]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/base.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <linux/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/sched/autogroup.h>
89 #include <linux/sched/mm.h>
90 #include <linux/sched/coredump.h>
91 #include <linux/sched/debug.h>
92 #include <linux/sched/stat.h>
93 #include <linux/flex_array.h>
94 #include <linux/posix-timers.h>
95 #ifdef CONFIG_HARDWALL
96 #include <asm/hardwall.h>
97 #endif
98 #include <trace/events/oom.h>
99 #include "internal.h"
100 #include "fd.h"
101
102 /* NOTE:
103 * Implementing inode permission operations in /proc is almost
104 * certainly an error. Permission checks need to happen during
105 * each system call not at open time. The reason is that most of
106 * what we wish to check for permissions in /proc varies at runtime.
107 *
108 * The classic example of a problem is opening file descriptors
109 * in /proc for a task before it execs a suid executable.
110 */
111
112 static u8 nlink_tid;
113 static u8 nlink_tgid;
114
115 struct pid_entry {
116 const char *name;
117 unsigned int len;
118 umode_t mode;
119 const struct inode_operations *iop;
120 const struct file_operations *fop;
121 union proc_op op;
122 };
123
124 #define NOD(NAME, MODE, IOP, FOP, OP) { \
125 .name = (NAME), \
126 .len = sizeof(NAME) - 1, \
127 .mode = MODE, \
128 .iop = IOP, \
129 .fop = FOP, \
130 .op = OP, \
131 }
132
133 #define DIR(NAME, MODE, iops, fops) \
134 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
135 #define LNK(NAME, get_link) \
136 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
137 &proc_pid_link_inode_operations, NULL, \
138 { .proc_get_link = get_link } )
139 #define REG(NAME, MODE, fops) \
140 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
141 #define ONE(NAME, MODE, show) \
142 NOD(NAME, (S_IFREG|(MODE)), \
143 NULL, &proc_single_file_operations, \
144 { .proc_show = show } )
145
146 /*
147 * Count the number of hardlinks for the pid_entry table, excluding the .
148 * and .. links.
149 */
150 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
151 unsigned int n)
152 {
153 unsigned int i;
154 unsigned int count;
155
156 count = 2;
157 for (i = 0; i < n; ++i) {
158 if (S_ISDIR(entries[i].mode))
159 ++count;
160 }
161
162 return count;
163 }
164
165 static int get_task_root(struct task_struct *task, struct path *root)
166 {
167 int result = -ENOENT;
168
169 task_lock(task);
170 if (task->fs) {
171 get_fs_root(task->fs, root);
172 result = 0;
173 }
174 task_unlock(task);
175 return result;
176 }
177
178 static int proc_cwd_link(struct dentry *dentry, struct path *path)
179 {
180 struct task_struct *task = get_proc_task(d_inode(dentry));
181 int result = -ENOENT;
182
183 if (task) {
184 task_lock(task);
185 if (task->fs) {
186 get_fs_pwd(task->fs, path);
187 result = 0;
188 }
189 task_unlock(task);
190 put_task_struct(task);
191 }
192 return result;
193 }
194
195 static int proc_root_link(struct dentry *dentry, struct path *path)
196 {
197 struct task_struct *task = get_proc_task(d_inode(dentry));
198 int result = -ENOENT;
199
200 if (task) {
201 result = get_task_root(task, path);
202 put_task_struct(task);
203 }
204 return result;
205 }
206
207 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
208 size_t _count, loff_t *pos)
209 {
210 struct task_struct *tsk;
211 struct mm_struct *mm;
212 char *page;
213 unsigned long count = _count;
214 unsigned long arg_start, arg_end, env_start, env_end;
215 unsigned long len1, len2, len;
216 unsigned long p;
217 char c;
218 ssize_t rv;
219
220 BUG_ON(*pos < 0);
221
222 tsk = get_proc_task(file_inode(file));
223 if (!tsk)
224 return -ESRCH;
225 mm = get_task_mm(tsk);
226 put_task_struct(tsk);
227 if (!mm)
228 return 0;
229 /* Check if process spawned far enough to have cmdline. */
230 if (!mm->env_end) {
231 rv = 0;
232 goto out_mmput;
233 }
234
235 page = (char *)__get_free_page(GFP_TEMPORARY);
236 if (!page) {
237 rv = -ENOMEM;
238 goto out_mmput;
239 }
240
241 down_read(&mm->mmap_sem);
242 arg_start = mm->arg_start;
243 arg_end = mm->arg_end;
244 env_start = mm->env_start;
245 env_end = mm->env_end;
246 up_read(&mm->mmap_sem);
247
248 BUG_ON(arg_start > arg_end);
249 BUG_ON(env_start > env_end);
250
251 len1 = arg_end - arg_start;
252 len2 = env_end - env_start;
253
254 /* Empty ARGV. */
255 if (len1 == 0) {
256 rv = 0;
257 goto out_free_page;
258 }
259 /*
260 * Inherently racy -- command line shares address space
261 * with code and data.
262 */
263 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
264 if (rv <= 0)
265 goto out_free_page;
266
267 rv = 0;
268
269 if (c == '\0') {
270 /* Command line (set of strings) occupies whole ARGV. */
271 if (len1 <= *pos)
272 goto out_free_page;
273
274 p = arg_start + *pos;
275 len = len1 - *pos;
276 while (count > 0 && len > 0) {
277 unsigned int _count;
278 int nr_read;
279
280 _count = min3(count, len, PAGE_SIZE);
281 nr_read = access_remote_vm(mm, p, page, _count, 0);
282 if (nr_read < 0)
283 rv = nr_read;
284 if (nr_read <= 0)
285 goto out_free_page;
286
287 if (copy_to_user(buf, page, nr_read)) {
288 rv = -EFAULT;
289 goto out_free_page;
290 }
291
292 p += nr_read;
293 len -= nr_read;
294 buf += nr_read;
295 count -= nr_read;
296 rv += nr_read;
297 }
298 } else {
299 /*
300 * Command line (1 string) occupies ARGV and
301 * extends into ENVP.
302 */
303 struct {
304 unsigned long p;
305 unsigned long len;
306 } cmdline[2] = {
307 { .p = arg_start, .len = len1 },
308 { .p = env_start, .len = len2 },
309 };
310 loff_t pos1 = *pos;
311 unsigned int i;
312
313 i = 0;
314 while (i < 2 && pos1 >= cmdline[i].len) {
315 pos1 -= cmdline[i].len;
316 i++;
317 }
318 while (i < 2) {
319 p = cmdline[i].p + pos1;
320 len = cmdline[i].len - pos1;
321 while (count > 0 && len > 0) {
322 unsigned int _count, l;
323 int nr_read;
324 bool final;
325
326 _count = min3(count, len, PAGE_SIZE);
327 nr_read = access_remote_vm(mm, p, page, _count, 0);
328 if (nr_read < 0)
329 rv = nr_read;
330 if (nr_read <= 0)
331 goto out_free_page;
332
333 /*
334 * Command line can be shorter than whole ARGV
335 * even if last "marker" byte says it is not.
336 */
337 final = false;
338 l = strnlen(page, nr_read);
339 if (l < nr_read) {
340 nr_read = l;
341 final = true;
342 }
343
344 if (copy_to_user(buf, page, nr_read)) {
345 rv = -EFAULT;
346 goto out_free_page;
347 }
348
349 p += nr_read;
350 len -= nr_read;
351 buf += nr_read;
352 count -= nr_read;
353 rv += nr_read;
354
355 if (final)
356 goto out_free_page;
357 }
358
359 /* Only first chunk can be read partially. */
360 pos1 = 0;
361 i++;
362 }
363 }
364
365 out_free_page:
366 free_page((unsigned long)page);
367 out_mmput:
368 mmput(mm);
369 if (rv > 0)
370 *pos += rv;
371 return rv;
372 }
373
374 static const struct file_operations proc_pid_cmdline_ops = {
375 .read = proc_pid_cmdline_read,
376 .llseek = generic_file_llseek,
377 };
378
379 #ifdef CONFIG_KALLSYMS
380 /*
381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
382 * Returns the resolved symbol. If that fails, simply return the address.
383 */
384 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
385 struct pid *pid, struct task_struct *task)
386 {
387 unsigned long wchan;
388 char symname[KSYM_NAME_LEN];
389
390 wchan = get_wchan(task);
391
392 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
393 && !lookup_symbol_name(wchan, symname))
394 seq_printf(m, "%s", symname);
395 else
396 seq_putc(m, '0');
397
398 return 0;
399 }
400 #endif /* CONFIG_KALLSYMS */
401
402 static int lock_trace(struct task_struct *task)
403 {
404 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
405 if (err)
406 return err;
407 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
408 mutex_unlock(&task->signal->cred_guard_mutex);
409 return -EPERM;
410 }
411 return 0;
412 }
413
414 static void unlock_trace(struct task_struct *task)
415 {
416 mutex_unlock(&task->signal->cred_guard_mutex);
417 }
418
419 #ifdef CONFIG_STACKTRACE
420
421 #define MAX_STACK_TRACE_DEPTH 64
422
423 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
424 struct pid *pid, struct task_struct *task)
425 {
426 struct stack_trace trace;
427 unsigned long *entries;
428 int err;
429 int i;
430
431 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
432 if (!entries)
433 return -ENOMEM;
434
435 trace.nr_entries = 0;
436 trace.max_entries = MAX_STACK_TRACE_DEPTH;
437 trace.entries = entries;
438 trace.skip = 0;
439
440 err = lock_trace(task);
441 if (!err) {
442 save_stack_trace_tsk(task, &trace);
443
444 for (i = 0; i < trace.nr_entries; i++) {
445 seq_printf(m, "[<%pK>] %pB\n",
446 (void *)entries[i], (void *)entries[i]);
447 }
448 unlock_trace(task);
449 }
450 kfree(entries);
451
452 return err;
453 }
454 #endif
455
456 #ifdef CONFIG_SCHED_INFO
457 /*
458 * Provides /proc/PID/schedstat
459 */
460 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
461 struct pid *pid, struct task_struct *task)
462 {
463 if (unlikely(!sched_info_on()))
464 seq_printf(m, "0 0 0\n");
465 else
466 seq_printf(m, "%llu %llu %lu\n",
467 (unsigned long long)task->se.sum_exec_runtime,
468 (unsigned long long)task->sched_info.run_delay,
469 task->sched_info.pcount);
470
471 return 0;
472 }
473 #endif
474
475 #ifdef CONFIG_LATENCYTOP
476 static int lstats_show_proc(struct seq_file *m, void *v)
477 {
478 int i;
479 struct inode *inode = m->private;
480 struct task_struct *task = get_proc_task(inode);
481
482 if (!task)
483 return -ESRCH;
484 seq_puts(m, "Latency Top version : v0.1\n");
485 for (i = 0; i < 32; i++) {
486 struct latency_record *lr = &task->latency_record[i];
487 if (lr->backtrace[0]) {
488 int q;
489 seq_printf(m, "%i %li %li",
490 lr->count, lr->time, lr->max);
491 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
492 unsigned long bt = lr->backtrace[q];
493 if (!bt)
494 break;
495 if (bt == ULONG_MAX)
496 break;
497 seq_printf(m, " %ps", (void *)bt);
498 }
499 seq_putc(m, '\n');
500 }
501
502 }
503 put_task_struct(task);
504 return 0;
505 }
506
507 static int lstats_open(struct inode *inode, struct file *file)
508 {
509 return single_open(file, lstats_show_proc, inode);
510 }
511
512 static ssize_t lstats_write(struct file *file, const char __user *buf,
513 size_t count, loff_t *offs)
514 {
515 struct task_struct *task = get_proc_task(file_inode(file));
516
517 if (!task)
518 return -ESRCH;
519 clear_all_latency_tracing(task);
520 put_task_struct(task);
521
522 return count;
523 }
524
525 static const struct file_operations proc_lstats_operations = {
526 .open = lstats_open,
527 .read = seq_read,
528 .write = lstats_write,
529 .llseek = seq_lseek,
530 .release = single_release,
531 };
532
533 #endif
534
535 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
536 struct pid *pid, struct task_struct *task)
537 {
538 unsigned long totalpages = totalram_pages + total_swap_pages;
539 unsigned long points = 0;
540
541 points = oom_badness(task, NULL, NULL, totalpages) *
542 1000 / totalpages;
543 seq_printf(m, "%lu\n", points);
544
545 return 0;
546 }
547
548 struct limit_names {
549 const char *name;
550 const char *unit;
551 };
552
553 static const struct limit_names lnames[RLIM_NLIMITS] = {
554 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
555 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
556 [RLIMIT_DATA] = {"Max data size", "bytes"},
557 [RLIMIT_STACK] = {"Max stack size", "bytes"},
558 [RLIMIT_CORE] = {"Max core file size", "bytes"},
559 [RLIMIT_RSS] = {"Max resident set", "bytes"},
560 [RLIMIT_NPROC] = {"Max processes", "processes"},
561 [RLIMIT_NOFILE] = {"Max open files", "files"},
562 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
563 [RLIMIT_AS] = {"Max address space", "bytes"},
564 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
565 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
566 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
567 [RLIMIT_NICE] = {"Max nice priority", NULL},
568 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
569 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
570 };
571
572 /* Display limits for a process */
573 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
574 struct pid *pid, struct task_struct *task)
575 {
576 unsigned int i;
577 unsigned long flags;
578
579 struct rlimit rlim[RLIM_NLIMITS];
580
581 if (!lock_task_sighand(task, &flags))
582 return 0;
583 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
584 unlock_task_sighand(task, &flags);
585
586 /*
587 * print the file header
588 */
589 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
590 "Limit", "Soft Limit", "Hard Limit", "Units");
591
592 for (i = 0; i < RLIM_NLIMITS; i++) {
593 if (rlim[i].rlim_cur == RLIM_INFINITY)
594 seq_printf(m, "%-25s %-20s ",
595 lnames[i].name, "unlimited");
596 else
597 seq_printf(m, "%-25s %-20lu ",
598 lnames[i].name, rlim[i].rlim_cur);
599
600 if (rlim[i].rlim_max == RLIM_INFINITY)
601 seq_printf(m, "%-20s ", "unlimited");
602 else
603 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
604
605 if (lnames[i].unit)
606 seq_printf(m, "%-10s\n", lnames[i].unit);
607 else
608 seq_putc(m, '\n');
609 }
610
611 return 0;
612 }
613
614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
615 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
616 struct pid *pid, struct task_struct *task)
617 {
618 long nr;
619 unsigned long args[6], sp, pc;
620 int res;
621
622 res = lock_trace(task);
623 if (res)
624 return res;
625
626 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
627 seq_puts(m, "running\n");
628 else if (nr < 0)
629 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
630 else
631 seq_printf(m,
632 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
633 nr,
634 args[0], args[1], args[2], args[3], args[4], args[5],
635 sp, pc);
636 unlock_trace(task);
637
638 return 0;
639 }
640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
641
642 /************************************************************************/
643 /* Here the fs part begins */
644 /************************************************************************/
645
646 /* permission checks */
647 static int proc_fd_access_allowed(struct inode *inode)
648 {
649 struct task_struct *task;
650 int allowed = 0;
651 /* Allow access to a task's file descriptors if it is us or we
652 * may use ptrace attach to the process and find out that
653 * information.
654 */
655 task = get_proc_task(inode);
656 if (task) {
657 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
658 put_task_struct(task);
659 }
660 return allowed;
661 }
662
663 int proc_setattr(struct dentry *dentry, struct iattr *attr)
664 {
665 int error;
666 struct inode *inode = d_inode(dentry);
667
668 if (attr->ia_valid & ATTR_MODE)
669 return -EPERM;
670
671 error = setattr_prepare(dentry, attr);
672 if (error)
673 return error;
674
675 setattr_copy(inode, attr);
676 mark_inode_dirty(inode);
677 return 0;
678 }
679
680 /*
681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
682 * or euid/egid (for hide_pid_min=2)?
683 */
684 static bool has_pid_permissions(struct pid_namespace *pid,
685 struct task_struct *task,
686 int hide_pid_min)
687 {
688 if (pid->hide_pid < hide_pid_min)
689 return true;
690 if (in_group_p(pid->pid_gid))
691 return true;
692 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
693 }
694
695
696 static int proc_pid_permission(struct inode *inode, int mask)
697 {
698 struct pid_namespace *pid = inode->i_sb->s_fs_info;
699 struct task_struct *task;
700 bool has_perms;
701
702 task = get_proc_task(inode);
703 if (!task)
704 return -ESRCH;
705 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
706 put_task_struct(task);
707
708 if (!has_perms) {
709 if (pid->hide_pid == HIDEPID_INVISIBLE) {
710 /*
711 * Let's make getdents(), stat(), and open()
712 * consistent with each other. If a process
713 * may not stat() a file, it shouldn't be seen
714 * in procfs at all.
715 */
716 return -ENOENT;
717 }
718
719 return -EPERM;
720 }
721 return generic_permission(inode, mask);
722 }
723
724
725
726 static const struct inode_operations proc_def_inode_operations = {
727 .setattr = proc_setattr,
728 };
729
730 static int proc_single_show(struct seq_file *m, void *v)
731 {
732 struct inode *inode = m->private;
733 struct pid_namespace *ns;
734 struct pid *pid;
735 struct task_struct *task;
736 int ret;
737
738 ns = inode->i_sb->s_fs_info;
739 pid = proc_pid(inode);
740 task = get_pid_task(pid, PIDTYPE_PID);
741 if (!task)
742 return -ESRCH;
743
744 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
745
746 put_task_struct(task);
747 return ret;
748 }
749
750 static int proc_single_open(struct inode *inode, struct file *filp)
751 {
752 return single_open(filp, proc_single_show, inode);
753 }
754
755 static const struct file_operations proc_single_file_operations = {
756 .open = proc_single_open,
757 .read = seq_read,
758 .llseek = seq_lseek,
759 .release = single_release,
760 };
761
762
763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
764 {
765 struct task_struct *task = get_proc_task(inode);
766 struct mm_struct *mm = ERR_PTR(-ESRCH);
767
768 if (task) {
769 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
770 put_task_struct(task);
771
772 if (!IS_ERR_OR_NULL(mm)) {
773 /* ensure this mm_struct can't be freed */
774 mmgrab(mm);
775 /* but do not pin its memory */
776 mmput(mm);
777 }
778 }
779
780 return mm;
781 }
782
783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
784 {
785 struct mm_struct *mm = proc_mem_open(inode, mode);
786
787 if (IS_ERR(mm))
788 return PTR_ERR(mm);
789
790 file->private_data = mm;
791 return 0;
792 }
793
794 static int mem_open(struct inode *inode, struct file *file)
795 {
796 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
797
798 /* OK to pass negative loff_t, we can catch out-of-range */
799 file->f_mode |= FMODE_UNSIGNED_OFFSET;
800
801 return ret;
802 }
803
804 static ssize_t mem_rw(struct file *file, char __user *buf,
805 size_t count, loff_t *ppos, int write)
806 {
807 struct mm_struct *mm = file->private_data;
808 unsigned long addr = *ppos;
809 ssize_t copied;
810 char *page;
811 unsigned int flags;
812
813 if (!mm)
814 return 0;
815
816 page = (char *)__get_free_page(GFP_TEMPORARY);
817 if (!page)
818 return -ENOMEM;
819
820 copied = 0;
821 if (!mmget_not_zero(mm))
822 goto free;
823
824 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
825
826 while (count > 0) {
827 int this_len = min_t(int, count, PAGE_SIZE);
828
829 if (write && copy_from_user(page, buf, this_len)) {
830 copied = -EFAULT;
831 break;
832 }
833
834 this_len = access_remote_vm(mm, addr, page, this_len, flags);
835 if (!this_len) {
836 if (!copied)
837 copied = -EIO;
838 break;
839 }
840
841 if (!write && copy_to_user(buf, page, this_len)) {
842 copied = -EFAULT;
843 break;
844 }
845
846 buf += this_len;
847 addr += this_len;
848 copied += this_len;
849 count -= this_len;
850 }
851 *ppos = addr;
852
853 mmput(mm);
854 free:
855 free_page((unsigned long) page);
856 return copied;
857 }
858
859 static ssize_t mem_read(struct file *file, char __user *buf,
860 size_t count, loff_t *ppos)
861 {
862 return mem_rw(file, buf, count, ppos, 0);
863 }
864
865 static ssize_t mem_write(struct file *file, const char __user *buf,
866 size_t count, loff_t *ppos)
867 {
868 return mem_rw(file, (char __user*)buf, count, ppos, 1);
869 }
870
871 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
872 {
873 switch (orig) {
874 case 0:
875 file->f_pos = offset;
876 break;
877 case 1:
878 file->f_pos += offset;
879 break;
880 default:
881 return -EINVAL;
882 }
883 force_successful_syscall_return();
884 return file->f_pos;
885 }
886
887 static int mem_release(struct inode *inode, struct file *file)
888 {
889 struct mm_struct *mm = file->private_data;
890 if (mm)
891 mmdrop(mm);
892 return 0;
893 }
894
895 static const struct file_operations proc_mem_operations = {
896 .llseek = mem_lseek,
897 .read = mem_read,
898 .write = mem_write,
899 .open = mem_open,
900 .release = mem_release,
901 };
902
903 static int environ_open(struct inode *inode, struct file *file)
904 {
905 return __mem_open(inode, file, PTRACE_MODE_READ);
906 }
907
908 static ssize_t environ_read(struct file *file, char __user *buf,
909 size_t count, loff_t *ppos)
910 {
911 char *page;
912 unsigned long src = *ppos;
913 int ret = 0;
914 struct mm_struct *mm = file->private_data;
915 unsigned long env_start, env_end;
916
917 /* Ensure the process spawned far enough to have an environment. */
918 if (!mm || !mm->env_end)
919 return 0;
920
921 page = (char *)__get_free_page(GFP_TEMPORARY);
922 if (!page)
923 return -ENOMEM;
924
925 ret = 0;
926 if (!mmget_not_zero(mm))
927 goto free;
928
929 down_read(&mm->mmap_sem);
930 env_start = mm->env_start;
931 env_end = mm->env_end;
932 up_read(&mm->mmap_sem);
933
934 while (count > 0) {
935 size_t this_len, max_len;
936 int retval;
937
938 if (src >= (env_end - env_start))
939 break;
940
941 this_len = env_end - (env_start + src);
942
943 max_len = min_t(size_t, PAGE_SIZE, count);
944 this_len = min(max_len, this_len);
945
946 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
947
948 if (retval <= 0) {
949 ret = retval;
950 break;
951 }
952
953 if (copy_to_user(buf, page, retval)) {
954 ret = -EFAULT;
955 break;
956 }
957
958 ret += retval;
959 src += retval;
960 buf += retval;
961 count -= retval;
962 }
963 *ppos = src;
964 mmput(mm);
965
966 free:
967 free_page((unsigned long) page);
968 return ret;
969 }
970
971 static const struct file_operations proc_environ_operations = {
972 .open = environ_open,
973 .read = environ_read,
974 .llseek = generic_file_llseek,
975 .release = mem_release,
976 };
977
978 static int auxv_open(struct inode *inode, struct file *file)
979 {
980 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
981 }
982
983 static ssize_t auxv_read(struct file *file, char __user *buf,
984 size_t count, loff_t *ppos)
985 {
986 struct mm_struct *mm = file->private_data;
987 unsigned int nwords = 0;
988
989 if (!mm)
990 return 0;
991 do {
992 nwords += 2;
993 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
994 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
995 nwords * sizeof(mm->saved_auxv[0]));
996 }
997
998 static const struct file_operations proc_auxv_operations = {
999 .open = auxv_open,
1000 .read = auxv_read,
1001 .llseek = generic_file_llseek,
1002 .release = mem_release,
1003 };
1004
1005 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006 loff_t *ppos)
1007 {
1008 struct task_struct *task = get_proc_task(file_inode(file));
1009 char buffer[PROC_NUMBUF];
1010 int oom_adj = OOM_ADJUST_MIN;
1011 size_t len;
1012
1013 if (!task)
1014 return -ESRCH;
1015 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016 oom_adj = OOM_ADJUST_MAX;
1017 else
1018 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019 OOM_SCORE_ADJ_MAX;
1020 put_task_struct(task);
1021 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1023 }
1024
1025 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1026 {
1027 static DEFINE_MUTEX(oom_adj_mutex);
1028 struct mm_struct *mm = NULL;
1029 struct task_struct *task;
1030 int err = 0;
1031
1032 task = get_proc_task(file_inode(file));
1033 if (!task)
1034 return -ESRCH;
1035
1036 mutex_lock(&oom_adj_mutex);
1037 if (legacy) {
1038 if (oom_adj < task->signal->oom_score_adj &&
1039 !capable(CAP_SYS_RESOURCE)) {
1040 err = -EACCES;
1041 goto err_unlock;
1042 }
1043 /*
1044 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045 * /proc/pid/oom_score_adj instead.
1046 */
1047 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048 current->comm, task_pid_nr(current), task_pid_nr(task),
1049 task_pid_nr(task));
1050 } else {
1051 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052 !capable(CAP_SYS_RESOURCE)) {
1053 err = -EACCES;
1054 goto err_unlock;
1055 }
1056 }
1057
1058 /*
1059 * Make sure we will check other processes sharing the mm if this is
1060 * not vfrok which wants its own oom_score_adj.
1061 * pin the mm so it doesn't go away and get reused after task_unlock
1062 */
1063 if (!task->vfork_done) {
1064 struct task_struct *p = find_lock_task_mm(task);
1065
1066 if (p) {
1067 if (atomic_read(&p->mm->mm_users) > 1) {
1068 mm = p->mm;
1069 mmgrab(mm);
1070 }
1071 task_unlock(p);
1072 }
1073 }
1074
1075 task->signal->oom_score_adj = oom_adj;
1076 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077 task->signal->oom_score_adj_min = (short)oom_adj;
1078 trace_oom_score_adj_update(task);
1079
1080 if (mm) {
1081 struct task_struct *p;
1082
1083 rcu_read_lock();
1084 for_each_process(p) {
1085 if (same_thread_group(task, p))
1086 continue;
1087
1088 /* do not touch kernel threads or the global init */
1089 if (p->flags & PF_KTHREAD || is_global_init(p))
1090 continue;
1091
1092 task_lock(p);
1093 if (!p->vfork_done && process_shares_mm(p, mm)) {
1094 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1095 task_pid_nr(p), p->comm,
1096 p->signal->oom_score_adj, oom_adj,
1097 task_pid_nr(task), task->comm);
1098 p->signal->oom_score_adj = oom_adj;
1099 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1100 p->signal->oom_score_adj_min = (short)oom_adj;
1101 }
1102 task_unlock(p);
1103 }
1104 rcu_read_unlock();
1105 mmdrop(mm);
1106 }
1107 err_unlock:
1108 mutex_unlock(&oom_adj_mutex);
1109 put_task_struct(task);
1110 return err;
1111 }
1112
1113 /*
1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1115 * kernels. The effective policy is defined by oom_score_adj, which has a
1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1118 * Processes that become oom disabled via oom_adj will still be oom disabled
1119 * with this implementation.
1120 *
1121 * oom_adj cannot be removed since existing userspace binaries use it.
1122 */
1123 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1124 size_t count, loff_t *ppos)
1125 {
1126 char buffer[PROC_NUMBUF];
1127 int oom_adj;
1128 int err;
1129
1130 memset(buffer, 0, sizeof(buffer));
1131 if (count > sizeof(buffer) - 1)
1132 count = sizeof(buffer) - 1;
1133 if (copy_from_user(buffer, buf, count)) {
1134 err = -EFAULT;
1135 goto out;
1136 }
1137
1138 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1139 if (err)
1140 goto out;
1141 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1142 oom_adj != OOM_DISABLE) {
1143 err = -EINVAL;
1144 goto out;
1145 }
1146
1147 /*
1148 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1149 * value is always attainable.
1150 */
1151 if (oom_adj == OOM_ADJUST_MAX)
1152 oom_adj = OOM_SCORE_ADJ_MAX;
1153 else
1154 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1155
1156 err = __set_oom_adj(file, oom_adj, true);
1157 out:
1158 return err < 0 ? err : count;
1159 }
1160
1161 static const struct file_operations proc_oom_adj_operations = {
1162 .read = oom_adj_read,
1163 .write = oom_adj_write,
1164 .llseek = generic_file_llseek,
1165 };
1166
1167 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1168 size_t count, loff_t *ppos)
1169 {
1170 struct task_struct *task = get_proc_task(file_inode(file));
1171 char buffer[PROC_NUMBUF];
1172 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1173 size_t len;
1174
1175 if (!task)
1176 return -ESRCH;
1177 oom_score_adj = task->signal->oom_score_adj;
1178 put_task_struct(task);
1179 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1180 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181 }
1182
1183 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1184 size_t count, loff_t *ppos)
1185 {
1186 char buffer[PROC_NUMBUF];
1187 int oom_score_adj;
1188 int err;
1189
1190 memset(buffer, 0, sizeof(buffer));
1191 if (count > sizeof(buffer) - 1)
1192 count = sizeof(buffer) - 1;
1193 if (copy_from_user(buffer, buf, count)) {
1194 err = -EFAULT;
1195 goto out;
1196 }
1197
1198 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1199 if (err)
1200 goto out;
1201 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1202 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1203 err = -EINVAL;
1204 goto out;
1205 }
1206
1207 err = __set_oom_adj(file, oom_score_adj, false);
1208 out:
1209 return err < 0 ? err : count;
1210 }
1211
1212 static const struct file_operations proc_oom_score_adj_operations = {
1213 .read = oom_score_adj_read,
1214 .write = oom_score_adj_write,
1215 .llseek = default_llseek,
1216 };
1217
1218 #ifdef CONFIG_AUDITSYSCALL
1219 #define TMPBUFLEN 11
1220 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1221 size_t count, loff_t *ppos)
1222 {
1223 struct inode * inode = file_inode(file);
1224 struct task_struct *task = get_proc_task(inode);
1225 ssize_t length;
1226 char tmpbuf[TMPBUFLEN];
1227
1228 if (!task)
1229 return -ESRCH;
1230 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1231 from_kuid(file->f_cred->user_ns,
1232 audit_get_loginuid(task)));
1233 put_task_struct(task);
1234 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1235 }
1236
1237 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1238 size_t count, loff_t *ppos)
1239 {
1240 struct inode * inode = file_inode(file);
1241 uid_t loginuid;
1242 kuid_t kloginuid;
1243 int rv;
1244
1245 rcu_read_lock();
1246 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1247 rcu_read_unlock();
1248 return -EPERM;
1249 }
1250 rcu_read_unlock();
1251
1252 if (*ppos != 0) {
1253 /* No partial writes. */
1254 return -EINVAL;
1255 }
1256
1257 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1258 if (rv < 0)
1259 return rv;
1260
1261 /* is userspace tring to explicitly UNSET the loginuid? */
1262 if (loginuid == AUDIT_UID_UNSET) {
1263 kloginuid = INVALID_UID;
1264 } else {
1265 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1266 if (!uid_valid(kloginuid))
1267 return -EINVAL;
1268 }
1269
1270 rv = audit_set_loginuid(kloginuid);
1271 if (rv < 0)
1272 return rv;
1273 return count;
1274 }
1275
1276 static const struct file_operations proc_loginuid_operations = {
1277 .read = proc_loginuid_read,
1278 .write = proc_loginuid_write,
1279 .llseek = generic_file_llseek,
1280 };
1281
1282 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1283 size_t count, loff_t *ppos)
1284 {
1285 struct inode * inode = file_inode(file);
1286 struct task_struct *task = get_proc_task(inode);
1287 ssize_t length;
1288 char tmpbuf[TMPBUFLEN];
1289
1290 if (!task)
1291 return -ESRCH;
1292 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1293 audit_get_sessionid(task));
1294 put_task_struct(task);
1295 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1296 }
1297
1298 static const struct file_operations proc_sessionid_operations = {
1299 .read = proc_sessionid_read,
1300 .llseek = generic_file_llseek,
1301 };
1302 #endif
1303
1304 #ifdef CONFIG_FAULT_INJECTION
1305 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1306 size_t count, loff_t *ppos)
1307 {
1308 struct task_struct *task = get_proc_task(file_inode(file));
1309 char buffer[PROC_NUMBUF];
1310 size_t len;
1311 int make_it_fail;
1312
1313 if (!task)
1314 return -ESRCH;
1315 make_it_fail = task->make_it_fail;
1316 put_task_struct(task);
1317
1318 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1319
1320 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1321 }
1322
1323 static ssize_t proc_fault_inject_write(struct file * file,
1324 const char __user * buf, size_t count, loff_t *ppos)
1325 {
1326 struct task_struct *task;
1327 char buffer[PROC_NUMBUF];
1328 int make_it_fail;
1329 int rv;
1330
1331 if (!capable(CAP_SYS_RESOURCE))
1332 return -EPERM;
1333 memset(buffer, 0, sizeof(buffer));
1334 if (count > sizeof(buffer) - 1)
1335 count = sizeof(buffer) - 1;
1336 if (copy_from_user(buffer, buf, count))
1337 return -EFAULT;
1338 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1339 if (rv < 0)
1340 return rv;
1341 if (make_it_fail < 0 || make_it_fail > 1)
1342 return -EINVAL;
1343
1344 task = get_proc_task(file_inode(file));
1345 if (!task)
1346 return -ESRCH;
1347 task->make_it_fail = make_it_fail;
1348 put_task_struct(task);
1349
1350 return count;
1351 }
1352
1353 static const struct file_operations proc_fault_inject_operations = {
1354 .read = proc_fault_inject_read,
1355 .write = proc_fault_inject_write,
1356 .llseek = generic_file_llseek,
1357 };
1358
1359 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1360 size_t count, loff_t *ppos)
1361 {
1362 struct task_struct *task;
1363 int err;
1364 unsigned int n;
1365
1366 err = kstrtouint_from_user(buf, count, 0, &n);
1367 if (err)
1368 return err;
1369
1370 task = get_proc_task(file_inode(file));
1371 if (!task)
1372 return -ESRCH;
1373 WRITE_ONCE(task->fail_nth, n);
1374 put_task_struct(task);
1375
1376 return count;
1377 }
1378
1379 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1380 size_t count, loff_t *ppos)
1381 {
1382 struct task_struct *task;
1383 char numbuf[PROC_NUMBUF];
1384 ssize_t len;
1385
1386 task = get_proc_task(file_inode(file));
1387 if (!task)
1388 return -ESRCH;
1389 len = snprintf(numbuf, sizeof(numbuf), "%u\n",
1390 READ_ONCE(task->fail_nth));
1391 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1392 put_task_struct(task);
1393
1394 return len;
1395 }
1396
1397 static const struct file_operations proc_fail_nth_operations = {
1398 .read = proc_fail_nth_read,
1399 .write = proc_fail_nth_write,
1400 };
1401 #endif
1402
1403
1404 #ifdef CONFIG_SCHED_DEBUG
1405 /*
1406 * Print out various scheduling related per-task fields:
1407 */
1408 static int sched_show(struct seq_file *m, void *v)
1409 {
1410 struct inode *inode = m->private;
1411 struct task_struct *p;
1412
1413 p = get_proc_task(inode);
1414 if (!p)
1415 return -ESRCH;
1416 proc_sched_show_task(p, m);
1417
1418 put_task_struct(p);
1419
1420 return 0;
1421 }
1422
1423 static ssize_t
1424 sched_write(struct file *file, const char __user *buf,
1425 size_t count, loff_t *offset)
1426 {
1427 struct inode *inode = file_inode(file);
1428 struct task_struct *p;
1429
1430 p = get_proc_task(inode);
1431 if (!p)
1432 return -ESRCH;
1433 proc_sched_set_task(p);
1434
1435 put_task_struct(p);
1436
1437 return count;
1438 }
1439
1440 static int sched_open(struct inode *inode, struct file *filp)
1441 {
1442 return single_open(filp, sched_show, inode);
1443 }
1444
1445 static const struct file_operations proc_pid_sched_operations = {
1446 .open = sched_open,
1447 .read = seq_read,
1448 .write = sched_write,
1449 .llseek = seq_lseek,
1450 .release = single_release,
1451 };
1452
1453 #endif
1454
1455 #ifdef CONFIG_SCHED_AUTOGROUP
1456 /*
1457 * Print out autogroup related information:
1458 */
1459 static int sched_autogroup_show(struct seq_file *m, void *v)
1460 {
1461 struct inode *inode = m->private;
1462 struct task_struct *p;
1463
1464 p = get_proc_task(inode);
1465 if (!p)
1466 return -ESRCH;
1467 proc_sched_autogroup_show_task(p, m);
1468
1469 put_task_struct(p);
1470
1471 return 0;
1472 }
1473
1474 static ssize_t
1475 sched_autogroup_write(struct file *file, const char __user *buf,
1476 size_t count, loff_t *offset)
1477 {
1478 struct inode *inode = file_inode(file);
1479 struct task_struct *p;
1480 char buffer[PROC_NUMBUF];
1481 int nice;
1482 int err;
1483
1484 memset(buffer, 0, sizeof(buffer));
1485 if (count > sizeof(buffer) - 1)
1486 count = sizeof(buffer) - 1;
1487 if (copy_from_user(buffer, buf, count))
1488 return -EFAULT;
1489
1490 err = kstrtoint(strstrip(buffer), 0, &nice);
1491 if (err < 0)
1492 return err;
1493
1494 p = get_proc_task(inode);
1495 if (!p)
1496 return -ESRCH;
1497
1498 err = proc_sched_autogroup_set_nice(p, nice);
1499 if (err)
1500 count = err;
1501
1502 put_task_struct(p);
1503
1504 return count;
1505 }
1506
1507 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1508 {
1509 int ret;
1510
1511 ret = single_open(filp, sched_autogroup_show, NULL);
1512 if (!ret) {
1513 struct seq_file *m = filp->private_data;
1514
1515 m->private = inode;
1516 }
1517 return ret;
1518 }
1519
1520 static const struct file_operations proc_pid_sched_autogroup_operations = {
1521 .open = sched_autogroup_open,
1522 .read = seq_read,
1523 .write = sched_autogroup_write,
1524 .llseek = seq_lseek,
1525 .release = single_release,
1526 };
1527
1528 #endif /* CONFIG_SCHED_AUTOGROUP */
1529
1530 static ssize_t comm_write(struct file *file, const char __user *buf,
1531 size_t count, loff_t *offset)
1532 {
1533 struct inode *inode = file_inode(file);
1534 struct task_struct *p;
1535 char buffer[TASK_COMM_LEN];
1536 const size_t maxlen = sizeof(buffer) - 1;
1537
1538 memset(buffer, 0, sizeof(buffer));
1539 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1540 return -EFAULT;
1541
1542 p = get_proc_task(inode);
1543 if (!p)
1544 return -ESRCH;
1545
1546 if (same_thread_group(current, p))
1547 set_task_comm(p, buffer);
1548 else
1549 count = -EINVAL;
1550
1551 put_task_struct(p);
1552
1553 return count;
1554 }
1555
1556 static int comm_show(struct seq_file *m, void *v)
1557 {
1558 struct inode *inode = m->private;
1559 struct task_struct *p;
1560
1561 p = get_proc_task(inode);
1562 if (!p)
1563 return -ESRCH;
1564
1565 task_lock(p);
1566 seq_printf(m, "%s\n", p->comm);
1567 task_unlock(p);
1568
1569 put_task_struct(p);
1570
1571 return 0;
1572 }
1573
1574 static int comm_open(struct inode *inode, struct file *filp)
1575 {
1576 return single_open(filp, comm_show, inode);
1577 }
1578
1579 static const struct file_operations proc_pid_set_comm_operations = {
1580 .open = comm_open,
1581 .read = seq_read,
1582 .write = comm_write,
1583 .llseek = seq_lseek,
1584 .release = single_release,
1585 };
1586
1587 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1588 {
1589 struct task_struct *task;
1590 struct file *exe_file;
1591
1592 task = get_proc_task(d_inode(dentry));
1593 if (!task)
1594 return -ENOENT;
1595 exe_file = get_task_exe_file(task);
1596 put_task_struct(task);
1597 if (exe_file) {
1598 *exe_path = exe_file->f_path;
1599 path_get(&exe_file->f_path);
1600 fput(exe_file);
1601 return 0;
1602 } else
1603 return -ENOENT;
1604 }
1605
1606 static const char *proc_pid_get_link(struct dentry *dentry,
1607 struct inode *inode,
1608 struct delayed_call *done)
1609 {
1610 struct path path;
1611 int error = -EACCES;
1612
1613 if (!dentry)
1614 return ERR_PTR(-ECHILD);
1615
1616 /* Are we allowed to snoop on the tasks file descriptors? */
1617 if (!proc_fd_access_allowed(inode))
1618 goto out;
1619
1620 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1621 if (error)
1622 goto out;
1623
1624 nd_jump_link(&path);
1625 return NULL;
1626 out:
1627 return ERR_PTR(error);
1628 }
1629
1630 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1631 {
1632 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1633 char *pathname;
1634 int len;
1635
1636 if (!tmp)
1637 return -ENOMEM;
1638
1639 pathname = d_path(path, tmp, PAGE_SIZE);
1640 len = PTR_ERR(pathname);
1641 if (IS_ERR(pathname))
1642 goto out;
1643 len = tmp + PAGE_SIZE - 1 - pathname;
1644
1645 if (len > buflen)
1646 len = buflen;
1647 if (copy_to_user(buffer, pathname, len))
1648 len = -EFAULT;
1649 out:
1650 free_page((unsigned long)tmp);
1651 return len;
1652 }
1653
1654 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1655 {
1656 int error = -EACCES;
1657 struct inode *inode = d_inode(dentry);
1658 struct path path;
1659
1660 /* Are we allowed to snoop on the tasks file descriptors? */
1661 if (!proc_fd_access_allowed(inode))
1662 goto out;
1663
1664 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1665 if (error)
1666 goto out;
1667
1668 error = do_proc_readlink(&path, buffer, buflen);
1669 path_put(&path);
1670 out:
1671 return error;
1672 }
1673
1674 const struct inode_operations proc_pid_link_inode_operations = {
1675 .readlink = proc_pid_readlink,
1676 .get_link = proc_pid_get_link,
1677 .setattr = proc_setattr,
1678 };
1679
1680
1681 /* building an inode */
1682
1683 void task_dump_owner(struct task_struct *task, mode_t mode,
1684 kuid_t *ruid, kgid_t *rgid)
1685 {
1686 /* Depending on the state of dumpable compute who should own a
1687 * proc file for a task.
1688 */
1689 const struct cred *cred;
1690 kuid_t uid;
1691 kgid_t gid;
1692
1693 /* Default to the tasks effective ownership */
1694 rcu_read_lock();
1695 cred = __task_cred(task);
1696 uid = cred->euid;
1697 gid = cred->egid;
1698 rcu_read_unlock();
1699
1700 /*
1701 * Before the /proc/pid/status file was created the only way to read
1702 * the effective uid of a /process was to stat /proc/pid. Reading
1703 * /proc/pid/status is slow enough that procps and other packages
1704 * kept stating /proc/pid. To keep the rules in /proc simple I have
1705 * made this apply to all per process world readable and executable
1706 * directories.
1707 */
1708 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1709 struct mm_struct *mm;
1710 task_lock(task);
1711 mm = task->mm;
1712 /* Make non-dumpable tasks owned by some root */
1713 if (mm) {
1714 if (get_dumpable(mm) != SUID_DUMP_USER) {
1715 struct user_namespace *user_ns = mm->user_ns;
1716
1717 uid = make_kuid(user_ns, 0);
1718 if (!uid_valid(uid))
1719 uid = GLOBAL_ROOT_UID;
1720
1721 gid = make_kgid(user_ns, 0);
1722 if (!gid_valid(gid))
1723 gid = GLOBAL_ROOT_GID;
1724 }
1725 } else {
1726 uid = GLOBAL_ROOT_UID;
1727 gid = GLOBAL_ROOT_GID;
1728 }
1729 task_unlock(task);
1730 }
1731 *ruid = uid;
1732 *rgid = gid;
1733 }
1734
1735 struct inode *proc_pid_make_inode(struct super_block * sb,
1736 struct task_struct *task, umode_t mode)
1737 {
1738 struct inode * inode;
1739 struct proc_inode *ei;
1740
1741 /* We need a new inode */
1742
1743 inode = new_inode(sb);
1744 if (!inode)
1745 goto out;
1746
1747 /* Common stuff */
1748 ei = PROC_I(inode);
1749 inode->i_mode = mode;
1750 inode->i_ino = get_next_ino();
1751 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1752 inode->i_op = &proc_def_inode_operations;
1753
1754 /*
1755 * grab the reference to task.
1756 */
1757 ei->pid = get_task_pid(task, PIDTYPE_PID);
1758 if (!ei->pid)
1759 goto out_unlock;
1760
1761 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1762 security_task_to_inode(task, inode);
1763
1764 out:
1765 return inode;
1766
1767 out_unlock:
1768 iput(inode);
1769 return NULL;
1770 }
1771
1772 int pid_getattr(const struct path *path, struct kstat *stat,
1773 u32 request_mask, unsigned int query_flags)
1774 {
1775 struct inode *inode = d_inode(path->dentry);
1776 struct task_struct *task;
1777 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1778
1779 generic_fillattr(inode, stat);
1780
1781 rcu_read_lock();
1782 stat->uid = GLOBAL_ROOT_UID;
1783 stat->gid = GLOBAL_ROOT_GID;
1784 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1785 if (task) {
1786 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1787 rcu_read_unlock();
1788 /*
1789 * This doesn't prevent learning whether PID exists,
1790 * it only makes getattr() consistent with readdir().
1791 */
1792 return -ENOENT;
1793 }
1794 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1795 }
1796 rcu_read_unlock();
1797 return 0;
1798 }
1799
1800 /* dentry stuff */
1801
1802 /*
1803 * Exceptional case: normally we are not allowed to unhash a busy
1804 * directory. In this case, however, we can do it - no aliasing problems
1805 * due to the way we treat inodes.
1806 *
1807 * Rewrite the inode's ownerships here because the owning task may have
1808 * performed a setuid(), etc.
1809 *
1810 */
1811 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1812 {
1813 struct inode *inode;
1814 struct task_struct *task;
1815
1816 if (flags & LOOKUP_RCU)
1817 return -ECHILD;
1818
1819 inode = d_inode(dentry);
1820 task = get_proc_task(inode);
1821
1822 if (task) {
1823 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1824
1825 inode->i_mode &= ~(S_ISUID | S_ISGID);
1826 security_task_to_inode(task, inode);
1827 put_task_struct(task);
1828 return 1;
1829 }
1830 return 0;
1831 }
1832
1833 static inline bool proc_inode_is_dead(struct inode *inode)
1834 {
1835 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1836 }
1837
1838 int pid_delete_dentry(const struct dentry *dentry)
1839 {
1840 /* Is the task we represent dead?
1841 * If so, then don't put the dentry on the lru list,
1842 * kill it immediately.
1843 */
1844 return proc_inode_is_dead(d_inode(dentry));
1845 }
1846
1847 const struct dentry_operations pid_dentry_operations =
1848 {
1849 .d_revalidate = pid_revalidate,
1850 .d_delete = pid_delete_dentry,
1851 };
1852
1853 /* Lookups */
1854
1855 /*
1856 * Fill a directory entry.
1857 *
1858 * If possible create the dcache entry and derive our inode number and
1859 * file type from dcache entry.
1860 *
1861 * Since all of the proc inode numbers are dynamically generated, the inode
1862 * numbers do not exist until the inode is cache. This means creating the
1863 * the dcache entry in readdir is necessary to keep the inode numbers
1864 * reported by readdir in sync with the inode numbers reported
1865 * by stat.
1866 */
1867 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1868 const char *name, int len,
1869 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1870 {
1871 struct dentry *child, *dir = file->f_path.dentry;
1872 struct qstr qname = QSTR_INIT(name, len);
1873 struct inode *inode;
1874 unsigned type;
1875 ino_t ino;
1876
1877 child = d_hash_and_lookup(dir, &qname);
1878 if (!child) {
1879 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880 child = d_alloc_parallel(dir, &qname, &wq);
1881 if (IS_ERR(child))
1882 goto end_instantiate;
1883 if (d_in_lookup(child)) {
1884 int err = instantiate(d_inode(dir), child, task, ptr);
1885 d_lookup_done(child);
1886 if (err < 0) {
1887 dput(child);
1888 goto end_instantiate;
1889 }
1890 }
1891 }
1892 inode = d_inode(child);
1893 ino = inode->i_ino;
1894 type = inode->i_mode >> 12;
1895 dput(child);
1896 return dir_emit(ctx, name, len, ino, type);
1897
1898 end_instantiate:
1899 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1900 }
1901
1902 /*
1903 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1904 * which represent vma start and end addresses.
1905 */
1906 static int dname_to_vma_addr(struct dentry *dentry,
1907 unsigned long *start, unsigned long *end)
1908 {
1909 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1910 return -EINVAL;
1911
1912 return 0;
1913 }
1914
1915 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1916 {
1917 unsigned long vm_start, vm_end;
1918 bool exact_vma_exists = false;
1919 struct mm_struct *mm = NULL;
1920 struct task_struct *task;
1921 struct inode *inode;
1922 int status = 0;
1923
1924 if (flags & LOOKUP_RCU)
1925 return -ECHILD;
1926
1927 inode = d_inode(dentry);
1928 task = get_proc_task(inode);
1929 if (!task)
1930 goto out_notask;
1931
1932 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1933 if (IS_ERR_OR_NULL(mm))
1934 goto out;
1935
1936 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1937 down_read(&mm->mmap_sem);
1938 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1939 up_read(&mm->mmap_sem);
1940 }
1941
1942 mmput(mm);
1943
1944 if (exact_vma_exists) {
1945 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1946
1947 security_task_to_inode(task, inode);
1948 status = 1;
1949 }
1950
1951 out:
1952 put_task_struct(task);
1953
1954 out_notask:
1955 return status;
1956 }
1957
1958 static const struct dentry_operations tid_map_files_dentry_operations = {
1959 .d_revalidate = map_files_d_revalidate,
1960 .d_delete = pid_delete_dentry,
1961 };
1962
1963 static int map_files_get_link(struct dentry *dentry, struct path *path)
1964 {
1965 unsigned long vm_start, vm_end;
1966 struct vm_area_struct *vma;
1967 struct task_struct *task;
1968 struct mm_struct *mm;
1969 int rc;
1970
1971 rc = -ENOENT;
1972 task = get_proc_task(d_inode(dentry));
1973 if (!task)
1974 goto out;
1975
1976 mm = get_task_mm(task);
1977 put_task_struct(task);
1978 if (!mm)
1979 goto out;
1980
1981 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1982 if (rc)
1983 goto out_mmput;
1984
1985 rc = -ENOENT;
1986 down_read(&mm->mmap_sem);
1987 vma = find_exact_vma(mm, vm_start, vm_end);
1988 if (vma && vma->vm_file) {
1989 *path = vma->vm_file->f_path;
1990 path_get(path);
1991 rc = 0;
1992 }
1993 up_read(&mm->mmap_sem);
1994
1995 out_mmput:
1996 mmput(mm);
1997 out:
1998 return rc;
1999 }
2000
2001 struct map_files_info {
2002 fmode_t mode;
2003 unsigned int len;
2004 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2005 };
2006
2007 /*
2008 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2009 * symlinks may be used to bypass permissions on ancestor directories in the
2010 * path to the file in question.
2011 */
2012 static const char *
2013 proc_map_files_get_link(struct dentry *dentry,
2014 struct inode *inode,
2015 struct delayed_call *done)
2016 {
2017 if (!capable(CAP_SYS_ADMIN))
2018 return ERR_PTR(-EPERM);
2019
2020 return proc_pid_get_link(dentry, inode, done);
2021 }
2022
2023 /*
2024 * Identical to proc_pid_link_inode_operations except for get_link()
2025 */
2026 static const struct inode_operations proc_map_files_link_inode_operations = {
2027 .readlink = proc_pid_readlink,
2028 .get_link = proc_map_files_get_link,
2029 .setattr = proc_setattr,
2030 };
2031
2032 static int
2033 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2034 struct task_struct *task, const void *ptr)
2035 {
2036 fmode_t mode = (fmode_t)(unsigned long)ptr;
2037 struct proc_inode *ei;
2038 struct inode *inode;
2039
2040 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2041 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2042 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2043 if (!inode)
2044 return -ENOENT;
2045
2046 ei = PROC_I(inode);
2047 ei->op.proc_get_link = map_files_get_link;
2048
2049 inode->i_op = &proc_map_files_link_inode_operations;
2050 inode->i_size = 64;
2051
2052 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2053 d_add(dentry, inode);
2054
2055 return 0;
2056 }
2057
2058 static struct dentry *proc_map_files_lookup(struct inode *dir,
2059 struct dentry *dentry, unsigned int flags)
2060 {
2061 unsigned long vm_start, vm_end;
2062 struct vm_area_struct *vma;
2063 struct task_struct *task;
2064 int result;
2065 struct mm_struct *mm;
2066
2067 result = -ENOENT;
2068 task = get_proc_task(dir);
2069 if (!task)
2070 goto out;
2071
2072 result = -EACCES;
2073 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2074 goto out_put_task;
2075
2076 result = -ENOENT;
2077 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2078 goto out_put_task;
2079
2080 mm = get_task_mm(task);
2081 if (!mm)
2082 goto out_put_task;
2083
2084 down_read(&mm->mmap_sem);
2085 vma = find_exact_vma(mm, vm_start, vm_end);
2086 if (!vma)
2087 goto out_no_vma;
2088
2089 if (vma->vm_file)
2090 result = proc_map_files_instantiate(dir, dentry, task,
2091 (void *)(unsigned long)vma->vm_file->f_mode);
2092
2093 out_no_vma:
2094 up_read(&mm->mmap_sem);
2095 mmput(mm);
2096 out_put_task:
2097 put_task_struct(task);
2098 out:
2099 return ERR_PTR(result);
2100 }
2101
2102 static const struct inode_operations proc_map_files_inode_operations = {
2103 .lookup = proc_map_files_lookup,
2104 .permission = proc_fd_permission,
2105 .setattr = proc_setattr,
2106 };
2107
2108 static int
2109 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2110 {
2111 struct vm_area_struct *vma;
2112 struct task_struct *task;
2113 struct mm_struct *mm;
2114 unsigned long nr_files, pos, i;
2115 struct flex_array *fa = NULL;
2116 struct map_files_info info;
2117 struct map_files_info *p;
2118 int ret;
2119
2120 ret = -ENOENT;
2121 task = get_proc_task(file_inode(file));
2122 if (!task)
2123 goto out;
2124
2125 ret = -EACCES;
2126 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2127 goto out_put_task;
2128
2129 ret = 0;
2130 if (!dir_emit_dots(file, ctx))
2131 goto out_put_task;
2132
2133 mm = get_task_mm(task);
2134 if (!mm)
2135 goto out_put_task;
2136 down_read(&mm->mmap_sem);
2137
2138 nr_files = 0;
2139
2140 /*
2141 * We need two passes here:
2142 *
2143 * 1) Collect vmas of mapped files with mmap_sem taken
2144 * 2) Release mmap_sem and instantiate entries
2145 *
2146 * otherwise we get lockdep complained, since filldir()
2147 * routine might require mmap_sem taken in might_fault().
2148 */
2149
2150 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2151 if (vma->vm_file && ++pos > ctx->pos)
2152 nr_files++;
2153 }
2154
2155 if (nr_files) {
2156 fa = flex_array_alloc(sizeof(info), nr_files,
2157 GFP_KERNEL);
2158 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2159 GFP_KERNEL)) {
2160 ret = -ENOMEM;
2161 if (fa)
2162 flex_array_free(fa);
2163 up_read(&mm->mmap_sem);
2164 mmput(mm);
2165 goto out_put_task;
2166 }
2167 for (i = 0, vma = mm->mmap, pos = 2; vma;
2168 vma = vma->vm_next) {
2169 if (!vma->vm_file)
2170 continue;
2171 if (++pos <= ctx->pos)
2172 continue;
2173
2174 info.mode = vma->vm_file->f_mode;
2175 info.len = snprintf(info.name,
2176 sizeof(info.name), "%lx-%lx",
2177 vma->vm_start, vma->vm_end);
2178 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2179 BUG();
2180 }
2181 }
2182 up_read(&mm->mmap_sem);
2183
2184 for (i = 0; i < nr_files; i++) {
2185 p = flex_array_get(fa, i);
2186 if (!proc_fill_cache(file, ctx,
2187 p->name, p->len,
2188 proc_map_files_instantiate,
2189 task,
2190 (void *)(unsigned long)p->mode))
2191 break;
2192 ctx->pos++;
2193 }
2194 if (fa)
2195 flex_array_free(fa);
2196 mmput(mm);
2197
2198 out_put_task:
2199 put_task_struct(task);
2200 out:
2201 return ret;
2202 }
2203
2204 static const struct file_operations proc_map_files_operations = {
2205 .read = generic_read_dir,
2206 .iterate_shared = proc_map_files_readdir,
2207 .llseek = generic_file_llseek,
2208 };
2209
2210 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2211 struct timers_private {
2212 struct pid *pid;
2213 struct task_struct *task;
2214 struct sighand_struct *sighand;
2215 struct pid_namespace *ns;
2216 unsigned long flags;
2217 };
2218
2219 static void *timers_start(struct seq_file *m, loff_t *pos)
2220 {
2221 struct timers_private *tp = m->private;
2222
2223 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2224 if (!tp->task)
2225 return ERR_PTR(-ESRCH);
2226
2227 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2228 if (!tp->sighand)
2229 return ERR_PTR(-ESRCH);
2230
2231 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2232 }
2233
2234 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2235 {
2236 struct timers_private *tp = m->private;
2237 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2238 }
2239
2240 static void timers_stop(struct seq_file *m, void *v)
2241 {
2242 struct timers_private *tp = m->private;
2243
2244 if (tp->sighand) {
2245 unlock_task_sighand(tp->task, &tp->flags);
2246 tp->sighand = NULL;
2247 }
2248
2249 if (tp->task) {
2250 put_task_struct(tp->task);
2251 tp->task = NULL;
2252 }
2253 }
2254
2255 static int show_timer(struct seq_file *m, void *v)
2256 {
2257 struct k_itimer *timer;
2258 struct timers_private *tp = m->private;
2259 int notify;
2260 static const char * const nstr[] = {
2261 [SIGEV_SIGNAL] = "signal",
2262 [SIGEV_NONE] = "none",
2263 [SIGEV_THREAD] = "thread",
2264 };
2265
2266 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2267 notify = timer->it_sigev_notify;
2268
2269 seq_printf(m, "ID: %d\n", timer->it_id);
2270 seq_printf(m, "signal: %d/%p\n",
2271 timer->sigq->info.si_signo,
2272 timer->sigq->info.si_value.sival_ptr);
2273 seq_printf(m, "notify: %s/%s.%d\n",
2274 nstr[notify & ~SIGEV_THREAD_ID],
2275 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2276 pid_nr_ns(timer->it_pid, tp->ns));
2277 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2278
2279 return 0;
2280 }
2281
2282 static const struct seq_operations proc_timers_seq_ops = {
2283 .start = timers_start,
2284 .next = timers_next,
2285 .stop = timers_stop,
2286 .show = show_timer,
2287 };
2288
2289 static int proc_timers_open(struct inode *inode, struct file *file)
2290 {
2291 struct timers_private *tp;
2292
2293 tp = __seq_open_private(file, &proc_timers_seq_ops,
2294 sizeof(struct timers_private));
2295 if (!tp)
2296 return -ENOMEM;
2297
2298 tp->pid = proc_pid(inode);
2299 tp->ns = inode->i_sb->s_fs_info;
2300 return 0;
2301 }
2302
2303 static const struct file_operations proc_timers_operations = {
2304 .open = proc_timers_open,
2305 .read = seq_read,
2306 .llseek = seq_lseek,
2307 .release = seq_release_private,
2308 };
2309 #endif
2310
2311 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2312 size_t count, loff_t *offset)
2313 {
2314 struct inode *inode = file_inode(file);
2315 struct task_struct *p;
2316 u64 slack_ns;
2317 int err;
2318
2319 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2320 if (err < 0)
2321 return err;
2322
2323 p = get_proc_task(inode);
2324 if (!p)
2325 return -ESRCH;
2326
2327 if (p != current) {
2328 if (!capable(CAP_SYS_NICE)) {
2329 count = -EPERM;
2330 goto out;
2331 }
2332
2333 err = security_task_setscheduler(p);
2334 if (err) {
2335 count = err;
2336 goto out;
2337 }
2338 }
2339
2340 task_lock(p);
2341 if (slack_ns == 0)
2342 p->timer_slack_ns = p->default_timer_slack_ns;
2343 else
2344 p->timer_slack_ns = slack_ns;
2345 task_unlock(p);
2346
2347 out:
2348 put_task_struct(p);
2349
2350 return count;
2351 }
2352
2353 static int timerslack_ns_show(struct seq_file *m, void *v)
2354 {
2355 struct inode *inode = m->private;
2356 struct task_struct *p;
2357 int err = 0;
2358
2359 p = get_proc_task(inode);
2360 if (!p)
2361 return -ESRCH;
2362
2363 if (p != current) {
2364
2365 if (!capable(CAP_SYS_NICE)) {
2366 err = -EPERM;
2367 goto out;
2368 }
2369 err = security_task_getscheduler(p);
2370 if (err)
2371 goto out;
2372 }
2373
2374 task_lock(p);
2375 seq_printf(m, "%llu\n", p->timer_slack_ns);
2376 task_unlock(p);
2377
2378 out:
2379 put_task_struct(p);
2380
2381 return err;
2382 }
2383
2384 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2385 {
2386 return single_open(filp, timerslack_ns_show, inode);
2387 }
2388
2389 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2390 .open = timerslack_ns_open,
2391 .read = seq_read,
2392 .write = timerslack_ns_write,
2393 .llseek = seq_lseek,
2394 .release = single_release,
2395 };
2396
2397 static int proc_pident_instantiate(struct inode *dir,
2398 struct dentry *dentry, struct task_struct *task, const void *ptr)
2399 {
2400 const struct pid_entry *p = ptr;
2401 struct inode *inode;
2402 struct proc_inode *ei;
2403
2404 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2405 if (!inode)
2406 goto out;
2407
2408 ei = PROC_I(inode);
2409 if (S_ISDIR(inode->i_mode))
2410 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2411 if (p->iop)
2412 inode->i_op = p->iop;
2413 if (p->fop)
2414 inode->i_fop = p->fop;
2415 ei->op = p->op;
2416 d_set_d_op(dentry, &pid_dentry_operations);
2417 d_add(dentry, inode);
2418 /* Close the race of the process dying before we return the dentry */
2419 if (pid_revalidate(dentry, 0))
2420 return 0;
2421 out:
2422 return -ENOENT;
2423 }
2424
2425 static struct dentry *proc_pident_lookup(struct inode *dir,
2426 struct dentry *dentry,
2427 const struct pid_entry *ents,
2428 unsigned int nents)
2429 {
2430 int error;
2431 struct task_struct *task = get_proc_task(dir);
2432 const struct pid_entry *p, *last;
2433
2434 error = -ENOENT;
2435
2436 if (!task)
2437 goto out_no_task;
2438
2439 /*
2440 * Yes, it does not scale. And it should not. Don't add
2441 * new entries into /proc/<tgid>/ without very good reasons.
2442 */
2443 last = &ents[nents];
2444 for (p = ents; p < last; p++) {
2445 if (p->len != dentry->d_name.len)
2446 continue;
2447 if (!memcmp(dentry->d_name.name, p->name, p->len))
2448 break;
2449 }
2450 if (p >= last)
2451 goto out;
2452
2453 error = proc_pident_instantiate(dir, dentry, task, p);
2454 out:
2455 put_task_struct(task);
2456 out_no_task:
2457 return ERR_PTR(error);
2458 }
2459
2460 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2461 const struct pid_entry *ents, unsigned int nents)
2462 {
2463 struct task_struct *task = get_proc_task(file_inode(file));
2464 const struct pid_entry *p;
2465
2466 if (!task)
2467 return -ENOENT;
2468
2469 if (!dir_emit_dots(file, ctx))
2470 goto out;
2471
2472 if (ctx->pos >= nents + 2)
2473 goto out;
2474
2475 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2476 if (!proc_fill_cache(file, ctx, p->name, p->len,
2477 proc_pident_instantiate, task, p))
2478 break;
2479 ctx->pos++;
2480 }
2481 out:
2482 put_task_struct(task);
2483 return 0;
2484 }
2485
2486 #ifdef CONFIG_SECURITY
2487 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2488 size_t count, loff_t *ppos)
2489 {
2490 struct inode * inode = file_inode(file);
2491 char *p = NULL;
2492 ssize_t length;
2493 struct task_struct *task = get_proc_task(inode);
2494
2495 if (!task)
2496 return -ESRCH;
2497
2498 length = security_getprocattr(task,
2499 (char*)file->f_path.dentry->d_name.name,
2500 &p);
2501 put_task_struct(task);
2502 if (length > 0)
2503 length = simple_read_from_buffer(buf, count, ppos, p, length);
2504 kfree(p);
2505 return length;
2506 }
2507
2508 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2509 size_t count, loff_t *ppos)
2510 {
2511 struct inode * inode = file_inode(file);
2512 void *page;
2513 ssize_t length;
2514 struct task_struct *task = get_proc_task(inode);
2515
2516 length = -ESRCH;
2517 if (!task)
2518 goto out_no_task;
2519
2520 /* A task may only write its own attributes. */
2521 length = -EACCES;
2522 if (current != task)
2523 goto out;
2524
2525 if (count > PAGE_SIZE)
2526 count = PAGE_SIZE;
2527
2528 /* No partial writes. */
2529 length = -EINVAL;
2530 if (*ppos != 0)
2531 goto out;
2532
2533 page = memdup_user(buf, count);
2534 if (IS_ERR(page)) {
2535 length = PTR_ERR(page);
2536 goto out;
2537 }
2538
2539 /* Guard against adverse ptrace interaction */
2540 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2541 if (length < 0)
2542 goto out_free;
2543
2544 length = security_setprocattr(file->f_path.dentry->d_name.name,
2545 page, count);
2546 mutex_unlock(&current->signal->cred_guard_mutex);
2547 out_free:
2548 kfree(page);
2549 out:
2550 put_task_struct(task);
2551 out_no_task:
2552 return length;
2553 }
2554
2555 static const struct file_operations proc_pid_attr_operations = {
2556 .read = proc_pid_attr_read,
2557 .write = proc_pid_attr_write,
2558 .llseek = generic_file_llseek,
2559 };
2560
2561 static const struct pid_entry attr_dir_stuff[] = {
2562 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2563 REG("prev", S_IRUGO, proc_pid_attr_operations),
2564 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2565 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2566 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2567 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2568 };
2569
2570 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2571 {
2572 return proc_pident_readdir(file, ctx,
2573 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2574 }
2575
2576 static const struct file_operations proc_attr_dir_operations = {
2577 .read = generic_read_dir,
2578 .iterate_shared = proc_attr_dir_readdir,
2579 .llseek = generic_file_llseek,
2580 };
2581
2582 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2583 struct dentry *dentry, unsigned int flags)
2584 {
2585 return proc_pident_lookup(dir, dentry,
2586 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2587 }
2588
2589 static const struct inode_operations proc_attr_dir_inode_operations = {
2590 .lookup = proc_attr_dir_lookup,
2591 .getattr = pid_getattr,
2592 .setattr = proc_setattr,
2593 };
2594
2595 #endif
2596
2597 #ifdef CONFIG_ELF_CORE
2598 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2599 size_t count, loff_t *ppos)
2600 {
2601 struct task_struct *task = get_proc_task(file_inode(file));
2602 struct mm_struct *mm;
2603 char buffer[PROC_NUMBUF];
2604 size_t len;
2605 int ret;
2606
2607 if (!task)
2608 return -ESRCH;
2609
2610 ret = 0;
2611 mm = get_task_mm(task);
2612 if (mm) {
2613 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2614 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2615 MMF_DUMP_FILTER_SHIFT));
2616 mmput(mm);
2617 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2618 }
2619
2620 put_task_struct(task);
2621
2622 return ret;
2623 }
2624
2625 static ssize_t proc_coredump_filter_write(struct file *file,
2626 const char __user *buf,
2627 size_t count,
2628 loff_t *ppos)
2629 {
2630 struct task_struct *task;
2631 struct mm_struct *mm;
2632 unsigned int val;
2633 int ret;
2634 int i;
2635 unsigned long mask;
2636
2637 ret = kstrtouint_from_user(buf, count, 0, &val);
2638 if (ret < 0)
2639 return ret;
2640
2641 ret = -ESRCH;
2642 task = get_proc_task(file_inode(file));
2643 if (!task)
2644 goto out_no_task;
2645
2646 mm = get_task_mm(task);
2647 if (!mm)
2648 goto out_no_mm;
2649 ret = 0;
2650
2651 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2652 if (val & mask)
2653 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2654 else
2655 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2656 }
2657
2658 mmput(mm);
2659 out_no_mm:
2660 put_task_struct(task);
2661 out_no_task:
2662 if (ret < 0)
2663 return ret;
2664 return count;
2665 }
2666
2667 static const struct file_operations proc_coredump_filter_operations = {
2668 .read = proc_coredump_filter_read,
2669 .write = proc_coredump_filter_write,
2670 .llseek = generic_file_llseek,
2671 };
2672 #endif
2673
2674 #ifdef CONFIG_TASK_IO_ACCOUNTING
2675 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2676 {
2677 struct task_io_accounting acct = task->ioac;
2678 unsigned long flags;
2679 int result;
2680
2681 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2682 if (result)
2683 return result;
2684
2685 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2686 result = -EACCES;
2687 goto out_unlock;
2688 }
2689
2690 if (whole && lock_task_sighand(task, &flags)) {
2691 struct task_struct *t = task;
2692
2693 task_io_accounting_add(&acct, &task->signal->ioac);
2694 while_each_thread(task, t)
2695 task_io_accounting_add(&acct, &t->ioac);
2696
2697 unlock_task_sighand(task, &flags);
2698 }
2699 seq_printf(m,
2700 "rchar: %llu\n"
2701 "wchar: %llu\n"
2702 "syscr: %llu\n"
2703 "syscw: %llu\n"
2704 "read_bytes: %llu\n"
2705 "write_bytes: %llu\n"
2706 "cancelled_write_bytes: %llu\n",
2707 (unsigned long long)acct.rchar,
2708 (unsigned long long)acct.wchar,
2709 (unsigned long long)acct.syscr,
2710 (unsigned long long)acct.syscw,
2711 (unsigned long long)acct.read_bytes,
2712 (unsigned long long)acct.write_bytes,
2713 (unsigned long long)acct.cancelled_write_bytes);
2714 result = 0;
2715
2716 out_unlock:
2717 mutex_unlock(&task->signal->cred_guard_mutex);
2718 return result;
2719 }
2720
2721 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2722 struct pid *pid, struct task_struct *task)
2723 {
2724 return do_io_accounting(task, m, 0);
2725 }
2726
2727 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2728 struct pid *pid, struct task_struct *task)
2729 {
2730 return do_io_accounting(task, m, 1);
2731 }
2732 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2733
2734 #ifdef CONFIG_USER_NS
2735 static int proc_id_map_open(struct inode *inode, struct file *file,
2736 const struct seq_operations *seq_ops)
2737 {
2738 struct user_namespace *ns = NULL;
2739 struct task_struct *task;
2740 struct seq_file *seq;
2741 int ret = -EINVAL;
2742
2743 task = get_proc_task(inode);
2744 if (task) {
2745 rcu_read_lock();
2746 ns = get_user_ns(task_cred_xxx(task, user_ns));
2747 rcu_read_unlock();
2748 put_task_struct(task);
2749 }
2750 if (!ns)
2751 goto err;
2752
2753 ret = seq_open(file, seq_ops);
2754 if (ret)
2755 goto err_put_ns;
2756
2757 seq = file->private_data;
2758 seq->private = ns;
2759
2760 return 0;
2761 err_put_ns:
2762 put_user_ns(ns);
2763 err:
2764 return ret;
2765 }
2766
2767 static int proc_id_map_release(struct inode *inode, struct file *file)
2768 {
2769 struct seq_file *seq = file->private_data;
2770 struct user_namespace *ns = seq->private;
2771 put_user_ns(ns);
2772 return seq_release(inode, file);
2773 }
2774
2775 static int proc_uid_map_open(struct inode *inode, struct file *file)
2776 {
2777 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2778 }
2779
2780 static int proc_gid_map_open(struct inode *inode, struct file *file)
2781 {
2782 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2783 }
2784
2785 static int proc_projid_map_open(struct inode *inode, struct file *file)
2786 {
2787 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2788 }
2789
2790 static const struct file_operations proc_uid_map_operations = {
2791 .open = proc_uid_map_open,
2792 .write = proc_uid_map_write,
2793 .read = seq_read,
2794 .llseek = seq_lseek,
2795 .release = proc_id_map_release,
2796 };
2797
2798 static const struct file_operations proc_gid_map_operations = {
2799 .open = proc_gid_map_open,
2800 .write = proc_gid_map_write,
2801 .read = seq_read,
2802 .llseek = seq_lseek,
2803 .release = proc_id_map_release,
2804 };
2805
2806 static const struct file_operations proc_projid_map_operations = {
2807 .open = proc_projid_map_open,
2808 .write = proc_projid_map_write,
2809 .read = seq_read,
2810 .llseek = seq_lseek,
2811 .release = proc_id_map_release,
2812 };
2813
2814 static int proc_setgroups_open(struct inode *inode, struct file *file)
2815 {
2816 struct user_namespace *ns = NULL;
2817 struct task_struct *task;
2818 int ret;
2819
2820 ret = -ESRCH;
2821 task = get_proc_task(inode);
2822 if (task) {
2823 rcu_read_lock();
2824 ns = get_user_ns(task_cred_xxx(task, user_ns));
2825 rcu_read_unlock();
2826 put_task_struct(task);
2827 }
2828 if (!ns)
2829 goto err;
2830
2831 if (file->f_mode & FMODE_WRITE) {
2832 ret = -EACCES;
2833 if (!ns_capable(ns, CAP_SYS_ADMIN))
2834 goto err_put_ns;
2835 }
2836
2837 ret = single_open(file, &proc_setgroups_show, ns);
2838 if (ret)
2839 goto err_put_ns;
2840
2841 return 0;
2842 err_put_ns:
2843 put_user_ns(ns);
2844 err:
2845 return ret;
2846 }
2847
2848 static int proc_setgroups_release(struct inode *inode, struct file *file)
2849 {
2850 struct seq_file *seq = file->private_data;
2851 struct user_namespace *ns = seq->private;
2852 int ret = single_release(inode, file);
2853 put_user_ns(ns);
2854 return ret;
2855 }
2856
2857 static const struct file_operations proc_setgroups_operations = {
2858 .open = proc_setgroups_open,
2859 .write = proc_setgroups_write,
2860 .read = seq_read,
2861 .llseek = seq_lseek,
2862 .release = proc_setgroups_release,
2863 };
2864 #endif /* CONFIG_USER_NS */
2865
2866 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2867 struct pid *pid, struct task_struct *task)
2868 {
2869 int err = lock_trace(task);
2870 if (!err) {
2871 seq_printf(m, "%08x\n", task->personality);
2872 unlock_trace(task);
2873 }
2874 return err;
2875 }
2876
2877 #ifdef CONFIG_LIVEPATCH
2878 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2879 struct pid *pid, struct task_struct *task)
2880 {
2881 seq_printf(m, "%d\n", task->patch_state);
2882 return 0;
2883 }
2884 #endif /* CONFIG_LIVEPATCH */
2885
2886 /*
2887 * Thread groups
2888 */
2889 static const struct file_operations proc_task_operations;
2890 static const struct inode_operations proc_task_inode_operations;
2891
2892 static const struct pid_entry tgid_base_stuff[] = {
2893 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2894 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2895 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2896 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2898 #ifdef CONFIG_NET
2899 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2900 #endif
2901 REG("environ", S_IRUSR, proc_environ_operations),
2902 REG("auxv", S_IRUSR, proc_auxv_operations),
2903 ONE("status", S_IRUGO, proc_pid_status),
2904 ONE("personality", S_IRUSR, proc_pid_personality),
2905 ONE("limits", S_IRUGO, proc_pid_limits),
2906 #ifdef CONFIG_SCHED_DEBUG
2907 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2908 #endif
2909 #ifdef CONFIG_SCHED_AUTOGROUP
2910 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2911 #endif
2912 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2913 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2914 ONE("syscall", S_IRUSR, proc_pid_syscall),
2915 #endif
2916 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2917 ONE("stat", S_IRUGO, proc_tgid_stat),
2918 ONE("statm", S_IRUGO, proc_pid_statm),
2919 REG("maps", S_IRUGO, proc_pid_maps_operations),
2920 #ifdef CONFIG_NUMA
2921 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2922 #endif
2923 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2924 LNK("cwd", proc_cwd_link),
2925 LNK("root", proc_root_link),
2926 LNK("exe", proc_exe_link),
2927 REG("mounts", S_IRUGO, proc_mounts_operations),
2928 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2929 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2930 #ifdef CONFIG_PROC_PAGE_MONITOR
2931 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2932 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2933 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2934 #endif
2935 #ifdef CONFIG_SECURITY
2936 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2937 #endif
2938 #ifdef CONFIG_KALLSYMS
2939 ONE("wchan", S_IRUGO, proc_pid_wchan),
2940 #endif
2941 #ifdef CONFIG_STACKTRACE
2942 ONE("stack", S_IRUSR, proc_pid_stack),
2943 #endif
2944 #ifdef CONFIG_SCHED_INFO
2945 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2946 #endif
2947 #ifdef CONFIG_LATENCYTOP
2948 REG("latency", S_IRUGO, proc_lstats_operations),
2949 #endif
2950 #ifdef CONFIG_PROC_PID_CPUSET
2951 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2952 #endif
2953 #ifdef CONFIG_CGROUPS
2954 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2955 #endif
2956 ONE("oom_score", S_IRUGO, proc_oom_score),
2957 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2958 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2959 #ifdef CONFIG_AUDITSYSCALL
2960 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2961 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2962 #endif
2963 #ifdef CONFIG_FAULT_INJECTION
2964 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2965 REG("fail-nth", 0644, proc_fail_nth_operations),
2966 #endif
2967 #ifdef CONFIG_ELF_CORE
2968 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2969 #endif
2970 #ifdef CONFIG_TASK_IO_ACCOUNTING
2971 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2972 #endif
2973 #ifdef CONFIG_HARDWALL
2974 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2975 #endif
2976 #ifdef CONFIG_USER_NS
2977 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2978 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2979 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2980 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2981 #endif
2982 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2983 REG("timers", S_IRUGO, proc_timers_operations),
2984 #endif
2985 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2986 #ifdef CONFIG_LIVEPATCH
2987 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
2988 #endif
2989 };
2990
2991 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2992 {
2993 return proc_pident_readdir(file, ctx,
2994 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2995 }
2996
2997 static const struct file_operations proc_tgid_base_operations = {
2998 .read = generic_read_dir,
2999 .iterate_shared = proc_tgid_base_readdir,
3000 .llseek = generic_file_llseek,
3001 };
3002
3003 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3004 {
3005 return proc_pident_lookup(dir, dentry,
3006 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3007 }
3008
3009 static const struct inode_operations proc_tgid_base_inode_operations = {
3010 .lookup = proc_tgid_base_lookup,
3011 .getattr = pid_getattr,
3012 .setattr = proc_setattr,
3013 .permission = proc_pid_permission,
3014 };
3015
3016 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3017 {
3018 struct dentry *dentry, *leader, *dir;
3019 char buf[PROC_NUMBUF];
3020 struct qstr name;
3021
3022 name.name = buf;
3023 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3024 /* no ->d_hash() rejects on procfs */
3025 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3026 if (dentry) {
3027 d_invalidate(dentry);
3028 dput(dentry);
3029 }
3030
3031 if (pid == tgid)
3032 return;
3033
3034 name.name = buf;
3035 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3036 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3037 if (!leader)
3038 goto out;
3039
3040 name.name = "task";
3041 name.len = strlen(name.name);
3042 dir = d_hash_and_lookup(leader, &name);
3043 if (!dir)
3044 goto out_put_leader;
3045
3046 name.name = buf;
3047 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3048 dentry = d_hash_and_lookup(dir, &name);
3049 if (dentry) {
3050 d_invalidate(dentry);
3051 dput(dentry);
3052 }
3053
3054 dput(dir);
3055 out_put_leader:
3056 dput(leader);
3057 out:
3058 return;
3059 }
3060
3061 /**
3062 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3063 * @task: task that should be flushed.
3064 *
3065 * When flushing dentries from proc, one needs to flush them from global
3066 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3067 * in. This call is supposed to do all of this job.
3068 *
3069 * Looks in the dcache for
3070 * /proc/@pid
3071 * /proc/@tgid/task/@pid
3072 * if either directory is present flushes it and all of it'ts children
3073 * from the dcache.
3074 *
3075 * It is safe and reasonable to cache /proc entries for a task until
3076 * that task exits. After that they just clog up the dcache with
3077 * useless entries, possibly causing useful dcache entries to be
3078 * flushed instead. This routine is proved to flush those useless
3079 * dcache entries at process exit time.
3080 *
3081 * NOTE: This routine is just an optimization so it does not guarantee
3082 * that no dcache entries will exist at process exit time it
3083 * just makes it very unlikely that any will persist.
3084 */
3085
3086 void proc_flush_task(struct task_struct *task)
3087 {
3088 int i;
3089 struct pid *pid, *tgid;
3090 struct upid *upid;
3091
3092 pid = task_pid(task);
3093 tgid = task_tgid(task);
3094
3095 for (i = 0; i <= pid->level; i++) {
3096 upid = &pid->numbers[i];
3097 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3098 tgid->numbers[i].nr);
3099 }
3100 }
3101
3102 static int proc_pid_instantiate(struct inode *dir,
3103 struct dentry * dentry,
3104 struct task_struct *task, const void *ptr)
3105 {
3106 struct inode *inode;
3107
3108 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3109 if (!inode)
3110 goto out;
3111
3112 inode->i_op = &proc_tgid_base_inode_operations;
3113 inode->i_fop = &proc_tgid_base_operations;
3114 inode->i_flags|=S_IMMUTABLE;
3115
3116 set_nlink(inode, nlink_tgid);
3117
3118 d_set_d_op(dentry, &pid_dentry_operations);
3119
3120 d_add(dentry, inode);
3121 /* Close the race of the process dying before we return the dentry */
3122 if (pid_revalidate(dentry, 0))
3123 return 0;
3124 out:
3125 return -ENOENT;
3126 }
3127
3128 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3129 {
3130 int result = -ENOENT;
3131 struct task_struct *task;
3132 unsigned tgid;
3133 struct pid_namespace *ns;
3134
3135 tgid = name_to_int(&dentry->d_name);
3136 if (tgid == ~0U)
3137 goto out;
3138
3139 ns = dentry->d_sb->s_fs_info;
3140 rcu_read_lock();
3141 task = find_task_by_pid_ns(tgid, ns);
3142 if (task)
3143 get_task_struct(task);
3144 rcu_read_unlock();
3145 if (!task)
3146 goto out;
3147
3148 result = proc_pid_instantiate(dir, dentry, task, NULL);
3149 put_task_struct(task);
3150 out:
3151 return ERR_PTR(result);
3152 }
3153
3154 /*
3155 * Find the first task with tgid >= tgid
3156 *
3157 */
3158 struct tgid_iter {
3159 unsigned int tgid;
3160 struct task_struct *task;
3161 };
3162 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3163 {
3164 struct pid *pid;
3165
3166 if (iter.task)
3167 put_task_struct(iter.task);
3168 rcu_read_lock();
3169 retry:
3170 iter.task = NULL;
3171 pid = find_ge_pid(iter.tgid, ns);
3172 if (pid) {
3173 iter.tgid = pid_nr_ns(pid, ns);
3174 iter.task = pid_task(pid, PIDTYPE_PID);
3175 /* What we to know is if the pid we have find is the
3176 * pid of a thread_group_leader. Testing for task
3177 * being a thread_group_leader is the obvious thing
3178 * todo but there is a window when it fails, due to
3179 * the pid transfer logic in de_thread.
3180 *
3181 * So we perform the straight forward test of seeing
3182 * if the pid we have found is the pid of a thread
3183 * group leader, and don't worry if the task we have
3184 * found doesn't happen to be a thread group leader.
3185 * As we don't care in the case of readdir.
3186 */
3187 if (!iter.task || !has_group_leader_pid(iter.task)) {
3188 iter.tgid += 1;
3189 goto retry;
3190 }
3191 get_task_struct(iter.task);
3192 }
3193 rcu_read_unlock();
3194 return iter;
3195 }
3196
3197 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3198
3199 /* for the /proc/ directory itself, after non-process stuff has been done */
3200 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3201 {
3202 struct tgid_iter iter;
3203 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3204 loff_t pos = ctx->pos;
3205
3206 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3207 return 0;
3208
3209 if (pos == TGID_OFFSET - 2) {
3210 struct inode *inode = d_inode(ns->proc_self);
3211 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3212 return 0;
3213 ctx->pos = pos = pos + 1;
3214 }
3215 if (pos == TGID_OFFSET - 1) {
3216 struct inode *inode = d_inode(ns->proc_thread_self);
3217 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3218 return 0;
3219 ctx->pos = pos = pos + 1;
3220 }
3221 iter.tgid = pos - TGID_OFFSET;
3222 iter.task = NULL;
3223 for (iter = next_tgid(ns, iter);
3224 iter.task;
3225 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3226 char name[PROC_NUMBUF];
3227 int len;
3228
3229 cond_resched();
3230 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3231 continue;
3232
3233 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3234 ctx->pos = iter.tgid + TGID_OFFSET;
3235 if (!proc_fill_cache(file, ctx, name, len,
3236 proc_pid_instantiate, iter.task, NULL)) {
3237 put_task_struct(iter.task);
3238 return 0;
3239 }
3240 }
3241 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3242 return 0;
3243 }
3244
3245 /*
3246 * proc_tid_comm_permission is a special permission function exclusively
3247 * used for the node /proc/<pid>/task/<tid>/comm.
3248 * It bypasses generic permission checks in the case where a task of the same
3249 * task group attempts to access the node.
3250 * The rationale behind this is that glibc and bionic access this node for
3251 * cross thread naming (pthread_set/getname_np(!self)). However, if
3252 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3253 * which locks out the cross thread naming implementation.
3254 * This function makes sure that the node is always accessible for members of
3255 * same thread group.
3256 */
3257 static int proc_tid_comm_permission(struct inode *inode, int mask)
3258 {
3259 bool is_same_tgroup;
3260 struct task_struct *task;
3261
3262 task = get_proc_task(inode);
3263 if (!task)
3264 return -ESRCH;
3265 is_same_tgroup = same_thread_group(current, task);
3266 put_task_struct(task);
3267
3268 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3269 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3270 * read or written by the members of the corresponding
3271 * thread group.
3272 */
3273 return 0;
3274 }
3275
3276 return generic_permission(inode, mask);
3277 }
3278
3279 static const struct inode_operations proc_tid_comm_inode_operations = {
3280 .permission = proc_tid_comm_permission,
3281 };
3282
3283 /*
3284 * Tasks
3285 */
3286 static const struct pid_entry tid_base_stuff[] = {
3287 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3288 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3289 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3290 #ifdef CONFIG_NET
3291 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3292 #endif
3293 REG("environ", S_IRUSR, proc_environ_operations),
3294 REG("auxv", S_IRUSR, proc_auxv_operations),
3295 ONE("status", S_IRUGO, proc_pid_status),
3296 ONE("personality", S_IRUSR, proc_pid_personality),
3297 ONE("limits", S_IRUGO, proc_pid_limits),
3298 #ifdef CONFIG_SCHED_DEBUG
3299 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3300 #endif
3301 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3302 &proc_tid_comm_inode_operations,
3303 &proc_pid_set_comm_operations, {}),
3304 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3305 ONE("syscall", S_IRUSR, proc_pid_syscall),
3306 #endif
3307 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3308 ONE("stat", S_IRUGO, proc_tid_stat),
3309 ONE("statm", S_IRUGO, proc_pid_statm),
3310 REG("maps", S_IRUGO, proc_tid_maps_operations),
3311 #ifdef CONFIG_PROC_CHILDREN
3312 REG("children", S_IRUGO, proc_tid_children_operations),
3313 #endif
3314 #ifdef CONFIG_NUMA
3315 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3316 #endif
3317 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3318 LNK("cwd", proc_cwd_link),
3319 LNK("root", proc_root_link),
3320 LNK("exe", proc_exe_link),
3321 REG("mounts", S_IRUGO, proc_mounts_operations),
3322 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3323 #ifdef CONFIG_PROC_PAGE_MONITOR
3324 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3325 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3326 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3327 #endif
3328 #ifdef CONFIG_SECURITY
3329 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3330 #endif
3331 #ifdef CONFIG_KALLSYMS
3332 ONE("wchan", S_IRUGO, proc_pid_wchan),
3333 #endif
3334 #ifdef CONFIG_STACKTRACE
3335 ONE("stack", S_IRUSR, proc_pid_stack),
3336 #endif
3337 #ifdef CONFIG_SCHED_INFO
3338 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3339 #endif
3340 #ifdef CONFIG_LATENCYTOP
3341 REG("latency", S_IRUGO, proc_lstats_operations),
3342 #endif
3343 #ifdef CONFIG_PROC_PID_CPUSET
3344 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3345 #endif
3346 #ifdef CONFIG_CGROUPS
3347 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3348 #endif
3349 ONE("oom_score", S_IRUGO, proc_oom_score),
3350 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3351 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3352 #ifdef CONFIG_AUDITSYSCALL
3353 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3354 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3355 #endif
3356 #ifdef CONFIG_FAULT_INJECTION
3357 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3358 REG("fail-nth", 0644, proc_fail_nth_operations),
3359 #endif
3360 #ifdef CONFIG_TASK_IO_ACCOUNTING
3361 ONE("io", S_IRUSR, proc_tid_io_accounting),
3362 #endif
3363 #ifdef CONFIG_HARDWALL
3364 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3365 #endif
3366 #ifdef CONFIG_USER_NS
3367 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3368 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3369 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3370 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3371 #endif
3372 #ifdef CONFIG_LIVEPATCH
3373 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3374 #endif
3375 };
3376
3377 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3378 {
3379 return proc_pident_readdir(file, ctx,
3380 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3381 }
3382
3383 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3384 {
3385 return proc_pident_lookup(dir, dentry,
3386 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3387 }
3388
3389 static const struct file_operations proc_tid_base_operations = {
3390 .read = generic_read_dir,
3391 .iterate_shared = proc_tid_base_readdir,
3392 .llseek = generic_file_llseek,
3393 };
3394
3395 static const struct inode_operations proc_tid_base_inode_operations = {
3396 .lookup = proc_tid_base_lookup,
3397 .getattr = pid_getattr,
3398 .setattr = proc_setattr,
3399 };
3400
3401 static int proc_task_instantiate(struct inode *dir,
3402 struct dentry *dentry, struct task_struct *task, const void *ptr)
3403 {
3404 struct inode *inode;
3405 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3406
3407 if (!inode)
3408 goto out;
3409 inode->i_op = &proc_tid_base_inode_operations;
3410 inode->i_fop = &proc_tid_base_operations;
3411 inode->i_flags|=S_IMMUTABLE;
3412
3413 set_nlink(inode, nlink_tid);
3414
3415 d_set_d_op(dentry, &pid_dentry_operations);
3416
3417 d_add(dentry, inode);
3418 /* Close the race of the process dying before we return the dentry */
3419 if (pid_revalidate(dentry, 0))
3420 return 0;
3421 out:
3422 return -ENOENT;
3423 }
3424
3425 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3426 {
3427 int result = -ENOENT;
3428 struct task_struct *task;
3429 struct task_struct *leader = get_proc_task(dir);
3430 unsigned tid;
3431 struct pid_namespace *ns;
3432
3433 if (!leader)
3434 goto out_no_task;
3435
3436 tid = name_to_int(&dentry->d_name);
3437 if (tid == ~0U)
3438 goto out;
3439
3440 ns = dentry->d_sb->s_fs_info;
3441 rcu_read_lock();
3442 task = find_task_by_pid_ns(tid, ns);
3443 if (task)
3444 get_task_struct(task);
3445 rcu_read_unlock();
3446 if (!task)
3447 goto out;
3448 if (!same_thread_group(leader, task))
3449 goto out_drop_task;
3450
3451 result = proc_task_instantiate(dir, dentry, task, NULL);
3452 out_drop_task:
3453 put_task_struct(task);
3454 out:
3455 put_task_struct(leader);
3456 out_no_task:
3457 return ERR_PTR(result);
3458 }
3459
3460 /*
3461 * Find the first tid of a thread group to return to user space.
3462 *
3463 * Usually this is just the thread group leader, but if the users
3464 * buffer was too small or there was a seek into the middle of the
3465 * directory we have more work todo.
3466 *
3467 * In the case of a short read we start with find_task_by_pid.
3468 *
3469 * In the case of a seek we start with the leader and walk nr
3470 * threads past it.
3471 */
3472 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3473 struct pid_namespace *ns)
3474 {
3475 struct task_struct *pos, *task;
3476 unsigned long nr = f_pos;
3477
3478 if (nr != f_pos) /* 32bit overflow? */
3479 return NULL;
3480
3481 rcu_read_lock();
3482 task = pid_task(pid, PIDTYPE_PID);
3483 if (!task)
3484 goto fail;
3485
3486 /* Attempt to start with the tid of a thread */
3487 if (tid && nr) {
3488 pos = find_task_by_pid_ns(tid, ns);
3489 if (pos && same_thread_group(pos, task))
3490 goto found;
3491 }
3492
3493 /* If nr exceeds the number of threads there is nothing todo */
3494 if (nr >= get_nr_threads(task))
3495 goto fail;
3496
3497 /* If we haven't found our starting place yet start
3498 * with the leader and walk nr threads forward.
3499 */
3500 pos = task = task->group_leader;
3501 do {
3502 if (!nr--)
3503 goto found;
3504 } while_each_thread(task, pos);
3505 fail:
3506 pos = NULL;
3507 goto out;
3508 found:
3509 get_task_struct(pos);
3510 out:
3511 rcu_read_unlock();
3512 return pos;
3513 }
3514
3515 /*
3516 * Find the next thread in the thread list.
3517 * Return NULL if there is an error or no next thread.
3518 *
3519 * The reference to the input task_struct is released.
3520 */
3521 static struct task_struct *next_tid(struct task_struct *start)
3522 {
3523 struct task_struct *pos = NULL;
3524 rcu_read_lock();
3525 if (pid_alive(start)) {
3526 pos = next_thread(start);
3527 if (thread_group_leader(pos))
3528 pos = NULL;
3529 else
3530 get_task_struct(pos);
3531 }
3532 rcu_read_unlock();
3533 put_task_struct(start);
3534 return pos;
3535 }
3536
3537 /* for the /proc/TGID/task/ directories */
3538 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3539 {
3540 struct inode *inode = file_inode(file);
3541 struct task_struct *task;
3542 struct pid_namespace *ns;
3543 int tid;
3544
3545 if (proc_inode_is_dead(inode))
3546 return -ENOENT;
3547
3548 if (!dir_emit_dots(file, ctx))
3549 return 0;
3550
3551 /* f_version caches the tgid value that the last readdir call couldn't
3552 * return. lseek aka telldir automagically resets f_version to 0.
3553 */
3554 ns = inode->i_sb->s_fs_info;
3555 tid = (int)file->f_version;
3556 file->f_version = 0;
3557 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3558 task;
3559 task = next_tid(task), ctx->pos++) {
3560 char name[PROC_NUMBUF];
3561 int len;
3562 tid = task_pid_nr_ns(task, ns);
3563 len = snprintf(name, sizeof(name), "%d", tid);
3564 if (!proc_fill_cache(file, ctx, name, len,
3565 proc_task_instantiate, task, NULL)) {
3566 /* returning this tgid failed, save it as the first
3567 * pid for the next readir call */
3568 file->f_version = (u64)tid;
3569 put_task_struct(task);
3570 break;
3571 }
3572 }
3573
3574 return 0;
3575 }
3576
3577 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3578 u32 request_mask, unsigned int query_flags)
3579 {
3580 struct inode *inode = d_inode(path->dentry);
3581 struct task_struct *p = get_proc_task(inode);
3582 generic_fillattr(inode, stat);
3583
3584 if (p) {
3585 stat->nlink += get_nr_threads(p);
3586 put_task_struct(p);
3587 }
3588
3589 return 0;
3590 }
3591
3592 static const struct inode_operations proc_task_inode_operations = {
3593 .lookup = proc_task_lookup,
3594 .getattr = proc_task_getattr,
3595 .setattr = proc_setattr,
3596 .permission = proc_pid_permission,
3597 };
3598
3599 static const struct file_operations proc_task_operations = {
3600 .read = generic_read_dir,
3601 .iterate_shared = proc_task_readdir,
3602 .llseek = generic_file_llseek,
3603 };
3604
3605 void __init set_proc_pid_nlink(void)
3606 {
3607 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3608 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3609 }