]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/proc/base.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-eoan-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 size_t count, loff_t *ppos)
210 {
211 unsigned long arg_start, arg_end, env_start, env_end;
212 unsigned long pos, len;
213 char *page;
214
215 /* Check if process spawned far enough to have cmdline. */
216 if (!mm->env_end)
217 return 0;
218
219 spin_lock(&mm->arg_lock);
220 arg_start = mm->arg_start;
221 arg_end = mm->arg_end;
222 env_start = mm->env_start;
223 env_end = mm->env_end;
224 spin_unlock(&mm->arg_lock);
225
226 if (arg_start >= arg_end)
227 return 0;
228
229 /*
230 * We have traditionally allowed the user to re-write
231 * the argument strings and overflow the end result
232 * into the environment section. But only do that if
233 * the environment area is contiguous to the arguments.
234 */
235 if (env_start != arg_end || env_start >= env_end)
236 env_start = env_end = arg_end;
237
238 /* We're not going to care if "*ppos" has high bits set */
239 pos = arg_start + *ppos;
240
241 /* .. but we do check the result is in the proper range */
242 if (pos < arg_start || pos >= env_end)
243 return 0;
244
245 /* .. and we never go past env_end */
246 if (env_end - pos < count)
247 count = env_end - pos;
248
249 page = (char *)__get_free_page(GFP_KERNEL);
250 if (!page)
251 return -ENOMEM;
252
253 len = 0;
254 while (count) {
255 int got;
256 size_t size = min_t(size_t, PAGE_SIZE, count);
257
258 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
259 if (got <= 0)
260 break;
261
262 /* Don't walk past a NUL character once you hit arg_end */
263 if (pos + got >= arg_end) {
264 int n = 0;
265
266 /*
267 * If we started before 'arg_end' but ended up
268 * at or after it, we start the NUL character
269 * check at arg_end-1 (where we expect the normal
270 * EOF to be).
271 *
272 * NOTE! This is smaller than 'got', because
273 * pos + got >= arg_end
274 */
275 if (pos < arg_end)
276 n = arg_end - pos - 1;
277
278 /* Cut off at first NUL after 'n' */
279 got = n + strnlen(page+n, got-n);
280 if (!got)
281 break;
282 }
283
284 got -= copy_to_user(buf, page, got);
285 if (unlikely(!got)) {
286 if (!len)
287 len = -EFAULT;
288 break;
289 }
290 pos += got;
291 buf += got;
292 len += got;
293 count -= got;
294 }
295
296 free_page((unsigned long)page);
297 return len;
298 }
299
300 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
301 size_t count, loff_t *pos)
302 {
303 struct mm_struct *mm;
304 ssize_t ret;
305
306 mm = get_task_mm(tsk);
307 if (!mm)
308 return 0;
309
310 ret = get_mm_cmdline(mm, buf, count, pos);
311 mmput(mm);
312 return ret;
313 }
314
315 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
316 size_t count, loff_t *pos)
317 {
318 struct task_struct *tsk;
319 ssize_t ret;
320
321 BUG_ON(*pos < 0);
322
323 tsk = get_proc_task(file_inode(file));
324 if (!tsk)
325 return -ESRCH;
326 ret = get_task_cmdline(tsk, buf, count, pos);
327 put_task_struct(tsk);
328 if (ret > 0)
329 *pos += ret;
330 return ret;
331 }
332
333 static const struct file_operations proc_pid_cmdline_ops = {
334 .read = proc_pid_cmdline_read,
335 .llseek = generic_file_llseek,
336 };
337
338 #ifdef CONFIG_KALLSYMS
339 /*
340 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
341 * Returns the resolved symbol. If that fails, simply return the address.
342 */
343 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
344 struct pid *pid, struct task_struct *task)
345 {
346 unsigned long wchan;
347 char symname[KSYM_NAME_LEN];
348
349 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
350 goto print0;
351
352 wchan = get_wchan(task);
353 if (wchan && !lookup_symbol_name(wchan, symname)) {
354 seq_puts(m, symname);
355 return 0;
356 }
357
358 print0:
359 seq_putc(m, '0');
360 return 0;
361 }
362 #endif /* CONFIG_KALLSYMS */
363
364 static int lock_trace(struct task_struct *task)
365 {
366 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
367 if (err)
368 return err;
369 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
370 mutex_unlock(&task->signal->cred_guard_mutex);
371 return -EPERM;
372 }
373 return 0;
374 }
375
376 static void unlock_trace(struct task_struct *task)
377 {
378 mutex_unlock(&task->signal->cred_guard_mutex);
379 }
380
381 #ifdef CONFIG_STACKTRACE
382
383 #define MAX_STACK_TRACE_DEPTH 64
384
385 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 struct stack_trace trace;
389 unsigned long *entries;
390 int err;
391
392 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
393 GFP_KERNEL);
394 if (!entries)
395 return -ENOMEM;
396
397 trace.nr_entries = 0;
398 trace.max_entries = MAX_STACK_TRACE_DEPTH;
399 trace.entries = entries;
400 trace.skip = 0;
401
402 err = lock_trace(task);
403 if (!err) {
404 unsigned int i;
405
406 save_stack_trace_tsk(task, &trace);
407
408 for (i = 0; i < trace.nr_entries; i++) {
409 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
410 }
411 unlock_trace(task);
412 }
413 kfree(entries);
414
415 return err;
416 }
417 #endif
418
419 #ifdef CONFIG_SCHED_INFO
420 /*
421 * Provides /proc/PID/schedstat
422 */
423 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
424 struct pid *pid, struct task_struct *task)
425 {
426 if (unlikely(!sched_info_on()))
427 seq_printf(m, "0 0 0\n");
428 else
429 seq_printf(m, "%llu %llu %lu\n",
430 (unsigned long long)task->se.sum_exec_runtime,
431 (unsigned long long)task->sched_info.run_delay,
432 task->sched_info.pcount);
433
434 return 0;
435 }
436 #endif
437
438 #ifdef CONFIG_LATENCYTOP
439 static int lstats_show_proc(struct seq_file *m, void *v)
440 {
441 int i;
442 struct inode *inode = m->private;
443 struct task_struct *task = get_proc_task(inode);
444
445 if (!task)
446 return -ESRCH;
447 seq_puts(m, "Latency Top version : v0.1\n");
448 for (i = 0; i < 32; i++) {
449 struct latency_record *lr = &task->latency_record[i];
450 if (lr->backtrace[0]) {
451 int q;
452 seq_printf(m, "%i %li %li",
453 lr->count, lr->time, lr->max);
454 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
455 unsigned long bt = lr->backtrace[q];
456 if (!bt)
457 break;
458 if (bt == ULONG_MAX)
459 break;
460 seq_printf(m, " %ps", (void *)bt);
461 }
462 seq_putc(m, '\n');
463 }
464
465 }
466 put_task_struct(task);
467 return 0;
468 }
469
470 static int lstats_open(struct inode *inode, struct file *file)
471 {
472 return single_open(file, lstats_show_proc, inode);
473 }
474
475 static ssize_t lstats_write(struct file *file, const char __user *buf,
476 size_t count, loff_t *offs)
477 {
478 struct task_struct *task = get_proc_task(file_inode(file));
479
480 if (!task)
481 return -ESRCH;
482 clear_all_latency_tracing(task);
483 put_task_struct(task);
484
485 return count;
486 }
487
488 static const struct file_operations proc_lstats_operations = {
489 .open = lstats_open,
490 .read = seq_read,
491 .write = lstats_write,
492 .llseek = seq_lseek,
493 .release = single_release,
494 };
495
496 #endif
497
498 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
499 struct pid *pid, struct task_struct *task)
500 {
501 unsigned long totalpages = totalram_pages + total_swap_pages;
502 unsigned long points = 0;
503
504 points = oom_badness(task, NULL, NULL, totalpages) *
505 1000 / totalpages;
506 seq_printf(m, "%lu\n", points);
507
508 return 0;
509 }
510
511 struct limit_names {
512 const char *name;
513 const char *unit;
514 };
515
516 static const struct limit_names lnames[RLIM_NLIMITS] = {
517 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
518 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
519 [RLIMIT_DATA] = {"Max data size", "bytes"},
520 [RLIMIT_STACK] = {"Max stack size", "bytes"},
521 [RLIMIT_CORE] = {"Max core file size", "bytes"},
522 [RLIMIT_RSS] = {"Max resident set", "bytes"},
523 [RLIMIT_NPROC] = {"Max processes", "processes"},
524 [RLIMIT_NOFILE] = {"Max open files", "files"},
525 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
526 [RLIMIT_AS] = {"Max address space", "bytes"},
527 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
528 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
529 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
530 [RLIMIT_NICE] = {"Max nice priority", NULL},
531 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
532 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
533 };
534
535 /* Display limits for a process */
536 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
537 struct pid *pid, struct task_struct *task)
538 {
539 unsigned int i;
540 unsigned long flags;
541
542 struct rlimit rlim[RLIM_NLIMITS];
543
544 if (!lock_task_sighand(task, &flags))
545 return 0;
546 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
547 unlock_task_sighand(task, &flags);
548
549 /*
550 * print the file header
551 */
552 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
553 "Limit", "Soft Limit", "Hard Limit", "Units");
554
555 for (i = 0; i < RLIM_NLIMITS; i++) {
556 if (rlim[i].rlim_cur == RLIM_INFINITY)
557 seq_printf(m, "%-25s %-20s ",
558 lnames[i].name, "unlimited");
559 else
560 seq_printf(m, "%-25s %-20lu ",
561 lnames[i].name, rlim[i].rlim_cur);
562
563 if (rlim[i].rlim_max == RLIM_INFINITY)
564 seq_printf(m, "%-20s ", "unlimited");
565 else
566 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
567
568 if (lnames[i].unit)
569 seq_printf(m, "%-10s\n", lnames[i].unit);
570 else
571 seq_putc(m, '\n');
572 }
573
574 return 0;
575 }
576
577 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
578 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
579 struct pid *pid, struct task_struct *task)
580 {
581 long nr;
582 unsigned long args[6], sp, pc;
583 int res;
584
585 res = lock_trace(task);
586 if (res)
587 return res;
588
589 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
590 seq_puts(m, "running\n");
591 else if (nr < 0)
592 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
593 else
594 seq_printf(m,
595 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
596 nr,
597 args[0], args[1], args[2], args[3], args[4], args[5],
598 sp, pc);
599 unlock_trace(task);
600
601 return 0;
602 }
603 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
604
605 /************************************************************************/
606 /* Here the fs part begins */
607 /************************************************************************/
608
609 /* permission checks */
610 static int proc_fd_access_allowed(struct inode *inode)
611 {
612 struct task_struct *task;
613 int allowed = 0;
614 /* Allow access to a task's file descriptors if it is us or we
615 * may use ptrace attach to the process and find out that
616 * information.
617 */
618 task = get_proc_task(inode);
619 if (task) {
620 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
621 put_task_struct(task);
622 }
623 return allowed;
624 }
625
626 int proc_setattr(struct dentry *dentry, struct iattr *attr)
627 {
628 int error;
629 struct inode *inode = d_inode(dentry);
630
631 if (attr->ia_valid & ATTR_MODE)
632 return -EPERM;
633
634 error = setattr_prepare(dentry, attr);
635 if (error)
636 return error;
637
638 setattr_copy(inode, attr);
639 mark_inode_dirty(inode);
640 return 0;
641 }
642
643 /*
644 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
645 * or euid/egid (for hide_pid_min=2)?
646 */
647 static bool has_pid_permissions(struct pid_namespace *pid,
648 struct task_struct *task,
649 int hide_pid_min)
650 {
651 if (pid->hide_pid < hide_pid_min)
652 return true;
653 if (in_group_p(pid->pid_gid))
654 return true;
655 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
656 }
657
658
659 static int proc_pid_permission(struct inode *inode, int mask)
660 {
661 struct pid_namespace *pid = proc_pid_ns(inode);
662 struct task_struct *task;
663 bool has_perms;
664
665 task = get_proc_task(inode);
666 if (!task)
667 return -ESRCH;
668 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
669 put_task_struct(task);
670
671 if (!has_perms) {
672 if (pid->hide_pid == HIDEPID_INVISIBLE) {
673 /*
674 * Let's make getdents(), stat(), and open()
675 * consistent with each other. If a process
676 * may not stat() a file, it shouldn't be seen
677 * in procfs at all.
678 */
679 return -ENOENT;
680 }
681
682 return -EPERM;
683 }
684 return generic_permission(inode, mask);
685 }
686
687
688
689 static const struct inode_operations proc_def_inode_operations = {
690 .setattr = proc_setattr,
691 };
692
693 static int proc_single_show(struct seq_file *m, void *v)
694 {
695 struct inode *inode = m->private;
696 struct pid_namespace *ns = proc_pid_ns(inode);
697 struct pid *pid = proc_pid(inode);
698 struct task_struct *task;
699 int ret;
700
701 task = get_pid_task(pid, PIDTYPE_PID);
702 if (!task)
703 return -ESRCH;
704
705 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
706
707 put_task_struct(task);
708 return ret;
709 }
710
711 static int proc_single_open(struct inode *inode, struct file *filp)
712 {
713 return single_open(filp, proc_single_show, inode);
714 }
715
716 static const struct file_operations proc_single_file_operations = {
717 .open = proc_single_open,
718 .read = seq_read,
719 .llseek = seq_lseek,
720 .release = single_release,
721 };
722
723
724 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
725 {
726 struct task_struct *task = get_proc_task(inode);
727 struct mm_struct *mm = ERR_PTR(-ESRCH);
728
729 if (task) {
730 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
731 put_task_struct(task);
732
733 if (!IS_ERR_OR_NULL(mm)) {
734 /* ensure this mm_struct can't be freed */
735 mmgrab(mm);
736 /* but do not pin its memory */
737 mmput(mm);
738 }
739 }
740
741 return mm;
742 }
743
744 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
745 {
746 struct mm_struct *mm = proc_mem_open(inode, mode);
747
748 if (IS_ERR(mm))
749 return PTR_ERR(mm);
750
751 file->private_data = mm;
752 return 0;
753 }
754
755 static int mem_open(struct inode *inode, struct file *file)
756 {
757 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
758
759 /* OK to pass negative loff_t, we can catch out-of-range */
760 file->f_mode |= FMODE_UNSIGNED_OFFSET;
761
762 return ret;
763 }
764
765 static ssize_t mem_rw(struct file *file, char __user *buf,
766 size_t count, loff_t *ppos, int write)
767 {
768 struct mm_struct *mm = file->private_data;
769 unsigned long addr = *ppos;
770 ssize_t copied;
771 char *page;
772 unsigned int flags;
773
774 if (!mm)
775 return 0;
776
777 page = (char *)__get_free_page(GFP_KERNEL);
778 if (!page)
779 return -ENOMEM;
780
781 copied = 0;
782 if (!mmget_not_zero(mm))
783 goto free;
784
785 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
786
787 while (count > 0) {
788 int this_len = min_t(int, count, PAGE_SIZE);
789
790 if (write && copy_from_user(page, buf, this_len)) {
791 copied = -EFAULT;
792 break;
793 }
794
795 this_len = access_remote_vm(mm, addr, page, this_len, flags);
796 if (!this_len) {
797 if (!copied)
798 copied = -EIO;
799 break;
800 }
801
802 if (!write && copy_to_user(buf, page, this_len)) {
803 copied = -EFAULT;
804 break;
805 }
806
807 buf += this_len;
808 addr += this_len;
809 copied += this_len;
810 count -= this_len;
811 }
812 *ppos = addr;
813
814 mmput(mm);
815 free:
816 free_page((unsigned long) page);
817 return copied;
818 }
819
820 static ssize_t mem_read(struct file *file, char __user *buf,
821 size_t count, loff_t *ppos)
822 {
823 return mem_rw(file, buf, count, ppos, 0);
824 }
825
826 static ssize_t mem_write(struct file *file, const char __user *buf,
827 size_t count, loff_t *ppos)
828 {
829 return mem_rw(file, (char __user*)buf, count, ppos, 1);
830 }
831
832 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
833 {
834 switch (orig) {
835 case 0:
836 file->f_pos = offset;
837 break;
838 case 1:
839 file->f_pos += offset;
840 break;
841 default:
842 return -EINVAL;
843 }
844 force_successful_syscall_return();
845 return file->f_pos;
846 }
847
848 static int mem_release(struct inode *inode, struct file *file)
849 {
850 struct mm_struct *mm = file->private_data;
851 if (mm)
852 mmdrop(mm);
853 return 0;
854 }
855
856 static const struct file_operations proc_mem_operations = {
857 .llseek = mem_lseek,
858 .read = mem_read,
859 .write = mem_write,
860 .open = mem_open,
861 .release = mem_release,
862 };
863
864 static int environ_open(struct inode *inode, struct file *file)
865 {
866 return __mem_open(inode, file, PTRACE_MODE_READ);
867 }
868
869 static ssize_t environ_read(struct file *file, char __user *buf,
870 size_t count, loff_t *ppos)
871 {
872 char *page;
873 unsigned long src = *ppos;
874 int ret = 0;
875 struct mm_struct *mm = file->private_data;
876 unsigned long env_start, env_end;
877
878 /* Ensure the process spawned far enough to have an environment. */
879 if (!mm || !mm->env_end)
880 return 0;
881
882 page = (char *)__get_free_page(GFP_KERNEL);
883 if (!page)
884 return -ENOMEM;
885
886 ret = 0;
887 if (!mmget_not_zero(mm))
888 goto free;
889
890 spin_lock(&mm->arg_lock);
891 env_start = mm->env_start;
892 env_end = mm->env_end;
893 spin_unlock(&mm->arg_lock);
894
895 while (count > 0) {
896 size_t this_len, max_len;
897 int retval;
898
899 if (src >= (env_end - env_start))
900 break;
901
902 this_len = env_end - (env_start + src);
903
904 max_len = min_t(size_t, PAGE_SIZE, count);
905 this_len = min(max_len, this_len);
906
907 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
908
909 if (retval <= 0) {
910 ret = retval;
911 break;
912 }
913
914 if (copy_to_user(buf, page, retval)) {
915 ret = -EFAULT;
916 break;
917 }
918
919 ret += retval;
920 src += retval;
921 buf += retval;
922 count -= retval;
923 }
924 *ppos = src;
925 mmput(mm);
926
927 free:
928 free_page((unsigned long) page);
929 return ret;
930 }
931
932 static const struct file_operations proc_environ_operations = {
933 .open = environ_open,
934 .read = environ_read,
935 .llseek = generic_file_llseek,
936 .release = mem_release,
937 };
938
939 static int auxv_open(struct inode *inode, struct file *file)
940 {
941 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
942 }
943
944 static ssize_t auxv_read(struct file *file, char __user *buf,
945 size_t count, loff_t *ppos)
946 {
947 struct mm_struct *mm = file->private_data;
948 unsigned int nwords = 0;
949
950 if (!mm)
951 return 0;
952 do {
953 nwords += 2;
954 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
955 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
956 nwords * sizeof(mm->saved_auxv[0]));
957 }
958
959 static const struct file_operations proc_auxv_operations = {
960 .open = auxv_open,
961 .read = auxv_read,
962 .llseek = generic_file_llseek,
963 .release = mem_release,
964 };
965
966 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
967 loff_t *ppos)
968 {
969 struct task_struct *task = get_proc_task(file_inode(file));
970 char buffer[PROC_NUMBUF];
971 int oom_adj = OOM_ADJUST_MIN;
972 size_t len;
973
974 if (!task)
975 return -ESRCH;
976 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
977 oom_adj = OOM_ADJUST_MAX;
978 else
979 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
980 OOM_SCORE_ADJ_MAX;
981 put_task_struct(task);
982 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
983 return simple_read_from_buffer(buf, count, ppos, buffer, len);
984 }
985
986 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
987 {
988 static DEFINE_MUTEX(oom_adj_mutex);
989 struct mm_struct *mm = NULL;
990 struct task_struct *task;
991 int err = 0;
992
993 task = get_proc_task(file_inode(file));
994 if (!task)
995 return -ESRCH;
996
997 mutex_lock(&oom_adj_mutex);
998 if (legacy) {
999 if (oom_adj < task->signal->oom_score_adj &&
1000 !capable(CAP_SYS_RESOURCE)) {
1001 err = -EACCES;
1002 goto err_unlock;
1003 }
1004 /*
1005 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1006 * /proc/pid/oom_score_adj instead.
1007 */
1008 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1009 current->comm, task_pid_nr(current), task_pid_nr(task),
1010 task_pid_nr(task));
1011 } else {
1012 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1013 !capable(CAP_SYS_RESOURCE)) {
1014 err = -EACCES;
1015 goto err_unlock;
1016 }
1017 }
1018
1019 /*
1020 * Make sure we will check other processes sharing the mm if this is
1021 * not vfrok which wants its own oom_score_adj.
1022 * pin the mm so it doesn't go away and get reused after task_unlock
1023 */
1024 if (!task->vfork_done) {
1025 struct task_struct *p = find_lock_task_mm(task);
1026
1027 if (p) {
1028 if (atomic_read(&p->mm->mm_users) > 1) {
1029 mm = p->mm;
1030 mmgrab(mm);
1031 }
1032 task_unlock(p);
1033 }
1034 }
1035
1036 task->signal->oom_score_adj = oom_adj;
1037 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1038 task->signal->oom_score_adj_min = (short)oom_adj;
1039 trace_oom_score_adj_update(task);
1040
1041 if (mm) {
1042 struct task_struct *p;
1043
1044 rcu_read_lock();
1045 for_each_process(p) {
1046 if (same_thread_group(task, p))
1047 continue;
1048
1049 /* do not touch kernel threads or the global init */
1050 if (p->flags & PF_KTHREAD || is_global_init(p))
1051 continue;
1052
1053 task_lock(p);
1054 if (!p->vfork_done && process_shares_mm(p, mm)) {
1055 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1056 task_pid_nr(p), p->comm,
1057 p->signal->oom_score_adj, oom_adj,
1058 task_pid_nr(task), task->comm);
1059 p->signal->oom_score_adj = oom_adj;
1060 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1061 p->signal->oom_score_adj_min = (short)oom_adj;
1062 }
1063 task_unlock(p);
1064 }
1065 rcu_read_unlock();
1066 mmdrop(mm);
1067 }
1068 err_unlock:
1069 mutex_unlock(&oom_adj_mutex);
1070 put_task_struct(task);
1071 return err;
1072 }
1073
1074 /*
1075 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1076 * kernels. The effective policy is defined by oom_score_adj, which has a
1077 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1078 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1079 * Processes that become oom disabled via oom_adj will still be oom disabled
1080 * with this implementation.
1081 *
1082 * oom_adj cannot be removed since existing userspace binaries use it.
1083 */
1084 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1085 size_t count, loff_t *ppos)
1086 {
1087 char buffer[PROC_NUMBUF];
1088 int oom_adj;
1089 int err;
1090
1091 memset(buffer, 0, sizeof(buffer));
1092 if (count > sizeof(buffer) - 1)
1093 count = sizeof(buffer) - 1;
1094 if (copy_from_user(buffer, buf, count)) {
1095 err = -EFAULT;
1096 goto out;
1097 }
1098
1099 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1100 if (err)
1101 goto out;
1102 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1103 oom_adj != OOM_DISABLE) {
1104 err = -EINVAL;
1105 goto out;
1106 }
1107
1108 /*
1109 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1110 * value is always attainable.
1111 */
1112 if (oom_adj == OOM_ADJUST_MAX)
1113 oom_adj = OOM_SCORE_ADJ_MAX;
1114 else
1115 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1116
1117 err = __set_oom_adj(file, oom_adj, true);
1118 out:
1119 return err < 0 ? err : count;
1120 }
1121
1122 static const struct file_operations proc_oom_adj_operations = {
1123 .read = oom_adj_read,
1124 .write = oom_adj_write,
1125 .llseek = generic_file_llseek,
1126 };
1127
1128 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1129 size_t count, loff_t *ppos)
1130 {
1131 struct task_struct *task = get_proc_task(file_inode(file));
1132 char buffer[PROC_NUMBUF];
1133 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1134 size_t len;
1135
1136 if (!task)
1137 return -ESRCH;
1138 oom_score_adj = task->signal->oom_score_adj;
1139 put_task_struct(task);
1140 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1141 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1142 }
1143
1144 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1145 size_t count, loff_t *ppos)
1146 {
1147 char buffer[PROC_NUMBUF];
1148 int oom_score_adj;
1149 int err;
1150
1151 memset(buffer, 0, sizeof(buffer));
1152 if (count > sizeof(buffer) - 1)
1153 count = sizeof(buffer) - 1;
1154 if (copy_from_user(buffer, buf, count)) {
1155 err = -EFAULT;
1156 goto out;
1157 }
1158
1159 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1160 if (err)
1161 goto out;
1162 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1163 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1164 err = -EINVAL;
1165 goto out;
1166 }
1167
1168 err = __set_oom_adj(file, oom_score_adj, false);
1169 out:
1170 return err < 0 ? err : count;
1171 }
1172
1173 static const struct file_operations proc_oom_score_adj_operations = {
1174 .read = oom_score_adj_read,
1175 .write = oom_score_adj_write,
1176 .llseek = default_llseek,
1177 };
1178
1179 #ifdef CONFIG_AUDITSYSCALL
1180 #define TMPBUFLEN 11
1181 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1182 size_t count, loff_t *ppos)
1183 {
1184 struct inode * inode = file_inode(file);
1185 struct task_struct *task = get_proc_task(inode);
1186 ssize_t length;
1187 char tmpbuf[TMPBUFLEN];
1188
1189 if (!task)
1190 return -ESRCH;
1191 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1192 from_kuid(file->f_cred->user_ns,
1193 audit_get_loginuid(task)));
1194 put_task_struct(task);
1195 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1196 }
1197
1198 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1199 size_t count, loff_t *ppos)
1200 {
1201 struct inode * inode = file_inode(file);
1202 uid_t loginuid;
1203 kuid_t kloginuid;
1204 int rv;
1205
1206 rcu_read_lock();
1207 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1208 rcu_read_unlock();
1209 return -EPERM;
1210 }
1211 rcu_read_unlock();
1212
1213 if (*ppos != 0) {
1214 /* No partial writes. */
1215 return -EINVAL;
1216 }
1217
1218 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1219 if (rv < 0)
1220 return rv;
1221
1222 /* is userspace tring to explicitly UNSET the loginuid? */
1223 if (loginuid == AUDIT_UID_UNSET) {
1224 kloginuid = INVALID_UID;
1225 } else {
1226 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1227 if (!uid_valid(kloginuid))
1228 return -EINVAL;
1229 }
1230
1231 rv = audit_set_loginuid(kloginuid);
1232 if (rv < 0)
1233 return rv;
1234 return count;
1235 }
1236
1237 static const struct file_operations proc_loginuid_operations = {
1238 .read = proc_loginuid_read,
1239 .write = proc_loginuid_write,
1240 .llseek = generic_file_llseek,
1241 };
1242
1243 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1244 size_t count, loff_t *ppos)
1245 {
1246 struct inode * inode = file_inode(file);
1247 struct task_struct *task = get_proc_task(inode);
1248 ssize_t length;
1249 char tmpbuf[TMPBUFLEN];
1250
1251 if (!task)
1252 return -ESRCH;
1253 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1254 audit_get_sessionid(task));
1255 put_task_struct(task);
1256 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1257 }
1258
1259 static const struct file_operations proc_sessionid_operations = {
1260 .read = proc_sessionid_read,
1261 .llseek = generic_file_llseek,
1262 };
1263 #endif
1264
1265 #ifdef CONFIG_FAULT_INJECTION
1266 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1267 size_t count, loff_t *ppos)
1268 {
1269 struct task_struct *task = get_proc_task(file_inode(file));
1270 char buffer[PROC_NUMBUF];
1271 size_t len;
1272 int make_it_fail;
1273
1274 if (!task)
1275 return -ESRCH;
1276 make_it_fail = task->make_it_fail;
1277 put_task_struct(task);
1278
1279 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1280
1281 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1282 }
1283
1284 static ssize_t proc_fault_inject_write(struct file * file,
1285 const char __user * buf, size_t count, loff_t *ppos)
1286 {
1287 struct task_struct *task;
1288 char buffer[PROC_NUMBUF];
1289 int make_it_fail;
1290 int rv;
1291
1292 if (!capable(CAP_SYS_RESOURCE))
1293 return -EPERM;
1294 memset(buffer, 0, sizeof(buffer));
1295 if (count > sizeof(buffer) - 1)
1296 count = sizeof(buffer) - 1;
1297 if (copy_from_user(buffer, buf, count))
1298 return -EFAULT;
1299 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1300 if (rv < 0)
1301 return rv;
1302 if (make_it_fail < 0 || make_it_fail > 1)
1303 return -EINVAL;
1304
1305 task = get_proc_task(file_inode(file));
1306 if (!task)
1307 return -ESRCH;
1308 task->make_it_fail = make_it_fail;
1309 put_task_struct(task);
1310
1311 return count;
1312 }
1313
1314 static const struct file_operations proc_fault_inject_operations = {
1315 .read = proc_fault_inject_read,
1316 .write = proc_fault_inject_write,
1317 .llseek = generic_file_llseek,
1318 };
1319
1320 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1321 size_t count, loff_t *ppos)
1322 {
1323 struct task_struct *task;
1324 int err;
1325 unsigned int n;
1326
1327 err = kstrtouint_from_user(buf, count, 0, &n);
1328 if (err)
1329 return err;
1330
1331 task = get_proc_task(file_inode(file));
1332 if (!task)
1333 return -ESRCH;
1334 task->fail_nth = n;
1335 put_task_struct(task);
1336
1337 return count;
1338 }
1339
1340 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1341 size_t count, loff_t *ppos)
1342 {
1343 struct task_struct *task;
1344 char numbuf[PROC_NUMBUF];
1345 ssize_t len;
1346
1347 task = get_proc_task(file_inode(file));
1348 if (!task)
1349 return -ESRCH;
1350 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1351 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1352 put_task_struct(task);
1353
1354 return len;
1355 }
1356
1357 static const struct file_operations proc_fail_nth_operations = {
1358 .read = proc_fail_nth_read,
1359 .write = proc_fail_nth_write,
1360 };
1361 #endif
1362
1363
1364 #ifdef CONFIG_SCHED_DEBUG
1365 /*
1366 * Print out various scheduling related per-task fields:
1367 */
1368 static int sched_show(struct seq_file *m, void *v)
1369 {
1370 struct inode *inode = m->private;
1371 struct pid_namespace *ns = proc_pid_ns(inode);
1372 struct task_struct *p;
1373
1374 p = get_proc_task(inode);
1375 if (!p)
1376 return -ESRCH;
1377 proc_sched_show_task(p, ns, m);
1378
1379 put_task_struct(p);
1380
1381 return 0;
1382 }
1383
1384 static ssize_t
1385 sched_write(struct file *file, const char __user *buf,
1386 size_t count, loff_t *offset)
1387 {
1388 struct inode *inode = file_inode(file);
1389 struct task_struct *p;
1390
1391 p = get_proc_task(inode);
1392 if (!p)
1393 return -ESRCH;
1394 proc_sched_set_task(p);
1395
1396 put_task_struct(p);
1397
1398 return count;
1399 }
1400
1401 static int sched_open(struct inode *inode, struct file *filp)
1402 {
1403 return single_open(filp, sched_show, inode);
1404 }
1405
1406 static const struct file_operations proc_pid_sched_operations = {
1407 .open = sched_open,
1408 .read = seq_read,
1409 .write = sched_write,
1410 .llseek = seq_lseek,
1411 .release = single_release,
1412 };
1413
1414 #endif
1415
1416 #ifdef CONFIG_SCHED_AUTOGROUP
1417 /*
1418 * Print out autogroup related information:
1419 */
1420 static int sched_autogroup_show(struct seq_file *m, void *v)
1421 {
1422 struct inode *inode = m->private;
1423 struct task_struct *p;
1424
1425 p = get_proc_task(inode);
1426 if (!p)
1427 return -ESRCH;
1428 proc_sched_autogroup_show_task(p, m);
1429
1430 put_task_struct(p);
1431
1432 return 0;
1433 }
1434
1435 static ssize_t
1436 sched_autogroup_write(struct file *file, const char __user *buf,
1437 size_t count, loff_t *offset)
1438 {
1439 struct inode *inode = file_inode(file);
1440 struct task_struct *p;
1441 char buffer[PROC_NUMBUF];
1442 int nice;
1443 int err;
1444
1445 memset(buffer, 0, sizeof(buffer));
1446 if (count > sizeof(buffer) - 1)
1447 count = sizeof(buffer) - 1;
1448 if (copy_from_user(buffer, buf, count))
1449 return -EFAULT;
1450
1451 err = kstrtoint(strstrip(buffer), 0, &nice);
1452 if (err < 0)
1453 return err;
1454
1455 p = get_proc_task(inode);
1456 if (!p)
1457 return -ESRCH;
1458
1459 err = proc_sched_autogroup_set_nice(p, nice);
1460 if (err)
1461 count = err;
1462
1463 put_task_struct(p);
1464
1465 return count;
1466 }
1467
1468 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1469 {
1470 int ret;
1471
1472 ret = single_open(filp, sched_autogroup_show, NULL);
1473 if (!ret) {
1474 struct seq_file *m = filp->private_data;
1475
1476 m->private = inode;
1477 }
1478 return ret;
1479 }
1480
1481 static const struct file_operations proc_pid_sched_autogroup_operations = {
1482 .open = sched_autogroup_open,
1483 .read = seq_read,
1484 .write = sched_autogroup_write,
1485 .llseek = seq_lseek,
1486 .release = single_release,
1487 };
1488
1489 #endif /* CONFIG_SCHED_AUTOGROUP */
1490
1491 static ssize_t comm_write(struct file *file, const char __user *buf,
1492 size_t count, loff_t *offset)
1493 {
1494 struct inode *inode = file_inode(file);
1495 struct task_struct *p;
1496 char buffer[TASK_COMM_LEN];
1497 const size_t maxlen = sizeof(buffer) - 1;
1498
1499 memset(buffer, 0, sizeof(buffer));
1500 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1501 return -EFAULT;
1502
1503 p = get_proc_task(inode);
1504 if (!p)
1505 return -ESRCH;
1506
1507 if (same_thread_group(current, p))
1508 set_task_comm(p, buffer);
1509 else
1510 count = -EINVAL;
1511
1512 put_task_struct(p);
1513
1514 return count;
1515 }
1516
1517 static int comm_show(struct seq_file *m, void *v)
1518 {
1519 struct inode *inode = m->private;
1520 struct task_struct *p;
1521
1522 p = get_proc_task(inode);
1523 if (!p)
1524 return -ESRCH;
1525
1526 proc_task_name(m, p, false);
1527 seq_putc(m, '\n');
1528
1529 put_task_struct(p);
1530
1531 return 0;
1532 }
1533
1534 static int comm_open(struct inode *inode, struct file *filp)
1535 {
1536 return single_open(filp, comm_show, inode);
1537 }
1538
1539 static const struct file_operations proc_pid_set_comm_operations = {
1540 .open = comm_open,
1541 .read = seq_read,
1542 .write = comm_write,
1543 .llseek = seq_lseek,
1544 .release = single_release,
1545 };
1546
1547 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1548 {
1549 struct task_struct *task;
1550 struct file *exe_file;
1551
1552 task = get_proc_task(d_inode(dentry));
1553 if (!task)
1554 return -ENOENT;
1555 exe_file = get_task_exe_file(task);
1556 put_task_struct(task);
1557 if (exe_file) {
1558 *exe_path = exe_file->f_path;
1559 path_get(&exe_file->f_path);
1560 fput(exe_file);
1561 return 0;
1562 } else
1563 return -ENOENT;
1564 }
1565
1566 static const char *proc_pid_get_link(struct dentry *dentry,
1567 struct inode *inode,
1568 struct delayed_call *done)
1569 {
1570 struct path path;
1571 int error = -EACCES;
1572
1573 if (!dentry)
1574 return ERR_PTR(-ECHILD);
1575
1576 /* Are we allowed to snoop on the tasks file descriptors? */
1577 if (!proc_fd_access_allowed(inode))
1578 goto out;
1579
1580 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1581 if (error)
1582 goto out;
1583
1584 nd_jump_link(&path);
1585 return NULL;
1586 out:
1587 return ERR_PTR(error);
1588 }
1589
1590 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1591 {
1592 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1593 char *pathname;
1594 int len;
1595
1596 if (!tmp)
1597 return -ENOMEM;
1598
1599 pathname = d_path(path, tmp, PAGE_SIZE);
1600 len = PTR_ERR(pathname);
1601 if (IS_ERR(pathname))
1602 goto out;
1603 len = tmp + PAGE_SIZE - 1 - pathname;
1604
1605 if (len > buflen)
1606 len = buflen;
1607 if (copy_to_user(buffer, pathname, len))
1608 len = -EFAULT;
1609 out:
1610 free_page((unsigned long)tmp);
1611 return len;
1612 }
1613
1614 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1615 {
1616 int error = -EACCES;
1617 struct inode *inode = d_inode(dentry);
1618 struct path path;
1619
1620 /* Are we allowed to snoop on the tasks file descriptors? */
1621 if (!proc_fd_access_allowed(inode))
1622 goto out;
1623
1624 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1625 if (error)
1626 goto out;
1627
1628 error = do_proc_readlink(&path, buffer, buflen);
1629 path_put(&path);
1630 out:
1631 return error;
1632 }
1633
1634 const struct inode_operations proc_pid_link_inode_operations = {
1635 .readlink = proc_pid_readlink,
1636 .get_link = proc_pid_get_link,
1637 .setattr = proc_setattr,
1638 };
1639
1640
1641 /* building an inode */
1642
1643 void task_dump_owner(struct task_struct *task, umode_t mode,
1644 kuid_t *ruid, kgid_t *rgid)
1645 {
1646 /* Depending on the state of dumpable compute who should own a
1647 * proc file for a task.
1648 */
1649 const struct cred *cred;
1650 kuid_t uid;
1651 kgid_t gid;
1652
1653 if (unlikely(task->flags & PF_KTHREAD)) {
1654 *ruid = GLOBAL_ROOT_UID;
1655 *rgid = GLOBAL_ROOT_GID;
1656 return;
1657 }
1658
1659 /* Default to the tasks effective ownership */
1660 rcu_read_lock();
1661 cred = __task_cred(task);
1662 uid = cred->euid;
1663 gid = cred->egid;
1664 rcu_read_unlock();
1665
1666 /*
1667 * Before the /proc/pid/status file was created the only way to read
1668 * the effective uid of a /process was to stat /proc/pid. Reading
1669 * /proc/pid/status is slow enough that procps and other packages
1670 * kept stating /proc/pid. To keep the rules in /proc simple I have
1671 * made this apply to all per process world readable and executable
1672 * directories.
1673 */
1674 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1675 struct mm_struct *mm;
1676 task_lock(task);
1677 mm = task->mm;
1678 /* Make non-dumpable tasks owned by some root */
1679 if (mm) {
1680 if (get_dumpable(mm) != SUID_DUMP_USER) {
1681 struct user_namespace *user_ns = mm->user_ns;
1682
1683 uid = make_kuid(user_ns, 0);
1684 if (!uid_valid(uid))
1685 uid = GLOBAL_ROOT_UID;
1686
1687 gid = make_kgid(user_ns, 0);
1688 if (!gid_valid(gid))
1689 gid = GLOBAL_ROOT_GID;
1690 }
1691 } else {
1692 uid = GLOBAL_ROOT_UID;
1693 gid = GLOBAL_ROOT_GID;
1694 }
1695 task_unlock(task);
1696 }
1697 *ruid = uid;
1698 *rgid = gid;
1699 }
1700
1701 struct inode *proc_pid_make_inode(struct super_block * sb,
1702 struct task_struct *task, umode_t mode)
1703 {
1704 struct inode * inode;
1705 struct proc_inode *ei;
1706
1707 /* We need a new inode */
1708
1709 inode = new_inode(sb);
1710 if (!inode)
1711 goto out;
1712
1713 /* Common stuff */
1714 ei = PROC_I(inode);
1715 inode->i_mode = mode;
1716 inode->i_ino = get_next_ino();
1717 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1718 inode->i_op = &proc_def_inode_operations;
1719
1720 /*
1721 * grab the reference to task.
1722 */
1723 ei->pid = get_task_pid(task, PIDTYPE_PID);
1724 if (!ei->pid)
1725 goto out_unlock;
1726
1727 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1728 security_task_to_inode(task, inode);
1729
1730 out:
1731 return inode;
1732
1733 out_unlock:
1734 iput(inode);
1735 return NULL;
1736 }
1737
1738 int pid_getattr(const struct path *path, struct kstat *stat,
1739 u32 request_mask, unsigned int query_flags)
1740 {
1741 struct inode *inode = d_inode(path->dentry);
1742 struct pid_namespace *pid = proc_pid_ns(inode);
1743 struct task_struct *task;
1744
1745 generic_fillattr(inode, stat);
1746
1747 stat->uid = GLOBAL_ROOT_UID;
1748 stat->gid = GLOBAL_ROOT_GID;
1749 rcu_read_lock();
1750 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1751 if (task) {
1752 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1753 rcu_read_unlock();
1754 /*
1755 * This doesn't prevent learning whether PID exists,
1756 * it only makes getattr() consistent with readdir().
1757 */
1758 return -ENOENT;
1759 }
1760 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1761 }
1762 rcu_read_unlock();
1763 return 0;
1764 }
1765
1766 /* dentry stuff */
1767
1768 /*
1769 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1770 */
1771 void pid_update_inode(struct task_struct *task, struct inode *inode)
1772 {
1773 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1774
1775 inode->i_mode &= ~(S_ISUID | S_ISGID);
1776 security_task_to_inode(task, inode);
1777 }
1778
1779 /*
1780 * Rewrite the inode's ownerships here because the owning task may have
1781 * performed a setuid(), etc.
1782 *
1783 */
1784 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1785 {
1786 struct inode *inode;
1787 struct task_struct *task;
1788
1789 if (flags & LOOKUP_RCU)
1790 return -ECHILD;
1791
1792 inode = d_inode(dentry);
1793 task = get_proc_task(inode);
1794
1795 if (task) {
1796 pid_update_inode(task, inode);
1797 put_task_struct(task);
1798 return 1;
1799 }
1800 return 0;
1801 }
1802
1803 static inline bool proc_inode_is_dead(struct inode *inode)
1804 {
1805 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1806 }
1807
1808 int pid_delete_dentry(const struct dentry *dentry)
1809 {
1810 /* Is the task we represent dead?
1811 * If so, then don't put the dentry on the lru list,
1812 * kill it immediately.
1813 */
1814 return proc_inode_is_dead(d_inode(dentry));
1815 }
1816
1817 const struct dentry_operations pid_dentry_operations =
1818 {
1819 .d_revalidate = pid_revalidate,
1820 .d_delete = pid_delete_dentry,
1821 };
1822
1823 /* Lookups */
1824
1825 /*
1826 * Fill a directory entry.
1827 *
1828 * If possible create the dcache entry and derive our inode number and
1829 * file type from dcache entry.
1830 *
1831 * Since all of the proc inode numbers are dynamically generated, the inode
1832 * numbers do not exist until the inode is cache. This means creating the
1833 * the dcache entry in readdir is necessary to keep the inode numbers
1834 * reported by readdir in sync with the inode numbers reported
1835 * by stat.
1836 */
1837 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1838 const char *name, unsigned int len,
1839 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1840 {
1841 struct dentry *child, *dir = file->f_path.dentry;
1842 struct qstr qname = QSTR_INIT(name, len);
1843 struct inode *inode;
1844 unsigned type = DT_UNKNOWN;
1845 ino_t ino = 1;
1846
1847 child = d_hash_and_lookup(dir, &qname);
1848 if (!child) {
1849 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1850 child = d_alloc_parallel(dir, &qname, &wq);
1851 if (IS_ERR(child))
1852 goto end_instantiate;
1853 if (d_in_lookup(child)) {
1854 struct dentry *res;
1855 res = instantiate(child, task, ptr);
1856 d_lookup_done(child);
1857 if (unlikely(res)) {
1858 dput(child);
1859 child = res;
1860 if (IS_ERR(child))
1861 goto end_instantiate;
1862 }
1863 }
1864 }
1865 inode = d_inode(child);
1866 ino = inode->i_ino;
1867 type = inode->i_mode >> 12;
1868 dput(child);
1869 end_instantiate:
1870 return dir_emit(ctx, name, len, ino, type);
1871 }
1872
1873 /*
1874 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1875 * which represent vma start and end addresses.
1876 */
1877 static int dname_to_vma_addr(struct dentry *dentry,
1878 unsigned long *start, unsigned long *end)
1879 {
1880 const char *str = dentry->d_name.name;
1881 unsigned long long sval, eval;
1882 unsigned int len;
1883
1884 if (str[0] == '0' && str[1] != '-')
1885 return -EINVAL;
1886 len = _parse_integer(str, 16, &sval);
1887 if (len & KSTRTOX_OVERFLOW)
1888 return -EINVAL;
1889 if (sval != (unsigned long)sval)
1890 return -EINVAL;
1891 str += len;
1892
1893 if (*str != '-')
1894 return -EINVAL;
1895 str++;
1896
1897 if (str[0] == '0' && str[1])
1898 return -EINVAL;
1899 len = _parse_integer(str, 16, &eval);
1900 if (len & KSTRTOX_OVERFLOW)
1901 return -EINVAL;
1902 if (eval != (unsigned long)eval)
1903 return -EINVAL;
1904 str += len;
1905
1906 if (*str != '\0')
1907 return -EINVAL;
1908
1909 *start = sval;
1910 *end = eval;
1911
1912 return 0;
1913 }
1914
1915 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1916 {
1917 unsigned long vm_start, vm_end;
1918 bool exact_vma_exists = false;
1919 struct mm_struct *mm = NULL;
1920 struct task_struct *task;
1921 struct inode *inode;
1922 int status = 0;
1923
1924 if (flags & LOOKUP_RCU)
1925 return -ECHILD;
1926
1927 inode = d_inode(dentry);
1928 task = get_proc_task(inode);
1929 if (!task)
1930 goto out_notask;
1931
1932 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1933 if (IS_ERR_OR_NULL(mm))
1934 goto out;
1935
1936 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1937 down_read(&mm->mmap_sem);
1938 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1939 up_read(&mm->mmap_sem);
1940 }
1941
1942 mmput(mm);
1943
1944 if (exact_vma_exists) {
1945 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1946
1947 security_task_to_inode(task, inode);
1948 status = 1;
1949 }
1950
1951 out:
1952 put_task_struct(task);
1953
1954 out_notask:
1955 return status;
1956 }
1957
1958 static const struct dentry_operations tid_map_files_dentry_operations = {
1959 .d_revalidate = map_files_d_revalidate,
1960 .d_delete = pid_delete_dentry,
1961 };
1962
1963 static int map_files_get_link(struct dentry *dentry, struct path *path)
1964 {
1965 unsigned long vm_start, vm_end;
1966 struct vm_area_struct *vma;
1967 struct task_struct *task;
1968 struct mm_struct *mm;
1969 int rc;
1970
1971 rc = -ENOENT;
1972 task = get_proc_task(d_inode(dentry));
1973 if (!task)
1974 goto out;
1975
1976 mm = get_task_mm(task);
1977 put_task_struct(task);
1978 if (!mm)
1979 goto out;
1980
1981 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1982 if (rc)
1983 goto out_mmput;
1984
1985 rc = -ENOENT;
1986 down_read(&mm->mmap_sem);
1987 vma = find_exact_vma(mm, vm_start, vm_end);
1988 if (vma && vma->vm_file) {
1989 *path = vma->vm_file->f_path;
1990 path_get(path);
1991 rc = 0;
1992 }
1993 up_read(&mm->mmap_sem);
1994
1995 out_mmput:
1996 mmput(mm);
1997 out:
1998 return rc;
1999 }
2000
2001 struct map_files_info {
2002 unsigned long start;
2003 unsigned long end;
2004 fmode_t mode;
2005 };
2006
2007 /*
2008 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2009 * symlinks may be used to bypass permissions on ancestor directories in the
2010 * path to the file in question.
2011 */
2012 static const char *
2013 proc_map_files_get_link(struct dentry *dentry,
2014 struct inode *inode,
2015 struct delayed_call *done)
2016 {
2017 if (!capable(CAP_SYS_ADMIN))
2018 return ERR_PTR(-EPERM);
2019
2020 return proc_pid_get_link(dentry, inode, done);
2021 }
2022
2023 /*
2024 * Identical to proc_pid_link_inode_operations except for get_link()
2025 */
2026 static const struct inode_operations proc_map_files_link_inode_operations = {
2027 .readlink = proc_pid_readlink,
2028 .get_link = proc_map_files_get_link,
2029 .setattr = proc_setattr,
2030 };
2031
2032 static struct dentry *
2033 proc_map_files_instantiate(struct dentry *dentry,
2034 struct task_struct *task, const void *ptr)
2035 {
2036 fmode_t mode = (fmode_t)(unsigned long)ptr;
2037 struct proc_inode *ei;
2038 struct inode *inode;
2039
2040 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2041 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2042 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2043 if (!inode)
2044 return ERR_PTR(-ENOENT);
2045
2046 ei = PROC_I(inode);
2047 ei->op.proc_get_link = map_files_get_link;
2048
2049 inode->i_op = &proc_map_files_link_inode_operations;
2050 inode->i_size = 64;
2051
2052 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2053 return d_splice_alias(inode, dentry);
2054 }
2055
2056 static struct dentry *proc_map_files_lookup(struct inode *dir,
2057 struct dentry *dentry, unsigned int flags)
2058 {
2059 unsigned long vm_start, vm_end;
2060 struct vm_area_struct *vma;
2061 struct task_struct *task;
2062 struct dentry *result;
2063 struct mm_struct *mm;
2064
2065 result = ERR_PTR(-ENOENT);
2066 task = get_proc_task(dir);
2067 if (!task)
2068 goto out;
2069
2070 result = ERR_PTR(-EACCES);
2071 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2072 goto out_put_task;
2073
2074 result = ERR_PTR(-ENOENT);
2075 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2076 goto out_put_task;
2077
2078 mm = get_task_mm(task);
2079 if (!mm)
2080 goto out_put_task;
2081
2082 down_read(&mm->mmap_sem);
2083 vma = find_exact_vma(mm, vm_start, vm_end);
2084 if (!vma)
2085 goto out_no_vma;
2086
2087 if (vma->vm_file)
2088 result = proc_map_files_instantiate(dentry, task,
2089 (void *)(unsigned long)vma->vm_file->f_mode);
2090
2091 out_no_vma:
2092 up_read(&mm->mmap_sem);
2093 mmput(mm);
2094 out_put_task:
2095 put_task_struct(task);
2096 out:
2097 return result;
2098 }
2099
2100 static const struct inode_operations proc_map_files_inode_operations = {
2101 .lookup = proc_map_files_lookup,
2102 .permission = proc_fd_permission,
2103 .setattr = proc_setattr,
2104 };
2105
2106 static int
2107 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2108 {
2109 struct vm_area_struct *vma;
2110 struct task_struct *task;
2111 struct mm_struct *mm;
2112 unsigned long nr_files, pos, i;
2113 struct flex_array *fa = NULL;
2114 struct map_files_info info;
2115 struct map_files_info *p;
2116 int ret;
2117
2118 ret = -ENOENT;
2119 task = get_proc_task(file_inode(file));
2120 if (!task)
2121 goto out;
2122
2123 ret = -EACCES;
2124 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2125 goto out_put_task;
2126
2127 ret = 0;
2128 if (!dir_emit_dots(file, ctx))
2129 goto out_put_task;
2130
2131 mm = get_task_mm(task);
2132 if (!mm)
2133 goto out_put_task;
2134 down_read(&mm->mmap_sem);
2135
2136 nr_files = 0;
2137
2138 /*
2139 * We need two passes here:
2140 *
2141 * 1) Collect vmas of mapped files with mmap_sem taken
2142 * 2) Release mmap_sem and instantiate entries
2143 *
2144 * otherwise we get lockdep complained, since filldir()
2145 * routine might require mmap_sem taken in might_fault().
2146 */
2147
2148 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2149 if (vma->vm_file && ++pos > ctx->pos)
2150 nr_files++;
2151 }
2152
2153 if (nr_files) {
2154 fa = flex_array_alloc(sizeof(info), nr_files,
2155 GFP_KERNEL);
2156 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2157 GFP_KERNEL)) {
2158 ret = -ENOMEM;
2159 if (fa)
2160 flex_array_free(fa);
2161 up_read(&mm->mmap_sem);
2162 mmput(mm);
2163 goto out_put_task;
2164 }
2165 for (i = 0, vma = mm->mmap, pos = 2; vma;
2166 vma = vma->vm_next) {
2167 if (!vma->vm_file)
2168 continue;
2169 if (++pos <= ctx->pos)
2170 continue;
2171
2172 info.start = vma->vm_start;
2173 info.end = vma->vm_end;
2174 info.mode = vma->vm_file->f_mode;
2175 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2176 BUG();
2177 }
2178 }
2179 up_read(&mm->mmap_sem);
2180 mmput(mm);
2181
2182 for (i = 0; i < nr_files; i++) {
2183 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2184 unsigned int len;
2185
2186 p = flex_array_get(fa, i);
2187 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2188 if (!proc_fill_cache(file, ctx,
2189 buf, len,
2190 proc_map_files_instantiate,
2191 task,
2192 (void *)(unsigned long)p->mode))
2193 break;
2194 ctx->pos++;
2195 }
2196 if (fa)
2197 flex_array_free(fa);
2198
2199 out_put_task:
2200 put_task_struct(task);
2201 out:
2202 return ret;
2203 }
2204
2205 static const struct file_operations proc_map_files_operations = {
2206 .read = generic_read_dir,
2207 .iterate_shared = proc_map_files_readdir,
2208 .llseek = generic_file_llseek,
2209 };
2210
2211 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2212 struct timers_private {
2213 struct pid *pid;
2214 struct task_struct *task;
2215 struct sighand_struct *sighand;
2216 struct pid_namespace *ns;
2217 unsigned long flags;
2218 };
2219
2220 static void *timers_start(struct seq_file *m, loff_t *pos)
2221 {
2222 struct timers_private *tp = m->private;
2223
2224 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2225 if (!tp->task)
2226 return ERR_PTR(-ESRCH);
2227
2228 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2229 if (!tp->sighand)
2230 return ERR_PTR(-ESRCH);
2231
2232 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2233 }
2234
2235 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2236 {
2237 struct timers_private *tp = m->private;
2238 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2239 }
2240
2241 static void timers_stop(struct seq_file *m, void *v)
2242 {
2243 struct timers_private *tp = m->private;
2244
2245 if (tp->sighand) {
2246 unlock_task_sighand(tp->task, &tp->flags);
2247 tp->sighand = NULL;
2248 }
2249
2250 if (tp->task) {
2251 put_task_struct(tp->task);
2252 tp->task = NULL;
2253 }
2254 }
2255
2256 static int show_timer(struct seq_file *m, void *v)
2257 {
2258 struct k_itimer *timer;
2259 struct timers_private *tp = m->private;
2260 int notify;
2261 static const char * const nstr[] = {
2262 [SIGEV_SIGNAL] = "signal",
2263 [SIGEV_NONE] = "none",
2264 [SIGEV_THREAD] = "thread",
2265 };
2266
2267 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2268 notify = timer->it_sigev_notify;
2269
2270 seq_printf(m, "ID: %d\n", timer->it_id);
2271 seq_printf(m, "signal: %d/%px\n",
2272 timer->sigq->info.si_signo,
2273 timer->sigq->info.si_value.sival_ptr);
2274 seq_printf(m, "notify: %s/%s.%d\n",
2275 nstr[notify & ~SIGEV_THREAD_ID],
2276 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2277 pid_nr_ns(timer->it_pid, tp->ns));
2278 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2279
2280 return 0;
2281 }
2282
2283 static const struct seq_operations proc_timers_seq_ops = {
2284 .start = timers_start,
2285 .next = timers_next,
2286 .stop = timers_stop,
2287 .show = show_timer,
2288 };
2289
2290 static int proc_timers_open(struct inode *inode, struct file *file)
2291 {
2292 struct timers_private *tp;
2293
2294 tp = __seq_open_private(file, &proc_timers_seq_ops,
2295 sizeof(struct timers_private));
2296 if (!tp)
2297 return -ENOMEM;
2298
2299 tp->pid = proc_pid(inode);
2300 tp->ns = proc_pid_ns(inode);
2301 return 0;
2302 }
2303
2304 static const struct file_operations proc_timers_operations = {
2305 .open = proc_timers_open,
2306 .read = seq_read,
2307 .llseek = seq_lseek,
2308 .release = seq_release_private,
2309 };
2310 #endif
2311
2312 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2313 size_t count, loff_t *offset)
2314 {
2315 struct inode *inode = file_inode(file);
2316 struct task_struct *p;
2317 u64 slack_ns;
2318 int err;
2319
2320 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2321 if (err < 0)
2322 return err;
2323
2324 p = get_proc_task(inode);
2325 if (!p)
2326 return -ESRCH;
2327
2328 if (p != current) {
2329 if (!capable(CAP_SYS_NICE)) {
2330 count = -EPERM;
2331 goto out;
2332 }
2333
2334 err = security_task_setscheduler(p);
2335 if (err) {
2336 count = err;
2337 goto out;
2338 }
2339 }
2340
2341 task_lock(p);
2342 if (slack_ns == 0)
2343 p->timer_slack_ns = p->default_timer_slack_ns;
2344 else
2345 p->timer_slack_ns = slack_ns;
2346 task_unlock(p);
2347
2348 out:
2349 put_task_struct(p);
2350
2351 return count;
2352 }
2353
2354 static int timerslack_ns_show(struct seq_file *m, void *v)
2355 {
2356 struct inode *inode = m->private;
2357 struct task_struct *p;
2358 int err = 0;
2359
2360 p = get_proc_task(inode);
2361 if (!p)
2362 return -ESRCH;
2363
2364 if (p != current) {
2365
2366 if (!capable(CAP_SYS_NICE)) {
2367 err = -EPERM;
2368 goto out;
2369 }
2370 err = security_task_getscheduler(p);
2371 if (err)
2372 goto out;
2373 }
2374
2375 task_lock(p);
2376 seq_printf(m, "%llu\n", p->timer_slack_ns);
2377 task_unlock(p);
2378
2379 out:
2380 put_task_struct(p);
2381
2382 return err;
2383 }
2384
2385 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2386 {
2387 return single_open(filp, timerslack_ns_show, inode);
2388 }
2389
2390 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2391 .open = timerslack_ns_open,
2392 .read = seq_read,
2393 .write = timerslack_ns_write,
2394 .llseek = seq_lseek,
2395 .release = single_release,
2396 };
2397
2398 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2399 struct task_struct *task, const void *ptr)
2400 {
2401 const struct pid_entry *p = ptr;
2402 struct inode *inode;
2403 struct proc_inode *ei;
2404
2405 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2406 if (!inode)
2407 return ERR_PTR(-ENOENT);
2408
2409 ei = PROC_I(inode);
2410 if (S_ISDIR(inode->i_mode))
2411 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2412 if (p->iop)
2413 inode->i_op = p->iop;
2414 if (p->fop)
2415 inode->i_fop = p->fop;
2416 ei->op = p->op;
2417 pid_update_inode(task, inode);
2418 d_set_d_op(dentry, &pid_dentry_operations);
2419 return d_splice_alias(inode, dentry);
2420 }
2421
2422 static struct dentry *proc_pident_lookup(struct inode *dir,
2423 struct dentry *dentry,
2424 const struct pid_entry *ents,
2425 unsigned int nents)
2426 {
2427 struct task_struct *task = get_proc_task(dir);
2428 const struct pid_entry *p, *last;
2429 struct dentry *res = ERR_PTR(-ENOENT);
2430
2431 if (!task)
2432 goto out_no_task;
2433
2434 /*
2435 * Yes, it does not scale. And it should not. Don't add
2436 * new entries into /proc/<tgid>/ without very good reasons.
2437 */
2438 last = &ents[nents];
2439 for (p = ents; p < last; p++) {
2440 if (p->len != dentry->d_name.len)
2441 continue;
2442 if (!memcmp(dentry->d_name.name, p->name, p->len))
2443 break;
2444 }
2445 if (p >= last)
2446 goto out;
2447
2448 res = proc_pident_instantiate(dentry, task, p);
2449 out:
2450 put_task_struct(task);
2451 out_no_task:
2452 return res;
2453 }
2454
2455 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2456 const struct pid_entry *ents, unsigned int nents)
2457 {
2458 struct task_struct *task = get_proc_task(file_inode(file));
2459 const struct pid_entry *p;
2460
2461 if (!task)
2462 return -ENOENT;
2463
2464 if (!dir_emit_dots(file, ctx))
2465 goto out;
2466
2467 if (ctx->pos >= nents + 2)
2468 goto out;
2469
2470 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2471 if (!proc_fill_cache(file, ctx, p->name, p->len,
2472 proc_pident_instantiate, task, p))
2473 break;
2474 ctx->pos++;
2475 }
2476 out:
2477 put_task_struct(task);
2478 return 0;
2479 }
2480
2481 #ifdef CONFIG_SECURITY
2482 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2483 size_t count, loff_t *ppos)
2484 {
2485 struct inode * inode = file_inode(file);
2486 char *p = NULL;
2487 ssize_t length;
2488 struct task_struct *task = get_proc_task(inode);
2489
2490 if (!task)
2491 return -ESRCH;
2492
2493 length = security_getprocattr(task,
2494 (char*)file->f_path.dentry->d_name.name,
2495 &p);
2496 put_task_struct(task);
2497 if (length > 0)
2498 length = simple_read_from_buffer(buf, count, ppos, p, length);
2499 kfree(p);
2500 return length;
2501 }
2502
2503 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2504 size_t count, loff_t *ppos)
2505 {
2506 struct inode * inode = file_inode(file);
2507 void *page;
2508 ssize_t length;
2509 struct task_struct *task = get_proc_task(inode);
2510
2511 length = -ESRCH;
2512 if (!task)
2513 goto out_no_task;
2514
2515 /* A task may only write its own attributes. */
2516 length = -EACCES;
2517 if (current != task)
2518 goto out;
2519
2520 if (count > PAGE_SIZE)
2521 count = PAGE_SIZE;
2522
2523 /* No partial writes. */
2524 length = -EINVAL;
2525 if (*ppos != 0)
2526 goto out;
2527
2528 page = memdup_user(buf, count);
2529 if (IS_ERR(page)) {
2530 length = PTR_ERR(page);
2531 goto out;
2532 }
2533
2534 /* Guard against adverse ptrace interaction */
2535 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2536 if (length < 0)
2537 goto out_free;
2538
2539 length = security_setprocattr(file->f_path.dentry->d_name.name,
2540 page, count);
2541 mutex_unlock(&current->signal->cred_guard_mutex);
2542 out_free:
2543 kfree(page);
2544 out:
2545 put_task_struct(task);
2546 out_no_task:
2547 return length;
2548 }
2549
2550 static const struct file_operations proc_pid_attr_operations = {
2551 .read = proc_pid_attr_read,
2552 .write = proc_pid_attr_write,
2553 .llseek = generic_file_llseek,
2554 };
2555
2556 static const struct pid_entry attr_dir_stuff[] = {
2557 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2558 REG("prev", S_IRUGO, proc_pid_attr_operations),
2559 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2560 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2561 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2562 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2563 };
2564
2565 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2566 {
2567 return proc_pident_readdir(file, ctx,
2568 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2569 }
2570
2571 static const struct file_operations proc_attr_dir_operations = {
2572 .read = generic_read_dir,
2573 .iterate_shared = proc_attr_dir_readdir,
2574 .llseek = generic_file_llseek,
2575 };
2576
2577 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2578 struct dentry *dentry, unsigned int flags)
2579 {
2580 return proc_pident_lookup(dir, dentry,
2581 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2582 }
2583
2584 static const struct inode_operations proc_attr_dir_inode_operations = {
2585 .lookup = proc_attr_dir_lookup,
2586 .getattr = pid_getattr,
2587 .setattr = proc_setattr,
2588 };
2589
2590 #endif
2591
2592 #ifdef CONFIG_ELF_CORE
2593 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2594 size_t count, loff_t *ppos)
2595 {
2596 struct task_struct *task = get_proc_task(file_inode(file));
2597 struct mm_struct *mm;
2598 char buffer[PROC_NUMBUF];
2599 size_t len;
2600 int ret;
2601
2602 if (!task)
2603 return -ESRCH;
2604
2605 ret = 0;
2606 mm = get_task_mm(task);
2607 if (mm) {
2608 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2609 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2610 MMF_DUMP_FILTER_SHIFT));
2611 mmput(mm);
2612 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2613 }
2614
2615 put_task_struct(task);
2616
2617 return ret;
2618 }
2619
2620 static ssize_t proc_coredump_filter_write(struct file *file,
2621 const char __user *buf,
2622 size_t count,
2623 loff_t *ppos)
2624 {
2625 struct task_struct *task;
2626 struct mm_struct *mm;
2627 unsigned int val;
2628 int ret;
2629 int i;
2630 unsigned long mask;
2631
2632 ret = kstrtouint_from_user(buf, count, 0, &val);
2633 if (ret < 0)
2634 return ret;
2635
2636 ret = -ESRCH;
2637 task = get_proc_task(file_inode(file));
2638 if (!task)
2639 goto out_no_task;
2640
2641 mm = get_task_mm(task);
2642 if (!mm)
2643 goto out_no_mm;
2644 ret = 0;
2645
2646 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2647 if (val & mask)
2648 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2649 else
2650 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2651 }
2652
2653 mmput(mm);
2654 out_no_mm:
2655 put_task_struct(task);
2656 out_no_task:
2657 if (ret < 0)
2658 return ret;
2659 return count;
2660 }
2661
2662 static const struct file_operations proc_coredump_filter_operations = {
2663 .read = proc_coredump_filter_read,
2664 .write = proc_coredump_filter_write,
2665 .llseek = generic_file_llseek,
2666 };
2667 #endif
2668
2669 #ifdef CONFIG_TASK_IO_ACCOUNTING
2670 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2671 {
2672 struct task_io_accounting acct = task->ioac;
2673 unsigned long flags;
2674 int result;
2675
2676 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2677 if (result)
2678 return result;
2679
2680 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2681 result = -EACCES;
2682 goto out_unlock;
2683 }
2684
2685 if (whole && lock_task_sighand(task, &flags)) {
2686 struct task_struct *t = task;
2687
2688 task_io_accounting_add(&acct, &task->signal->ioac);
2689 while_each_thread(task, t)
2690 task_io_accounting_add(&acct, &t->ioac);
2691
2692 unlock_task_sighand(task, &flags);
2693 }
2694 seq_printf(m,
2695 "rchar: %llu\n"
2696 "wchar: %llu\n"
2697 "syscr: %llu\n"
2698 "syscw: %llu\n"
2699 "read_bytes: %llu\n"
2700 "write_bytes: %llu\n"
2701 "cancelled_write_bytes: %llu\n",
2702 (unsigned long long)acct.rchar,
2703 (unsigned long long)acct.wchar,
2704 (unsigned long long)acct.syscr,
2705 (unsigned long long)acct.syscw,
2706 (unsigned long long)acct.read_bytes,
2707 (unsigned long long)acct.write_bytes,
2708 (unsigned long long)acct.cancelled_write_bytes);
2709 result = 0;
2710
2711 out_unlock:
2712 mutex_unlock(&task->signal->cred_guard_mutex);
2713 return result;
2714 }
2715
2716 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2717 struct pid *pid, struct task_struct *task)
2718 {
2719 return do_io_accounting(task, m, 0);
2720 }
2721
2722 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2723 struct pid *pid, struct task_struct *task)
2724 {
2725 return do_io_accounting(task, m, 1);
2726 }
2727 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2728
2729 #ifdef CONFIG_USER_NS
2730 static int proc_id_map_open(struct inode *inode, struct file *file,
2731 const struct seq_operations *seq_ops)
2732 {
2733 struct user_namespace *ns = NULL;
2734 struct task_struct *task;
2735 struct seq_file *seq;
2736 int ret = -EINVAL;
2737
2738 task = get_proc_task(inode);
2739 if (task) {
2740 rcu_read_lock();
2741 ns = get_user_ns(task_cred_xxx(task, user_ns));
2742 rcu_read_unlock();
2743 put_task_struct(task);
2744 }
2745 if (!ns)
2746 goto err;
2747
2748 ret = seq_open(file, seq_ops);
2749 if (ret)
2750 goto err_put_ns;
2751
2752 seq = file->private_data;
2753 seq->private = ns;
2754
2755 return 0;
2756 err_put_ns:
2757 put_user_ns(ns);
2758 err:
2759 return ret;
2760 }
2761
2762 static int proc_id_map_release(struct inode *inode, struct file *file)
2763 {
2764 struct seq_file *seq = file->private_data;
2765 struct user_namespace *ns = seq->private;
2766 put_user_ns(ns);
2767 return seq_release(inode, file);
2768 }
2769
2770 static int proc_uid_map_open(struct inode *inode, struct file *file)
2771 {
2772 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2773 }
2774
2775 static int proc_gid_map_open(struct inode *inode, struct file *file)
2776 {
2777 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2778 }
2779
2780 static int proc_projid_map_open(struct inode *inode, struct file *file)
2781 {
2782 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2783 }
2784
2785 static const struct file_operations proc_uid_map_operations = {
2786 .open = proc_uid_map_open,
2787 .write = proc_uid_map_write,
2788 .read = seq_read,
2789 .llseek = seq_lseek,
2790 .release = proc_id_map_release,
2791 };
2792
2793 static const struct file_operations proc_gid_map_operations = {
2794 .open = proc_gid_map_open,
2795 .write = proc_gid_map_write,
2796 .read = seq_read,
2797 .llseek = seq_lseek,
2798 .release = proc_id_map_release,
2799 };
2800
2801 static const struct file_operations proc_projid_map_operations = {
2802 .open = proc_projid_map_open,
2803 .write = proc_projid_map_write,
2804 .read = seq_read,
2805 .llseek = seq_lseek,
2806 .release = proc_id_map_release,
2807 };
2808
2809 static int proc_setgroups_open(struct inode *inode, struct file *file)
2810 {
2811 struct user_namespace *ns = NULL;
2812 struct task_struct *task;
2813 int ret;
2814
2815 ret = -ESRCH;
2816 task = get_proc_task(inode);
2817 if (task) {
2818 rcu_read_lock();
2819 ns = get_user_ns(task_cred_xxx(task, user_ns));
2820 rcu_read_unlock();
2821 put_task_struct(task);
2822 }
2823 if (!ns)
2824 goto err;
2825
2826 if (file->f_mode & FMODE_WRITE) {
2827 ret = -EACCES;
2828 if (!ns_capable(ns, CAP_SYS_ADMIN))
2829 goto err_put_ns;
2830 }
2831
2832 ret = single_open(file, &proc_setgroups_show, ns);
2833 if (ret)
2834 goto err_put_ns;
2835
2836 return 0;
2837 err_put_ns:
2838 put_user_ns(ns);
2839 err:
2840 return ret;
2841 }
2842
2843 static int proc_setgroups_release(struct inode *inode, struct file *file)
2844 {
2845 struct seq_file *seq = file->private_data;
2846 struct user_namespace *ns = seq->private;
2847 int ret = single_release(inode, file);
2848 put_user_ns(ns);
2849 return ret;
2850 }
2851
2852 static const struct file_operations proc_setgroups_operations = {
2853 .open = proc_setgroups_open,
2854 .write = proc_setgroups_write,
2855 .read = seq_read,
2856 .llseek = seq_lseek,
2857 .release = proc_setgroups_release,
2858 };
2859 #endif /* CONFIG_USER_NS */
2860
2861 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2862 struct pid *pid, struct task_struct *task)
2863 {
2864 int err = lock_trace(task);
2865 if (!err) {
2866 seq_printf(m, "%08x\n", task->personality);
2867 unlock_trace(task);
2868 }
2869 return err;
2870 }
2871
2872 #ifdef CONFIG_LIVEPATCH
2873 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2874 struct pid *pid, struct task_struct *task)
2875 {
2876 seq_printf(m, "%d\n", task->patch_state);
2877 return 0;
2878 }
2879 #endif /* CONFIG_LIVEPATCH */
2880
2881 /*
2882 * Thread groups
2883 */
2884 static const struct file_operations proc_task_operations;
2885 static const struct inode_operations proc_task_inode_operations;
2886
2887 static const struct pid_entry tgid_base_stuff[] = {
2888 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2889 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2890 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2891 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2892 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2893 #ifdef CONFIG_NET
2894 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2895 #endif
2896 REG("environ", S_IRUSR, proc_environ_operations),
2897 REG("auxv", S_IRUSR, proc_auxv_operations),
2898 ONE("status", S_IRUGO, proc_pid_status),
2899 ONE("personality", S_IRUSR, proc_pid_personality),
2900 ONE("limits", S_IRUGO, proc_pid_limits),
2901 #ifdef CONFIG_SCHED_DEBUG
2902 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2903 #endif
2904 #ifdef CONFIG_SCHED_AUTOGROUP
2905 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2906 #endif
2907 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2908 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2909 ONE("syscall", S_IRUSR, proc_pid_syscall),
2910 #endif
2911 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2912 ONE("stat", S_IRUGO, proc_tgid_stat),
2913 ONE("statm", S_IRUGO, proc_pid_statm),
2914 REG("maps", S_IRUGO, proc_pid_maps_operations),
2915 #ifdef CONFIG_NUMA
2916 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2917 #endif
2918 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2919 LNK("cwd", proc_cwd_link),
2920 LNK("root", proc_root_link),
2921 LNK("exe", proc_exe_link),
2922 REG("mounts", S_IRUGO, proc_mounts_operations),
2923 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2924 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2925 #ifdef CONFIG_PROC_PAGE_MONITOR
2926 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2927 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2928 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2929 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2930 #endif
2931 #ifdef CONFIG_SECURITY
2932 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2933 #endif
2934 #ifdef CONFIG_KALLSYMS
2935 ONE("wchan", S_IRUGO, proc_pid_wchan),
2936 #endif
2937 #ifdef CONFIG_STACKTRACE
2938 ONE("stack", S_IRUSR, proc_pid_stack),
2939 #endif
2940 #ifdef CONFIG_SCHED_INFO
2941 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2942 #endif
2943 #ifdef CONFIG_LATENCYTOP
2944 REG("latency", S_IRUGO, proc_lstats_operations),
2945 #endif
2946 #ifdef CONFIG_PROC_PID_CPUSET
2947 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2948 #endif
2949 #ifdef CONFIG_CGROUPS
2950 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2951 #endif
2952 ONE("oom_score", S_IRUGO, proc_oom_score),
2953 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2954 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2955 #ifdef CONFIG_AUDITSYSCALL
2956 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2957 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2958 #endif
2959 #ifdef CONFIG_FAULT_INJECTION
2960 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2961 REG("fail-nth", 0644, proc_fail_nth_operations),
2962 #endif
2963 #ifdef CONFIG_ELF_CORE
2964 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2965 #endif
2966 #ifdef CONFIG_TASK_IO_ACCOUNTING
2967 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2968 #endif
2969 #ifdef CONFIG_USER_NS
2970 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2971 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2972 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2973 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2974 #endif
2975 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2976 REG("timers", S_IRUGO, proc_timers_operations),
2977 #endif
2978 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2979 #ifdef CONFIG_LIVEPATCH
2980 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
2981 #endif
2982 };
2983
2984 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2985 {
2986 return proc_pident_readdir(file, ctx,
2987 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2988 }
2989
2990 static const struct file_operations proc_tgid_base_operations = {
2991 .read = generic_read_dir,
2992 .iterate_shared = proc_tgid_base_readdir,
2993 .llseek = generic_file_llseek,
2994 };
2995
2996 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2997 {
2998 return proc_pident_lookup(dir, dentry,
2999 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3000 }
3001
3002 static const struct inode_operations proc_tgid_base_inode_operations = {
3003 .lookup = proc_tgid_base_lookup,
3004 .getattr = pid_getattr,
3005 .setattr = proc_setattr,
3006 .permission = proc_pid_permission,
3007 };
3008
3009 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3010 {
3011 struct dentry *dentry, *leader, *dir;
3012 char buf[10 + 1];
3013 struct qstr name;
3014
3015 name.name = buf;
3016 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3017 /* no ->d_hash() rejects on procfs */
3018 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3019 if (dentry) {
3020 d_invalidate(dentry);
3021 dput(dentry);
3022 }
3023
3024 if (pid == tgid)
3025 return;
3026
3027 name.name = buf;
3028 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3029 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3030 if (!leader)
3031 goto out;
3032
3033 name.name = "task";
3034 name.len = strlen(name.name);
3035 dir = d_hash_and_lookup(leader, &name);
3036 if (!dir)
3037 goto out_put_leader;
3038
3039 name.name = buf;
3040 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3041 dentry = d_hash_and_lookup(dir, &name);
3042 if (dentry) {
3043 d_invalidate(dentry);
3044 dput(dentry);
3045 }
3046
3047 dput(dir);
3048 out_put_leader:
3049 dput(leader);
3050 out:
3051 return;
3052 }
3053
3054 /**
3055 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3056 * @task: task that should be flushed.
3057 *
3058 * When flushing dentries from proc, one needs to flush them from global
3059 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3060 * in. This call is supposed to do all of this job.
3061 *
3062 * Looks in the dcache for
3063 * /proc/@pid
3064 * /proc/@tgid/task/@pid
3065 * if either directory is present flushes it and all of it'ts children
3066 * from the dcache.
3067 *
3068 * It is safe and reasonable to cache /proc entries for a task until
3069 * that task exits. After that they just clog up the dcache with
3070 * useless entries, possibly causing useful dcache entries to be
3071 * flushed instead. This routine is proved to flush those useless
3072 * dcache entries at process exit time.
3073 *
3074 * NOTE: This routine is just an optimization so it does not guarantee
3075 * that no dcache entries will exist at process exit time it
3076 * just makes it very unlikely that any will persist.
3077 */
3078
3079 void proc_flush_task(struct task_struct *task)
3080 {
3081 int i;
3082 struct pid *pid, *tgid;
3083 struct upid *upid;
3084
3085 pid = task_pid(task);
3086 tgid = task_tgid(task);
3087
3088 for (i = 0; i <= pid->level; i++) {
3089 upid = &pid->numbers[i];
3090 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3091 tgid->numbers[i].nr);
3092 }
3093 }
3094
3095 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3096 struct task_struct *task, const void *ptr)
3097 {
3098 struct inode *inode;
3099
3100 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3101 if (!inode)
3102 return ERR_PTR(-ENOENT);
3103
3104 inode->i_op = &proc_tgid_base_inode_operations;
3105 inode->i_fop = &proc_tgid_base_operations;
3106 inode->i_flags|=S_IMMUTABLE;
3107
3108 set_nlink(inode, nlink_tgid);
3109 pid_update_inode(task, inode);
3110
3111 d_set_d_op(dentry, &pid_dentry_operations);
3112 return d_splice_alias(inode, dentry);
3113 }
3114
3115 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3116 {
3117 struct task_struct *task;
3118 unsigned tgid;
3119 struct pid_namespace *ns;
3120 struct dentry *result = ERR_PTR(-ENOENT);
3121
3122 tgid = name_to_int(&dentry->d_name);
3123 if (tgid == ~0U)
3124 goto out;
3125
3126 ns = dentry->d_sb->s_fs_info;
3127 rcu_read_lock();
3128 task = find_task_by_pid_ns(tgid, ns);
3129 if (task)
3130 get_task_struct(task);
3131 rcu_read_unlock();
3132 if (!task)
3133 goto out;
3134
3135 result = proc_pid_instantiate(dentry, task, NULL);
3136 put_task_struct(task);
3137 out:
3138 return result;
3139 }
3140
3141 /*
3142 * Find the first task with tgid >= tgid
3143 *
3144 */
3145 struct tgid_iter {
3146 unsigned int tgid;
3147 struct task_struct *task;
3148 };
3149 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3150 {
3151 struct pid *pid;
3152
3153 if (iter.task)
3154 put_task_struct(iter.task);
3155 rcu_read_lock();
3156 retry:
3157 iter.task = NULL;
3158 pid = find_ge_pid(iter.tgid, ns);
3159 if (pid) {
3160 iter.tgid = pid_nr_ns(pid, ns);
3161 iter.task = pid_task(pid, PIDTYPE_PID);
3162 /* What we to know is if the pid we have find is the
3163 * pid of a thread_group_leader. Testing for task
3164 * being a thread_group_leader is the obvious thing
3165 * todo but there is a window when it fails, due to
3166 * the pid transfer logic in de_thread.
3167 *
3168 * So we perform the straight forward test of seeing
3169 * if the pid we have found is the pid of a thread
3170 * group leader, and don't worry if the task we have
3171 * found doesn't happen to be a thread group leader.
3172 * As we don't care in the case of readdir.
3173 */
3174 if (!iter.task || !has_group_leader_pid(iter.task)) {
3175 iter.tgid += 1;
3176 goto retry;
3177 }
3178 get_task_struct(iter.task);
3179 }
3180 rcu_read_unlock();
3181 return iter;
3182 }
3183
3184 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3185
3186 /* for the /proc/ directory itself, after non-process stuff has been done */
3187 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3188 {
3189 struct tgid_iter iter;
3190 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3191 loff_t pos = ctx->pos;
3192
3193 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3194 return 0;
3195
3196 if (pos == TGID_OFFSET - 2) {
3197 struct inode *inode = d_inode(ns->proc_self);
3198 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3199 return 0;
3200 ctx->pos = pos = pos + 1;
3201 }
3202 if (pos == TGID_OFFSET - 1) {
3203 struct inode *inode = d_inode(ns->proc_thread_self);
3204 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3205 return 0;
3206 ctx->pos = pos = pos + 1;
3207 }
3208 iter.tgid = pos - TGID_OFFSET;
3209 iter.task = NULL;
3210 for (iter = next_tgid(ns, iter);
3211 iter.task;
3212 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3213 char name[10 + 1];
3214 unsigned int len;
3215
3216 cond_resched();
3217 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3218 continue;
3219
3220 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3221 ctx->pos = iter.tgid + TGID_OFFSET;
3222 if (!proc_fill_cache(file, ctx, name, len,
3223 proc_pid_instantiate, iter.task, NULL)) {
3224 put_task_struct(iter.task);
3225 return 0;
3226 }
3227 }
3228 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3229 return 0;
3230 }
3231
3232 /*
3233 * proc_tid_comm_permission is a special permission function exclusively
3234 * used for the node /proc/<pid>/task/<tid>/comm.
3235 * It bypasses generic permission checks in the case where a task of the same
3236 * task group attempts to access the node.
3237 * The rationale behind this is that glibc and bionic access this node for
3238 * cross thread naming (pthread_set/getname_np(!self)). However, if
3239 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3240 * which locks out the cross thread naming implementation.
3241 * This function makes sure that the node is always accessible for members of
3242 * same thread group.
3243 */
3244 static int proc_tid_comm_permission(struct inode *inode, int mask)
3245 {
3246 bool is_same_tgroup;
3247 struct task_struct *task;
3248
3249 task = get_proc_task(inode);
3250 if (!task)
3251 return -ESRCH;
3252 is_same_tgroup = same_thread_group(current, task);
3253 put_task_struct(task);
3254
3255 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3256 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3257 * read or written by the members of the corresponding
3258 * thread group.
3259 */
3260 return 0;
3261 }
3262
3263 return generic_permission(inode, mask);
3264 }
3265
3266 static const struct inode_operations proc_tid_comm_inode_operations = {
3267 .permission = proc_tid_comm_permission,
3268 };
3269
3270 /*
3271 * Tasks
3272 */
3273 static const struct pid_entry tid_base_stuff[] = {
3274 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3275 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3276 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3277 #ifdef CONFIG_NET
3278 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3279 #endif
3280 REG("environ", S_IRUSR, proc_environ_operations),
3281 REG("auxv", S_IRUSR, proc_auxv_operations),
3282 ONE("status", S_IRUGO, proc_pid_status),
3283 ONE("personality", S_IRUSR, proc_pid_personality),
3284 ONE("limits", S_IRUGO, proc_pid_limits),
3285 #ifdef CONFIG_SCHED_DEBUG
3286 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3287 #endif
3288 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3289 &proc_tid_comm_inode_operations,
3290 &proc_pid_set_comm_operations, {}),
3291 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3292 ONE("syscall", S_IRUSR, proc_pid_syscall),
3293 #endif
3294 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3295 ONE("stat", S_IRUGO, proc_tid_stat),
3296 ONE("statm", S_IRUGO, proc_pid_statm),
3297 REG("maps", S_IRUGO, proc_tid_maps_operations),
3298 #ifdef CONFIG_PROC_CHILDREN
3299 REG("children", S_IRUGO, proc_tid_children_operations),
3300 #endif
3301 #ifdef CONFIG_NUMA
3302 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3303 #endif
3304 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3305 LNK("cwd", proc_cwd_link),
3306 LNK("root", proc_root_link),
3307 LNK("exe", proc_exe_link),
3308 REG("mounts", S_IRUGO, proc_mounts_operations),
3309 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3310 #ifdef CONFIG_PROC_PAGE_MONITOR
3311 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3312 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3313 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3314 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3315 #endif
3316 #ifdef CONFIG_SECURITY
3317 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3318 #endif
3319 #ifdef CONFIG_KALLSYMS
3320 ONE("wchan", S_IRUGO, proc_pid_wchan),
3321 #endif
3322 #ifdef CONFIG_STACKTRACE
3323 ONE("stack", S_IRUSR, proc_pid_stack),
3324 #endif
3325 #ifdef CONFIG_SCHED_INFO
3326 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3327 #endif
3328 #ifdef CONFIG_LATENCYTOP
3329 REG("latency", S_IRUGO, proc_lstats_operations),
3330 #endif
3331 #ifdef CONFIG_PROC_PID_CPUSET
3332 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3333 #endif
3334 #ifdef CONFIG_CGROUPS
3335 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3336 #endif
3337 ONE("oom_score", S_IRUGO, proc_oom_score),
3338 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3339 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3340 #ifdef CONFIG_AUDITSYSCALL
3341 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3342 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3343 #endif
3344 #ifdef CONFIG_FAULT_INJECTION
3345 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3346 REG("fail-nth", 0644, proc_fail_nth_operations),
3347 #endif
3348 #ifdef CONFIG_TASK_IO_ACCOUNTING
3349 ONE("io", S_IRUSR, proc_tid_io_accounting),
3350 #endif
3351 #ifdef CONFIG_USER_NS
3352 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3353 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3354 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3355 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3356 #endif
3357 #ifdef CONFIG_LIVEPATCH
3358 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3359 #endif
3360 };
3361
3362 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3363 {
3364 return proc_pident_readdir(file, ctx,
3365 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3366 }
3367
3368 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3369 {
3370 return proc_pident_lookup(dir, dentry,
3371 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3372 }
3373
3374 static const struct file_operations proc_tid_base_operations = {
3375 .read = generic_read_dir,
3376 .iterate_shared = proc_tid_base_readdir,
3377 .llseek = generic_file_llseek,
3378 };
3379
3380 static const struct inode_operations proc_tid_base_inode_operations = {
3381 .lookup = proc_tid_base_lookup,
3382 .getattr = pid_getattr,
3383 .setattr = proc_setattr,
3384 };
3385
3386 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3387 struct task_struct *task, const void *ptr)
3388 {
3389 struct inode *inode;
3390 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3391 if (!inode)
3392 return ERR_PTR(-ENOENT);
3393
3394 inode->i_op = &proc_tid_base_inode_operations;
3395 inode->i_fop = &proc_tid_base_operations;
3396 inode->i_flags |= S_IMMUTABLE;
3397
3398 set_nlink(inode, nlink_tid);
3399 pid_update_inode(task, inode);
3400
3401 d_set_d_op(dentry, &pid_dentry_operations);
3402 return d_splice_alias(inode, dentry);
3403 }
3404
3405 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3406 {
3407 struct task_struct *task;
3408 struct task_struct *leader = get_proc_task(dir);
3409 unsigned tid;
3410 struct pid_namespace *ns;
3411 struct dentry *result = ERR_PTR(-ENOENT);
3412
3413 if (!leader)
3414 goto out_no_task;
3415
3416 tid = name_to_int(&dentry->d_name);
3417 if (tid == ~0U)
3418 goto out;
3419
3420 ns = dentry->d_sb->s_fs_info;
3421 rcu_read_lock();
3422 task = find_task_by_pid_ns(tid, ns);
3423 if (task)
3424 get_task_struct(task);
3425 rcu_read_unlock();
3426 if (!task)
3427 goto out;
3428 if (!same_thread_group(leader, task))
3429 goto out_drop_task;
3430
3431 result = proc_task_instantiate(dentry, task, NULL);
3432 out_drop_task:
3433 put_task_struct(task);
3434 out:
3435 put_task_struct(leader);
3436 out_no_task:
3437 return result;
3438 }
3439
3440 /*
3441 * Find the first tid of a thread group to return to user space.
3442 *
3443 * Usually this is just the thread group leader, but if the users
3444 * buffer was too small or there was a seek into the middle of the
3445 * directory we have more work todo.
3446 *
3447 * In the case of a short read we start with find_task_by_pid.
3448 *
3449 * In the case of a seek we start with the leader and walk nr
3450 * threads past it.
3451 */
3452 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3453 struct pid_namespace *ns)
3454 {
3455 struct task_struct *pos, *task;
3456 unsigned long nr = f_pos;
3457
3458 if (nr != f_pos) /* 32bit overflow? */
3459 return NULL;
3460
3461 rcu_read_lock();
3462 task = pid_task(pid, PIDTYPE_PID);
3463 if (!task)
3464 goto fail;
3465
3466 /* Attempt to start with the tid of a thread */
3467 if (tid && nr) {
3468 pos = find_task_by_pid_ns(tid, ns);
3469 if (pos && same_thread_group(pos, task))
3470 goto found;
3471 }
3472
3473 /* If nr exceeds the number of threads there is nothing todo */
3474 if (nr >= get_nr_threads(task))
3475 goto fail;
3476
3477 /* If we haven't found our starting place yet start
3478 * with the leader and walk nr threads forward.
3479 */
3480 pos = task = task->group_leader;
3481 do {
3482 if (!nr--)
3483 goto found;
3484 } while_each_thread(task, pos);
3485 fail:
3486 pos = NULL;
3487 goto out;
3488 found:
3489 get_task_struct(pos);
3490 out:
3491 rcu_read_unlock();
3492 return pos;
3493 }
3494
3495 /*
3496 * Find the next thread in the thread list.
3497 * Return NULL if there is an error or no next thread.
3498 *
3499 * The reference to the input task_struct is released.
3500 */
3501 static struct task_struct *next_tid(struct task_struct *start)
3502 {
3503 struct task_struct *pos = NULL;
3504 rcu_read_lock();
3505 if (pid_alive(start)) {
3506 pos = next_thread(start);
3507 if (thread_group_leader(pos))
3508 pos = NULL;
3509 else
3510 get_task_struct(pos);
3511 }
3512 rcu_read_unlock();
3513 put_task_struct(start);
3514 return pos;
3515 }
3516
3517 /* for the /proc/TGID/task/ directories */
3518 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3519 {
3520 struct inode *inode = file_inode(file);
3521 struct task_struct *task;
3522 struct pid_namespace *ns;
3523 int tid;
3524
3525 if (proc_inode_is_dead(inode))
3526 return -ENOENT;
3527
3528 if (!dir_emit_dots(file, ctx))
3529 return 0;
3530
3531 /* f_version caches the tgid value that the last readdir call couldn't
3532 * return. lseek aka telldir automagically resets f_version to 0.
3533 */
3534 ns = proc_pid_ns(inode);
3535 tid = (int)file->f_version;
3536 file->f_version = 0;
3537 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3538 task;
3539 task = next_tid(task), ctx->pos++) {
3540 char name[10 + 1];
3541 unsigned int len;
3542 tid = task_pid_nr_ns(task, ns);
3543 len = snprintf(name, sizeof(name), "%u", tid);
3544 if (!proc_fill_cache(file, ctx, name, len,
3545 proc_task_instantiate, task, NULL)) {
3546 /* returning this tgid failed, save it as the first
3547 * pid for the next readir call */
3548 file->f_version = (u64)tid;
3549 put_task_struct(task);
3550 break;
3551 }
3552 }
3553
3554 return 0;
3555 }
3556
3557 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3558 u32 request_mask, unsigned int query_flags)
3559 {
3560 struct inode *inode = d_inode(path->dentry);
3561 struct task_struct *p = get_proc_task(inode);
3562 generic_fillattr(inode, stat);
3563
3564 if (p) {
3565 stat->nlink += get_nr_threads(p);
3566 put_task_struct(p);
3567 }
3568
3569 return 0;
3570 }
3571
3572 static const struct inode_operations proc_task_inode_operations = {
3573 .lookup = proc_task_lookup,
3574 .getattr = proc_task_getattr,
3575 .setattr = proc_setattr,
3576 .permission = proc_pid_permission,
3577 };
3578
3579 static const struct file_operations proc_task_operations = {
3580 .read = generic_read_dir,
3581 .iterate_shared = proc_task_readdir,
3582 .llseek = generic_file_llseek,
3583 };
3584
3585 void __init set_proc_pid_nlink(void)
3586 {
3587 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3588 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3589 }