]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/proc/base.c
drm/i810: make i810_flush_queue() return void
[mirror_ubuntu-jammy-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102
103 #include "../../lib/kstrtox.h"
104
105 /* NOTE:
106 * Implementing inode permission operations in /proc is almost
107 * certainly an error. Permission checks need to happen during
108 * each system call not at open time. The reason is that most of
109 * what we wish to check for permissions in /proc varies at runtime.
110 *
111 * The classic example of a problem is opening file descriptors
112 * in /proc for a task before it execs a suid executable.
113 */
114
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117
118 struct pid_entry {
119 const char *name;
120 unsigned int len;
121 umode_t mode;
122 const struct inode_operations *iop;
123 const struct file_operations *fop;
124 union proc_op op;
125 };
126
127 #define NOD(NAME, MODE, IOP, FOP, OP) { \
128 .name = (NAME), \
129 .len = sizeof(NAME) - 1, \
130 .mode = MODE, \
131 .iop = IOP, \
132 .fop = FOP, \
133 .op = OP, \
134 }
135
136 #define DIR(NAME, MODE, iops, fops) \
137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link) \
139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
140 &proc_pid_link_inode_operations, NULL, \
141 { .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops) \
143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show) \
145 NOD(NAME, (S_IFREG|(MODE)), \
146 NULL, &proc_single_file_operations, \
147 { .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE) \
149 NOD(NAME, (S_IFREG|(MODE)), \
150 NULL, &proc_pid_attr_operations, \
151 { .lsm = LSM })
152
153 /*
154 * Count the number of hardlinks for the pid_entry table, excluding the .
155 * and .. links.
156 */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 unsigned int n)
159 {
160 unsigned int i;
161 unsigned int count;
162
163 count = 2;
164 for (i = 0; i < n; ++i) {
165 if (S_ISDIR(entries[i].mode))
166 ++count;
167 }
168
169 return count;
170 }
171
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 int result = -ENOENT;
175
176 task_lock(task);
177 if (task->fs) {
178 get_fs_root(task->fs, root);
179 result = 0;
180 }
181 task_unlock(task);
182 return result;
183 }
184
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 struct task_struct *task = get_proc_task(d_inode(dentry));
188 int result = -ENOENT;
189
190 if (task) {
191 task_lock(task);
192 if (task->fs) {
193 get_fs_pwd(task->fs, path);
194 result = 0;
195 }
196 task_unlock(task);
197 put_task_struct(task);
198 }
199 return result;
200 }
201
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 struct task_struct *task = get_proc_task(d_inode(dentry));
205 int result = -ENOENT;
206
207 if (task) {
208 result = get_task_root(task, path);
209 put_task_struct(task);
210 }
211 return result;
212 }
213
214 /*
215 * If the user used setproctitle(), we just get the string from
216 * user space at arg_start, and limit it to a maximum of one page.
217 */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 size_t count, unsigned long pos,
220 unsigned long arg_start)
221 {
222 char *page;
223 int ret, got;
224
225 if (pos >= PAGE_SIZE)
226 return 0;
227
228 page = (char *)__get_free_page(GFP_KERNEL);
229 if (!page)
230 return -ENOMEM;
231
232 ret = 0;
233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 if (got > 0) {
235 int len = strnlen(page, got);
236
237 /* Include the NUL character if it was found */
238 if (len < got)
239 len++;
240
241 if (len > pos) {
242 len -= pos;
243 if (len > count)
244 len = count;
245 len -= copy_to_user(buf, page+pos, len);
246 if (!len)
247 len = -EFAULT;
248 ret = len;
249 }
250 }
251 free_page((unsigned long)page);
252 return ret;
253 }
254
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 size_t count, loff_t *ppos)
257 {
258 unsigned long arg_start, arg_end, env_start, env_end;
259 unsigned long pos, len;
260 char *page, c;
261
262 /* Check if process spawned far enough to have cmdline. */
263 if (!mm->env_end)
264 return 0;
265
266 spin_lock(&mm->arg_lock);
267 arg_start = mm->arg_start;
268 arg_end = mm->arg_end;
269 env_start = mm->env_start;
270 env_end = mm->env_end;
271 spin_unlock(&mm->arg_lock);
272
273 if (arg_start >= arg_end)
274 return 0;
275
276 /*
277 * We allow setproctitle() to overwrite the argument
278 * strings, and overflow past the original end. But
279 * only when it overflows into the environment area.
280 */
281 if (env_start != arg_end || env_end < env_start)
282 env_start = env_end = arg_end;
283 len = env_end - arg_start;
284
285 /* We're not going to care if "*ppos" has high bits set */
286 pos = *ppos;
287 if (pos >= len)
288 return 0;
289 if (count > len - pos)
290 count = len - pos;
291 if (!count)
292 return 0;
293
294 /*
295 * Magical special case: if the argv[] end byte is not
296 * zero, the user has overwritten it with setproctitle(3).
297 *
298 * Possible future enhancement: do this only once when
299 * pos is 0, and set a flag in the 'struct file'.
300 */
301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304 /*
305 * For the non-setproctitle() case we limit things strictly
306 * to the [arg_start, arg_end[ range.
307 */
308 pos += arg_start;
309 if (pos < arg_start || pos >= arg_end)
310 return 0;
311 if (count > arg_end - pos)
312 count = arg_end - pos;
313
314 page = (char *)__get_free_page(GFP_KERNEL);
315 if (!page)
316 return -ENOMEM;
317
318 len = 0;
319 while (count) {
320 int got;
321 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 if (got <= 0)
325 break;
326 got -= copy_to_user(buf, page, got);
327 if (unlikely(!got)) {
328 if (!len)
329 len = -EFAULT;
330 break;
331 }
332 pos += got;
333 buf += got;
334 len += got;
335 count -= got;
336 }
337
338 free_page((unsigned long)page);
339 return len;
340 }
341
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 size_t count, loff_t *pos)
344 {
345 struct mm_struct *mm;
346 ssize_t ret;
347
348 mm = get_task_mm(tsk);
349 if (!mm)
350 return 0;
351
352 ret = get_mm_cmdline(mm, buf, count, pos);
353 mmput(mm);
354 return ret;
355 }
356
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 size_t count, loff_t *pos)
359 {
360 struct task_struct *tsk;
361 ssize_t ret;
362
363 BUG_ON(*pos < 0);
364
365 tsk = get_proc_task(file_inode(file));
366 if (!tsk)
367 return -ESRCH;
368 ret = get_task_cmdline(tsk, buf, count, pos);
369 put_task_struct(tsk);
370 if (ret > 0)
371 *pos += ret;
372 return ret;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400 print0:
401 seq_putc(m, '0');
402 return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405
406 static int lock_trace(struct task_struct *task)
407 {
408 int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 mutex_unlock(&task->signal->exec_update_mutex);
413 return -EPERM;
414 }
415 return 0;
416 }
417
418 static void unlock_trace(struct task_struct *task)
419 {
420 mutex_unlock(&task->signal->exec_update_mutex);
421 }
422
423 #ifdef CONFIG_STACKTRACE
424
425 #define MAX_STACK_TRACE_DEPTH 64
426
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429 {
430 unsigned long *entries;
431 int err;
432
433 /*
434 * The ability to racily run the kernel stack unwinder on a running task
435 * and then observe the unwinder output is scary; while it is useful for
436 * debugging kernel issues, it can also allow an attacker to leak kernel
437 * stack contents.
438 * Doing this in a manner that is at least safe from races would require
439 * some work to ensure that the remote task can not be scheduled; and
440 * even then, this would still expose the unwinder as local attack
441 * surface.
442 * Therefore, this interface is restricted to root.
443 */
444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 return -EACCES;
446
447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 GFP_KERNEL);
449 if (!entries)
450 return -ENOMEM;
451
452 err = lock_trace(task);
453 if (!err) {
454 unsigned int i, nr_entries;
455
456 nr_entries = stack_trace_save_tsk(task, entries,
457 MAX_STACK_TRACE_DEPTH, 0);
458
459 for (i = 0; i < nr_entries; i++) {
460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 }
462
463 unlock_trace(task);
464 }
465 kfree(entries);
466
467 return err;
468 }
469 #endif
470
471 #ifdef CONFIG_SCHED_INFO
472 /*
473 * Provides /proc/PID/schedstat
474 */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 struct pid *pid, struct task_struct *task)
477 {
478 if (unlikely(!sched_info_on()))
479 seq_puts(m, "0 0 0\n");
480 else
481 seq_printf(m, "%llu %llu %lu\n",
482 (unsigned long long)task->se.sum_exec_runtime,
483 (unsigned long long)task->sched_info.run_delay,
484 task->sched_info.pcount);
485
486 return 0;
487 }
488 #endif
489
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 int i;
494 struct inode *inode = m->private;
495 struct task_struct *task = get_proc_task(inode);
496
497 if (!task)
498 return -ESRCH;
499 seq_puts(m, "Latency Top version : v0.1\n");
500 for (i = 0; i < LT_SAVECOUNT; i++) {
501 struct latency_record *lr = &task->latency_record[i];
502 if (lr->backtrace[0]) {
503 int q;
504 seq_printf(m, "%i %li %li",
505 lr->count, lr->time, lr->max);
506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 unsigned long bt = lr->backtrace[q];
508
509 if (!bt)
510 break;
511 seq_printf(m, " %ps", (void *)bt);
512 }
513 seq_putc(m, '\n');
514 }
515
516 }
517 put_task_struct(task);
518 return 0;
519 }
520
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 return single_open(file, lstats_show_proc, inode);
524 }
525
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 size_t count, loff_t *offs)
528 {
529 struct task_struct *task = get_proc_task(file_inode(file));
530
531 if (!task)
532 return -ESRCH;
533 clear_tsk_latency_tracing(task);
534 put_task_struct(task);
535
536 return count;
537 }
538
539 static const struct file_operations proc_lstats_operations = {
540 .open = lstats_open,
541 .read = seq_read,
542 .write = lstats_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545 };
546
547 #endif
548
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 struct pid *pid, struct task_struct *task)
551 {
552 unsigned long totalpages = totalram_pages() + total_swap_pages;
553 unsigned long points = 0;
554 long badness;
555
556 badness = oom_badness(task, totalpages);
557 /*
558 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 * badness value into [0, 2000] range which we have been
560 * exporting for a long time so userspace might depend on it.
561 */
562 if (badness != LONG_MIN)
563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564
565 seq_printf(m, "%lu\n", points);
566
567 return 0;
568 }
569
570 struct limit_names {
571 const char *name;
572 const char *unit;
573 };
574
575 static const struct limit_names lnames[RLIM_NLIMITS] = {
576 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 [RLIMIT_DATA] = {"Max data size", "bytes"},
579 [RLIMIT_STACK] = {"Max stack size", "bytes"},
580 [RLIMIT_CORE] = {"Max core file size", "bytes"},
581 [RLIMIT_RSS] = {"Max resident set", "bytes"},
582 [RLIMIT_NPROC] = {"Max processes", "processes"},
583 [RLIMIT_NOFILE] = {"Max open files", "files"},
584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 [RLIMIT_AS] = {"Max address space", "bytes"},
586 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 [RLIMIT_NICE] = {"Max nice priority", NULL},
590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592 };
593
594 /* Display limits for a process */
595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 struct pid *pid, struct task_struct *task)
597 {
598 unsigned int i;
599 unsigned long flags;
600
601 struct rlimit rlim[RLIM_NLIMITS];
602
603 if (!lock_task_sighand(task, &flags))
604 return 0;
605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 unlock_task_sighand(task, &flags);
607
608 /*
609 * print the file header
610 */
611 seq_puts(m, "Limit "
612 "Soft Limit "
613 "Hard Limit "
614 "Units \n");
615
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
620 else
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
623
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
626 else
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628
629 if (lnames[i].unit)
630 seq_printf(m, "%-10s\n", lnames[i].unit);
631 else
632 seq_putc(m, '\n');
633 }
634
635 return 0;
636 }
637
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
641 {
642 struct syscall_info info;
643 u64 *args = &info.data.args[0];
644 int res;
645
646 res = lock_trace(task);
647 if (res)
648 return res;
649
650 if (task_current_syscall(task, &info))
651 seq_puts(m, "running\n");
652 else if (info.data.nr < 0)
653 seq_printf(m, "%d 0x%llx 0x%llx\n",
654 info.data.nr, info.sp, info.data.instruction_pointer);
655 else
656 seq_printf(m,
657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 info.data.nr,
659 args[0], args[1], args[2], args[3], args[4], args[5],
660 info.sp, info.data.instruction_pointer);
661 unlock_trace(task);
662
663 return 0;
664 }
665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666
667 /************************************************************************/
668 /* Here the fs part begins */
669 /************************************************************************/
670
671 /* permission checks */
672 static int proc_fd_access_allowed(struct inode *inode)
673 {
674 struct task_struct *task;
675 int allowed = 0;
676 /* Allow access to a task's file descriptors if it is us or we
677 * may use ptrace attach to the process and find out that
678 * information.
679 */
680 task = get_proc_task(inode);
681 if (task) {
682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 put_task_struct(task);
684 }
685 return allowed;
686 }
687
688 int proc_setattr(struct dentry *dentry, struct iattr *attr)
689 {
690 int error;
691 struct inode *inode = d_inode(dentry);
692
693 if (attr->ia_valid & ATTR_MODE)
694 return -EPERM;
695
696 error = setattr_prepare(dentry, attr);
697 if (error)
698 return error;
699
700 setattr_copy(inode, attr);
701 mark_inode_dirty(inode);
702 return 0;
703 }
704
705 /*
706 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
707 * or euid/egid (for hide_pid_min=2)?
708 */
709 static bool has_pid_permissions(struct proc_fs_info *fs_info,
710 struct task_struct *task,
711 enum proc_hidepid hide_pid_min)
712 {
713 /*
714 * If 'hidpid' mount option is set force a ptrace check,
715 * we indicate that we are using a filesystem syscall
716 * by passing PTRACE_MODE_READ_FSCREDS
717 */
718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
719 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720
721 if (fs_info->hide_pid < hide_pid_min)
722 return true;
723 if (in_group_p(fs_info->pid_gid))
724 return true;
725 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
726 }
727
728
729 static int proc_pid_permission(struct inode *inode, int mask)
730 {
731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
732 struct task_struct *task;
733 bool has_perms;
734
735 task = get_proc_task(inode);
736 if (!task)
737 return -ESRCH;
738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
739 put_task_struct(task);
740
741 if (!has_perms) {
742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
743 /*
744 * Let's make getdents(), stat(), and open()
745 * consistent with each other. If a process
746 * may not stat() a file, it shouldn't be seen
747 * in procfs at all.
748 */
749 return -ENOENT;
750 }
751
752 return -EPERM;
753 }
754 return generic_permission(inode, mask);
755 }
756
757
758
759 static const struct inode_operations proc_def_inode_operations = {
760 .setattr = proc_setattr,
761 };
762
763 static int proc_single_show(struct seq_file *m, void *v)
764 {
765 struct inode *inode = m->private;
766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
767 struct pid *pid = proc_pid(inode);
768 struct task_struct *task;
769 int ret;
770
771 task = get_pid_task(pid, PIDTYPE_PID);
772 if (!task)
773 return -ESRCH;
774
775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
776
777 put_task_struct(task);
778 return ret;
779 }
780
781 static int proc_single_open(struct inode *inode, struct file *filp)
782 {
783 return single_open(filp, proc_single_show, inode);
784 }
785
786 static const struct file_operations proc_single_file_operations = {
787 .open = proc_single_open,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793
794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
795 {
796 struct task_struct *task = get_proc_task(inode);
797 struct mm_struct *mm = ERR_PTR(-ESRCH);
798
799 if (task) {
800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
801 put_task_struct(task);
802
803 if (!IS_ERR_OR_NULL(mm)) {
804 /* ensure this mm_struct can't be freed */
805 mmgrab(mm);
806 /* but do not pin its memory */
807 mmput(mm);
808 }
809 }
810
811 return mm;
812 }
813
814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
815 {
816 struct mm_struct *mm = proc_mem_open(inode, mode);
817
818 if (IS_ERR(mm))
819 return PTR_ERR(mm);
820
821 file->private_data = mm;
822 return 0;
823 }
824
825 static int mem_open(struct inode *inode, struct file *file)
826 {
827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
828
829 /* OK to pass negative loff_t, we can catch out-of-range */
830 file->f_mode |= FMODE_UNSIGNED_OFFSET;
831
832 return ret;
833 }
834
835 static ssize_t mem_rw(struct file *file, char __user *buf,
836 size_t count, loff_t *ppos, int write)
837 {
838 struct mm_struct *mm = file->private_data;
839 unsigned long addr = *ppos;
840 ssize_t copied;
841 char *page;
842 unsigned int flags;
843
844 if (!mm)
845 return 0;
846
847 page = (char *)__get_free_page(GFP_KERNEL);
848 if (!page)
849 return -ENOMEM;
850
851 copied = 0;
852 if (!mmget_not_zero(mm))
853 goto free;
854
855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
856
857 while (count > 0) {
858 int this_len = min_t(int, count, PAGE_SIZE);
859
860 if (write && copy_from_user(page, buf, this_len)) {
861 copied = -EFAULT;
862 break;
863 }
864
865 this_len = access_remote_vm(mm, addr, page, this_len, flags);
866 if (!this_len) {
867 if (!copied)
868 copied = -EIO;
869 break;
870 }
871
872 if (!write && copy_to_user(buf, page, this_len)) {
873 copied = -EFAULT;
874 break;
875 }
876
877 buf += this_len;
878 addr += this_len;
879 copied += this_len;
880 count -= this_len;
881 }
882 *ppos = addr;
883
884 mmput(mm);
885 free:
886 free_page((unsigned long) page);
887 return copied;
888 }
889
890 static ssize_t mem_read(struct file *file, char __user *buf,
891 size_t count, loff_t *ppos)
892 {
893 return mem_rw(file, buf, count, ppos, 0);
894 }
895
896 static ssize_t mem_write(struct file *file, const char __user *buf,
897 size_t count, loff_t *ppos)
898 {
899 return mem_rw(file, (char __user*)buf, count, ppos, 1);
900 }
901
902 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903 {
904 switch (orig) {
905 case 0:
906 file->f_pos = offset;
907 break;
908 case 1:
909 file->f_pos += offset;
910 break;
911 default:
912 return -EINVAL;
913 }
914 force_successful_syscall_return();
915 return file->f_pos;
916 }
917
918 static int mem_release(struct inode *inode, struct file *file)
919 {
920 struct mm_struct *mm = file->private_data;
921 if (mm)
922 mmdrop(mm);
923 return 0;
924 }
925
926 static const struct file_operations proc_mem_operations = {
927 .llseek = mem_lseek,
928 .read = mem_read,
929 .write = mem_write,
930 .open = mem_open,
931 .release = mem_release,
932 };
933
934 static int environ_open(struct inode *inode, struct file *file)
935 {
936 return __mem_open(inode, file, PTRACE_MODE_READ);
937 }
938
939 static ssize_t environ_read(struct file *file, char __user *buf,
940 size_t count, loff_t *ppos)
941 {
942 char *page;
943 unsigned long src = *ppos;
944 int ret = 0;
945 struct mm_struct *mm = file->private_data;
946 unsigned long env_start, env_end;
947
948 /* Ensure the process spawned far enough to have an environment. */
949 if (!mm || !mm->env_end)
950 return 0;
951
952 page = (char *)__get_free_page(GFP_KERNEL);
953 if (!page)
954 return -ENOMEM;
955
956 ret = 0;
957 if (!mmget_not_zero(mm))
958 goto free;
959
960 spin_lock(&mm->arg_lock);
961 env_start = mm->env_start;
962 env_end = mm->env_end;
963 spin_unlock(&mm->arg_lock);
964
965 while (count > 0) {
966 size_t this_len, max_len;
967 int retval;
968
969 if (src >= (env_end - env_start))
970 break;
971
972 this_len = env_end - (env_start + src);
973
974 max_len = min_t(size_t, PAGE_SIZE, count);
975 this_len = min(max_len, this_len);
976
977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
978
979 if (retval <= 0) {
980 ret = retval;
981 break;
982 }
983
984 if (copy_to_user(buf, page, retval)) {
985 ret = -EFAULT;
986 break;
987 }
988
989 ret += retval;
990 src += retval;
991 buf += retval;
992 count -= retval;
993 }
994 *ppos = src;
995 mmput(mm);
996
997 free:
998 free_page((unsigned long) page);
999 return ret;
1000 }
1001
1002 static const struct file_operations proc_environ_operations = {
1003 .open = environ_open,
1004 .read = environ_read,
1005 .llseek = generic_file_llseek,
1006 .release = mem_release,
1007 };
1008
1009 static int auxv_open(struct inode *inode, struct file *file)
1010 {
1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012 }
1013
1014 static ssize_t auxv_read(struct file *file, char __user *buf,
1015 size_t count, loff_t *ppos)
1016 {
1017 struct mm_struct *mm = file->private_data;
1018 unsigned int nwords = 0;
1019
1020 if (!mm)
1021 return 0;
1022 do {
1023 nwords += 2;
1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026 nwords * sizeof(mm->saved_auxv[0]));
1027 }
1028
1029 static const struct file_operations proc_auxv_operations = {
1030 .open = auxv_open,
1031 .read = auxv_read,
1032 .llseek = generic_file_llseek,
1033 .release = mem_release,
1034 };
1035
1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037 loff_t *ppos)
1038 {
1039 struct task_struct *task = get_proc_task(file_inode(file));
1040 char buffer[PROC_NUMBUF];
1041 int oom_adj = OOM_ADJUST_MIN;
1042 size_t len;
1043
1044 if (!task)
1045 return -ESRCH;
1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047 oom_adj = OOM_ADJUST_MAX;
1048 else
1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050 OOM_SCORE_ADJ_MAX;
1051 put_task_struct(task);
1052 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1053 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1054 }
1055
1056 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1057 {
1058 static DEFINE_MUTEX(oom_adj_mutex);
1059 struct mm_struct *mm = NULL;
1060 struct task_struct *task;
1061 int err = 0;
1062
1063 task = get_proc_task(file_inode(file));
1064 if (!task)
1065 return -ESRCH;
1066
1067 mutex_lock(&oom_adj_mutex);
1068 if (legacy) {
1069 if (oom_adj < task->signal->oom_score_adj &&
1070 !capable(CAP_SYS_RESOURCE)) {
1071 err = -EACCES;
1072 goto err_unlock;
1073 }
1074 /*
1075 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076 * /proc/pid/oom_score_adj instead.
1077 */
1078 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079 current->comm, task_pid_nr(current), task_pid_nr(task),
1080 task_pid_nr(task));
1081 } else {
1082 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083 !capable(CAP_SYS_RESOURCE)) {
1084 err = -EACCES;
1085 goto err_unlock;
1086 }
1087 }
1088
1089 /*
1090 * Make sure we will check other processes sharing the mm if this is
1091 * not vfrok which wants its own oom_score_adj.
1092 * pin the mm so it doesn't go away and get reused after task_unlock
1093 */
1094 if (!task->vfork_done) {
1095 struct task_struct *p = find_lock_task_mm(task);
1096
1097 if (p) {
1098 if (atomic_read(&p->mm->mm_users) > 1) {
1099 mm = p->mm;
1100 mmgrab(mm);
1101 }
1102 task_unlock(p);
1103 }
1104 }
1105
1106 task->signal->oom_score_adj = oom_adj;
1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 task->signal->oom_score_adj_min = (short)oom_adj;
1109 trace_oom_score_adj_update(task);
1110
1111 if (mm) {
1112 struct task_struct *p;
1113
1114 rcu_read_lock();
1115 for_each_process(p) {
1116 if (same_thread_group(task, p))
1117 continue;
1118
1119 /* do not touch kernel threads or the global init */
1120 if (p->flags & PF_KTHREAD || is_global_init(p))
1121 continue;
1122
1123 task_lock(p);
1124 if (!p->vfork_done && process_shares_mm(p, mm)) {
1125 p->signal->oom_score_adj = oom_adj;
1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 p->signal->oom_score_adj_min = (short)oom_adj;
1128 }
1129 task_unlock(p);
1130 }
1131 rcu_read_unlock();
1132 mmdrop(mm);
1133 }
1134 err_unlock:
1135 mutex_unlock(&oom_adj_mutex);
1136 put_task_struct(task);
1137 return err;
1138 }
1139
1140 /*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels. The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 size_t count, loff_t *ppos)
1152 {
1153 char buffer[PROC_NUMBUF];
1154 int oom_adj;
1155 int err;
1156
1157 memset(buffer, 0, sizeof(buffer));
1158 if (count > sizeof(buffer) - 1)
1159 count = sizeof(buffer) - 1;
1160 if (copy_from_user(buffer, buf, count)) {
1161 err = -EFAULT;
1162 goto out;
1163 }
1164
1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166 if (err)
1167 goto out;
1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 oom_adj != OOM_DISABLE) {
1170 err = -EINVAL;
1171 goto out;
1172 }
1173
1174 /*
1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 * value is always attainable.
1177 */
1178 if (oom_adj == OOM_ADJUST_MAX)
1179 oom_adj = OOM_SCORE_ADJ_MAX;
1180 else
1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183 err = __set_oom_adj(file, oom_adj, true);
1184 out:
1185 return err < 0 ? err : count;
1186 }
1187
1188 static const struct file_operations proc_oom_adj_operations = {
1189 .read = oom_adj_read,
1190 .write = oom_adj_write,
1191 .llseek = generic_file_llseek,
1192 };
1193
1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1196 {
1197 struct task_struct *task = get_proc_task(file_inode(file));
1198 char buffer[PROC_NUMBUF];
1199 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200 size_t len;
1201
1202 if (!task)
1203 return -ESRCH;
1204 oom_score_adj = task->signal->oom_score_adj;
1205 put_task_struct(task);
1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208 }
1209
1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 size_t count, loff_t *ppos)
1212 {
1213 char buffer[PROC_NUMBUF];
1214 int oom_score_adj;
1215 int err;
1216
1217 memset(buffer, 0, sizeof(buffer));
1218 if (count > sizeof(buffer) - 1)
1219 count = sizeof(buffer) - 1;
1220 if (copy_from_user(buffer, buf, count)) {
1221 err = -EFAULT;
1222 goto out;
1223 }
1224
1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226 if (err)
1227 goto out;
1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230 err = -EINVAL;
1231 goto out;
1232 }
1233
1234 err = __set_oom_adj(file, oom_score_adj, false);
1235 out:
1236 return err < 0 ? err : count;
1237 }
1238
1239 static const struct file_operations proc_oom_score_adj_operations = {
1240 .read = oom_score_adj_read,
1241 .write = oom_score_adj_write,
1242 .llseek = default_llseek,
1243 };
1244
1245 #ifdef CONFIG_AUDIT
1246 #define TMPBUFLEN 11
1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 size_t count, loff_t *ppos)
1249 {
1250 struct inode * inode = file_inode(file);
1251 struct task_struct *task = get_proc_task(inode);
1252 ssize_t length;
1253 char tmpbuf[TMPBUFLEN];
1254
1255 if (!task)
1256 return -ESRCH;
1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 from_kuid(file->f_cred->user_ns,
1259 audit_get_loginuid(task)));
1260 put_task_struct(task);
1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262 }
1263
1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 size_t count, loff_t *ppos)
1266 {
1267 struct inode * inode = file_inode(file);
1268 uid_t loginuid;
1269 kuid_t kloginuid;
1270 int rv;
1271
1272 rcu_read_lock();
1273 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1274 rcu_read_unlock();
1275 return -EPERM;
1276 }
1277 rcu_read_unlock();
1278
1279 if (*ppos != 0) {
1280 /* No partial writes. */
1281 return -EINVAL;
1282 }
1283
1284 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1285 if (rv < 0)
1286 return rv;
1287
1288 /* is userspace tring to explicitly UNSET the loginuid? */
1289 if (loginuid == AUDIT_UID_UNSET) {
1290 kloginuid = INVALID_UID;
1291 } else {
1292 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293 if (!uid_valid(kloginuid))
1294 return -EINVAL;
1295 }
1296
1297 rv = audit_set_loginuid(kloginuid);
1298 if (rv < 0)
1299 return rv;
1300 return count;
1301 }
1302
1303 static const struct file_operations proc_loginuid_operations = {
1304 .read = proc_loginuid_read,
1305 .write = proc_loginuid_write,
1306 .llseek = generic_file_llseek,
1307 };
1308
1309 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310 size_t count, loff_t *ppos)
1311 {
1312 struct inode * inode = file_inode(file);
1313 struct task_struct *task = get_proc_task(inode);
1314 ssize_t length;
1315 char tmpbuf[TMPBUFLEN];
1316
1317 if (!task)
1318 return -ESRCH;
1319 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320 audit_get_sessionid(task));
1321 put_task_struct(task);
1322 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323 }
1324
1325 static const struct file_operations proc_sessionid_operations = {
1326 .read = proc_sessionid_read,
1327 .llseek = generic_file_llseek,
1328 };
1329 #endif
1330
1331 #ifdef CONFIG_FAULT_INJECTION
1332 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333 size_t count, loff_t *ppos)
1334 {
1335 struct task_struct *task = get_proc_task(file_inode(file));
1336 char buffer[PROC_NUMBUF];
1337 size_t len;
1338 int make_it_fail;
1339
1340 if (!task)
1341 return -ESRCH;
1342 make_it_fail = task->make_it_fail;
1343 put_task_struct(task);
1344
1345 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1346
1347 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1348 }
1349
1350 static ssize_t proc_fault_inject_write(struct file * file,
1351 const char __user * buf, size_t count, loff_t *ppos)
1352 {
1353 struct task_struct *task;
1354 char buffer[PROC_NUMBUF];
1355 int make_it_fail;
1356 int rv;
1357
1358 if (!capable(CAP_SYS_RESOURCE))
1359 return -EPERM;
1360 memset(buffer, 0, sizeof(buffer));
1361 if (count > sizeof(buffer) - 1)
1362 count = sizeof(buffer) - 1;
1363 if (copy_from_user(buffer, buf, count))
1364 return -EFAULT;
1365 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1366 if (rv < 0)
1367 return rv;
1368 if (make_it_fail < 0 || make_it_fail > 1)
1369 return -EINVAL;
1370
1371 task = get_proc_task(file_inode(file));
1372 if (!task)
1373 return -ESRCH;
1374 task->make_it_fail = make_it_fail;
1375 put_task_struct(task);
1376
1377 return count;
1378 }
1379
1380 static const struct file_operations proc_fault_inject_operations = {
1381 .read = proc_fault_inject_read,
1382 .write = proc_fault_inject_write,
1383 .llseek = generic_file_llseek,
1384 };
1385
1386 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1387 size_t count, loff_t *ppos)
1388 {
1389 struct task_struct *task;
1390 int err;
1391 unsigned int n;
1392
1393 err = kstrtouint_from_user(buf, count, 0, &n);
1394 if (err)
1395 return err;
1396
1397 task = get_proc_task(file_inode(file));
1398 if (!task)
1399 return -ESRCH;
1400 task->fail_nth = n;
1401 put_task_struct(task);
1402
1403 return count;
1404 }
1405
1406 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1407 size_t count, loff_t *ppos)
1408 {
1409 struct task_struct *task;
1410 char numbuf[PROC_NUMBUF];
1411 ssize_t len;
1412
1413 task = get_proc_task(file_inode(file));
1414 if (!task)
1415 return -ESRCH;
1416 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1417 put_task_struct(task);
1418 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1419 }
1420
1421 static const struct file_operations proc_fail_nth_operations = {
1422 .read = proc_fail_nth_read,
1423 .write = proc_fail_nth_write,
1424 };
1425 #endif
1426
1427
1428 #ifdef CONFIG_SCHED_DEBUG
1429 /*
1430 * Print out various scheduling related per-task fields:
1431 */
1432 static int sched_show(struct seq_file *m, void *v)
1433 {
1434 struct inode *inode = m->private;
1435 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1436 struct task_struct *p;
1437
1438 p = get_proc_task(inode);
1439 if (!p)
1440 return -ESRCH;
1441 proc_sched_show_task(p, ns, m);
1442
1443 put_task_struct(p);
1444
1445 return 0;
1446 }
1447
1448 static ssize_t
1449 sched_write(struct file *file, const char __user *buf,
1450 size_t count, loff_t *offset)
1451 {
1452 struct inode *inode = file_inode(file);
1453 struct task_struct *p;
1454
1455 p = get_proc_task(inode);
1456 if (!p)
1457 return -ESRCH;
1458 proc_sched_set_task(p);
1459
1460 put_task_struct(p);
1461
1462 return count;
1463 }
1464
1465 static int sched_open(struct inode *inode, struct file *filp)
1466 {
1467 return single_open(filp, sched_show, inode);
1468 }
1469
1470 static const struct file_operations proc_pid_sched_operations = {
1471 .open = sched_open,
1472 .read = seq_read,
1473 .write = sched_write,
1474 .llseek = seq_lseek,
1475 .release = single_release,
1476 };
1477
1478 #endif
1479
1480 #ifdef CONFIG_SCHED_AUTOGROUP
1481 /*
1482 * Print out autogroup related information:
1483 */
1484 static int sched_autogroup_show(struct seq_file *m, void *v)
1485 {
1486 struct inode *inode = m->private;
1487 struct task_struct *p;
1488
1489 p = get_proc_task(inode);
1490 if (!p)
1491 return -ESRCH;
1492 proc_sched_autogroup_show_task(p, m);
1493
1494 put_task_struct(p);
1495
1496 return 0;
1497 }
1498
1499 static ssize_t
1500 sched_autogroup_write(struct file *file, const char __user *buf,
1501 size_t count, loff_t *offset)
1502 {
1503 struct inode *inode = file_inode(file);
1504 struct task_struct *p;
1505 char buffer[PROC_NUMBUF];
1506 int nice;
1507 int err;
1508
1509 memset(buffer, 0, sizeof(buffer));
1510 if (count > sizeof(buffer) - 1)
1511 count = sizeof(buffer) - 1;
1512 if (copy_from_user(buffer, buf, count))
1513 return -EFAULT;
1514
1515 err = kstrtoint(strstrip(buffer), 0, &nice);
1516 if (err < 0)
1517 return err;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522
1523 err = proc_sched_autogroup_set_nice(p, nice);
1524 if (err)
1525 count = err;
1526
1527 put_task_struct(p);
1528
1529 return count;
1530 }
1531
1532 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1533 {
1534 int ret;
1535
1536 ret = single_open(filp, sched_autogroup_show, NULL);
1537 if (!ret) {
1538 struct seq_file *m = filp->private_data;
1539
1540 m->private = inode;
1541 }
1542 return ret;
1543 }
1544
1545 static const struct file_operations proc_pid_sched_autogroup_operations = {
1546 .open = sched_autogroup_open,
1547 .read = seq_read,
1548 .write = sched_autogroup_write,
1549 .llseek = seq_lseek,
1550 .release = single_release,
1551 };
1552
1553 #endif /* CONFIG_SCHED_AUTOGROUP */
1554
1555 #ifdef CONFIG_TIME_NS
1556 static int timens_offsets_show(struct seq_file *m, void *v)
1557 {
1558 struct task_struct *p;
1559
1560 p = get_proc_task(file_inode(m->file));
1561 if (!p)
1562 return -ESRCH;
1563 proc_timens_show_offsets(p, m);
1564
1565 put_task_struct(p);
1566
1567 return 0;
1568 }
1569
1570 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1571 size_t count, loff_t *ppos)
1572 {
1573 struct inode *inode = file_inode(file);
1574 struct proc_timens_offset offsets[2];
1575 char *kbuf = NULL, *pos, *next_line;
1576 struct task_struct *p;
1577 int ret, noffsets;
1578
1579 /* Only allow < page size writes at the beginning of the file */
1580 if ((*ppos != 0) || (count >= PAGE_SIZE))
1581 return -EINVAL;
1582
1583 /* Slurp in the user data */
1584 kbuf = memdup_user_nul(buf, count);
1585 if (IS_ERR(kbuf))
1586 return PTR_ERR(kbuf);
1587
1588 /* Parse the user data */
1589 ret = -EINVAL;
1590 noffsets = 0;
1591 for (pos = kbuf; pos; pos = next_line) {
1592 struct proc_timens_offset *off = &offsets[noffsets];
1593 char clock[10];
1594 int err;
1595
1596 /* Find the end of line and ensure we don't look past it */
1597 next_line = strchr(pos, '\n');
1598 if (next_line) {
1599 *next_line = '\0';
1600 next_line++;
1601 if (*next_line == '\0')
1602 next_line = NULL;
1603 }
1604
1605 err = sscanf(pos, "%9s %lld %lu", clock,
1606 &off->val.tv_sec, &off->val.tv_nsec);
1607 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1608 goto out;
1609
1610 clock[sizeof(clock) - 1] = 0;
1611 if (strcmp(clock, "monotonic") == 0 ||
1612 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1613 off->clockid = CLOCK_MONOTONIC;
1614 else if (strcmp(clock, "boottime") == 0 ||
1615 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1616 off->clockid = CLOCK_BOOTTIME;
1617 else
1618 goto out;
1619
1620 noffsets++;
1621 if (noffsets == ARRAY_SIZE(offsets)) {
1622 if (next_line)
1623 count = next_line - kbuf;
1624 break;
1625 }
1626 }
1627
1628 ret = -ESRCH;
1629 p = get_proc_task(inode);
1630 if (!p)
1631 goto out;
1632 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1633 put_task_struct(p);
1634 if (ret)
1635 goto out;
1636
1637 ret = count;
1638 out:
1639 kfree(kbuf);
1640 return ret;
1641 }
1642
1643 static int timens_offsets_open(struct inode *inode, struct file *filp)
1644 {
1645 return single_open(filp, timens_offsets_show, inode);
1646 }
1647
1648 static const struct file_operations proc_timens_offsets_operations = {
1649 .open = timens_offsets_open,
1650 .read = seq_read,
1651 .write = timens_offsets_write,
1652 .llseek = seq_lseek,
1653 .release = single_release,
1654 };
1655 #endif /* CONFIG_TIME_NS */
1656
1657 static ssize_t comm_write(struct file *file, const char __user *buf,
1658 size_t count, loff_t *offset)
1659 {
1660 struct inode *inode = file_inode(file);
1661 struct task_struct *p;
1662 char buffer[TASK_COMM_LEN];
1663 const size_t maxlen = sizeof(buffer) - 1;
1664
1665 memset(buffer, 0, sizeof(buffer));
1666 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1667 return -EFAULT;
1668
1669 p = get_proc_task(inode);
1670 if (!p)
1671 return -ESRCH;
1672
1673 if (same_thread_group(current, p))
1674 set_task_comm(p, buffer);
1675 else
1676 count = -EINVAL;
1677
1678 put_task_struct(p);
1679
1680 return count;
1681 }
1682
1683 static int comm_show(struct seq_file *m, void *v)
1684 {
1685 struct inode *inode = m->private;
1686 struct task_struct *p;
1687
1688 p = get_proc_task(inode);
1689 if (!p)
1690 return -ESRCH;
1691
1692 proc_task_name(m, p, false);
1693 seq_putc(m, '\n');
1694
1695 put_task_struct(p);
1696
1697 return 0;
1698 }
1699
1700 static int comm_open(struct inode *inode, struct file *filp)
1701 {
1702 return single_open(filp, comm_show, inode);
1703 }
1704
1705 static const struct file_operations proc_pid_set_comm_operations = {
1706 .open = comm_open,
1707 .read = seq_read,
1708 .write = comm_write,
1709 .llseek = seq_lseek,
1710 .release = single_release,
1711 };
1712
1713 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1714 {
1715 struct task_struct *task;
1716 struct file *exe_file;
1717
1718 task = get_proc_task(d_inode(dentry));
1719 if (!task)
1720 return -ENOENT;
1721 exe_file = get_task_exe_file(task);
1722 put_task_struct(task);
1723 if (exe_file) {
1724 *exe_path = exe_file->f_path;
1725 path_get(&exe_file->f_path);
1726 fput(exe_file);
1727 return 0;
1728 } else
1729 return -ENOENT;
1730 }
1731
1732 static const char *proc_pid_get_link(struct dentry *dentry,
1733 struct inode *inode,
1734 struct delayed_call *done)
1735 {
1736 struct path path;
1737 int error = -EACCES;
1738
1739 if (!dentry)
1740 return ERR_PTR(-ECHILD);
1741
1742 /* Are we allowed to snoop on the tasks file descriptors? */
1743 if (!proc_fd_access_allowed(inode))
1744 goto out;
1745
1746 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1747 if (error)
1748 goto out;
1749
1750 error = nd_jump_link(&path);
1751 out:
1752 return ERR_PTR(error);
1753 }
1754
1755 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1756 {
1757 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1758 char *pathname;
1759 int len;
1760
1761 if (!tmp)
1762 return -ENOMEM;
1763
1764 pathname = d_path(path, tmp, PAGE_SIZE);
1765 len = PTR_ERR(pathname);
1766 if (IS_ERR(pathname))
1767 goto out;
1768 len = tmp + PAGE_SIZE - 1 - pathname;
1769
1770 if (len > buflen)
1771 len = buflen;
1772 if (copy_to_user(buffer, pathname, len))
1773 len = -EFAULT;
1774 out:
1775 free_page((unsigned long)tmp);
1776 return len;
1777 }
1778
1779 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1780 {
1781 int error = -EACCES;
1782 struct inode *inode = d_inode(dentry);
1783 struct path path;
1784
1785 /* Are we allowed to snoop on the tasks file descriptors? */
1786 if (!proc_fd_access_allowed(inode))
1787 goto out;
1788
1789 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1790 if (error)
1791 goto out;
1792
1793 error = do_proc_readlink(&path, buffer, buflen);
1794 path_put(&path);
1795 out:
1796 return error;
1797 }
1798
1799 const struct inode_operations proc_pid_link_inode_operations = {
1800 .readlink = proc_pid_readlink,
1801 .get_link = proc_pid_get_link,
1802 .setattr = proc_setattr,
1803 };
1804
1805
1806 /* building an inode */
1807
1808 void task_dump_owner(struct task_struct *task, umode_t mode,
1809 kuid_t *ruid, kgid_t *rgid)
1810 {
1811 /* Depending on the state of dumpable compute who should own a
1812 * proc file for a task.
1813 */
1814 const struct cred *cred;
1815 kuid_t uid;
1816 kgid_t gid;
1817
1818 if (unlikely(task->flags & PF_KTHREAD)) {
1819 *ruid = GLOBAL_ROOT_UID;
1820 *rgid = GLOBAL_ROOT_GID;
1821 return;
1822 }
1823
1824 /* Default to the tasks effective ownership */
1825 rcu_read_lock();
1826 cred = __task_cred(task);
1827 uid = cred->euid;
1828 gid = cred->egid;
1829 rcu_read_unlock();
1830
1831 /*
1832 * Before the /proc/pid/status file was created the only way to read
1833 * the effective uid of a /process was to stat /proc/pid. Reading
1834 * /proc/pid/status is slow enough that procps and other packages
1835 * kept stating /proc/pid. To keep the rules in /proc simple I have
1836 * made this apply to all per process world readable and executable
1837 * directories.
1838 */
1839 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1840 struct mm_struct *mm;
1841 task_lock(task);
1842 mm = task->mm;
1843 /* Make non-dumpable tasks owned by some root */
1844 if (mm) {
1845 if (get_dumpable(mm) != SUID_DUMP_USER) {
1846 struct user_namespace *user_ns = mm->user_ns;
1847
1848 uid = make_kuid(user_ns, 0);
1849 if (!uid_valid(uid))
1850 uid = GLOBAL_ROOT_UID;
1851
1852 gid = make_kgid(user_ns, 0);
1853 if (!gid_valid(gid))
1854 gid = GLOBAL_ROOT_GID;
1855 }
1856 } else {
1857 uid = GLOBAL_ROOT_UID;
1858 gid = GLOBAL_ROOT_GID;
1859 }
1860 task_unlock(task);
1861 }
1862 *ruid = uid;
1863 *rgid = gid;
1864 }
1865
1866 void proc_pid_evict_inode(struct proc_inode *ei)
1867 {
1868 struct pid *pid = ei->pid;
1869
1870 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1871 spin_lock(&pid->lock);
1872 hlist_del_init_rcu(&ei->sibling_inodes);
1873 spin_unlock(&pid->lock);
1874 }
1875
1876 put_pid(pid);
1877 }
1878
1879 struct inode *proc_pid_make_inode(struct super_block * sb,
1880 struct task_struct *task, umode_t mode)
1881 {
1882 struct inode * inode;
1883 struct proc_inode *ei;
1884 struct pid *pid;
1885
1886 /* We need a new inode */
1887
1888 inode = new_inode(sb);
1889 if (!inode)
1890 goto out;
1891
1892 /* Common stuff */
1893 ei = PROC_I(inode);
1894 inode->i_mode = mode;
1895 inode->i_ino = get_next_ino();
1896 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1897 inode->i_op = &proc_def_inode_operations;
1898
1899 /*
1900 * grab the reference to task.
1901 */
1902 pid = get_task_pid(task, PIDTYPE_PID);
1903 if (!pid)
1904 goto out_unlock;
1905
1906 /* Let the pid remember us for quick removal */
1907 ei->pid = pid;
1908 if (S_ISDIR(mode)) {
1909 spin_lock(&pid->lock);
1910 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1911 spin_unlock(&pid->lock);
1912 }
1913
1914 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1915 security_task_to_inode(task, inode);
1916
1917 out:
1918 return inode;
1919
1920 out_unlock:
1921 iput(inode);
1922 return NULL;
1923 }
1924
1925 int pid_getattr(const struct path *path, struct kstat *stat,
1926 u32 request_mask, unsigned int query_flags)
1927 {
1928 struct inode *inode = d_inode(path->dentry);
1929 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1930 struct task_struct *task;
1931
1932 generic_fillattr(inode, stat);
1933
1934 stat->uid = GLOBAL_ROOT_UID;
1935 stat->gid = GLOBAL_ROOT_GID;
1936 rcu_read_lock();
1937 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1938 if (task) {
1939 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1940 rcu_read_unlock();
1941 /*
1942 * This doesn't prevent learning whether PID exists,
1943 * it only makes getattr() consistent with readdir().
1944 */
1945 return -ENOENT;
1946 }
1947 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1948 }
1949 rcu_read_unlock();
1950 return 0;
1951 }
1952
1953 /* dentry stuff */
1954
1955 /*
1956 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1957 */
1958 void pid_update_inode(struct task_struct *task, struct inode *inode)
1959 {
1960 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1961
1962 inode->i_mode &= ~(S_ISUID | S_ISGID);
1963 security_task_to_inode(task, inode);
1964 }
1965
1966 /*
1967 * Rewrite the inode's ownerships here because the owning task may have
1968 * performed a setuid(), etc.
1969 *
1970 */
1971 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1972 {
1973 struct inode *inode;
1974 struct task_struct *task;
1975
1976 if (flags & LOOKUP_RCU)
1977 return -ECHILD;
1978
1979 inode = d_inode(dentry);
1980 task = get_proc_task(inode);
1981
1982 if (task) {
1983 pid_update_inode(task, inode);
1984 put_task_struct(task);
1985 return 1;
1986 }
1987 return 0;
1988 }
1989
1990 static inline bool proc_inode_is_dead(struct inode *inode)
1991 {
1992 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1993 }
1994
1995 int pid_delete_dentry(const struct dentry *dentry)
1996 {
1997 /* Is the task we represent dead?
1998 * If so, then don't put the dentry on the lru list,
1999 * kill it immediately.
2000 */
2001 return proc_inode_is_dead(d_inode(dentry));
2002 }
2003
2004 const struct dentry_operations pid_dentry_operations =
2005 {
2006 .d_revalidate = pid_revalidate,
2007 .d_delete = pid_delete_dentry,
2008 };
2009
2010 /* Lookups */
2011
2012 /*
2013 * Fill a directory entry.
2014 *
2015 * If possible create the dcache entry and derive our inode number and
2016 * file type from dcache entry.
2017 *
2018 * Since all of the proc inode numbers are dynamically generated, the inode
2019 * numbers do not exist until the inode is cache. This means creating the
2020 * the dcache entry in readdir is necessary to keep the inode numbers
2021 * reported by readdir in sync with the inode numbers reported
2022 * by stat.
2023 */
2024 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2025 const char *name, unsigned int len,
2026 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2027 {
2028 struct dentry *child, *dir = file->f_path.dentry;
2029 struct qstr qname = QSTR_INIT(name, len);
2030 struct inode *inode;
2031 unsigned type = DT_UNKNOWN;
2032 ino_t ino = 1;
2033
2034 child = d_hash_and_lookup(dir, &qname);
2035 if (!child) {
2036 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2037 child = d_alloc_parallel(dir, &qname, &wq);
2038 if (IS_ERR(child))
2039 goto end_instantiate;
2040 if (d_in_lookup(child)) {
2041 struct dentry *res;
2042 res = instantiate(child, task, ptr);
2043 d_lookup_done(child);
2044 if (unlikely(res)) {
2045 dput(child);
2046 child = res;
2047 if (IS_ERR(child))
2048 goto end_instantiate;
2049 }
2050 }
2051 }
2052 inode = d_inode(child);
2053 ino = inode->i_ino;
2054 type = inode->i_mode >> 12;
2055 dput(child);
2056 end_instantiate:
2057 return dir_emit(ctx, name, len, ino, type);
2058 }
2059
2060 /*
2061 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2062 * which represent vma start and end addresses.
2063 */
2064 static int dname_to_vma_addr(struct dentry *dentry,
2065 unsigned long *start, unsigned long *end)
2066 {
2067 const char *str = dentry->d_name.name;
2068 unsigned long long sval, eval;
2069 unsigned int len;
2070
2071 if (str[0] == '0' && str[1] != '-')
2072 return -EINVAL;
2073 len = _parse_integer(str, 16, &sval);
2074 if (len & KSTRTOX_OVERFLOW)
2075 return -EINVAL;
2076 if (sval != (unsigned long)sval)
2077 return -EINVAL;
2078 str += len;
2079
2080 if (*str != '-')
2081 return -EINVAL;
2082 str++;
2083
2084 if (str[0] == '0' && str[1])
2085 return -EINVAL;
2086 len = _parse_integer(str, 16, &eval);
2087 if (len & KSTRTOX_OVERFLOW)
2088 return -EINVAL;
2089 if (eval != (unsigned long)eval)
2090 return -EINVAL;
2091 str += len;
2092
2093 if (*str != '\0')
2094 return -EINVAL;
2095
2096 *start = sval;
2097 *end = eval;
2098
2099 return 0;
2100 }
2101
2102 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2103 {
2104 unsigned long vm_start, vm_end;
2105 bool exact_vma_exists = false;
2106 struct mm_struct *mm = NULL;
2107 struct task_struct *task;
2108 struct inode *inode;
2109 int status = 0;
2110
2111 if (flags & LOOKUP_RCU)
2112 return -ECHILD;
2113
2114 inode = d_inode(dentry);
2115 task = get_proc_task(inode);
2116 if (!task)
2117 goto out_notask;
2118
2119 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2120 if (IS_ERR_OR_NULL(mm))
2121 goto out;
2122
2123 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2124 status = mmap_read_lock_killable(mm);
2125 if (!status) {
2126 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2127 vm_end);
2128 mmap_read_unlock(mm);
2129 }
2130 }
2131
2132 mmput(mm);
2133
2134 if (exact_vma_exists) {
2135 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2136
2137 security_task_to_inode(task, inode);
2138 status = 1;
2139 }
2140
2141 out:
2142 put_task_struct(task);
2143
2144 out_notask:
2145 return status;
2146 }
2147
2148 static const struct dentry_operations tid_map_files_dentry_operations = {
2149 .d_revalidate = map_files_d_revalidate,
2150 .d_delete = pid_delete_dentry,
2151 };
2152
2153 static int map_files_get_link(struct dentry *dentry, struct path *path)
2154 {
2155 unsigned long vm_start, vm_end;
2156 struct vm_area_struct *vma;
2157 struct task_struct *task;
2158 struct mm_struct *mm;
2159 int rc;
2160
2161 rc = -ENOENT;
2162 task = get_proc_task(d_inode(dentry));
2163 if (!task)
2164 goto out;
2165
2166 mm = get_task_mm(task);
2167 put_task_struct(task);
2168 if (!mm)
2169 goto out;
2170
2171 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2172 if (rc)
2173 goto out_mmput;
2174
2175 rc = mmap_read_lock_killable(mm);
2176 if (rc)
2177 goto out_mmput;
2178
2179 rc = -ENOENT;
2180 vma = find_exact_vma(mm, vm_start, vm_end);
2181 if (vma && vma->vm_file) {
2182 *path = vma->vm_file->f_path;
2183 path_get(path);
2184 rc = 0;
2185 }
2186 mmap_read_unlock(mm);
2187
2188 out_mmput:
2189 mmput(mm);
2190 out:
2191 return rc;
2192 }
2193
2194 struct map_files_info {
2195 unsigned long start;
2196 unsigned long end;
2197 fmode_t mode;
2198 };
2199
2200 /*
2201 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2202 * to concerns about how the symlinks may be used to bypass permissions on
2203 * ancestor directories in the path to the file in question.
2204 */
2205 static const char *
2206 proc_map_files_get_link(struct dentry *dentry,
2207 struct inode *inode,
2208 struct delayed_call *done)
2209 {
2210 if (!checkpoint_restore_ns_capable(&init_user_ns))
2211 return ERR_PTR(-EPERM);
2212
2213 return proc_pid_get_link(dentry, inode, done);
2214 }
2215
2216 /*
2217 * Identical to proc_pid_link_inode_operations except for get_link()
2218 */
2219 static const struct inode_operations proc_map_files_link_inode_operations = {
2220 .readlink = proc_pid_readlink,
2221 .get_link = proc_map_files_get_link,
2222 .setattr = proc_setattr,
2223 };
2224
2225 static struct dentry *
2226 proc_map_files_instantiate(struct dentry *dentry,
2227 struct task_struct *task, const void *ptr)
2228 {
2229 fmode_t mode = (fmode_t)(unsigned long)ptr;
2230 struct proc_inode *ei;
2231 struct inode *inode;
2232
2233 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2234 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2235 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2236 if (!inode)
2237 return ERR_PTR(-ENOENT);
2238
2239 ei = PROC_I(inode);
2240 ei->op.proc_get_link = map_files_get_link;
2241
2242 inode->i_op = &proc_map_files_link_inode_operations;
2243 inode->i_size = 64;
2244
2245 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2246 return d_splice_alias(inode, dentry);
2247 }
2248
2249 static struct dentry *proc_map_files_lookup(struct inode *dir,
2250 struct dentry *dentry, unsigned int flags)
2251 {
2252 unsigned long vm_start, vm_end;
2253 struct vm_area_struct *vma;
2254 struct task_struct *task;
2255 struct dentry *result;
2256 struct mm_struct *mm;
2257
2258 result = ERR_PTR(-ENOENT);
2259 task = get_proc_task(dir);
2260 if (!task)
2261 goto out;
2262
2263 result = ERR_PTR(-EACCES);
2264 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2265 goto out_put_task;
2266
2267 result = ERR_PTR(-ENOENT);
2268 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2269 goto out_put_task;
2270
2271 mm = get_task_mm(task);
2272 if (!mm)
2273 goto out_put_task;
2274
2275 result = ERR_PTR(-EINTR);
2276 if (mmap_read_lock_killable(mm))
2277 goto out_put_mm;
2278
2279 result = ERR_PTR(-ENOENT);
2280 vma = find_exact_vma(mm, vm_start, vm_end);
2281 if (!vma)
2282 goto out_no_vma;
2283
2284 if (vma->vm_file)
2285 result = proc_map_files_instantiate(dentry, task,
2286 (void *)(unsigned long)vma->vm_file->f_mode);
2287
2288 out_no_vma:
2289 mmap_read_unlock(mm);
2290 out_put_mm:
2291 mmput(mm);
2292 out_put_task:
2293 put_task_struct(task);
2294 out:
2295 return result;
2296 }
2297
2298 static const struct inode_operations proc_map_files_inode_operations = {
2299 .lookup = proc_map_files_lookup,
2300 .permission = proc_fd_permission,
2301 .setattr = proc_setattr,
2302 };
2303
2304 static int
2305 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2306 {
2307 struct vm_area_struct *vma;
2308 struct task_struct *task;
2309 struct mm_struct *mm;
2310 unsigned long nr_files, pos, i;
2311 GENRADIX(struct map_files_info) fa;
2312 struct map_files_info *p;
2313 int ret;
2314
2315 genradix_init(&fa);
2316
2317 ret = -ENOENT;
2318 task = get_proc_task(file_inode(file));
2319 if (!task)
2320 goto out;
2321
2322 ret = -EACCES;
2323 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2324 goto out_put_task;
2325
2326 ret = 0;
2327 if (!dir_emit_dots(file, ctx))
2328 goto out_put_task;
2329
2330 mm = get_task_mm(task);
2331 if (!mm)
2332 goto out_put_task;
2333
2334 ret = mmap_read_lock_killable(mm);
2335 if (ret) {
2336 mmput(mm);
2337 goto out_put_task;
2338 }
2339
2340 nr_files = 0;
2341
2342 /*
2343 * We need two passes here:
2344 *
2345 * 1) Collect vmas of mapped files with mmap_lock taken
2346 * 2) Release mmap_lock and instantiate entries
2347 *
2348 * otherwise we get lockdep complained, since filldir()
2349 * routine might require mmap_lock taken in might_fault().
2350 */
2351
2352 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2353 if (!vma->vm_file)
2354 continue;
2355 if (++pos <= ctx->pos)
2356 continue;
2357
2358 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2359 if (!p) {
2360 ret = -ENOMEM;
2361 mmap_read_unlock(mm);
2362 mmput(mm);
2363 goto out_put_task;
2364 }
2365
2366 p->start = vma->vm_start;
2367 p->end = vma->vm_end;
2368 p->mode = vma->vm_file->f_mode;
2369 }
2370 mmap_read_unlock(mm);
2371 mmput(mm);
2372
2373 for (i = 0; i < nr_files; i++) {
2374 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2375 unsigned int len;
2376
2377 p = genradix_ptr(&fa, i);
2378 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2379 if (!proc_fill_cache(file, ctx,
2380 buf, len,
2381 proc_map_files_instantiate,
2382 task,
2383 (void *)(unsigned long)p->mode))
2384 break;
2385 ctx->pos++;
2386 }
2387
2388 out_put_task:
2389 put_task_struct(task);
2390 out:
2391 genradix_free(&fa);
2392 return ret;
2393 }
2394
2395 static const struct file_operations proc_map_files_operations = {
2396 .read = generic_read_dir,
2397 .iterate_shared = proc_map_files_readdir,
2398 .llseek = generic_file_llseek,
2399 };
2400
2401 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2402 struct timers_private {
2403 struct pid *pid;
2404 struct task_struct *task;
2405 struct sighand_struct *sighand;
2406 struct pid_namespace *ns;
2407 unsigned long flags;
2408 };
2409
2410 static void *timers_start(struct seq_file *m, loff_t *pos)
2411 {
2412 struct timers_private *tp = m->private;
2413
2414 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2415 if (!tp->task)
2416 return ERR_PTR(-ESRCH);
2417
2418 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2419 if (!tp->sighand)
2420 return ERR_PTR(-ESRCH);
2421
2422 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2423 }
2424
2425 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2426 {
2427 struct timers_private *tp = m->private;
2428 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2429 }
2430
2431 static void timers_stop(struct seq_file *m, void *v)
2432 {
2433 struct timers_private *tp = m->private;
2434
2435 if (tp->sighand) {
2436 unlock_task_sighand(tp->task, &tp->flags);
2437 tp->sighand = NULL;
2438 }
2439
2440 if (tp->task) {
2441 put_task_struct(tp->task);
2442 tp->task = NULL;
2443 }
2444 }
2445
2446 static int show_timer(struct seq_file *m, void *v)
2447 {
2448 struct k_itimer *timer;
2449 struct timers_private *tp = m->private;
2450 int notify;
2451 static const char * const nstr[] = {
2452 [SIGEV_SIGNAL] = "signal",
2453 [SIGEV_NONE] = "none",
2454 [SIGEV_THREAD] = "thread",
2455 };
2456
2457 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2458 notify = timer->it_sigev_notify;
2459
2460 seq_printf(m, "ID: %d\n", timer->it_id);
2461 seq_printf(m, "signal: %d/%px\n",
2462 timer->sigq->info.si_signo,
2463 timer->sigq->info.si_value.sival_ptr);
2464 seq_printf(m, "notify: %s/%s.%d\n",
2465 nstr[notify & ~SIGEV_THREAD_ID],
2466 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2467 pid_nr_ns(timer->it_pid, tp->ns));
2468 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2469
2470 return 0;
2471 }
2472
2473 static const struct seq_operations proc_timers_seq_ops = {
2474 .start = timers_start,
2475 .next = timers_next,
2476 .stop = timers_stop,
2477 .show = show_timer,
2478 };
2479
2480 static int proc_timers_open(struct inode *inode, struct file *file)
2481 {
2482 struct timers_private *tp;
2483
2484 tp = __seq_open_private(file, &proc_timers_seq_ops,
2485 sizeof(struct timers_private));
2486 if (!tp)
2487 return -ENOMEM;
2488
2489 tp->pid = proc_pid(inode);
2490 tp->ns = proc_pid_ns(inode->i_sb);
2491 return 0;
2492 }
2493
2494 static const struct file_operations proc_timers_operations = {
2495 .open = proc_timers_open,
2496 .read = seq_read,
2497 .llseek = seq_lseek,
2498 .release = seq_release_private,
2499 };
2500 #endif
2501
2502 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2503 size_t count, loff_t *offset)
2504 {
2505 struct inode *inode = file_inode(file);
2506 struct task_struct *p;
2507 u64 slack_ns;
2508 int err;
2509
2510 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2511 if (err < 0)
2512 return err;
2513
2514 p = get_proc_task(inode);
2515 if (!p)
2516 return -ESRCH;
2517
2518 if (p != current) {
2519 rcu_read_lock();
2520 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2521 rcu_read_unlock();
2522 count = -EPERM;
2523 goto out;
2524 }
2525 rcu_read_unlock();
2526
2527 err = security_task_setscheduler(p);
2528 if (err) {
2529 count = err;
2530 goto out;
2531 }
2532 }
2533
2534 task_lock(p);
2535 if (slack_ns == 0)
2536 p->timer_slack_ns = p->default_timer_slack_ns;
2537 else
2538 p->timer_slack_ns = slack_ns;
2539 task_unlock(p);
2540
2541 out:
2542 put_task_struct(p);
2543
2544 return count;
2545 }
2546
2547 static int timerslack_ns_show(struct seq_file *m, void *v)
2548 {
2549 struct inode *inode = m->private;
2550 struct task_struct *p;
2551 int err = 0;
2552
2553 p = get_proc_task(inode);
2554 if (!p)
2555 return -ESRCH;
2556
2557 if (p != current) {
2558 rcu_read_lock();
2559 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560 rcu_read_unlock();
2561 err = -EPERM;
2562 goto out;
2563 }
2564 rcu_read_unlock();
2565
2566 err = security_task_getscheduler(p);
2567 if (err)
2568 goto out;
2569 }
2570
2571 task_lock(p);
2572 seq_printf(m, "%llu\n", p->timer_slack_ns);
2573 task_unlock(p);
2574
2575 out:
2576 put_task_struct(p);
2577
2578 return err;
2579 }
2580
2581 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2582 {
2583 return single_open(filp, timerslack_ns_show, inode);
2584 }
2585
2586 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2587 .open = timerslack_ns_open,
2588 .read = seq_read,
2589 .write = timerslack_ns_write,
2590 .llseek = seq_lseek,
2591 .release = single_release,
2592 };
2593
2594 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2595 struct task_struct *task, const void *ptr)
2596 {
2597 const struct pid_entry *p = ptr;
2598 struct inode *inode;
2599 struct proc_inode *ei;
2600
2601 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2602 if (!inode)
2603 return ERR_PTR(-ENOENT);
2604
2605 ei = PROC_I(inode);
2606 if (S_ISDIR(inode->i_mode))
2607 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2608 if (p->iop)
2609 inode->i_op = p->iop;
2610 if (p->fop)
2611 inode->i_fop = p->fop;
2612 ei->op = p->op;
2613 pid_update_inode(task, inode);
2614 d_set_d_op(dentry, &pid_dentry_operations);
2615 return d_splice_alias(inode, dentry);
2616 }
2617
2618 static struct dentry *proc_pident_lookup(struct inode *dir,
2619 struct dentry *dentry,
2620 const struct pid_entry *p,
2621 const struct pid_entry *end)
2622 {
2623 struct task_struct *task = get_proc_task(dir);
2624 struct dentry *res = ERR_PTR(-ENOENT);
2625
2626 if (!task)
2627 goto out_no_task;
2628
2629 /*
2630 * Yes, it does not scale. And it should not. Don't add
2631 * new entries into /proc/<tgid>/ without very good reasons.
2632 */
2633 for (; p < end; p++) {
2634 if (p->len != dentry->d_name.len)
2635 continue;
2636 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2637 res = proc_pident_instantiate(dentry, task, p);
2638 break;
2639 }
2640 }
2641 put_task_struct(task);
2642 out_no_task:
2643 return res;
2644 }
2645
2646 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2647 const struct pid_entry *ents, unsigned int nents)
2648 {
2649 struct task_struct *task = get_proc_task(file_inode(file));
2650 const struct pid_entry *p;
2651
2652 if (!task)
2653 return -ENOENT;
2654
2655 if (!dir_emit_dots(file, ctx))
2656 goto out;
2657
2658 if (ctx->pos >= nents + 2)
2659 goto out;
2660
2661 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2662 if (!proc_fill_cache(file, ctx, p->name, p->len,
2663 proc_pident_instantiate, task, p))
2664 break;
2665 ctx->pos++;
2666 }
2667 out:
2668 put_task_struct(task);
2669 return 0;
2670 }
2671
2672 #ifdef CONFIG_SECURITY
2673 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2674 size_t count, loff_t *ppos)
2675 {
2676 struct inode * inode = file_inode(file);
2677 char *p = NULL;
2678 ssize_t length;
2679 struct task_struct *task = get_proc_task(inode);
2680
2681 if (!task)
2682 return -ESRCH;
2683
2684 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2685 (char*)file->f_path.dentry->d_name.name,
2686 &p);
2687 put_task_struct(task);
2688 if (length > 0)
2689 length = simple_read_from_buffer(buf, count, ppos, p, length);
2690 kfree(p);
2691 return length;
2692 }
2693
2694 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2695 size_t count, loff_t *ppos)
2696 {
2697 struct inode * inode = file_inode(file);
2698 struct task_struct *task;
2699 void *page;
2700 int rv;
2701
2702 rcu_read_lock();
2703 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2704 if (!task) {
2705 rcu_read_unlock();
2706 return -ESRCH;
2707 }
2708 /* A task may only write its own attributes. */
2709 if (current != task) {
2710 rcu_read_unlock();
2711 return -EACCES;
2712 }
2713 /* Prevent changes to overridden credentials. */
2714 if (current_cred() != current_real_cred()) {
2715 rcu_read_unlock();
2716 return -EBUSY;
2717 }
2718 rcu_read_unlock();
2719
2720 if (count > PAGE_SIZE)
2721 count = PAGE_SIZE;
2722
2723 /* No partial writes. */
2724 if (*ppos != 0)
2725 return -EINVAL;
2726
2727 page = memdup_user(buf, count);
2728 if (IS_ERR(page)) {
2729 rv = PTR_ERR(page);
2730 goto out;
2731 }
2732
2733 /* Guard against adverse ptrace interaction */
2734 rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2735 if (rv < 0)
2736 goto out_free;
2737
2738 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2739 file->f_path.dentry->d_name.name, page,
2740 count);
2741 mutex_unlock(&current->signal->cred_guard_mutex);
2742 out_free:
2743 kfree(page);
2744 out:
2745 return rv;
2746 }
2747
2748 static const struct file_operations proc_pid_attr_operations = {
2749 .read = proc_pid_attr_read,
2750 .write = proc_pid_attr_write,
2751 .llseek = generic_file_llseek,
2752 };
2753
2754 #define LSM_DIR_OPS(LSM) \
2755 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2756 struct dir_context *ctx) \
2757 { \
2758 return proc_pident_readdir(filp, ctx, \
2759 LSM##_attr_dir_stuff, \
2760 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2761 } \
2762 \
2763 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2764 .read = generic_read_dir, \
2765 .iterate = proc_##LSM##_attr_dir_iterate, \
2766 .llseek = default_llseek, \
2767 }; \
2768 \
2769 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2770 struct dentry *dentry, unsigned int flags) \
2771 { \
2772 return proc_pident_lookup(dir, dentry, \
2773 LSM##_attr_dir_stuff, \
2774 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2775 } \
2776 \
2777 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2778 .lookup = proc_##LSM##_attr_dir_lookup, \
2779 .getattr = pid_getattr, \
2780 .setattr = proc_setattr, \
2781 }
2782
2783 #ifdef CONFIG_SECURITY_SMACK
2784 static const struct pid_entry smack_attr_dir_stuff[] = {
2785 ATTR("smack", "current", 0666),
2786 };
2787 LSM_DIR_OPS(smack);
2788 #endif
2789
2790 #ifdef CONFIG_SECURITY_APPARMOR
2791 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2792 ATTR("apparmor", "current", 0666),
2793 ATTR("apparmor", "prev", 0444),
2794 ATTR("apparmor", "exec", 0666),
2795 };
2796 LSM_DIR_OPS(apparmor);
2797 #endif
2798
2799 static const struct pid_entry attr_dir_stuff[] = {
2800 ATTR(NULL, "current", 0666),
2801 ATTR(NULL, "prev", 0444),
2802 ATTR(NULL, "exec", 0666),
2803 ATTR(NULL, "fscreate", 0666),
2804 ATTR(NULL, "keycreate", 0666),
2805 ATTR(NULL, "sockcreate", 0666),
2806 #ifdef CONFIG_SECURITY_SMACK
2807 DIR("smack", 0555,
2808 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2809 #endif
2810 #ifdef CONFIG_SECURITY_APPARMOR
2811 DIR("apparmor", 0555,
2812 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2813 #endif
2814 };
2815
2816 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2817 {
2818 return proc_pident_readdir(file, ctx,
2819 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2820 }
2821
2822 static const struct file_operations proc_attr_dir_operations = {
2823 .read = generic_read_dir,
2824 .iterate_shared = proc_attr_dir_readdir,
2825 .llseek = generic_file_llseek,
2826 };
2827
2828 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2829 struct dentry *dentry, unsigned int flags)
2830 {
2831 return proc_pident_lookup(dir, dentry,
2832 attr_dir_stuff,
2833 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2834 }
2835
2836 static const struct inode_operations proc_attr_dir_inode_operations = {
2837 .lookup = proc_attr_dir_lookup,
2838 .getattr = pid_getattr,
2839 .setattr = proc_setattr,
2840 };
2841
2842 #endif
2843
2844 #ifdef CONFIG_ELF_CORE
2845 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2846 size_t count, loff_t *ppos)
2847 {
2848 struct task_struct *task = get_proc_task(file_inode(file));
2849 struct mm_struct *mm;
2850 char buffer[PROC_NUMBUF];
2851 size_t len;
2852 int ret;
2853
2854 if (!task)
2855 return -ESRCH;
2856
2857 ret = 0;
2858 mm = get_task_mm(task);
2859 if (mm) {
2860 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2861 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2862 MMF_DUMP_FILTER_SHIFT));
2863 mmput(mm);
2864 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2865 }
2866
2867 put_task_struct(task);
2868
2869 return ret;
2870 }
2871
2872 static ssize_t proc_coredump_filter_write(struct file *file,
2873 const char __user *buf,
2874 size_t count,
2875 loff_t *ppos)
2876 {
2877 struct task_struct *task;
2878 struct mm_struct *mm;
2879 unsigned int val;
2880 int ret;
2881 int i;
2882 unsigned long mask;
2883
2884 ret = kstrtouint_from_user(buf, count, 0, &val);
2885 if (ret < 0)
2886 return ret;
2887
2888 ret = -ESRCH;
2889 task = get_proc_task(file_inode(file));
2890 if (!task)
2891 goto out_no_task;
2892
2893 mm = get_task_mm(task);
2894 if (!mm)
2895 goto out_no_mm;
2896 ret = 0;
2897
2898 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2899 if (val & mask)
2900 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2901 else
2902 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2903 }
2904
2905 mmput(mm);
2906 out_no_mm:
2907 put_task_struct(task);
2908 out_no_task:
2909 if (ret < 0)
2910 return ret;
2911 return count;
2912 }
2913
2914 static const struct file_operations proc_coredump_filter_operations = {
2915 .read = proc_coredump_filter_read,
2916 .write = proc_coredump_filter_write,
2917 .llseek = generic_file_llseek,
2918 };
2919 #endif
2920
2921 #ifdef CONFIG_TASK_IO_ACCOUNTING
2922 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2923 {
2924 struct task_io_accounting acct = task->ioac;
2925 unsigned long flags;
2926 int result;
2927
2928 result = mutex_lock_killable(&task->signal->exec_update_mutex);
2929 if (result)
2930 return result;
2931
2932 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2933 result = -EACCES;
2934 goto out_unlock;
2935 }
2936
2937 if (whole && lock_task_sighand(task, &flags)) {
2938 struct task_struct *t = task;
2939
2940 task_io_accounting_add(&acct, &task->signal->ioac);
2941 while_each_thread(task, t)
2942 task_io_accounting_add(&acct, &t->ioac);
2943
2944 unlock_task_sighand(task, &flags);
2945 }
2946 seq_printf(m,
2947 "rchar: %llu\n"
2948 "wchar: %llu\n"
2949 "syscr: %llu\n"
2950 "syscw: %llu\n"
2951 "read_bytes: %llu\n"
2952 "write_bytes: %llu\n"
2953 "cancelled_write_bytes: %llu\n",
2954 (unsigned long long)acct.rchar,
2955 (unsigned long long)acct.wchar,
2956 (unsigned long long)acct.syscr,
2957 (unsigned long long)acct.syscw,
2958 (unsigned long long)acct.read_bytes,
2959 (unsigned long long)acct.write_bytes,
2960 (unsigned long long)acct.cancelled_write_bytes);
2961 result = 0;
2962
2963 out_unlock:
2964 mutex_unlock(&task->signal->exec_update_mutex);
2965 return result;
2966 }
2967
2968 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2969 struct pid *pid, struct task_struct *task)
2970 {
2971 return do_io_accounting(task, m, 0);
2972 }
2973
2974 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2975 struct pid *pid, struct task_struct *task)
2976 {
2977 return do_io_accounting(task, m, 1);
2978 }
2979 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2980
2981 #ifdef CONFIG_USER_NS
2982 static int proc_id_map_open(struct inode *inode, struct file *file,
2983 const struct seq_operations *seq_ops)
2984 {
2985 struct user_namespace *ns = NULL;
2986 struct task_struct *task;
2987 struct seq_file *seq;
2988 int ret = -EINVAL;
2989
2990 task = get_proc_task(inode);
2991 if (task) {
2992 rcu_read_lock();
2993 ns = get_user_ns(task_cred_xxx(task, user_ns));
2994 rcu_read_unlock();
2995 put_task_struct(task);
2996 }
2997 if (!ns)
2998 goto err;
2999
3000 ret = seq_open(file, seq_ops);
3001 if (ret)
3002 goto err_put_ns;
3003
3004 seq = file->private_data;
3005 seq->private = ns;
3006
3007 return 0;
3008 err_put_ns:
3009 put_user_ns(ns);
3010 err:
3011 return ret;
3012 }
3013
3014 static int proc_id_map_release(struct inode *inode, struct file *file)
3015 {
3016 struct seq_file *seq = file->private_data;
3017 struct user_namespace *ns = seq->private;
3018 put_user_ns(ns);
3019 return seq_release(inode, file);
3020 }
3021
3022 static int proc_uid_map_open(struct inode *inode, struct file *file)
3023 {
3024 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3025 }
3026
3027 static int proc_gid_map_open(struct inode *inode, struct file *file)
3028 {
3029 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3030 }
3031
3032 static int proc_projid_map_open(struct inode *inode, struct file *file)
3033 {
3034 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3035 }
3036
3037 static const struct file_operations proc_uid_map_operations = {
3038 .open = proc_uid_map_open,
3039 .write = proc_uid_map_write,
3040 .read = seq_read,
3041 .llseek = seq_lseek,
3042 .release = proc_id_map_release,
3043 };
3044
3045 static const struct file_operations proc_gid_map_operations = {
3046 .open = proc_gid_map_open,
3047 .write = proc_gid_map_write,
3048 .read = seq_read,
3049 .llseek = seq_lseek,
3050 .release = proc_id_map_release,
3051 };
3052
3053 static const struct file_operations proc_projid_map_operations = {
3054 .open = proc_projid_map_open,
3055 .write = proc_projid_map_write,
3056 .read = seq_read,
3057 .llseek = seq_lseek,
3058 .release = proc_id_map_release,
3059 };
3060
3061 static int proc_setgroups_open(struct inode *inode, struct file *file)
3062 {
3063 struct user_namespace *ns = NULL;
3064 struct task_struct *task;
3065 int ret;
3066
3067 ret = -ESRCH;
3068 task = get_proc_task(inode);
3069 if (task) {
3070 rcu_read_lock();
3071 ns = get_user_ns(task_cred_xxx(task, user_ns));
3072 rcu_read_unlock();
3073 put_task_struct(task);
3074 }
3075 if (!ns)
3076 goto err;
3077
3078 if (file->f_mode & FMODE_WRITE) {
3079 ret = -EACCES;
3080 if (!ns_capable(ns, CAP_SYS_ADMIN))
3081 goto err_put_ns;
3082 }
3083
3084 ret = single_open(file, &proc_setgroups_show, ns);
3085 if (ret)
3086 goto err_put_ns;
3087
3088 return 0;
3089 err_put_ns:
3090 put_user_ns(ns);
3091 err:
3092 return ret;
3093 }
3094
3095 static int proc_setgroups_release(struct inode *inode, struct file *file)
3096 {
3097 struct seq_file *seq = file->private_data;
3098 struct user_namespace *ns = seq->private;
3099 int ret = single_release(inode, file);
3100 put_user_ns(ns);
3101 return ret;
3102 }
3103
3104 static const struct file_operations proc_setgroups_operations = {
3105 .open = proc_setgroups_open,
3106 .write = proc_setgroups_write,
3107 .read = seq_read,
3108 .llseek = seq_lseek,
3109 .release = proc_setgroups_release,
3110 };
3111 #endif /* CONFIG_USER_NS */
3112
3113 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3114 struct pid *pid, struct task_struct *task)
3115 {
3116 int err = lock_trace(task);
3117 if (!err) {
3118 seq_printf(m, "%08x\n", task->personality);
3119 unlock_trace(task);
3120 }
3121 return err;
3122 }
3123
3124 #ifdef CONFIG_LIVEPATCH
3125 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3126 struct pid *pid, struct task_struct *task)
3127 {
3128 seq_printf(m, "%d\n", task->patch_state);
3129 return 0;
3130 }
3131 #endif /* CONFIG_LIVEPATCH */
3132
3133 #ifdef CONFIG_STACKLEAK_METRICS
3134 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3135 struct pid *pid, struct task_struct *task)
3136 {
3137 unsigned long prev_depth = THREAD_SIZE -
3138 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3139 unsigned long depth = THREAD_SIZE -
3140 (task->lowest_stack & (THREAD_SIZE - 1));
3141
3142 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3143 prev_depth, depth);
3144 return 0;
3145 }
3146 #endif /* CONFIG_STACKLEAK_METRICS */
3147
3148 /*
3149 * Thread groups
3150 */
3151 static const struct file_operations proc_task_operations;
3152 static const struct inode_operations proc_task_inode_operations;
3153
3154 static const struct pid_entry tgid_base_stuff[] = {
3155 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3156 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3157 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3158 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3159 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3160 #ifdef CONFIG_NET
3161 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3162 #endif
3163 REG("environ", S_IRUSR, proc_environ_operations),
3164 REG("auxv", S_IRUSR, proc_auxv_operations),
3165 ONE("status", S_IRUGO, proc_pid_status),
3166 ONE("personality", S_IRUSR, proc_pid_personality),
3167 ONE("limits", S_IRUGO, proc_pid_limits),
3168 #ifdef CONFIG_SCHED_DEBUG
3169 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3170 #endif
3171 #ifdef CONFIG_SCHED_AUTOGROUP
3172 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3173 #endif
3174 #ifdef CONFIG_TIME_NS
3175 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3176 #endif
3177 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3178 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3179 ONE("syscall", S_IRUSR, proc_pid_syscall),
3180 #endif
3181 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3182 ONE("stat", S_IRUGO, proc_tgid_stat),
3183 ONE("statm", S_IRUGO, proc_pid_statm),
3184 REG("maps", S_IRUGO, proc_pid_maps_operations),
3185 #ifdef CONFIG_NUMA
3186 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3187 #endif
3188 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3189 LNK("cwd", proc_cwd_link),
3190 LNK("root", proc_root_link),
3191 LNK("exe", proc_exe_link),
3192 REG("mounts", S_IRUGO, proc_mounts_operations),
3193 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3194 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3195 #ifdef CONFIG_PROC_PAGE_MONITOR
3196 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3197 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3198 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3199 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3200 #endif
3201 #ifdef CONFIG_SECURITY
3202 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3203 #endif
3204 #ifdef CONFIG_KALLSYMS
3205 ONE("wchan", S_IRUGO, proc_pid_wchan),
3206 #endif
3207 #ifdef CONFIG_STACKTRACE
3208 ONE("stack", S_IRUSR, proc_pid_stack),
3209 #endif
3210 #ifdef CONFIG_SCHED_INFO
3211 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3212 #endif
3213 #ifdef CONFIG_LATENCYTOP
3214 REG("latency", S_IRUGO, proc_lstats_operations),
3215 #endif
3216 #ifdef CONFIG_PROC_PID_CPUSET
3217 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3218 #endif
3219 #ifdef CONFIG_CGROUPS
3220 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3221 #endif
3222 #ifdef CONFIG_PROC_CPU_RESCTRL
3223 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3224 #endif
3225 ONE("oom_score", S_IRUGO, proc_oom_score),
3226 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3227 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3228 #ifdef CONFIG_AUDIT
3229 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3230 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3231 #endif
3232 #ifdef CONFIG_FAULT_INJECTION
3233 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3234 REG("fail-nth", 0644, proc_fail_nth_operations),
3235 #endif
3236 #ifdef CONFIG_ELF_CORE
3237 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3238 #endif
3239 #ifdef CONFIG_TASK_IO_ACCOUNTING
3240 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3241 #endif
3242 #ifdef CONFIG_USER_NS
3243 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3244 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3245 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3246 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3247 #endif
3248 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3249 REG("timers", S_IRUGO, proc_timers_operations),
3250 #endif
3251 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3252 #ifdef CONFIG_LIVEPATCH
3253 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3254 #endif
3255 #ifdef CONFIG_STACKLEAK_METRICS
3256 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3257 #endif
3258 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3259 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3260 #endif
3261 };
3262
3263 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3264 {
3265 return proc_pident_readdir(file, ctx,
3266 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3267 }
3268
3269 static const struct file_operations proc_tgid_base_operations = {
3270 .read = generic_read_dir,
3271 .iterate_shared = proc_tgid_base_readdir,
3272 .llseek = generic_file_llseek,
3273 };
3274
3275 struct pid *tgid_pidfd_to_pid(const struct file *file)
3276 {
3277 if (file->f_op != &proc_tgid_base_operations)
3278 return ERR_PTR(-EBADF);
3279
3280 return proc_pid(file_inode(file));
3281 }
3282
3283 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3284 {
3285 return proc_pident_lookup(dir, dentry,
3286 tgid_base_stuff,
3287 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3288 }
3289
3290 static const struct inode_operations proc_tgid_base_inode_operations = {
3291 .lookup = proc_tgid_base_lookup,
3292 .getattr = pid_getattr,
3293 .setattr = proc_setattr,
3294 .permission = proc_pid_permission,
3295 };
3296
3297 /**
3298 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3299 * @pid: pid that should be flushed.
3300 *
3301 * This function walks a list of inodes (that belong to any proc
3302 * filesystem) that are attached to the pid and flushes them from
3303 * the dentry cache.
3304 *
3305 * It is safe and reasonable to cache /proc entries for a task until
3306 * that task exits. After that they just clog up the dcache with
3307 * useless entries, possibly causing useful dcache entries to be
3308 * flushed instead. This routine is provided to flush those useless
3309 * dcache entries when a process is reaped.
3310 *
3311 * NOTE: This routine is just an optimization so it does not guarantee
3312 * that no dcache entries will exist after a process is reaped
3313 * it just makes it very unlikely that any will persist.
3314 */
3315
3316 void proc_flush_pid(struct pid *pid)
3317 {
3318 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3319 }
3320
3321 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3322 struct task_struct *task, const void *ptr)
3323 {
3324 struct inode *inode;
3325
3326 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3327 if (!inode)
3328 return ERR_PTR(-ENOENT);
3329
3330 inode->i_op = &proc_tgid_base_inode_operations;
3331 inode->i_fop = &proc_tgid_base_operations;
3332 inode->i_flags|=S_IMMUTABLE;
3333
3334 set_nlink(inode, nlink_tgid);
3335 pid_update_inode(task, inode);
3336
3337 d_set_d_op(dentry, &pid_dentry_operations);
3338 return d_splice_alias(inode, dentry);
3339 }
3340
3341 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3342 {
3343 struct task_struct *task;
3344 unsigned tgid;
3345 struct proc_fs_info *fs_info;
3346 struct pid_namespace *ns;
3347 struct dentry *result = ERR_PTR(-ENOENT);
3348
3349 tgid = name_to_int(&dentry->d_name);
3350 if (tgid == ~0U)
3351 goto out;
3352
3353 fs_info = proc_sb_info(dentry->d_sb);
3354 ns = fs_info->pid_ns;
3355 rcu_read_lock();
3356 task = find_task_by_pid_ns(tgid, ns);
3357 if (task)
3358 get_task_struct(task);
3359 rcu_read_unlock();
3360 if (!task)
3361 goto out;
3362
3363 /* Limit procfs to only ptraceable tasks */
3364 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3365 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3366 goto out_put_task;
3367 }
3368
3369 result = proc_pid_instantiate(dentry, task, NULL);
3370 out_put_task:
3371 put_task_struct(task);
3372 out:
3373 return result;
3374 }
3375
3376 /*
3377 * Find the first task with tgid >= tgid
3378 *
3379 */
3380 struct tgid_iter {
3381 unsigned int tgid;
3382 struct task_struct *task;
3383 };
3384 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3385 {
3386 struct pid *pid;
3387
3388 if (iter.task)
3389 put_task_struct(iter.task);
3390 rcu_read_lock();
3391 retry:
3392 iter.task = NULL;
3393 pid = find_ge_pid(iter.tgid, ns);
3394 if (pid) {
3395 iter.tgid = pid_nr_ns(pid, ns);
3396 iter.task = pid_task(pid, PIDTYPE_TGID);
3397 if (!iter.task) {
3398 iter.tgid += 1;
3399 goto retry;
3400 }
3401 get_task_struct(iter.task);
3402 }
3403 rcu_read_unlock();
3404 return iter;
3405 }
3406
3407 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3408
3409 /* for the /proc/ directory itself, after non-process stuff has been done */
3410 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3411 {
3412 struct tgid_iter iter;
3413 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3414 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3415 loff_t pos = ctx->pos;
3416
3417 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3418 return 0;
3419
3420 if (pos == TGID_OFFSET - 2) {
3421 struct inode *inode = d_inode(fs_info->proc_self);
3422 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3423 return 0;
3424 ctx->pos = pos = pos + 1;
3425 }
3426 if (pos == TGID_OFFSET - 1) {
3427 struct inode *inode = d_inode(fs_info->proc_thread_self);
3428 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3429 return 0;
3430 ctx->pos = pos = pos + 1;
3431 }
3432 iter.tgid = pos - TGID_OFFSET;
3433 iter.task = NULL;
3434 for (iter = next_tgid(ns, iter);
3435 iter.task;
3436 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3437 char name[10 + 1];
3438 unsigned int len;
3439
3440 cond_resched();
3441 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3442 continue;
3443
3444 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3445 ctx->pos = iter.tgid + TGID_OFFSET;
3446 if (!proc_fill_cache(file, ctx, name, len,
3447 proc_pid_instantiate, iter.task, NULL)) {
3448 put_task_struct(iter.task);
3449 return 0;
3450 }
3451 }
3452 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3453 return 0;
3454 }
3455
3456 /*
3457 * proc_tid_comm_permission is a special permission function exclusively
3458 * used for the node /proc/<pid>/task/<tid>/comm.
3459 * It bypasses generic permission checks in the case where a task of the same
3460 * task group attempts to access the node.
3461 * The rationale behind this is that glibc and bionic access this node for
3462 * cross thread naming (pthread_set/getname_np(!self)). However, if
3463 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3464 * which locks out the cross thread naming implementation.
3465 * This function makes sure that the node is always accessible for members of
3466 * same thread group.
3467 */
3468 static int proc_tid_comm_permission(struct inode *inode, int mask)
3469 {
3470 bool is_same_tgroup;
3471 struct task_struct *task;
3472
3473 task = get_proc_task(inode);
3474 if (!task)
3475 return -ESRCH;
3476 is_same_tgroup = same_thread_group(current, task);
3477 put_task_struct(task);
3478
3479 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3480 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3481 * read or written by the members of the corresponding
3482 * thread group.
3483 */
3484 return 0;
3485 }
3486
3487 return generic_permission(inode, mask);
3488 }
3489
3490 static const struct inode_operations proc_tid_comm_inode_operations = {
3491 .permission = proc_tid_comm_permission,
3492 };
3493
3494 /*
3495 * Tasks
3496 */
3497 static const struct pid_entry tid_base_stuff[] = {
3498 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3499 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3500 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3501 #ifdef CONFIG_NET
3502 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3503 #endif
3504 REG("environ", S_IRUSR, proc_environ_operations),
3505 REG("auxv", S_IRUSR, proc_auxv_operations),
3506 ONE("status", S_IRUGO, proc_pid_status),
3507 ONE("personality", S_IRUSR, proc_pid_personality),
3508 ONE("limits", S_IRUGO, proc_pid_limits),
3509 #ifdef CONFIG_SCHED_DEBUG
3510 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3511 #endif
3512 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3513 &proc_tid_comm_inode_operations,
3514 &proc_pid_set_comm_operations, {}),
3515 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3516 ONE("syscall", S_IRUSR, proc_pid_syscall),
3517 #endif
3518 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3519 ONE("stat", S_IRUGO, proc_tid_stat),
3520 ONE("statm", S_IRUGO, proc_pid_statm),
3521 REG("maps", S_IRUGO, proc_pid_maps_operations),
3522 #ifdef CONFIG_PROC_CHILDREN
3523 REG("children", S_IRUGO, proc_tid_children_operations),
3524 #endif
3525 #ifdef CONFIG_NUMA
3526 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3527 #endif
3528 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3529 LNK("cwd", proc_cwd_link),
3530 LNK("root", proc_root_link),
3531 LNK("exe", proc_exe_link),
3532 REG("mounts", S_IRUGO, proc_mounts_operations),
3533 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3534 #ifdef CONFIG_PROC_PAGE_MONITOR
3535 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3536 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3537 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3538 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3539 #endif
3540 #ifdef CONFIG_SECURITY
3541 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3542 #endif
3543 #ifdef CONFIG_KALLSYMS
3544 ONE("wchan", S_IRUGO, proc_pid_wchan),
3545 #endif
3546 #ifdef CONFIG_STACKTRACE
3547 ONE("stack", S_IRUSR, proc_pid_stack),
3548 #endif
3549 #ifdef CONFIG_SCHED_INFO
3550 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3551 #endif
3552 #ifdef CONFIG_LATENCYTOP
3553 REG("latency", S_IRUGO, proc_lstats_operations),
3554 #endif
3555 #ifdef CONFIG_PROC_PID_CPUSET
3556 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3557 #endif
3558 #ifdef CONFIG_CGROUPS
3559 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3560 #endif
3561 #ifdef CONFIG_PROC_CPU_RESCTRL
3562 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3563 #endif
3564 ONE("oom_score", S_IRUGO, proc_oom_score),
3565 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3566 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3567 #ifdef CONFIG_AUDIT
3568 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3569 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3570 #endif
3571 #ifdef CONFIG_FAULT_INJECTION
3572 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3573 REG("fail-nth", 0644, proc_fail_nth_operations),
3574 #endif
3575 #ifdef CONFIG_TASK_IO_ACCOUNTING
3576 ONE("io", S_IRUSR, proc_tid_io_accounting),
3577 #endif
3578 #ifdef CONFIG_USER_NS
3579 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3580 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3581 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3582 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3583 #endif
3584 #ifdef CONFIG_LIVEPATCH
3585 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3586 #endif
3587 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3588 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3589 #endif
3590 };
3591
3592 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3593 {
3594 return proc_pident_readdir(file, ctx,
3595 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3596 }
3597
3598 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3599 {
3600 return proc_pident_lookup(dir, dentry,
3601 tid_base_stuff,
3602 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3603 }
3604
3605 static const struct file_operations proc_tid_base_operations = {
3606 .read = generic_read_dir,
3607 .iterate_shared = proc_tid_base_readdir,
3608 .llseek = generic_file_llseek,
3609 };
3610
3611 static const struct inode_operations proc_tid_base_inode_operations = {
3612 .lookup = proc_tid_base_lookup,
3613 .getattr = pid_getattr,
3614 .setattr = proc_setattr,
3615 };
3616
3617 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3618 struct task_struct *task, const void *ptr)
3619 {
3620 struct inode *inode;
3621 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3622 if (!inode)
3623 return ERR_PTR(-ENOENT);
3624
3625 inode->i_op = &proc_tid_base_inode_operations;
3626 inode->i_fop = &proc_tid_base_operations;
3627 inode->i_flags |= S_IMMUTABLE;
3628
3629 set_nlink(inode, nlink_tid);
3630 pid_update_inode(task, inode);
3631
3632 d_set_d_op(dentry, &pid_dentry_operations);
3633 return d_splice_alias(inode, dentry);
3634 }
3635
3636 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3637 {
3638 struct task_struct *task;
3639 struct task_struct *leader = get_proc_task(dir);
3640 unsigned tid;
3641 struct proc_fs_info *fs_info;
3642 struct pid_namespace *ns;
3643 struct dentry *result = ERR_PTR(-ENOENT);
3644
3645 if (!leader)
3646 goto out_no_task;
3647
3648 tid = name_to_int(&dentry->d_name);
3649 if (tid == ~0U)
3650 goto out;
3651
3652 fs_info = proc_sb_info(dentry->d_sb);
3653 ns = fs_info->pid_ns;
3654 rcu_read_lock();
3655 task = find_task_by_pid_ns(tid, ns);
3656 if (task)
3657 get_task_struct(task);
3658 rcu_read_unlock();
3659 if (!task)
3660 goto out;
3661 if (!same_thread_group(leader, task))
3662 goto out_drop_task;
3663
3664 result = proc_task_instantiate(dentry, task, NULL);
3665 out_drop_task:
3666 put_task_struct(task);
3667 out:
3668 put_task_struct(leader);
3669 out_no_task:
3670 return result;
3671 }
3672
3673 /*
3674 * Find the first tid of a thread group to return to user space.
3675 *
3676 * Usually this is just the thread group leader, but if the users
3677 * buffer was too small or there was a seek into the middle of the
3678 * directory we have more work todo.
3679 *
3680 * In the case of a short read we start with find_task_by_pid.
3681 *
3682 * In the case of a seek we start with the leader and walk nr
3683 * threads past it.
3684 */
3685 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3686 struct pid_namespace *ns)
3687 {
3688 struct task_struct *pos, *task;
3689 unsigned long nr = f_pos;
3690
3691 if (nr != f_pos) /* 32bit overflow? */
3692 return NULL;
3693
3694 rcu_read_lock();
3695 task = pid_task(pid, PIDTYPE_PID);
3696 if (!task)
3697 goto fail;
3698
3699 /* Attempt to start with the tid of a thread */
3700 if (tid && nr) {
3701 pos = find_task_by_pid_ns(tid, ns);
3702 if (pos && same_thread_group(pos, task))
3703 goto found;
3704 }
3705
3706 /* If nr exceeds the number of threads there is nothing todo */
3707 if (nr >= get_nr_threads(task))
3708 goto fail;
3709
3710 /* If we haven't found our starting place yet start
3711 * with the leader and walk nr threads forward.
3712 */
3713 pos = task = task->group_leader;
3714 do {
3715 if (!nr--)
3716 goto found;
3717 } while_each_thread(task, pos);
3718 fail:
3719 pos = NULL;
3720 goto out;
3721 found:
3722 get_task_struct(pos);
3723 out:
3724 rcu_read_unlock();
3725 return pos;
3726 }
3727
3728 /*
3729 * Find the next thread in the thread list.
3730 * Return NULL if there is an error or no next thread.
3731 *
3732 * The reference to the input task_struct is released.
3733 */
3734 static struct task_struct *next_tid(struct task_struct *start)
3735 {
3736 struct task_struct *pos = NULL;
3737 rcu_read_lock();
3738 if (pid_alive(start)) {
3739 pos = next_thread(start);
3740 if (thread_group_leader(pos))
3741 pos = NULL;
3742 else
3743 get_task_struct(pos);
3744 }
3745 rcu_read_unlock();
3746 put_task_struct(start);
3747 return pos;
3748 }
3749
3750 /* for the /proc/TGID/task/ directories */
3751 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3752 {
3753 struct inode *inode = file_inode(file);
3754 struct task_struct *task;
3755 struct pid_namespace *ns;
3756 int tid;
3757
3758 if (proc_inode_is_dead(inode))
3759 return -ENOENT;
3760
3761 if (!dir_emit_dots(file, ctx))
3762 return 0;
3763
3764 /* f_version caches the tgid value that the last readdir call couldn't
3765 * return. lseek aka telldir automagically resets f_version to 0.
3766 */
3767 ns = proc_pid_ns(inode->i_sb);
3768 tid = (int)file->f_version;
3769 file->f_version = 0;
3770 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3771 task;
3772 task = next_tid(task), ctx->pos++) {
3773 char name[10 + 1];
3774 unsigned int len;
3775 tid = task_pid_nr_ns(task, ns);
3776 len = snprintf(name, sizeof(name), "%u", tid);
3777 if (!proc_fill_cache(file, ctx, name, len,
3778 proc_task_instantiate, task, NULL)) {
3779 /* returning this tgid failed, save it as the first
3780 * pid for the next readir call */
3781 file->f_version = (u64)tid;
3782 put_task_struct(task);
3783 break;
3784 }
3785 }
3786
3787 return 0;
3788 }
3789
3790 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3791 u32 request_mask, unsigned int query_flags)
3792 {
3793 struct inode *inode = d_inode(path->dentry);
3794 struct task_struct *p = get_proc_task(inode);
3795 generic_fillattr(inode, stat);
3796
3797 if (p) {
3798 stat->nlink += get_nr_threads(p);
3799 put_task_struct(p);
3800 }
3801
3802 return 0;
3803 }
3804
3805 static const struct inode_operations proc_task_inode_operations = {
3806 .lookup = proc_task_lookup,
3807 .getattr = proc_task_getattr,
3808 .setattr = proc_setattr,
3809 .permission = proc_pid_permission,
3810 };
3811
3812 static const struct file_operations proc_task_operations = {
3813 .read = generic_read_dir,
3814 .iterate_shared = proc_task_readdir,
3815 .llseek = generic_file_llseek,
3816 };
3817
3818 void __init set_proc_pid_nlink(void)
3819 {
3820 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3821 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3822 }