_write(struct file * file, const char __user *buf,
848 size_t count, loff_t *ppos)
849 {
850 int copied;
851 char *page;
852 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
853 unsigned long dst = *ppos;
854
855 copied = -ESRCH;
856 if (!task)
857 goto out_no_task;
858
859 if (check_mem_permission(task))
860 goto out;
861
862 copied = -ENOMEM;
863 page = (char *)__get_free_page(GFP_TEMPORARY);
864 if (!page)
865 goto out;
866
867 copied = 0;
868 while (count > 0) {
869 int this_len, retval;
870
871 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
872 if (copy_from_user(page, buf, this_len)) {
873 copied = -EFAULT;
874 break;
875 }
876 retval = access_process_vm(task, dst, page, this_len, 1);
877 if (!retval) {
878 if (!copied)
879 copied = -EIO;
880 break;
881 }
882 copied += retval;
883 buf += retval;
884 dst += retval;
885 count -= retval;
886 }
887 *ppos = dst;
888 free_page((unsigned long) page);
889 out:
890 put_task_struct(task);
891 out_no_task:
892 return copied;
893 }
894 #endif
895
896 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
897 {
898 switch (orig) {
899 case 0:
900 file->f_pos = offset;
901 break;
902 case 1:
903 file->f_pos += offset;
904 break;
905 default:
906 return -EINVAL;
907 }
908 force_successful_syscall_return();
909 return file->f_pos;
910 }
911
912 static const struct file_operations proc_mem_operations = {
913 .llseek = mem_lseek,
914 .read = mem_read,
915 .write = mem_write,
916 .open = mem_open,
917 };
918
919 static ssize_t environ_read(struct file *file, char __user *buf,
920 size_t count, loff_t *ppos)
921 {
922 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
923 char *page;
924 unsigned long src = *ppos;
925 int ret = -ESRCH;
926 struct mm_struct *mm;
927
928 if (!task)
929 goto out_no_task;
930
931 if (!ptrace_may_access(task, PTRACE_MODE_READ))
932 goto out;
933
934 ret = -ENOMEM;
935 page = (char *)__get_free_page(GFP_TEMPORARY);
936 if (!page)
937 goto out;
938
939 ret = 0;
940
941 mm = get_task_mm(task);
942 if (!mm)
943 goto out_free;
944
945 while (count > 0) {
946 int this_len, retval, max_len;
947
948 this_len = mm->env_end - (mm->env_start + src);
949
950 if (this_len <= 0)
951 break;
952
953 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
954 this_len = (this_len > max_len) ? max_len : this_len;
955
956 retval = access_process_vm(task, (mm->env_start + src),
957 page, this_len, 0);
958
959 if (retval <= 0) {
960 ret = retval;
961 break;
962 }
963
964 if (copy_to_user(buf, page, retval)) {
965 ret = -EFAULT;
966 break;
967 }
968
969 ret += retval;
970 src += retval;
971 buf += retval;
972 count -= retval;
973 }
974 *ppos = src;
975
976 mmput(mm);
977 out_free:
978 free_page((unsigned long) page);
979 out:
980 put_task_struct(task);
981 out_no_task:
982 return ret;
983 }
984
985 static const struct file_operations proc_environ_operations = {
986 .read = environ_read,
987 .llseek = generic_file_llseek,
988 };
989
990 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
991 size_t count, loff_t *ppos)
992 {
993 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
994 char buffer[PROC_NUMBUF];
995 size_t len;
996 int oom_adjust = OOM_DISABLE;
997 unsigned long flags;
998
999 if (!task)
1000 return -ESRCH;
1001
1002 if (lock_task_sighand(task, &flags)) {
1003 oom_adjust = task->signal->oom_adj;
1004 unlock_task_sighand(task, &flags);
1005 }
1006
1007 put_task_struct(task);
1008
1009 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010
1011 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 size_t count, loff_t *ppos)
1016 {
1017 struct task_struct *task;
1018 char buffer[PROC_NUMBUF];
1019 long oom_adjust;
1020 unsigned long flags;
1021 int err;
1022
1023 memset(buffer, 0, sizeof(buffer));
1024 if (count > sizeof(buffer) - 1)
1025 count = sizeof(buffer) - 1;
1026 if (copy_from_user(buffer, buf, count)) {
1027 err = -EFAULT;
1028 goto out;
1029 }
1030
1031 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1032 if (err)
1033 goto out;
1034 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1035 oom_adjust != OOM_DISABLE) {
1036 err = -EINVAL;
1037 goto out;
1038 }
1039
1040 task = get_proc_task(file->f_path.dentry->d_inode);
1041 if (!task) {
1042 err = -ESRCH;
1043 goto out;
1044 }
1045 if (!lock_task_sighand(task, &flags)) {
1046 err = -ESRCH;
1047 goto err_task_struct;
1048 }
1049
1050 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1051 err = -EACCES;
1052 goto err_sighand;
1053 }
1054
1055 task_lock(task);
1056 if (!task->mm) {
1057 err = -EINVAL;
1058 goto err_task_lock;
1059 }
1060
1061 if (oom_adjust != task->signal->oom_adj) {
1062 if (oom_adjust == OOM_DISABLE)
1063 atomic_inc(&task->mm->oom_disable_count);
1064 if (task->signal->oom_adj == OOM_DISABLE)
1065 atomic_dec(&task->mm->oom_disable_count);
1066 }
1067
1068 /*
1069 * Warn that /proc/pid/oom_adj is deprecated, see
1070 * Documentation/feature-removal-schedule.txt.
1071 */
1072 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1073 "please use /proc/%d/oom_score_adj instead.\n",
1074 current->comm, task_pid_nr(current),
1075 task_pid_nr(task), task_pid_nr(task));
1076 task->signal->oom_adj = oom_adjust;
1077 /*
1078 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1079 * value is always attainable.
1080 */
1081 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1082 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1083 else
1084 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1085 -OOM_DISABLE;
1086 err_task_lock:
1087 task_unlock(task);
1088 err_sighand:
1089 unlock_task_sighand(task, &flags);
1090 err_task_struct:
1091 put_task_struct(task);
1092 out:
1093 return err < 0 ? err : count;
1094 }
1095
1096 static const struct file_operations proc_oom_adjust_operations = {
1097 .read = oom_adjust_read,
1098 .write = oom_adjust_write,
1099 .llseek = generic_file_llseek,
1100 };
1101
1102 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1103 size_t count, loff_t *ppos)
1104 {
1105 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1106 char buffer[PROC_NUMBUF];
1107 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1108 unsigned long flags;
1109 size_t len;
1110
1111 if (!task)
1112 return -ESRCH;
1113 if (lock_task_sighand(task, &flags)) {
1114 oom_score_adj = task->signal->oom_score_adj;
1115 unlock_task_sighand(task, &flags);
1116 }
1117 put_task_struct(task);
1118 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1119 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1120 }
1121
1122 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1123 size_t count, loff_t *ppos)
1124 {
1125 struct task_struct *task;
1126 char buffer[PROC_NUMBUF];
1127 unsigned long flags;
1128 long oom_score_adj;
1129 int err;
1130
1131 memset(buffer, 0, sizeof(buffer));
1132 if (count > sizeof(buffer) - 1)
1133 count = sizeof(buffer) - 1;
1134 if (copy_from_user(buffer, buf, count)) {
1135 err = -EFAULT;
1136 goto out;
1137 }
1138
1139 err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1140 if (err)
1141 goto out;
1142 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1143 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1144 err = -EINVAL;
1145 goto out;
1146 }
1147
1148 task = get_proc_task(file->f_path.dentry->d_inode);
1149 if (!task) {
1150 err = -ESRCH;
1151 goto out;
1152 }
1153 if (!lock_task_sighand(task, &flags)) {
1154 err = -ESRCH;
1155 goto err_task_struct;
1156 }
1157 if (oom_score_adj < task->signal->oom_score_adj &&
1158 !capable(CAP_SYS_RESOURCE)) {
1159 err = -EACCES;
1160 goto err_sighand;
1161 }
1162
1163 task_lock(task);
1164 if (!task->mm) {
1165 err = -EINVAL;
1166 goto err_task_lock;
1167 }
1168 if (oom_score_adj != task->signal->oom_score_adj) {
1169 if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1170 atomic_inc(&task->mm->oom_disable_count);
1171 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1172 atomic_dec(&task->mm->oom_disable_count);
1173 }
1174 task->signal->oom_score_adj = oom_score_adj;
1175 /*
1176 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1177 * always attainable.
1178 */
1179 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1180 task->signal->oom_adj = OOM_DISABLE;
1181 else
1182 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1183 OOM_SCORE_ADJ_MAX;
1184 err_task_lock:
1185 task_unlock(task);
1186 err_sighand:
1187 unlock_task_sighand(task, &flags);
1188 err_task_struct:
1189 put_task_struct(task);
1190 out:
1191 return err < 0 ? err : count;
1192 }
1193
1194 static const struct file_operations proc_oom_score_adj_operations = {
1195 .read = oom_score_adj_read,
1196 .write = oom_score_adj_write,
1197 .llseek = default_llseek,
1198 };
1199
1200 #ifdef CONFIG_AUDITSYSCALL
1201 #define TMPBUFLEN 21
1202 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1203 size_t count, loff_t *ppos)
1204 {
1205 struct inode * inode = file->f_path.dentry->d_inode;
1206 struct task_struct *task = get_proc_task(inode);
1207 ssize_t length;
1208 char tmpbuf[TMPBUFLEN];
1209
1210 if (!task)
1211 return -ESRCH;
1212 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1213 audit_get_loginuid(task));
1214 put_task_struct(task);
1215 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1216 }
1217
1218 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1219 size_t count, loff_t *ppos)
1220 {
1221 struct inode * inode = file->f_path.dentry->d_inode;
1222 char *page, *tmp;
1223 ssize_t length;
1224 uid_t loginuid;
1225
1226 if (!capable(CAP_AUDIT_CONTROL))
1227 return -EPERM;
1228
1229 rcu_read_lock();
1230 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1231 rcu_read_unlock();
1232 return -EPERM;
1233 }
1234 rcu_read_unlock();
1235
1236 if (count >= PAGE_SIZE)
1237 count = PAGE_SIZE - 1;
1238
1239 if (*ppos != 0) {
1240 /* No partial writes. */
1241 return -EINVAL;
1242 }
1243 page = (char*)__get_free_page(GFP_TEMPORARY);
1244 if (!page)
1245 return -ENOMEM;
1246 length = -EFAULT;
1247 if (copy_from_user(page, buf, count))
1248 goto out_free_page;
1249
1250 page[count] = '\0';
1251 loginuid = simple_strtoul(page, &tmp, 10);
1252 if (tmp == page) {
1253 length = -EINVAL;
1254 goto out_free_page;
1255
1256 }
1257 length = audit_set_loginuid(current, loginuid);
1258 if (likely(length == 0))
1259 length = count;
1260
1261 out_free_page:
1262 free_page((unsigned long) page);
1263 return length;
1264 }
1265
1266 static const struct file_operations proc_loginuid_operations = {
1267 .read = proc_loginuid_read,
1268 .write = proc_loginuid_write,
1269 .llseek = generic_file_llseek,
1270 };
1271
1272 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1273 size_t count, loff_t *ppos)
1274 {
1275 struct inode * inode = file->f_path.dentry->d_inode;
1276 struct task_struct *task = get_proc_task(inode);
1277 ssize_t length;
1278 char tmpbuf[TMPBUFLEN];
1279
1280 if (!task)
1281 return -ESRCH;
1282 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1283 audit_get_sessionid(task));
1284 put_task_struct(task);
1285 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1286 }
1287
1288 static const struct file_operations proc_sessionid_operations = {
1289 .read = proc_sessionid_read,
1290 .llseek = generic_file_llseek,
1291 };
1292 #endif
1293
1294 #ifdef CONFIG_FAULT_INJECTION
1295 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1296 size_t count, loff_t *ppos)
1297 {
1298 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1299 char buffer[PROC_NUMBUF];
1300 size_t len;
1301 int make_it_fail;
1302
1303 if (!task)
1304 return -ESRCH;
1305 make_it_fail = task->make_it_fail;
1306 put_task_struct(task);
1307
1308 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1309
1310 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1311 }
1312
1313 static ssize_t proc_fault_inject_write(struct file * file,
1314 const char __user * buf, size_t count, loff_t *ppos)
1315 {
1316 struct task_struct *task;
1317 char buffer[PROC_NUMBUF], *end;
1318 int make_it_fail;
1319
1320 if (!capable(CAP_SYS_RESOURCE))
1321 return -EPERM;
1322 memset(buffer, 0, sizeof(buffer));
1323 if (count > sizeof(buffer) - 1)
1324 count = sizeof(buffer) - 1;
1325 if (copy_from_user(buffer, buf, count))
1326 return -EFAULT;
1327 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1328 if (*end)
1329 return -EINVAL;
1330 task = get_proc_task(file->f_dentry->d_inode);
1331 if (!task)
1332 return -ESRCH;
1333 task->make_it_fail = make_it_fail;
1334 put_task_struct(task);
1335
1336 return count;
1337 }
1338
1339 static const struct file_operations proc_fault_inject_operations = {
1340 .read = proc_fault_inject_read,
1341 .write = proc_fault_inject_write,
1342 .llseek = generic_file_llseek,
1343 };
1344 #endif
1345
1346
1347 #ifdef CONFIG_SCHED_DEBUG
1348 /*
1349 * Print out various scheduling related per-task fields:
1350 */
1351 static int sched_show(struct seq_file *m, void *v)
1352 {
1353 struct inode *inode = m->private;
1354 struct task_struct *p;
1355
1356 p = get_proc_task(inode);
1357 if (!p)
1358 return -ESRCH;
1359 proc_sched_show_task(p, m);
1360
1361 put_task_struct(p);
1362
1363 return 0;
1364 }
1365
1366 static ssize_t
1367 sched_write(struct file *file, const char __user *buf,
1368 size_t count, loff_t *offset)
1369 {
1370 struct inode *inode = file->f_path.dentry->d_inode;
1371 struct task_struct *p;
1372
1373 p = get_proc_task(inode);
1374 if (!p)
1375 return -ESRCH;
1376 proc_sched_set_task(p);
1377
1378 put_task_struct(p);
1379
1380 return count;
1381 }
1382
1383 static int sched_open(struct inode *inode, struct file *filp)
1384 {
1385 int ret;
1386
1387 ret = single_open(filp, sched_show, NULL);
1388 if (!ret) {
1389 struct seq_file *m = filp->private_data;
1390
1391 m->private = inode;
1392 }
1393 return ret;
1394 }
1395
1396 static const struct file_operations proc_pid_sched_operations = {
1397 .open = sched_open,
1398 .read = seq_read,
1399 .write = sched_write,
1400 .llseek = seq_lseek,
1401 .release = single_release,
1402 };
1403
1404 #endif
1405
1406 static ssize_t comm_write(struct file *file, const char __user *buf,
1407 size_t count, loff_t *offset)
1408 {
1409 struct inode *inode = file->f_path.dentry->d_inode;
1410 struct task_struct *p;
1411 char buffer[TASK_COMM_LEN];
1412
1413 memset(buffer, 0, sizeof(buffer));
1414 if (count > sizeof(buffer) - 1)
1415 count = sizeof(buffer) - 1;
1416 if (copy_from_user(buffer, buf, count))
1417 return -EFAULT;
1418
1419 p = get_proc_task(inode);
1420 if (!p)
1421 return -ESRCH;
1422
1423 if (same_thread_group(current, p))
1424 set_task_comm(p, buffer);
1425 else
1426 count = -EINVAL;
1427
1428 put_task_struct(p);
1429
1430 return count;
1431 }
1432
1433 static int comm_show(struct seq_file *m, void *v)
1434 {
1435 struct inode *inode = m->private;
1436 struct task_struct *p;
1437
1438 p = get_proc_task(inode);
1439 if (!p)
1440 return -ESRCH;
1441
1442 task_lock(p);
1443 seq_printf(m, "%s\n", p->comm);
1444 task_unlock(p);
1445
1446 put_task_struct(p);
1447
1448 return 0;
1449 }
1450
1451 static int comm_open(struct inode *inode, struct file *filp)
1452 {
1453 int ret;
1454
1455 ret = single_open(filp, comm_show, NULL);
1456 if (!ret) {
1457 struct seq_file *m = filp->private_data;
1458
1459 m->private = inode;
1460 }
1461 return ret;
1462 }
1463
1464 static const struct file_operations proc_pid_set_comm_operations = {
1465 .open = comm_open,
1466 .read = seq_read,
1467 .write = comm_write,
1468 .llseek = seq_lseek,
1469 .release = single_release,
1470 };
1471
1472 /*
1473 * We added or removed a vma mapping the executable. The vmas are only mapped
1474 * during exec and are not mapped with the mmap system call.
1475 * Callers must hold down_write() on the mm's mmap_sem for these
1476 */
1477 void added_exe_file_vma(struct mm_struct *mm)
1478 {
1479 mm->num_exe_file_vmas++;
1480 }
1481
1482 void removed_exe_file_vma(struct mm_struct *mm)
1483 {
1484 mm->num_exe_file_vmas--;
1485 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1486 fput(mm->exe_file);
1487 mm->exe_file = NULL;
1488 }
1489
1490 }
1491
1492 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1493 {
1494 if (new_exe_file)
1495 get_file(new_exe_file);
1496 if (mm->exe_file)
1497 fput(mm->exe_file);
1498 mm->exe_file = new_exe_file;
1499 mm->num_exe_file_vmas = 0;
1500 }
1501
1502 struct file *get_mm_exe_file(struct mm_struct *mm)
1503 {
1504 struct file *exe_file;
1505
1506 /* We need mmap_sem to protect against races with removal of
1507 * VM_EXECUTABLE vmas */
1508 down_read(&mm->mmap_sem);
1509 exe_file = mm->exe_file;
1510 if (exe_file)
1511 get_file(exe_file);
1512 up_read(&mm->mmap_sem);
1513 return exe_file;
1514 }
1515
1516 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1517 {
1518 /* It's safe to write the exe_file pointer without exe_file_lock because
1519 * this is called during fork when the task is not yet in /proc */
1520 newmm->exe_file = get_mm_exe_file(oldmm);
1521 }
1522
1523 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1524 {
1525 struct task_struct *task;
1526 struct mm_struct *mm;
1527 struct file *exe_file;
1528
1529 task = get_proc_task(inode);
1530 if (!task)
1531 return -ENOENT;
1532 mm = get_task_mm(task);
1533 put_task_struct(task);
1534 if (!mm)
1535 return -ENOENT;
1536 exe_file = get_mm_exe_file(mm);
1537 mmput(mm);
1538 if (exe_file) {
1539 *exe_path = exe_file->f_path;
1540 path_get(&exe_file->f_path);
1541 fput(exe_file);
1542 return 0;
1543 } else
1544 return -ENOENT;
1545 }
1546
1547 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1548 {
1549 struct inode *inode = dentry->d_inode;
1550 int error = -EACCES;
1551
1552 /* We don't need a base pointer in the /proc filesystem */
1553 path_put(&nd->path);
1554
1555 /* Are we allowed to snoop on the tasks file descriptors? */
1556 if (!proc_fd_access_allowed(inode))
1557 goto out;
1558
1559 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1560 out:
1561 return ERR_PTR(error);
1562 }
1563
1564 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1565 {
1566 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1567 char *pathname;
1568 int len;
1569
1570 if (!tmp)
1571 return -ENOMEM;
1572
1573 pathname = d_path_with_unreachable(path, tmp, PAGE_SIZE);
1574 len = PTR_ERR(pathname);
1575 if (IS_ERR(pathname))
1576 goto out;
1577 len = tmp + PAGE_SIZE - 1 - pathname;
1578
1579 if (len > buflen)
1580 len = buflen;
1581 if (copy_to_user(buffer, pathname, len))
1582 len = -EFAULT;
1583 out:
1584 free_page((unsigned long)tmp);
1585 return len;
1586 }
1587
1588 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1589 {
1590 int error = -EACCES;
1591 struct inode *inode = dentry->d_inode;
1592 struct path path;
1593
1594 /* Are we allowed to snoop on the tasks file descriptors? */
1595 if (!proc_fd_access_allowed(inode))
1596 goto out;
1597
1598 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1599 if (error)
1600 goto out;
1601
1602 error = do_proc_readlink(&path, buffer, buflen);
1603 path_put(&path);
1604 out:
1605 return error;
1606 }
1607
1608 static const struct inode_operations proc_pid_link_inode_operations = {
1609 .readlink = proc_pid_readlink,
1610 .follow_link = proc_pid_follow_link,
1611 .setattr = proc_setattr,
1612 };
1613
1614
1615 /* building an inode */
1616
1617 static int task_dumpable(struct task_struct *task)
1618 {
1619 int dumpable = 0;
1620 struct mm_struct *mm;
1621
1622 task_lock(task);
1623 mm = task->mm;
1624 if (mm)
1625 dumpable = get_dumpable(mm);
1626 task_unlock(task);
1627 if(dumpable == 1)
1628 return 1;
1629 return 0;
1630 }
1631
1632
1633 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1634 {
1635 struct inode * inode;
1636 struct proc_inode *ei;
1637 const struct cred *cred;
1638
1639 /* We need a new inode */
1640
1641 inode = new_inode(sb);
1642 if (!inode)
1643 goto out;
1644
1645 /* Common stuff */
1646 ei = PROC_I(inode);
1647 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1648 inode->i_op = &proc_def_inode_operations;
1649
1650 /*
1651 * grab the reference to task.
1652 */
1653 ei->pid = get_task_pid(task, PIDTYPE_PID);
1654 if (!ei->pid)
1655 goto out_unlock;
1656
1657 if (task_dumpable(task)) {
1658 rcu_read_lock();
1659 cred = __task_cred(task);
1660 inode->i_uid = cred->euid;
1661 inode->i_gid = cred->egid;
1662 rcu_read_unlock();
1663 }
1664 security_task_to_inode(task, inode);
1665
1666 out:
1667 return inode;
1668
1669 out_unlock:
1670 iput(inode);
1671 return NULL;
1672 }
1673
1674 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1675 {
1676 struct inode *inode = dentry->d_inode;
1677 struct task_struct *task;
1678 const struct cred *cred;
1679
1680 generic_fillattr(inode, stat);
1681
1682 rcu_read_lock();
1683 stat->uid = 0;
1684 stat->gid = 0;
1685 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1686 if (task) {
1687 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1688 task_dumpable(task)) {
1689 cred = __task_cred(task);
1690 stat->uid = cred->euid;
1691 stat->gid = cred->egid;
1692 }
1693 }
1694 rcu_read_unlock();
1695 return 0;
1696 }
1697
1698 /* dentry stuff */
1699
1700 /*
1701 * Exceptional case: normally we are not allowed to unhash a busy
1702 * directory. In this case, however, we can do it - no aliasing problems
1703 * due to the way we treat inodes.
1704 *
1705 * Rewrite the inode's ownerships here because the owning task may have
1706 * performed a setuid(), etc.
1707 *
1708 * Before the /proc/pid/status file was created the only way to read
1709 * the effective uid of a /process was to stat /proc/pid. Reading
1710 * /proc/pid/status is slow enough that procps and other packages
1711 * kept stating /proc/pid. To keep the rules in /proc simple I have
1712 * made this apply to all per process world readable and executable
1713 * directories.
1714 */
1715 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1716 {
1717 struct inode *inode = dentry->d_inode;
1718 struct task_struct *task = get_proc_task(inode);
1719 const struct cred *cred;
1720
1721 if (task) {
1722 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1723 task_dumpable(task)) {
1724 rcu_read_lock();
1725 cred = __task_cred(task);
1726 inode->i_uid = cred->euid;
1727 inode->i_gid = cred->egid;
1728 rcu_read_unlock();
1729 } else {
1730 inode->i_uid = 0;
1731 inode->i_gid = 0;
1732 }
1733 inode->i_mode &= ~(S_ISUID | S_ISGID);
1734 security_task_to_inode(task, inode);
1735 put_task_struct(task);
1736 return 1;
1737 }
1738 d_drop(dentry);
1739 return 0;
1740 }
1741
1742 static int pid_delete_dentry(struct dentry * dentry)
1743 {
1744 /* Is the task we represent dead?
1745 * If so, then don't put the dentry on the lru list,
1746 * kill it immediately.
1747 */
1748 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1749 }
1750
1751 static const struct dentry_operations pid_dentry_operations =
1752 {
1753 .d_revalidate = pid_revalidate,
1754 .d_delete = pid_delete_dentry,
1755 };
1756
1757 /* Lookups */
1758
1759 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1760 struct task_struct *, const void *);
1761
1762 /*
1763 * Fill a directory entry.
1764 *
1765 * If possible create the dcache entry and derive our inode number and
1766 * file type from dcache entry.
1767 *
1768 * Since all of the proc inode numbers are dynamically generated, the inode
1769 * numbers do not exist until the inode is cache. This means creating the
1770 * the dcache entry in readdir is necessary to keep the inode numbers
1771 * reported by readdir in sync with the inode numbers reported
1772 * by stat.
1773 */
1774 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1775 char *name, int len,
1776 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1777 {
1778 struct dentry *child, *dir = filp->f_path.dentry;
1779 struct inode *inode;
1780 struct qstr qname;
1781 ino_t ino = 0;
1782 unsigned type = DT_UNKNOWN;
1783
1784 qname.name = name;
1785 qname.len = len;
1786 qname.hash = full_name_hash(name, len);
1787
1788 child = d_lookup(dir, &qname);
1789 if (!child) {
1790 struct dentry *new;
1791 new = d_alloc(dir, &qname);
1792 if (new) {
1793 child = instantiate(dir->d_inode, new, task, ptr);
1794 if (child)
1795 dput(new);
1796 else
1797 child = new;
1798 }
1799 }
1800 if (!child || IS_ERR(child) || !child->d_inode)
1801 goto end_instantiate;
1802 inode = child->d_inode;
1803 if (inode) {
1804 ino = inode->i_ino;
1805 type = inode->i_mode >> 12;
1806 }
1807 dput(child);
1808 end_instantiate:
1809 if (!ino)
1810 ino = find_inode_number(dir, &qname);
1811 if (!ino)
1812 ino = 1;
1813 return filldir(dirent, name, len, filp->f_pos, ino, type);
1814 }
1815
1816 static unsigned name_to_int(struct dentry *dentry)
1817 {
1818 const char *name = dentry->d_name.name;
1819 int len = dentry->d_name.len;
1820 unsigned n = 0;
1821
1822 if (len > 1 && *name == '0')
1823 goto out;
1824 while (len-- > 0) {
1825 unsigned c = *name++ - '0';
1826 if (c > 9)
1827 goto out;
1828 if (n >= (~0U-9)/10)
1829 goto out;
1830 n *= 10;
1831 n += c;
1832 }
1833 return n;
1834 out:
1835 return ~0U;
1836 }
1837
1838 #define PROC_FDINFO_MAX 64
1839
1840 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1841 {
1842 struct task_struct *task = get_proc_task(inode);
1843 struct files_struct *files = NULL;
1844 struct file *file;
1845 int fd = proc_fd(inode);
1846
1847 if (task) {
1848 files = get_files_struct(task);
1849 put_task_struct(task);
1850 }
1851 if (files) {
1852 /*
1853 * We are not taking a ref to the file structure, so we must
1854 * hold ->file_lock.
1855 */
1856 spin_lock(&files->file_lock);
1857 file = fcheck_files(files, fd);
1858 if (file) {
1859 if (path) {
1860 *path = file->f_path;
1861 path_get(&file->f_path);
1862 }
1863 if (info)
1864 snprintf(info, PROC_FDINFO_MAX,
1865 "pos:\t%lli\n"
1866 "flags:\t0%o\n",
1867 (long long) file->f_pos,
1868 file->f_flags);
1869 spin_unlock(&files->file_lock);
1870 put_files_struct(files);
1871 return 0;
1872 }
1873 spin_unlock(&files->file_lock);
1874 put_files_struct(files);
1875 }
1876 return -ENOENT;
1877 }
1878
1879 static int proc_fd_link(struct inode *inode, struct path *path)
1880 {
1881 return proc_fd_info(inode, path, NULL);
1882 }
1883
1884 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1885 {
1886 struct inode *inode = dentry->d_inode;
1887 struct task_struct *task = get_proc_task(inode);
1888 int fd = proc_fd(inode);
1889 struct files_struct *files;
1890 const struct cred *cred;
1891
1892 if (task) {
1893 files = get_files_struct(task);
1894 if (files) {
1895 rcu_read_lock();
1896 if (fcheck_files(files, fd)) {
1897 rcu_read_unlock();
1898 put_files_struct(files);
1899 if (task_dumpable(task)) {
1900 rcu_read_lock();
1901 cred = __task_cred(task);
1902 inode->i_uid = cred->euid;
1903 inode->i_gid = cred->egid;
1904 rcu_read_unlock();
1905 } else {
1906 inode->i_uid = 0;
1907 inode->i_gid = 0;
1908 }
1909 inode->i_mode &= ~(S_ISUID | S_ISGID);
1910 security_task_to_inode(task, inode);
1911 put_task_struct(task);
1912 return 1;
1913 }
1914 rcu_read_unlock();
1915 put_files_struct(files);
1916 }
1917 put_task_struct(task);
1918 }
1919 d_drop(dentry);
1920 return 0;
1921 }
1922
1923 static const struct dentry_operations tid_fd_dentry_operations =
1924 {
1925 .d_revalidate = tid_fd_revalidate,
1926 .d_delete = pid_delete_dentry,
1927 };
1928
1929 static struct dentry *proc_fd_instantiate(struct inode *dir,
1930 struct dentry *dentry, struct task_struct *task, const void *ptr)
1931 {
1932 unsigned fd = *(const unsigned *)ptr;
1933 struct file *file;
1934 struct files_struct *files;
1935 struct inode *inode;
1936 struct proc_inode *ei;
1937 struct dentry *error = ERR_PTR(-ENOENT);
1938
1939 inode = proc_pid_make_inode(dir->i_sb, task);
1940 if (!inode)
1941 goto out;
1942 ei = PROC_I(inode);
1943 ei->fd = fd;
1944 files = get_files_struct(task);
1945 if (!files)
1946 goto out_iput;
1947 inode->i_mode = S_IFLNK;
1948
1949 /*
1950 * We are not taking a ref to the file structure, so we must
1951 * hold ->file_lock.
1952 */
1953 spin_lock(&files->file_lock);
1954 file = fcheck_files(files, fd);
1955 if (!file)
1956 goto out_unlock;
1957 if (file->f_mode & FMODE_READ)
1958 inode->i_mode |= S_IRUSR | S_IXUSR;
1959 if (file->f_mode & FMODE_WRITE)
1960 inode->i_mode |= S_IWUSR | S_IXUSR;
1961 spin_unlock(&files->file_lock);
1962 put_files_struct(files);
1963
1964 inode->i_op = &proc_pid_link_inode_operations;
1965 inode->i_size = 64;
1966 ei->op.proc_get_link = proc_fd_link;
1967 dentry->d_op = &tid_fd_dentry_operations;
1968 d_add(dentry, inode);
1969 /* Close the race of the process dying before we return the dentry */
1970 if (tid_fd_revalidate(dentry, NULL))
1971 error = NULL;
1972
1973 out:
1974 return error;
1975 out_unlock:
1976 spin_unlock(&files->file_lock);
1977 put_files_struct(files);
1978 out_iput:
1979 iput(inode);
1980 goto out;
1981 }
1982
1983 static struct dentry *proc_lookupfd_common(struct inode *dir,
1984 struct dentry *dentry,
1985 instantiate_t instantiate)
1986 {
1987 struct task_struct *task = get_proc_task(dir);
1988 unsigned fd = name_to_int(dentry);
1989 struct dentry *result = ERR_PTR(-ENOENT);
1990
1991 if (!task)
1992 goto out_no_task;
1993 if (fd == ~0U)
1994 goto out;
1995
1996 result = instantiate(dir, dentry, task, &fd);
1997 out:
1998 put_task_struct(task);
1999 out_no_task:
2000 return result;
2001 }
2002
2003 static int proc_readfd_common(struct file * filp, void * dirent,
2004 filldir_t filldir, instantiate_t instantiate)
2005 {
2006 struct dentry *dentry = filp->f_path.dentry;
2007 struct inode *inode = dentry->d_inode;
2008 struct task_struct *p = get_proc_task(inode);
2009 unsigned int fd, ino;
2010 int retval;
2011 struct files_struct * files;
2012
2013 retval = -ENOENT;
2014 if (!p)
2015 goto out_no_task;
2016 retval = 0;
2017
2018 fd = filp->f_pos;
2019 switch (fd) {
2020 case 0:
2021 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2022 goto out;
2023 filp->f_pos++;
2024 case 1:
2025 ino = parent_ino(dentry);
2026 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2027 goto out;
2028 filp->f_pos++;
2029 default:
2030 files = get_files_struct(p);
2031 if (!files)
2032 goto out;
2033 rcu_read_lock();
2034 for (fd = filp->f_pos-2;
2035 fd < files_fdtable(files)->max_fds;
2036 fd++, filp->f_pos++) {
2037 char name[PROC_NUMBUF];
2038 int len;
2039
2040 if (!fcheck_files(files, fd))
2041 continue;
2042 rcu_read_unlock();
2043
2044 len = snprintf(name, sizeof(name), "%d", fd);
2045 if (proc_fill_cache(filp, dirent, filldir,
2046 name, len, instantiate,
2047 p, &fd) < 0) {
2048 rcu_read_lock();
2049 break;
2050 }
2051 rcu_read_lock();
2052 }
2053 rcu_read_unlock();
2054 put_files_struct(files);
2055 }
2056 out:
2057 put_task_struct(p);
2058 out_no_task:
2059 return retval;
2060 }
2061
2062 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2063 struct nameidata *nd)
2064 {
2065 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2066 }
2067
2068 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2069 {
2070 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2071 }
2072
2073 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2074 size_t len, loff_t *ppos)
2075 {
2076 char tmp[PROC_FDINFO_MAX];
2077 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2078 if (!err)
2079 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2080 return err;
2081 }
2082
2083 static const struct file_operations proc_fdinfo_file_operations = {
2084 .open = nonseekable_open,
2085 .read = proc_fdinfo_read,
2086 .llseek = no_llseek,
2087 };
2088
2089 static const struct file_operations proc_fd_operations = {
2090 .read = generic_read_dir,
2091 .readdir = proc_readfd,
2092 .llseek = default_llseek,
2093 };
2094
2095 /*
2096 * /proc/pid/fd needs a special permission handler so that a process can still
2097 * access /proc/self/fd after it has executed a setuid().
2098 */
2099 static int proc_fd_permission(struct inode *inode, int mask)
2100 {
2101 int rv;
2102
2103 rv = generic_permission(inode, mask, NULL);
2104 if (rv == 0)
2105 return 0;
2106 if (task_pid(current) == proc_pid(inode))
2107 rv = 0;
2108 return rv;
2109 }
2110
2111 /*
2112 * proc directories can do almost nothing..
2113 */
2114 static const struct inode_operations proc_fd_inode_operations = {
2115 .lookup = proc_lookupfd,
2116 .permission = proc_fd_permission,
2117 .setattr = proc_setattr,
2118 };
2119
2120 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2121 struct dentry *dentry, struct task_struct *task, const void *ptr)
2122 {
2123 unsigned fd = *(unsigned *)ptr;
2124 struct inode *inode;
2125 struct proc_inode *ei;
2126 struct dentry *error = ERR_PTR(-ENOENT);
2127
2128 inode = proc_pid_make_inode(dir->i_sb, task);
2129 if (!inode)
2130 goto out;
2131 ei = PROC_I(inode);
2132 ei->fd = fd;
2133 inode->i_mode = S_IFREG | S_IRUSR;
2134 inode->i_fop = &proc_fdinfo_file_operations;
2135 dentry->d_op = &tid_fd_dentry_operations;
2136 d_add(dentry, inode);
2137 /* Close the race of the process dying before we return the dentry */
2138 if (tid_fd_revalidate(dentry, NULL))
2139 error = NULL;
2140
2141 out:
2142 return error;
2143 }
2144
2145 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2146 struct dentry *dentry,
2147 struct nameidata *nd)
2148 {
2149 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2150 }
2151
2152 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2153 {
2154 return proc_readfd_common(filp, dirent, filldir,
2155 proc_fdinfo_instantiate);
2156 }
2157
2158 static const struct file_operations proc_fdinfo_operations = {
2159 .read = generic_read_dir,
2160 .readdir = proc_readfdinfo,
2161 .llseek = default_llseek,
2162 };
2163
2164 /*
2165 * proc directories can do almost nothing..
2166 */
2167 static const struct inode_operations proc_fdinfo_inode_operations = {
2168 .lookup = proc_lookupfdinfo,
2169 .setattr = proc_setattr,
2170 };
2171
2172
2173 static struct dentry *proc_pident_instantiate(struct inode *dir,
2174 struct dentry *dentry, struct task_struct *task, const void *ptr)
2175 {
2176 const struct pid_entry *p = ptr;
2177 struct inode *inode;
2178 struct proc_inode *ei;
2179 struct dentry *error = ERR_PTR(-ENOENT);
2180
2181 inode = proc_pid_make_inode(dir->i_sb, task);
2182 if (!inode)
2183 goto out;
2184
2185 ei = PROC_I(inode);
2186 inode->i_mode = p->mode;
2187 if (S_ISDIR(inode->i_mode))
2188 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2189 if (p->iop)
2190 inode->i_op = p->iop;
2191 if (p->fop)
2192 inode->i_fop = p->fop;
2193 ei->op = p->op;
2194 dentry->d_op = &pid_dentry_operations;
2195 d_add(dentry, inode);
2196 /* Close the race of the process dying before we return the dentry */
2197 if (pid_revalidate(dentry, NULL))
2198 error = NULL;
2199 out:
2200 return error;
2201 }
2202
2203 static struct dentry *proc_pident_lookup(struct inode *dir,
2204 struct dentry *dentry,
2205 const struct pid_entry *ents,
2206 unsigned int nents)
2207 {
2208 struct dentry *error;
2209 struct task_struct *task = get_proc_task(dir);
2210 const struct pid_entry *p, *last;
2211
2212 error = ERR_PTR(-ENOENT);
2213
2214 if (!task)
2215 goto out_no_task;
2216
2217 /*
2218 * Yes, it does not scale. And it should not. Don't add
2219 * new entries into /proc/<tgid>/ without very good reasons.
2220 */
2221 last = &ents[nents - 1];
2222 for (p = ents; p <= last; p++) {
2223 if (p->len != dentry->d_name.len)
2224 continue;
2225 if (!memcmp(dentry->d_name.name, p->name, p->len))
2226 break;
2227 }
2228 if (p > last)
2229 goto out;
2230
2231 error = proc_pident_instantiate(dir, dentry, task, p);
2232 out:
2233 put_task_struct(task);
2234 out_no_task:
2235 return error;
2236 }
2237
2238 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2239 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2240 {
2241 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2242 proc_pident_instantiate, task, p);
2243 }
2244
2245 static int proc_pident_readdir(struct file *filp,
2246 void *dirent, filldir_t filldir,
2247 const struct pid_entry *ents, unsigned int nents)
2248 {
2249 int i;
2250 struct dentry *dentry = filp->f_path.dentry;
2251 struct inode *inode = dentry->d_inode;
2252 struct task_struct *task = get_proc_task(inode);
2253 const struct pid_entry *p, *last;
2254 ino_t ino;
2255 int ret;
2256
2257 ret = -ENOENT;
2258 if (!task)
2259 goto out_no_task;
2260
2261 ret = 0;
2262 i = filp->f_pos;
2263 switch (i) {
2264 case 0:
2265 ino = inode->i_ino;
2266 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2267 goto out;
2268 i++;
2269 filp->f_pos++;
2270 /* fall through */
2271 case 1:
2272 ino = parent_ino(dentry);
2273 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2274 goto out;
2275 i++;
2276 filp->f_pos++;
2277 /* fall through */
2278 default:
2279 i -= 2;
2280 if (i >= nents) {
2281 ret = 1;
2282 goto out;
2283 }
2284 p = ents + i;
2285 last = &ents[nents - 1];
2286 while (p <= last) {
2287 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2288 goto out;
2289 filp->f_pos++;
2290 p++;
2291 }
2292 }
2293
2294 ret = 1;
2295 out:
2296 put_task_struct(task);
2297 out_no_task:
2298 return ret;
2299 }
2300
2301 #ifdef CONFIG_SECURITY
2302 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2303 size_t count, loff_t *ppos)
2304 {
2305 struct inode * inode = file->f_path.dentry->d_inode;
2306 char *p = NULL;
2307 ssize_t length;
2308 struct task_struct *task = get_proc_task(inode);
2309
2310 if (!task)
2311 return -ESRCH;
2312
2313 length = security_getprocattr(task,
2314 (char*)file->f_path.dentry->d_name.name,
2315 &p);
2316 put_task_struct(task);
2317 if (length > 0)
2318 length = simple_read_from_buffer(buf, count, ppos, p, length);
2319 kfree(p);
2320 return length;
2321 }
2322
2323 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2324 size_t count, loff_t *ppos)
2325 {
2326 struct inode * inode = file->f_path.dentry->d_inode;
2327 char *page;
2328 ssize_t length;
2329 struct task_struct *task = get_proc_task(inode);
2330
2331 length = -ESRCH;
2332 if (!task)
2333 goto out_no_task;
2334 if (count > PAGE_SIZE)
2335 count = PAGE_SIZE;
2336
2337 /* No partial writes. */
2338 length = -EINVAL;
2339 if (*ppos != 0)
2340 goto out;
2341
2342 length = -ENOMEM;
2343 page = (char*)__get_free_page(GFP_TEMPORARY);
2344 if (!page)
2345 goto out;
2346
2347 length = -EFAULT;
2348 if (copy_from_user(page, buf, count))
2349 goto out_free;
2350
2351 /* Guard against adverse ptrace interaction */
2352 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2353 if (length < 0)
2354 goto out_free;
2355
2356 length = security_setprocattr(task,
2357 (char*)file->f_path.dentry->d_name.name,
2358 (void*)page, count);
2359 mutex_unlock(&task->cred_guard_mutex);
2360 out_free:
2361 free_page((unsigned long) page);
2362 out:
2363 put_task_struct(task);
2364 out_no_task:
2365 return length;
2366 }
2367
2368 static const struct file_operations proc_pid_attr_operations = {
2369 .read = proc_pid_attr_read,
2370 .write = proc_pid_attr_write,
2371 .llseek = generic_file_llseek,
2372 };
2373
2374 static const struct pid_entry attr_dir_stuff[] = {
2375 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2376 REG("prev", S_IRUGO, proc_pid_attr_operations),
2377 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2378 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2379 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2380 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2381 };
2382
2383 static int proc_attr_dir_readdir(struct file * filp,
2384 void * dirent, filldir_t filldir)
2385 {
2386 return proc_pident_readdir(filp,dirent,filldir,
2387 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2388 }
2389
2390 static const struct file_operations proc_attr_dir_operations = {
2391 .read = generic_read_dir,
2392 .readdir = proc_attr_dir_readdir,
2393 .llseek = default_llseek,
2394 };
2395
2396 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2397 struct dentry *dentry, struct nameidata *nd)
2398 {
2399 return proc_pident_lookup(dir, dentry,
2400 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2401 }
2402
2403 static const struct inode_operations proc_attr_dir_inode_operations = {
2404 .lookup = proc_attr_dir_lookup,
2405 .getattr = pid_getattr,
2406 .setattr = proc_setattr,
2407 };
2408
2409 #endif
2410
2411 #ifdef CONFIG_ELF_CORE
2412 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2413 size_t count, loff_t *ppos)
2414 {
2415 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2416 struct mm_struct *mm;
2417 char buffer[PROC_NUMBUF];
2418 size_t len;
2419 int ret;
2420
2421 if (!task)
2422 return -ESRCH;
2423
2424 ret = 0;
2425 mm = get_task_mm(task);
2426 if (mm) {
2427 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2428 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2429 MMF_DUMP_FILTER_SHIFT));
2430 mmput(mm);
2431 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2432 }
2433
2434 put_task_struct(task);
2435
2436 return ret;
2437 }
2438
2439 static ssize_t proc_coredump_filter_write(struct file *file,
2440 const char __user *buf,
2441 size_t count,
2442 loff_t *ppos)
2443 {
2444 struct task_struct *task;
2445 struct mm_struct *mm;
2446 char buffer[PROC_NUMBUF], *end;
2447 unsigned int val;
2448 int ret;
2449 int i;
2450 unsigned long mask;
2451
2452 ret = -EFAULT;
2453 memset(buffer, 0, sizeof(buffer));
2454 if (count > sizeof(buffer) - 1)
2455 count = sizeof(buffer) - 1;
2456 if (copy_from_user(buffer, buf, count))
2457 goto out_no_task;
2458
2459 ret = -EINVAL;
2460 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2461 if (*end == '\n')
2462 end++;
2463 if (end - buffer == 0)
2464 goto out_no_task;
2465
2466 ret = -ESRCH;
2467 task = get_proc_task(file->f_dentry->d_inode);
2468 if (!task)
2469 goto out_no_task;
2470
2471 ret = end - buffer;
2472 mm = get_task_mm(task);
2473 if (!mm)
2474 goto out_no_mm;
2475
2476 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2477 if (val & mask)
2478 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2479 else
2480 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2481 }
2482
2483 mmput(mm);
2484 out_no_mm:
2485 put_task_struct(task);
2486 out_no_task:
2487 return ret;
2488 }
2489
2490 static const struct file_operations proc_coredump_filter_operations = {
2491 .read = proc_coredump_filter_read,
2492 .write = proc_coredump_filter_write,
2493 .llseek = generic_file_llseek,
2494 };
2495 #endif
2496
2497 /*
2498 * /proc/self:
2499 */
2500 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2501 int buflen)
2502 {
2503 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2504 pid_t tgid = task_tgid_nr_ns(current, ns);
2505 char tmp[PROC_NUMBUF];
2506 if (!tgid)
2507 return -ENOENT;
2508 sprintf(tmp, "%d", tgid);
2509 return vfs_readlink(dentry,buffer,buflen,tmp);
2510 }
2511
2512 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2513 {
2514 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2515 pid_t tgid = task_tgid_nr_ns(current, ns);
2516 char *name = ERR_PTR(-ENOENT);
2517 if (tgid) {
2518 name = __getname();
2519 if (!name)
2520 name = ERR_PTR(-ENOMEM);
2521 else
2522 sprintf(name, "%d", tgid);
2523 }
2524 nd_set_link(nd, name);
2525 return NULL;
2526 }
2527
2528 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2529 void *cookie)
2530 {
2531 char *s = nd_get_link(nd);
2532 if (!IS_ERR(s))
2533 __putname(s);
2534 }
2535
2536 static const struct inode_operations proc_self_inode_operations = {
2537 .readlink = proc_self_readlink,
2538 .follow_link = proc_self_follow_link,
2539 .put_link = proc_self_put_link,
2540 };
2541
2542 /*
2543 * proc base
2544 *
2545 * These are the directory entries in the root directory of /proc
2546 * that properly belong to the /proc filesystem, as they describe
2547 * describe something that is process related.
2548 */
2549 static const struct pid_entry proc_base_stuff[] = {
2550 NOD("self", S_IFLNK|S_IRWXUGO,
2551 &proc_self_inode_operations, NULL, {}),
2552 };
2553
2554 /*
2555 * Exceptional case: normally we are not allowed to unhash a busy
2556 * directory. In this case, however, we can do it - no aliasing problems
2557 * due to the way we treat inodes.
2558 */
2559 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2560 {
2561 struct inode *inode = dentry->d_inode;
2562 struct task_struct *task = get_proc_task(inode);
2563 if (task) {
2564 put_task_struct(task);
2565 return 1;
2566 }
2567 d_drop(dentry);
2568 return 0;
2569 }
2570
2571 static const struct dentry_operations proc_base_dentry_operations =
2572 {
2573 .d_revalidate = proc_base_revalidate,
2574 .d_delete = pid_delete_dentry,
2575 };
2576
2577 static struct dentry *proc_base_instantiate(struct inode *dir,
2578 struct dentry *dentry, struct task_struct *task, const void *ptr)
2579 {
2580 const struct pid_entry *p = ptr;
2581 struct inode *inode;
2582 struct proc_inode *ei;
2583 struct dentry *error;
2584
2585 /* Allocate the inode */
2586 error = ERR_PTR(-ENOMEM);
2587 inode = new_inode(dir->i_sb);
2588 if (!inode)
2589 goto out;
2590
2591 /* Initialize the inode */
2592 ei = PROC_I(inode);
2593 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2594
2595 /*
2596 * grab the reference to the task.
2597 */
2598 ei->pid = get_task_pid(task, PIDTYPE_PID);
2599 if (!ei->pid)
2600 goto out_iput;
2601
2602 inode->i_mode = p->mode;
2603 if (S_ISDIR(inode->i_mode))
2604 inode->i_nlink = 2;
2605 if (S_ISLNK(inode->i_mode))
2606 inode->i_size = 64;
2607 if (p->iop)
2608 inode->i_op = p->iop;
2609 if (p->fop)
2610 inode->i_fop = p->fop;
2611 ei->op = p->op;
2612 dentry->d_op = &proc_base_dentry_operations;
2613 d_add(dentry, inode);
2614 error = NULL;
2615 out:
2616 return error;
2617 out_iput:
2618 iput(inode);
2619 goto out;
2620 }
2621
2622 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2623 {
2624 struct dentry *error;
2625 struct task_struct *task = get_proc_task(dir);
2626 const struct pid_entry *p, *last;
2627
2628 error = ERR_PTR(-ENOENT);
2629
2630 if (!task)
2631 goto out_no_task;
2632
2633 /* Lookup the directory entry */
2634 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2635 for (p = proc_base_stuff; p <= last; p++) {
2636 if (p->len != dentry->d_name.len)
2637 continue;
2638 if (!memcmp(dentry->d_name.name, p->name, p->len))
2639 break;
2640 }
2641 if (p > last)
2642 goto out;
2643
2644 error = proc_base_instantiate(dir, dentry, task, p);
2645
2646 out:
2647 put_task_struct(task);
2648 out_no_task:
2649 return error;
2650 }
2651
2652 static int proc_base_fill_cache(struct file *filp, void *dirent,
2653 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2654 {
2655 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2656 proc_base_instantiate, task, p);
2657 }
2658
2659 #ifdef CONFIG_TASK_IO_ACCOUNTING
2660 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2661 {
2662 struct task_io_accounting acct = task->ioac;
2663 unsigned long flags;
2664
2665 if (whole && lock_task_sighand(task, &flags)) {
2666 struct task_struct *t = task;
2667
2668 task_io_accounting_add(&acct, &task->signal->ioac);
2669 while_each_thread(task, t)
2670 task_io_accounting_add(&acct, &t->ioac);
2671
2672 unlock_task_sighand(task, &flags);
2673 }
2674 return sprintf(buffer,
2675 "rchar: %llu\n"
2676 "wchar: %llu\n"
2677 "syscr: %llu\n"
2678 "syscw: %llu\n"
2679 "read_bytes: %llu\n"
2680 "write_bytes: %llu\n"
2681 "cancelled_write_bytes: %llu\n",
2682 (unsigned long long)acct.rchar,
2683 (unsigned long long)acct.wchar,
2684 (unsigned long long)acct.syscr,
2685 (unsigned long long)acct.syscw,
2686 (unsigned long long)acct.read_bytes,
2687 (unsigned long long)acct.write_bytes,
2688 (unsigned long long)acct.cancelled_write_bytes);
2689 }
2690
2691 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2692 {
2693 return do_io_accounting(task, buffer, 0);
2694 }
2695
2696 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2697 {
2698 return do_io_accounting(task, buffer, 1);
2699 }
2700 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2701
2702 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2703 struct pid *pid, struct task_struct *task)
2704 {
2705 seq_printf(m, "%08x\n", task->personality);
2706 return 0;
2707 }
2708
2709 /*
2710 * Thread groups
2711 */
2712 static const struct file_operations proc_task_operations;
2713 static const struct inode_operations proc_task_inode_operations;
2714
2715 static const struct pid_entry tgid_base_stuff[] = {
2716 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2717 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2718 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2719 #ifdef CONFIG_NET
2720 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2721 #endif
2722 REG("environ", S_IRUSR, proc_environ_operations),
2723 INF("auxv", S_IRUSR, proc_pid_auxv),
2724 ONE("status", S_IRUGO, proc_pid_status),
2725 ONE("personality", S_IRUSR, proc_pid_personality),
2726 INF("limits", S_IRUGO, proc_pid_limits),
2727 #ifdef CONFIG_SCHED_DEBUG
2728 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2729 #endif
2730 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2731 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2732 INF("syscall", S_IRUSR, proc_pid_syscall),
2733 #endif
2734 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2735 ONE("stat", S_IRUGO, proc_tgid_stat),
2736 ONE("statm", S_IRUGO, proc_pid_statm),
2737 REG("maps", S_IRUGO, proc_maps_operations),
2738 #ifdef CONFIG_NUMA
2739 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2740 #endif
2741 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2742 LNK("cwd", proc_cwd_link),
2743 LNK("root", proc_root_link),
2744 LNK("exe", proc_exe_link),
2745 REG("mounts", S_IRUGO, proc_mounts_operations),
2746 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2747 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2748 #ifdef CONFIG_PROC_PAGE_MONITOR
2749 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2750 REG("smaps", S_IRUGO, proc_smaps_operations),
2751 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2752 #endif
2753 #ifdef CONFIG_SECURITY
2754 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2755 #endif
2756 #ifdef CONFIG_KALLSYMS
2757 INF("wchan", S_IRUGO, proc_pid_wchan),
2758 #endif
2759 #ifdef CONFIG_STACKTRACE
2760 ONE("stack", S_IRUSR, proc_pid_stack),
2761 #endif
2762 #ifdef CONFIG_SCHEDSTATS
2763 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2764 #endif
2765 #ifdef CONFIG_LATENCYTOP
2766 REG("latency", S_IRUGO, proc_lstats_operations),
2767 #endif
2768 #ifdef CONFIG_PROC_PID_CPUSET
2769 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2770 #endif
2771 #ifdef CONFIG_CGROUPS
2772 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2773 #endif
2774 INF("oom_score", S_IRUGO, proc_oom_score),
2775 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2776 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2777 #ifdef CONFIG_AUDITSYSCALL
2778 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2779 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2780 #endif
2781 #ifdef CONFIG_FAULT_INJECTION
2782 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2783 #endif
2784 #ifdef CONFIG_ELF_CORE
2785 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2786 #endif
2787 #ifdef CONFIG_TASK_IO_ACCOUNTING
2788 INF("io", S_IRUGO, proc_tgid_io_accounting),
2789 #endif
2790 };
2791
2792 static int proc_tgid_base_readdir(struct file * filp,
2793 void * dirent, filldir_t filldir)
2794 {
2795 return proc_pident_readdir(filp,dirent,filldir,
2796 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2797 }
2798
2799 static const struct file_operations proc_tgid_base_operations = {
2800 .read = generic_read_dir,
2801 .readdir = proc_tgid_base_readdir,
2802 .llseek = default_llseek,
2803 };
2804
2805 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2806 return proc_pident_lookup(dir, dentry,
2807 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2808 }
2809
2810 static const struct inode_operations proc_tgid_base_inode_operations = {
2811 .lookup = proc_tgid_base_lookup,
2812 .getattr = pid_getattr,
2813 .setattr = proc_setattr,
2814 };
2815
2816 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2817 {
2818 struct dentry *dentry, *leader, *dir;
2819 char buf[PROC_NUMBUF];
2820 struct qstr name;
2821
2822 name.name = buf;
2823 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2824 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2825 if (dentry) {
2826 shrink_dcache_parent(dentry);
2827 d_drop(dentry);
2828 dput(dentry);
2829 }
2830
2831 name.name = buf;
2832 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2833 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2834 if (!leader)
2835 goto out;
2836
2837 name.name = "task";
2838 name.len = strlen(name.name);
2839 dir = d_hash_and_lookup(leader, &name);
2840 if (!dir)
2841 goto out_put_leader;
2842
2843 name.name = buf;
2844 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2845 dentry = d_hash_and_lookup(dir, &name);
2846 if (dentry) {
2847 shrink_dcache_parent(dentry);
2848 d_drop(dentry);
2849 dput(dentry);
2850 }
2851
2852 dput(dir);
2853 out_put_leader:
2854 dput(leader);
2855 out:
2856 return;
2857 }
2858
2859 /**
2860 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2861 * @task: task that should be flushed.
2862 *
2863 * When flushing dentries from proc, one needs to flush them from global
2864 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2865 * in. This call is supposed to do all of this job.
2866 *
2867 * Looks in the dcache for
2868 * /proc/@pid
2869 * /proc/@tgid/task/@pid
2870 * if either directory is present flushes it and all of it'ts children
2871 * from the dcache.
2872 *
2873 * It is safe and reasonable to cache /proc entries for a task until
2874 * that task exits. After that they just clog up the dcache with
2875 * useless entries, possibly causing useful dcache entries to be
2876 * flushed instead. This routine is proved to flush those useless
2877 * dcache entries at process exit time.
2878 *
2879 * NOTE: This routine is just an optimization so it does not guarantee
2880 * that no dcache entries will exist at process exit time it
2881 * just makes it very unlikely that any will persist.
2882 */
2883
2884 void proc_flush_task(struct task_struct *task)
2885 {
2886 int i;
2887 struct pid *pid, *tgid;
2888 struct upid *upid;
2889
2890 pid = task_pid(task);
2891 tgid = task_tgid(task);
2892
2893 for (i = 0; i <= pid->level; i++) {
2894 upid = &pid->numbers[i];
2895 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2896 tgid->numbers[i].nr);
2897 }
2898
2899 upid = &pid->numbers[pid->level];
2900 if (upid->nr == 1)
2901 pid_ns_release_proc(upid->ns);
2902 }
2903
2904 static struct dentry *proc_pid_instantiate(struct inode *dir,
2905 struct dentry * dentry,
2906 struct task_struct *task, const void *ptr)
2907 {
2908 struct dentry *error = ERR_PTR(-ENOENT);
2909 struct inode *inode;
2910
2911 inode = proc_pid_make_inode(dir->i_sb, task);
2912 if (!inode)
2913 goto out;
2914
2915 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2916 inode->i_op = &proc_tgid_base_inode_operations;
2917 inode->i_fop = &proc_tgid_base_operations;
2918 inode->i_flags|=S_IMMUTABLE;
2919
2920 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2921 ARRAY_SIZE(tgid_base_stuff));
2922
2923 dentry->d_op = &pid_dentry_operations;
2924
2925 d_add(dentry, inode);
2926 /* Close the race of the process dying before we return the dentry */
2927 if (pid_revalidate(dentry, NULL))
2928 error = NULL;
2929 out:
2930 return error;
2931 }
2932
2933 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2934 {
2935 struct dentry *result;
2936 struct task_struct *task;
2937 unsigned tgid;
2938 struct pid_namespace *ns;
2939
2940 result = proc_base_lookup(dir, dentry);
2941 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2942 goto out;
2943
2944 tgid = name_to_int(dentry);
2945 if (tgid == ~0U)
2946 goto out;
2947
2948 ns = dentry->d_sb->s_fs_info;
2949 rcu_read_lock();
2950 task = find_task_by_pid_ns(tgid, ns);
2951 if (task)
2952 get_task_struct(task);
2953 rcu_read_unlock();
2954 if (!task)
2955 goto out;
2956
2957 result = proc_pid_instantiate(dir, dentry, task, NULL);
2958 put_task_struct(task);
2959 out:
2960 return result;
2961 }
2962
2963 /*
2964 * Find the first task with tgid >= tgid
2965 *
2966 */
2967 struct tgid_iter {
2968 unsigned int tgid;
2969 struct task_struct *task;
2970 };
2971 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2972 {
2973 struct pid *pid;
2974
2975 if (iter.task)
2976 put_task_struct(iter.task);
2977 rcu_read_lock();
2978 retry:
2979 iter.task = NULL;
2980 pid = find_ge_pid(iter.tgid, ns);
2981 if (pid) {
2982 iter.tgid = pid_nr_ns(pid, ns);
2983 iter.task = pid_task(pid, PIDTYPE_PID);
2984 /* What we to know is if the pid we have find is the
2985 * pid of a thread_group_leader. Testing for task
2986 * being a thread_group_leader is the obvious thing
2987 * todo but there is a window when it fails, due to
2988 * the pid transfer logic in de_thread.
2989 *
2990 * So we perform the straight forward test of seeing
2991 * if the pid we have found is the pid of a thread
2992 * group leader, and don't worry if the task we have
2993 * found doesn't happen to be a thread group leader.
2994 * As we don't care in the case of readdir.
2995 */
2996 if (!iter.task || !has_group_leader_pid(iter.task)) {
2997 iter.tgid += 1;
2998 goto retry;
2999 }
3000 get_task_struct(iter.task);
3001 }
3002 rcu_read_unlock();
3003 return iter;
3004 }
3005
3006 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3007
3008 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3009 struct tgid_iter iter)
3010 {
3011 char name[PROC_NUMBUF];
3012 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3013 return proc_fill_cache(filp, dirent, filldir, name, len,
3014 proc_pid_instantiate, iter.task, NULL);
3015 }
3016
3017 /* for the /proc/ directory itself, after non-process stuff has been done */
3018 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3019 {
3020 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3021 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3022 struct tgid_iter iter;
3023 struct pid_namespace *ns;
3024
3025 if (!reaper)
3026 goto out_no_task;
3027
3028 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3029 const struct pid_entry *p = &proc_base_stuff[nr];
3030 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3031 goto out;
3032 }
3033
3034 ns = filp->f_dentry->d_sb->s_fs_info;
3035 iter.task = NULL;
3036 iter.tgid = filp->f_pos - TGID_OFFSET;
3037 for (iter = next_tgid(ns, iter);
3038 iter.task;
3039 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3040 filp->f_pos = iter.tgid + TGID_OFFSET;
3041 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3042 put_task_struct(iter.task);
3043 goto out;
3044 }
3045 }
3046 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3047 out:
3048 put_task_struct(reaper);
3049 out_no_task:
3050 return 0;
3051 }
3052
3053 /*
3054 * Tasks
3055 */
3056 static const struct pid_entry tid_base_stuff[] = {
3057 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3058 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3059 REG("environ", S_IRUSR, proc_environ_operations),
3060 INF("auxv", S_IRUSR, proc_pid_auxv),
3061 ONE("status", S_IRUGO, proc_pid_status),
3062 ONE("personality", S_IRUSR, proc_pid_personality),
3063 INF("limits", S_IRUGO, proc_pid_limits),
3064 #ifdef CONFIG_SCHED_DEBUG
3065 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3066 #endif
3067 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3068 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3069 INF("syscall", S_IRUSR, proc_pid_syscall),
3070 #endif
3071 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3072 ONE("stat", S_IRUGO, proc_tid_stat),
3073 ONE("statm", S_IRUGO, proc_pid_statm),
3074 REG("maps", S_IRUGO, proc_maps_operations),
3075 #ifdef CONFIG_NUMA
3076 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3077 #endif
3078 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3079 LNK("cwd", proc_cwd_link),
3080 LNK("root", proc_root_link),
3081 LNK("exe", proc_exe_link),
3082 REG("mounts", S_IRUGO, proc_mounts_operations),
3083 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3084 #ifdef CONFIG_PROC_PAGE_MONITOR
3085 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3086 REG("smaps", S_IRUGO, proc_smaps_operations),
3087 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3088 #endif
3089 #ifdef CONFIG_SECURITY
3090 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3091 #endif
3092 #ifdef CONFIG_KALLSYMS
3093 INF("wchan", S_IRUGO, proc_pid_wchan),
3094 #endif
3095 #ifdef CONFIG_STACKTRACE
3096 ONE("stack", S_IRUSR, proc_pid_stack),
3097 #endif
3098 #ifdef CONFIG_SCHEDSTATS
3099 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3100 #endif
3101 #ifdef CONFIG_LATENCYTOP
3102 REG("latency", S_IRUGO, proc_lstats_operations),
3103 #endif
3104 #ifdef CONFIG_PROC_PID_CPUSET
3105 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3106 #endif
3107 #ifdef CONFIG_CGROUPS
3108 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3109 #endif
3110 INF("oom_score", S_IRUGO, proc_oom_score),
3111 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3112 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3113 #ifdef CONFIG_AUDITSYSCALL
3114 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3115 REG("sessionid", S_IRUSR, proc_sessionid_operations),
3116 #endif
3117 #ifdef CONFIG_FAULT_INJECTION
3118 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3119 #endif
3120 #ifdef CONFIG_TASK_IO_ACCOUNTING
3121 INF("io", S_IRUGO, proc_tid_io_accounting),
3122 #endif
3123 };
3124
3125 static int proc_tid_base_readdir(struct file * filp,
3126 void * dirent, filldir_t filldir)
3127 {
3128 return proc_pident_readdir(filp,dirent,filldir,
3129 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3130 }
3131
3132 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3133 return proc_pident_lookup(dir, dentry,
3134 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3135 }
3136
3137 static const struct file_operations proc_tid_base_operations = {
3138 .read = generic_read_dir,
3139 .readdir = proc_tid_base_readdir,
3140 .llseek = default_llseek,
3141 };
3142
3143 static const struct inode_operations proc_tid_base_inode_operations = {
3144 .lookup = proc_tid_base_lookup,
3145 .getattr = pid_getattr,
3146 .setattr = proc_setattr,
3147 };
3148
3149 static struct dentry *proc_task_instantiate(struct inode *dir,
3150 struct dentry *dentry, struct task_struct *task, const void *ptr)
3151 {
3152 struct dentry *error = ERR_PTR(-ENOENT);
3153 struct inode *inode;
3154 inode = proc_pid_make_inode(dir->i_sb, task);
3155
3156 if (!inode)
3157 goto out;
3158 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3159 inode->i_op = &proc_tid_base_inode_operations;
3160 inode->i_fop = &proc_tid_base_operations;
3161 inode->i_flags|=S_IMMUTABLE;
3162
3163 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3164 ARRAY_SIZE(tid_base_stuff));
3165
3166 dentry->d_op = &pid_dentry_operations;
3167
3168 d_add(dentry, inode);
3169 /* Close the race of the process dying before we return the dentry */
3170 if (pid_revalidate(dentry, NULL))
3171 error = NULL;
3172 out:
3173 return error;
3174 }
3175
3176 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3177 {
3178 struct dentry *result = ERR_PTR(-ENOENT);
3179 struct task_struct *task;
3180 struct task_struct *leader = get_proc_task(dir);
3181 unsigned tid;
3182 struct pid_namespace *ns;
3183
3184 if (!leader)
3185 goto out_no_task;
3186
3187 tid = name_to_int(dentry);
3188 if (tid == ~0U)
3189 goto out;
3190
3191 ns = dentry->d_sb->s_fs_info;
3192 rcu_read_lock();
3193 task = find_task_by_pid_ns(tid, ns);
3194 if (task)
3195 get_task_struct(task);
3196 rcu_read_unlock();
3197 if (!task)
3198 goto out;
3199 if (!same_thread_group(leader, task))
3200 goto out_drop_task;
3201
3202 result = proc_task_instantiate(dir, dentry, task, NULL);
3203 out_drop_task:
3204 put_task_struct(task);
3205 out:
3206 put_task_struct(leader);
3207 out_no_task:
3208 return result;
3209 }
3210
3211 /*
3212 * Find the first tid of a thread group to return to user space.
3213 *
3214 * Usually this is just the thread group leader, but if the users
3215 * buffer was too small or there was a seek into the middle of the
3216 * directory we have more work todo.
3217 *
3218 * In the case of a short read we start with find_task_by_pid.
3219 *
3220 * In the case of a seek we start with the leader and walk nr
3221 * threads past it.
3222 */
3223 static struct task_struct *first_tid(struct task_struct *leader,
3224 int tid, int nr, struct pid_namespace *ns)
3225 {
3226 struct task_struct *pos;
3227
3228 rcu_read_lock();
3229 /* Attempt to start with the pid of a thread */
3230 if (tid && (nr > 0)) {
3231 pos = find_task_by_pid_ns(tid, ns);
3232 if (pos && (pos->group_leader == leader))
3233 goto found;
3234 }
3235
3236 /* If nr exceeds the number of threads there is nothing todo */
3237 pos = NULL;
3238 if (nr && nr >= get_nr_threads(leader))
3239 goto out;
3240
3241 /* If we haven't found our starting place yet start
3242 * with the leader and walk nr threads forward.
3243 */
3244 for (pos = leader; nr > 0; --nr) {
3245 pos = next_thread(pos);
3246 if (pos == leader) {
3247 pos = NULL;
3248 goto out;
3249 }
3250 }
3251 found:
3252 get_task_struct(pos);
3253 out:
3254 rcu_read_unlock();
3255 return pos;
3256 }
3257
3258 /*
3259 * Find the next thread in the thread list.
3260 * Return NULL if there is an error or no next thread.
3261 *
3262 * The reference to the input task_struct is released.
3263 */
3264 static struct task_struct *next_tid(struct task_struct *start)
3265 {
3266 struct task_struct *pos = NULL;
3267 rcu_read_lock();
3268 if (pid_alive(start)) {
3269 pos = next_thread(start);
3270 if (thread_group_leader(pos))
3271 pos = NULL;
3272 else
3273 get_task_struct(pos);
3274 }
3275 rcu_read_unlock();
3276 put_task_struct(start);
3277 return pos;
3278 }
3279
3280 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3281 struct task_struct *task, int tid)
3282 {
3283 char name[PROC_NUMBUF];
3284 int len = snprintf(name, sizeof(name), "%d", tid);
3285 return proc_fill_cache(filp, dirent, filldir, name, len,
3286 proc_task_instantiate, task, NULL);
3287 }
3288
3289 /* for the /proc/TGID/task/ directories */
3290 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3291 {
3292 struct dentry *dentry = filp->f_path.dentry;
3293 struct inode *inode = dentry->d_inode;
3294 struct task_struct *leader = NULL;
3295 struct task_struct *task;
3296 int retval = -ENOENT;
3297 ino_t ino;
3298 int tid;
3299 struct pid_namespace *ns;
3300
3301 task = get_proc_task(inode);
3302 if (!task)
3303 goto out_no_task;
3304 rcu_read_lock();
3305 if (pid_alive(task)) {
3306 leader = task->group_leader;
3307 get_task_struct(leader);
3308 }
3309 rcu_read_unlock();
3310 put_task_struct(task);
3311 if (!leader)
3312 goto out_no_task;
3313 retval = 0;
3314
3315 switch ((unsigned long)filp->f_pos) {
3316 case 0:
3317 ino = inode->i_ino;
3318 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3319 goto out;
3320 filp->f_pos++;
3321 /* fall through */
3322 case 1:
3323 ino = parent_ino(dentry);
3324 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3325 goto out;
3326 filp->f_pos++;
3327 /* fall through */
3328 }
3329
3330 /* f_version caches the tgid value that the last readdir call couldn't
3331 * return. lseek aka telldir automagically resets f_version to 0.
3332 */
3333 ns = filp->f_dentry->d_sb->s_fs_info;
3334 tid = (int)filp->f_version;
3335 filp->f_version = 0;
3336 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3337 task;
3338 task = next_tid(task), filp->f_pos++) {
3339 tid = task_pid_nr_ns(task, ns);
3340 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3341 /* returning this tgid failed, save it as the first
3342 * pid for the next readir call */
3343 filp->f_version = (u64)tid;
3344 put_task_struct(task);
3345 break;
3346 }
3347 }
3348 out:
3349 put_task_struct(leader);
3350 out_no_task:
3351 return retval;
3352 }
3353
3354 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3355 {
3356 struct inode *inode = dentry->d_inode;
3357 struct task_struct *p = get_proc_task(inode);
3358 generic_fillattr(inode, stat);
3359
3360 if (p) {
3361 stat->nlink += get_nr_threads(p);
3362 put_task_struct(p);
3363 }
3364
3365 return 0;
3366 }
3367
3368 static const struct inode_operations proc_task_inode_operations = {
3369 .lookup = proc_task_lookup,
3370 .getattr = proc_task_getattr,
3371 .setattr = proc_setattr,
3372 };
3373
3374 static const struct file_operations proc_task_operations = {
3375 .read = generic_read_dir,
3376 .readdir = proc_task_readdir,
3377 .llseek = default_llseek,
3378 };