]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/base.c
mm_for_maps: simplify, use ptrace_may_access()
[mirror_ubuntu-artful-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85
86 /* NOTE:
87 * Implementing inode permission operations in /proc is almost
88 * certainly an error. Permission checks need to happen during
89 * each system call not at open time. The reason is that most of
90 * what we wish to check for permissions in /proc varies at runtime.
91 *
92 * The classic example of a problem is opening file descriptors
93 * in /proc for a task before it execs a suid executable.
94 */
95
96 struct pid_entry {
97 char *name;
98 int len;
99 mode_t mode;
100 const struct inode_operations *iop;
101 const struct file_operations *fop;
102 union proc_op op;
103 };
104
105 #define NOD(NAME, MODE, IOP, FOP, OP) { \
106 .name = (NAME), \
107 .len = sizeof(NAME) - 1, \
108 .mode = MODE, \
109 .iop = IOP, \
110 .fop = FOP, \
111 .op = OP, \
112 }
113
114 #define DIR(NAME, MODE, iops, fops) \
115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = read } )
126 #define ONE(NAME, MODE, show) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = show } )
130
131 /*
132 * Count the number of hardlinks for the pid_entry table, excluding the .
133 * and .. links.
134 */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 unsigned int n)
137 {
138 unsigned int i;
139 unsigned int count;
140
141 count = 0;
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
144 ++count;
145 }
146
147 return count;
148 }
149
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 struct fs_struct *fs;
153 int result = -ENOENT;
154
155 task_lock(task);
156 fs = task->fs;
157 if (fs) {
158 read_lock(&fs->lock);
159 *path = root ? fs->root : fs->pwd;
160 path_get(path);
161 read_unlock(&fs->lock);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166 }
167
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 unsigned long flags;
171 int count = 0;
172
173 if (lock_task_sighand(tsk, &flags)) {
174 count = atomic_read(&tsk->signal->count);
175 unlock_task_sighand(tsk, &flags);
176 }
177 return count;
178 }
179
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 struct task_struct *task = get_proc_task(inode);
183 int result = -ENOENT;
184
185 if (task) {
186 result = get_fs_path(task, path, 0);
187 put_task_struct(task);
188 }
189 return result;
190 }
191
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 struct task_struct *task = get_proc_task(inode);
195 int result = -ENOENT;
196
197 if (task) {
198 result = get_fs_path(task, path, 1);
199 put_task_struct(task);
200 }
201 return result;
202 }
203
204 /*
205 * Return zero if current may access user memory in @task, -error if not.
206 */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 /*
210 * A task can always look at itself, in case it chooses
211 * to use system calls instead of load instructions.
212 */
213 if (task == current)
214 return 0;
215
216 /*
217 * If current is actively ptrace'ing, and would also be
218 * permitted to freshly attach with ptrace now, permit it.
219 */
220 if (task_is_stopped_or_traced(task)) {
221 int match;
222 rcu_read_lock();
223 match = (tracehook_tracer_task(task) == current);
224 rcu_read_unlock();
225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 return 0;
227 }
228
229 /*
230 * Noone else is allowed.
231 */
232 return -EPERM;
233 }
234
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 struct mm_struct *mm = get_task_mm(task);
238 if (!mm)
239 return NULL;
240 if (mm != current->mm) {
241 /*
242 * task->mm can be changed before security check,
243 * in that case we must notice the change after.
244 */
245 if (!ptrace_may_access(task, PTRACE_MODE_READ) ||
246 mm != task->mm) {
247 mmput(mm);
248 return NULL;
249 }
250 }
251 down_read(&mm->mmap_sem);
252 return mm;
253 }
254
255 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
256 {
257 int res = 0;
258 unsigned int len;
259 struct mm_struct *mm = get_task_mm(task);
260 if (!mm)
261 goto out;
262 if (!mm->arg_end)
263 goto out_mm; /* Shh! No looking before we're done */
264
265 len = mm->arg_end - mm->arg_start;
266
267 if (len > PAGE_SIZE)
268 len = PAGE_SIZE;
269
270 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
271
272 // If the nul at the end of args has been overwritten, then
273 // assume application is using setproctitle(3).
274 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
275 len = strnlen(buffer, res);
276 if (len < res) {
277 res = len;
278 } else {
279 len = mm->env_end - mm->env_start;
280 if (len > PAGE_SIZE - res)
281 len = PAGE_SIZE - res;
282 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
283 res = strnlen(buffer, res);
284 }
285 }
286 out_mm:
287 mmput(mm);
288 out:
289 return res;
290 }
291
292 static int proc_pid_auxv(struct task_struct *task, char *buffer)
293 {
294 int res = 0;
295 struct mm_struct *mm = get_task_mm(task);
296 if (mm) {
297 unsigned int nwords = 0;
298 do {
299 nwords += 2;
300 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
301 res = nwords * sizeof(mm->saved_auxv[0]);
302 if (res > PAGE_SIZE)
303 res = PAGE_SIZE;
304 memcpy(buffer, mm->saved_auxv, res);
305 mmput(mm);
306 }
307 return res;
308 }
309
310
311 #ifdef CONFIG_KALLSYMS
312 /*
313 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
314 * Returns the resolved symbol. If that fails, simply return the address.
315 */
316 static int proc_pid_wchan(struct task_struct *task, char *buffer)
317 {
318 unsigned long wchan;
319 char symname[KSYM_NAME_LEN];
320
321 wchan = get_wchan(task);
322
323 if (lookup_symbol_name(wchan, symname) < 0)
324 if (!ptrace_may_access(task, PTRACE_MODE_READ))
325 return 0;
326 else
327 return sprintf(buffer, "%lu", wchan);
328 else
329 return sprintf(buffer, "%s", symname);
330 }
331 #endif /* CONFIG_KALLSYMS */
332
333 #ifdef CONFIG_STACKTRACE
334
335 #define MAX_STACK_TRACE_DEPTH 64
336
337 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
338 struct pid *pid, struct task_struct *task)
339 {
340 struct stack_trace trace;
341 unsigned long *entries;
342 int i;
343
344 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
345 if (!entries)
346 return -ENOMEM;
347
348 trace.nr_entries = 0;
349 trace.max_entries = MAX_STACK_TRACE_DEPTH;
350 trace.entries = entries;
351 trace.skip = 0;
352 save_stack_trace_tsk(task, &trace);
353
354 for (i = 0; i < trace.nr_entries; i++) {
355 seq_printf(m, "[<%p>] %pS\n",
356 (void *)entries[i], (void *)entries[i]);
357 }
358 kfree(entries);
359
360 return 0;
361 }
362 #endif
363
364 #ifdef CONFIG_SCHEDSTATS
365 /*
366 * Provides /proc/PID/schedstat
367 */
368 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
369 {
370 return sprintf(buffer, "%llu %llu %lu\n",
371 (unsigned long long)task->se.sum_exec_runtime,
372 (unsigned long long)task->sched_info.run_delay,
373 task->sched_info.pcount);
374 }
375 #endif
376
377 #ifdef CONFIG_LATENCYTOP
378 static int lstats_show_proc(struct seq_file *m, void *v)
379 {
380 int i;
381 struct inode *inode = m->private;
382 struct task_struct *task = get_proc_task(inode);
383
384 if (!task)
385 return -ESRCH;
386 seq_puts(m, "Latency Top version : v0.1\n");
387 for (i = 0; i < 32; i++) {
388 if (task->latency_record[i].backtrace[0]) {
389 int q;
390 seq_printf(m, "%i %li %li ",
391 task->latency_record[i].count,
392 task->latency_record[i].time,
393 task->latency_record[i].max);
394 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
395 char sym[KSYM_SYMBOL_LEN];
396 char *c;
397 if (!task->latency_record[i].backtrace[q])
398 break;
399 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
400 break;
401 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
402 c = strchr(sym, '+');
403 if (c)
404 *c = 0;
405 seq_printf(m, "%s ", sym);
406 }
407 seq_printf(m, "\n");
408 }
409
410 }
411 put_task_struct(task);
412 return 0;
413 }
414
415 static int lstats_open(struct inode *inode, struct file *file)
416 {
417 return single_open(file, lstats_show_proc, inode);
418 }
419
420 static ssize_t lstats_write(struct file *file, const char __user *buf,
421 size_t count, loff_t *offs)
422 {
423 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
424
425 if (!task)
426 return -ESRCH;
427 clear_all_latency_tracing(task);
428 put_task_struct(task);
429
430 return count;
431 }
432
433 static const struct file_operations proc_lstats_operations = {
434 .open = lstats_open,
435 .read = seq_read,
436 .write = lstats_write,
437 .llseek = seq_lseek,
438 .release = single_release,
439 };
440
441 #endif
442
443 /* The badness from the OOM killer */
444 unsigned long badness(struct task_struct *p, unsigned long uptime);
445 static int proc_oom_score(struct task_struct *task, char *buffer)
446 {
447 unsigned long points;
448 struct timespec uptime;
449
450 do_posix_clock_monotonic_gettime(&uptime);
451 read_lock(&tasklist_lock);
452 points = badness(task, uptime.tv_sec);
453 read_unlock(&tasklist_lock);
454 return sprintf(buffer, "%lu\n", points);
455 }
456
457 struct limit_names {
458 char *name;
459 char *unit;
460 };
461
462 static const struct limit_names lnames[RLIM_NLIMITS] = {
463 [RLIMIT_CPU] = {"Max cpu time", "ms"},
464 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
465 [RLIMIT_DATA] = {"Max data size", "bytes"},
466 [RLIMIT_STACK] = {"Max stack size", "bytes"},
467 [RLIMIT_CORE] = {"Max core file size", "bytes"},
468 [RLIMIT_RSS] = {"Max resident set", "bytes"},
469 [RLIMIT_NPROC] = {"Max processes", "processes"},
470 [RLIMIT_NOFILE] = {"Max open files", "files"},
471 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
472 [RLIMIT_AS] = {"Max address space", "bytes"},
473 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
474 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
475 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
476 [RLIMIT_NICE] = {"Max nice priority", NULL},
477 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
478 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
479 };
480
481 /* Display limits for a process */
482 static int proc_pid_limits(struct task_struct *task, char *buffer)
483 {
484 unsigned int i;
485 int count = 0;
486 unsigned long flags;
487 char *bufptr = buffer;
488
489 struct rlimit rlim[RLIM_NLIMITS];
490
491 if (!lock_task_sighand(task, &flags))
492 return 0;
493 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
494 unlock_task_sighand(task, &flags);
495
496 /*
497 * print the file header
498 */
499 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
500 "Limit", "Soft Limit", "Hard Limit", "Units");
501
502 for (i = 0; i < RLIM_NLIMITS; i++) {
503 if (rlim[i].rlim_cur == RLIM_INFINITY)
504 count += sprintf(&bufptr[count], "%-25s %-20s ",
505 lnames[i].name, "unlimited");
506 else
507 count += sprintf(&bufptr[count], "%-25s %-20lu ",
508 lnames[i].name, rlim[i].rlim_cur);
509
510 if (rlim[i].rlim_max == RLIM_INFINITY)
511 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
512 else
513 count += sprintf(&bufptr[count], "%-20lu ",
514 rlim[i].rlim_max);
515
516 if (lnames[i].unit)
517 count += sprintf(&bufptr[count], "%-10s\n",
518 lnames[i].unit);
519 else
520 count += sprintf(&bufptr[count], "\n");
521 }
522
523 return count;
524 }
525
526 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
527 static int proc_pid_syscall(struct task_struct *task, char *buffer)
528 {
529 long nr;
530 unsigned long args[6], sp, pc;
531
532 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
533 return sprintf(buffer, "running\n");
534
535 if (nr < 0)
536 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
537
538 return sprintf(buffer,
539 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
540 nr,
541 args[0], args[1], args[2], args[3], args[4], args[5],
542 sp, pc);
543 }
544 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
545
546 /************************************************************************/
547 /* Here the fs part begins */
548 /************************************************************************/
549
550 /* permission checks */
551 static int proc_fd_access_allowed(struct inode *inode)
552 {
553 struct task_struct *task;
554 int allowed = 0;
555 /* Allow access to a task's file descriptors if it is us or we
556 * may use ptrace attach to the process and find out that
557 * information.
558 */
559 task = get_proc_task(inode);
560 if (task) {
561 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
562 put_task_struct(task);
563 }
564 return allowed;
565 }
566
567 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
568 {
569 int error;
570 struct inode *inode = dentry->d_inode;
571
572 if (attr->ia_valid & ATTR_MODE)
573 return -EPERM;
574
575 error = inode_change_ok(inode, attr);
576 if (!error)
577 error = inode_setattr(inode, attr);
578 return error;
579 }
580
581 static const struct inode_operations proc_def_inode_operations = {
582 .setattr = proc_setattr,
583 };
584
585 static int mounts_open_common(struct inode *inode, struct file *file,
586 const struct seq_operations *op)
587 {
588 struct task_struct *task = get_proc_task(inode);
589 struct nsproxy *nsp;
590 struct mnt_namespace *ns = NULL;
591 struct path root;
592 struct proc_mounts *p;
593 int ret = -EINVAL;
594
595 if (task) {
596 rcu_read_lock();
597 nsp = task_nsproxy(task);
598 if (nsp) {
599 ns = nsp->mnt_ns;
600 if (ns)
601 get_mnt_ns(ns);
602 }
603 rcu_read_unlock();
604 if (ns && get_fs_path(task, &root, 1) == 0)
605 ret = 0;
606 put_task_struct(task);
607 }
608
609 if (!ns)
610 goto err;
611 if (ret)
612 goto err_put_ns;
613
614 ret = -ENOMEM;
615 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
616 if (!p)
617 goto err_put_path;
618
619 file->private_data = &p->m;
620 ret = seq_open(file, op);
621 if (ret)
622 goto err_free;
623
624 p->m.private = p;
625 p->ns = ns;
626 p->root = root;
627 p->event = ns->event;
628
629 return 0;
630
631 err_free:
632 kfree(p);
633 err_put_path:
634 path_put(&root);
635 err_put_ns:
636 put_mnt_ns(ns);
637 err:
638 return ret;
639 }
640
641 static int mounts_release(struct inode *inode, struct file *file)
642 {
643 struct proc_mounts *p = file->private_data;
644 path_put(&p->root);
645 put_mnt_ns(p->ns);
646 return seq_release(inode, file);
647 }
648
649 static unsigned mounts_poll(struct file *file, poll_table *wait)
650 {
651 struct proc_mounts *p = file->private_data;
652 struct mnt_namespace *ns = p->ns;
653 unsigned res = POLLIN | POLLRDNORM;
654
655 poll_wait(file, &ns->poll, wait);
656
657 spin_lock(&vfsmount_lock);
658 if (p->event != ns->event) {
659 p->event = ns->event;
660 res |= POLLERR | POLLPRI;
661 }
662 spin_unlock(&vfsmount_lock);
663
664 return res;
665 }
666
667 static int mounts_open(struct inode *inode, struct file *file)
668 {
669 return mounts_open_common(inode, file, &mounts_op);
670 }
671
672 static const struct file_operations proc_mounts_operations = {
673 .open = mounts_open,
674 .read = seq_read,
675 .llseek = seq_lseek,
676 .release = mounts_release,
677 .poll = mounts_poll,
678 };
679
680 static int mountinfo_open(struct inode *inode, struct file *file)
681 {
682 return mounts_open_common(inode, file, &mountinfo_op);
683 }
684
685 static const struct file_operations proc_mountinfo_operations = {
686 .open = mountinfo_open,
687 .read = seq_read,
688 .llseek = seq_lseek,
689 .release = mounts_release,
690 .poll = mounts_poll,
691 };
692
693 static int mountstats_open(struct inode *inode, struct file *file)
694 {
695 return mounts_open_common(inode, file, &mountstats_op);
696 }
697
698 static const struct file_operations proc_mountstats_operations = {
699 .open = mountstats_open,
700 .read = seq_read,
701 .llseek = seq_lseek,
702 .release = mounts_release,
703 };
704
705 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
706
707 static ssize_t proc_info_read(struct file * file, char __user * buf,
708 size_t count, loff_t *ppos)
709 {
710 struct inode * inode = file->f_path.dentry->d_inode;
711 unsigned long page;
712 ssize_t length;
713 struct task_struct *task = get_proc_task(inode);
714
715 length = -ESRCH;
716 if (!task)
717 goto out_no_task;
718
719 if (count > PROC_BLOCK_SIZE)
720 count = PROC_BLOCK_SIZE;
721
722 length = -ENOMEM;
723 if (!(page = __get_free_page(GFP_TEMPORARY)))
724 goto out;
725
726 length = PROC_I(inode)->op.proc_read(task, (char*)page);
727
728 if (length >= 0)
729 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
730 free_page(page);
731 out:
732 put_task_struct(task);
733 out_no_task:
734 return length;
735 }
736
737 static const struct file_operations proc_info_file_operations = {
738 .read = proc_info_read,
739 };
740
741 static int proc_single_show(struct seq_file *m, void *v)
742 {
743 struct inode *inode = m->private;
744 struct pid_namespace *ns;
745 struct pid *pid;
746 struct task_struct *task;
747 int ret;
748
749 ns = inode->i_sb->s_fs_info;
750 pid = proc_pid(inode);
751 task = get_pid_task(pid, PIDTYPE_PID);
752 if (!task)
753 return -ESRCH;
754
755 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
756
757 put_task_struct(task);
758 return ret;
759 }
760
761 static int proc_single_open(struct inode *inode, struct file *filp)
762 {
763 int ret;
764 ret = single_open(filp, proc_single_show, NULL);
765 if (!ret) {
766 struct seq_file *m = filp->private_data;
767
768 m->private = inode;
769 }
770 return ret;
771 }
772
773 static const struct file_operations proc_single_file_operations = {
774 .open = proc_single_open,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
778 };
779
780 static int mem_open(struct inode* inode, struct file* file)
781 {
782 file->private_data = (void*)((long)current->self_exec_id);
783 return 0;
784 }
785
786 static ssize_t mem_read(struct file * file, char __user * buf,
787 size_t count, loff_t *ppos)
788 {
789 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
790 char *page;
791 unsigned long src = *ppos;
792 int ret = -ESRCH;
793 struct mm_struct *mm;
794
795 if (!task)
796 goto out_no_task;
797
798 if (check_mem_permission(task))
799 goto out;
800
801 ret = -ENOMEM;
802 page = (char *)__get_free_page(GFP_TEMPORARY);
803 if (!page)
804 goto out;
805
806 ret = 0;
807
808 mm = get_task_mm(task);
809 if (!mm)
810 goto out_free;
811
812 ret = -EIO;
813
814 if (file->private_data != (void*)((long)current->self_exec_id))
815 goto out_put;
816
817 ret = 0;
818
819 while (count > 0) {
820 int this_len, retval;
821
822 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
823 retval = access_process_vm(task, src, page, this_len, 0);
824 if (!retval || check_mem_permission(task)) {
825 if (!ret)
826 ret = -EIO;
827 break;
828 }
829
830 if (copy_to_user(buf, page, retval)) {
831 ret = -EFAULT;
832 break;
833 }
834
835 ret += retval;
836 src += retval;
837 buf += retval;
838 count -= retval;
839 }
840 *ppos = src;
841
842 out_put:
843 mmput(mm);
844 out_free:
845 free_page((unsigned long) page);
846 out:
847 put_task_struct(task);
848 out_no_task:
849 return ret;
850 }
851
852 #define mem_write NULL
853
854 #ifndef mem_write
855 /* This is a security hazard */
856 static ssize_t mem_write(struct file * file, const char __user *buf,
857 size_t count, loff_t *ppos)
858 {
859 int copied;
860 char *page;
861 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
862 unsigned long dst = *ppos;
863
864 copied = -ESRCH;
865 if (!task)
866 goto out_no_task;
867
868 if (check_mem_permission(task))
869 goto out;
870
871 copied = -ENOMEM;
872 page = (char *)__get_free_page(GFP_TEMPORARY);
873 if (!page)
874 goto out;
875
876 copied = 0;
877 while (count > 0) {
878 int this_len, retval;
879
880 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
881 if (copy_from_user(page, buf, this_len)) {
882 copied = -EFAULT;
883 break;
884 }
885 retval = access_process_vm(task, dst, page, this_len, 1);
886 if (!retval) {
887 if (!copied)
888 copied = -EIO;
889 break;
890 }
891 copied += retval;
892 buf += retval;
893 dst += retval;
894 count -= retval;
895 }
896 *ppos = dst;
897 free_page((unsigned long) page);
898 out:
899 put_task_struct(task);
900 out_no_task:
901 return copied;
902 }
903 #endif
904
905 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
906 {
907 switch (orig) {
908 case 0:
909 file->f_pos = offset;
910 break;
911 case 1:
912 file->f_pos += offset;
913 break;
914 default:
915 return -EINVAL;
916 }
917 force_successful_syscall_return();
918 return file->f_pos;
919 }
920
921 static const struct file_operations proc_mem_operations = {
922 .llseek = mem_lseek,
923 .read = mem_read,
924 .write = mem_write,
925 .open = mem_open,
926 };
927
928 static ssize_t environ_read(struct file *file, char __user *buf,
929 size_t count, loff_t *ppos)
930 {
931 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
932 char *page;
933 unsigned long src = *ppos;
934 int ret = -ESRCH;
935 struct mm_struct *mm;
936
937 if (!task)
938 goto out_no_task;
939
940 if (!ptrace_may_access(task, PTRACE_MODE_READ))
941 goto out;
942
943 ret = -ENOMEM;
944 page = (char *)__get_free_page(GFP_TEMPORARY);
945 if (!page)
946 goto out;
947
948 ret = 0;
949
950 mm = get_task_mm(task);
951 if (!mm)
952 goto out_free;
953
954 while (count > 0) {
955 int this_len, retval, max_len;
956
957 this_len = mm->env_end - (mm->env_start + src);
958
959 if (this_len <= 0)
960 break;
961
962 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
963 this_len = (this_len > max_len) ? max_len : this_len;
964
965 retval = access_process_vm(task, (mm->env_start + src),
966 page, this_len, 0);
967
968 if (retval <= 0) {
969 ret = retval;
970 break;
971 }
972
973 if (copy_to_user(buf, page, retval)) {
974 ret = -EFAULT;
975 break;
976 }
977
978 ret += retval;
979 src += retval;
980 buf += retval;
981 count -= retval;
982 }
983 *ppos = src;
984
985 mmput(mm);
986 out_free:
987 free_page((unsigned long) page);
988 out:
989 put_task_struct(task);
990 out_no_task:
991 return ret;
992 }
993
994 static const struct file_operations proc_environ_operations = {
995 .read = environ_read,
996 };
997
998 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
999 size_t count, loff_t *ppos)
1000 {
1001 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1002 char buffer[PROC_NUMBUF];
1003 size_t len;
1004 int oom_adjust;
1005
1006 if (!task)
1007 return -ESRCH;
1008 task_lock(task);
1009 if (task->mm)
1010 oom_adjust = task->mm->oom_adj;
1011 else
1012 oom_adjust = OOM_DISABLE;
1013 task_unlock(task);
1014 put_task_struct(task);
1015
1016 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1017
1018 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1019 }
1020
1021 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1022 size_t count, loff_t *ppos)
1023 {
1024 struct task_struct *task;
1025 char buffer[PROC_NUMBUF], *end;
1026 int oom_adjust;
1027
1028 memset(buffer, 0, sizeof(buffer));
1029 if (count > sizeof(buffer) - 1)
1030 count = sizeof(buffer) - 1;
1031 if (copy_from_user(buffer, buf, count))
1032 return -EFAULT;
1033 oom_adjust = simple_strtol(buffer, &end, 0);
1034 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1035 oom_adjust != OOM_DISABLE)
1036 return -EINVAL;
1037 if (*end == '\n')
1038 end++;
1039 task = get_proc_task(file->f_path.dentry->d_inode);
1040 if (!task)
1041 return -ESRCH;
1042 task_lock(task);
1043 if (!task->mm) {
1044 task_unlock(task);
1045 put_task_struct(task);
1046 return -EINVAL;
1047 }
1048 if (oom_adjust < task->mm->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1049 task_unlock(task);
1050 put_task_struct(task);
1051 return -EACCES;
1052 }
1053 task->mm->oom_adj = oom_adjust;
1054 task_unlock(task);
1055 put_task_struct(task);
1056 if (end - buffer == 0)
1057 return -EIO;
1058 return end - buffer;
1059 }
1060
1061 static const struct file_operations proc_oom_adjust_operations = {
1062 .read = oom_adjust_read,
1063 .write = oom_adjust_write,
1064 };
1065
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069 size_t count, loff_t *ppos)
1070 {
1071 struct inode * inode = file->f_path.dentry->d_inode;
1072 struct task_struct *task = get_proc_task(inode);
1073 ssize_t length;
1074 char tmpbuf[TMPBUFLEN];
1075
1076 if (!task)
1077 return -ESRCH;
1078 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079 audit_get_loginuid(task));
1080 put_task_struct(task);
1081 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1082 }
1083
1084 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1085 size_t count, loff_t *ppos)
1086 {
1087 struct inode * inode = file->f_path.dentry->d_inode;
1088 char *page, *tmp;
1089 ssize_t length;
1090 uid_t loginuid;
1091
1092 if (!capable(CAP_AUDIT_CONTROL))
1093 return -EPERM;
1094
1095 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1096 return -EPERM;
1097
1098 if (count >= PAGE_SIZE)
1099 count = PAGE_SIZE - 1;
1100
1101 if (*ppos != 0) {
1102 /* No partial writes. */
1103 return -EINVAL;
1104 }
1105 page = (char*)__get_free_page(GFP_TEMPORARY);
1106 if (!page)
1107 return -ENOMEM;
1108 length = -EFAULT;
1109 if (copy_from_user(page, buf, count))
1110 goto out_free_page;
1111
1112 page[count] = '\0';
1113 loginuid = simple_strtoul(page, &tmp, 10);
1114 if (tmp == page) {
1115 length = -EINVAL;
1116 goto out_free_page;
1117
1118 }
1119 length = audit_set_loginuid(current, loginuid);
1120 if (likely(length == 0))
1121 length = count;
1122
1123 out_free_page:
1124 free_page((unsigned long) page);
1125 return length;
1126 }
1127
1128 static const struct file_operations proc_loginuid_operations = {
1129 .read = proc_loginuid_read,
1130 .write = proc_loginuid_write,
1131 };
1132
1133 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1134 size_t count, loff_t *ppos)
1135 {
1136 struct inode * inode = file->f_path.dentry->d_inode;
1137 struct task_struct *task = get_proc_task(inode);
1138 ssize_t length;
1139 char tmpbuf[TMPBUFLEN];
1140
1141 if (!task)
1142 return -ESRCH;
1143 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1144 audit_get_sessionid(task));
1145 put_task_struct(task);
1146 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1147 }
1148
1149 static const struct file_operations proc_sessionid_operations = {
1150 .read = proc_sessionid_read,
1151 };
1152 #endif
1153
1154 #ifdef CONFIG_FAULT_INJECTION
1155 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1156 size_t count, loff_t *ppos)
1157 {
1158 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1159 char buffer[PROC_NUMBUF];
1160 size_t len;
1161 int make_it_fail;
1162
1163 if (!task)
1164 return -ESRCH;
1165 make_it_fail = task->make_it_fail;
1166 put_task_struct(task);
1167
1168 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1169
1170 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1171 }
1172
1173 static ssize_t proc_fault_inject_write(struct file * file,
1174 const char __user * buf, size_t count, loff_t *ppos)
1175 {
1176 struct task_struct *task;
1177 char buffer[PROC_NUMBUF], *end;
1178 int make_it_fail;
1179
1180 if (!capable(CAP_SYS_RESOURCE))
1181 return -EPERM;
1182 memset(buffer, 0, sizeof(buffer));
1183 if (count > sizeof(buffer) - 1)
1184 count = sizeof(buffer) - 1;
1185 if (copy_from_user(buffer, buf, count))
1186 return -EFAULT;
1187 make_it_fail = simple_strtol(buffer, &end, 0);
1188 if (*end == '\n')
1189 end++;
1190 task = get_proc_task(file->f_dentry->d_inode);
1191 if (!task)
1192 return -ESRCH;
1193 task->make_it_fail = make_it_fail;
1194 put_task_struct(task);
1195 if (end - buffer == 0)
1196 return -EIO;
1197 return end - buffer;
1198 }
1199
1200 static const struct file_operations proc_fault_inject_operations = {
1201 .read = proc_fault_inject_read,
1202 .write = proc_fault_inject_write,
1203 };
1204 #endif
1205
1206
1207 #ifdef CONFIG_SCHED_DEBUG
1208 /*
1209 * Print out various scheduling related per-task fields:
1210 */
1211 static int sched_show(struct seq_file *m, void *v)
1212 {
1213 struct inode *inode = m->private;
1214 struct task_struct *p;
1215
1216 p = get_proc_task(inode);
1217 if (!p)
1218 return -ESRCH;
1219 proc_sched_show_task(p, m);
1220
1221 put_task_struct(p);
1222
1223 return 0;
1224 }
1225
1226 static ssize_t
1227 sched_write(struct file *file, const char __user *buf,
1228 size_t count, loff_t *offset)
1229 {
1230 struct inode *inode = file->f_path.dentry->d_inode;
1231 struct task_struct *p;
1232
1233 p = get_proc_task(inode);
1234 if (!p)
1235 return -ESRCH;
1236 proc_sched_set_task(p);
1237
1238 put_task_struct(p);
1239
1240 return count;
1241 }
1242
1243 static int sched_open(struct inode *inode, struct file *filp)
1244 {
1245 int ret;
1246
1247 ret = single_open(filp, sched_show, NULL);
1248 if (!ret) {
1249 struct seq_file *m = filp->private_data;
1250
1251 m->private = inode;
1252 }
1253 return ret;
1254 }
1255
1256 static const struct file_operations proc_pid_sched_operations = {
1257 .open = sched_open,
1258 .read = seq_read,
1259 .write = sched_write,
1260 .llseek = seq_lseek,
1261 .release = single_release,
1262 };
1263
1264 #endif
1265
1266 /*
1267 * We added or removed a vma mapping the executable. The vmas are only mapped
1268 * during exec and are not mapped with the mmap system call.
1269 * Callers must hold down_write() on the mm's mmap_sem for these
1270 */
1271 void added_exe_file_vma(struct mm_struct *mm)
1272 {
1273 mm->num_exe_file_vmas++;
1274 }
1275
1276 void removed_exe_file_vma(struct mm_struct *mm)
1277 {
1278 mm->num_exe_file_vmas--;
1279 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1280 fput(mm->exe_file);
1281 mm->exe_file = NULL;
1282 }
1283
1284 }
1285
1286 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1287 {
1288 if (new_exe_file)
1289 get_file(new_exe_file);
1290 if (mm->exe_file)
1291 fput(mm->exe_file);
1292 mm->exe_file = new_exe_file;
1293 mm->num_exe_file_vmas = 0;
1294 }
1295
1296 struct file *get_mm_exe_file(struct mm_struct *mm)
1297 {
1298 struct file *exe_file;
1299
1300 /* We need mmap_sem to protect against races with removal of
1301 * VM_EXECUTABLE vmas */
1302 down_read(&mm->mmap_sem);
1303 exe_file = mm->exe_file;
1304 if (exe_file)
1305 get_file(exe_file);
1306 up_read(&mm->mmap_sem);
1307 return exe_file;
1308 }
1309
1310 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1311 {
1312 /* It's safe to write the exe_file pointer without exe_file_lock because
1313 * this is called during fork when the task is not yet in /proc */
1314 newmm->exe_file = get_mm_exe_file(oldmm);
1315 }
1316
1317 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1318 {
1319 struct task_struct *task;
1320 struct mm_struct *mm;
1321 struct file *exe_file;
1322
1323 task = get_proc_task(inode);
1324 if (!task)
1325 return -ENOENT;
1326 mm = get_task_mm(task);
1327 put_task_struct(task);
1328 if (!mm)
1329 return -ENOENT;
1330 exe_file = get_mm_exe_file(mm);
1331 mmput(mm);
1332 if (exe_file) {
1333 *exe_path = exe_file->f_path;
1334 path_get(&exe_file->f_path);
1335 fput(exe_file);
1336 return 0;
1337 } else
1338 return -ENOENT;
1339 }
1340
1341 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1342 {
1343 struct inode *inode = dentry->d_inode;
1344 int error = -EACCES;
1345
1346 /* We don't need a base pointer in the /proc filesystem */
1347 path_put(&nd->path);
1348
1349 /* Are we allowed to snoop on the tasks file descriptors? */
1350 if (!proc_fd_access_allowed(inode))
1351 goto out;
1352
1353 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1354 nd->last_type = LAST_BIND;
1355 out:
1356 return ERR_PTR(error);
1357 }
1358
1359 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1360 {
1361 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1362 char *pathname;
1363 int len;
1364
1365 if (!tmp)
1366 return -ENOMEM;
1367
1368 pathname = d_path(path, tmp, PAGE_SIZE);
1369 len = PTR_ERR(pathname);
1370 if (IS_ERR(pathname))
1371 goto out;
1372 len = tmp + PAGE_SIZE - 1 - pathname;
1373
1374 if (len > buflen)
1375 len = buflen;
1376 if (copy_to_user(buffer, pathname, len))
1377 len = -EFAULT;
1378 out:
1379 free_page((unsigned long)tmp);
1380 return len;
1381 }
1382
1383 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1384 {
1385 int error = -EACCES;
1386 struct inode *inode = dentry->d_inode;
1387 struct path path;
1388
1389 /* Are we allowed to snoop on the tasks file descriptors? */
1390 if (!proc_fd_access_allowed(inode))
1391 goto out;
1392
1393 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1394 if (error)
1395 goto out;
1396
1397 error = do_proc_readlink(&path, buffer, buflen);
1398 path_put(&path);
1399 out:
1400 return error;
1401 }
1402
1403 static const struct inode_operations proc_pid_link_inode_operations = {
1404 .readlink = proc_pid_readlink,
1405 .follow_link = proc_pid_follow_link,
1406 .setattr = proc_setattr,
1407 };
1408
1409
1410 /* building an inode */
1411
1412 static int task_dumpable(struct task_struct *task)
1413 {
1414 int dumpable = 0;
1415 struct mm_struct *mm;
1416
1417 task_lock(task);
1418 mm = task->mm;
1419 if (mm)
1420 dumpable = get_dumpable(mm);
1421 task_unlock(task);
1422 if(dumpable == 1)
1423 return 1;
1424 return 0;
1425 }
1426
1427
1428 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1429 {
1430 struct inode * inode;
1431 struct proc_inode *ei;
1432 const struct cred *cred;
1433
1434 /* We need a new inode */
1435
1436 inode = new_inode(sb);
1437 if (!inode)
1438 goto out;
1439
1440 /* Common stuff */
1441 ei = PROC_I(inode);
1442 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1443 inode->i_op = &proc_def_inode_operations;
1444
1445 /*
1446 * grab the reference to task.
1447 */
1448 ei->pid = get_task_pid(task, PIDTYPE_PID);
1449 if (!ei->pid)
1450 goto out_unlock;
1451
1452 if (task_dumpable(task)) {
1453 rcu_read_lock();
1454 cred = __task_cred(task);
1455 inode->i_uid = cred->euid;
1456 inode->i_gid = cred->egid;
1457 rcu_read_unlock();
1458 }
1459 security_task_to_inode(task, inode);
1460
1461 out:
1462 return inode;
1463
1464 out_unlock:
1465 iput(inode);
1466 return NULL;
1467 }
1468
1469 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1470 {
1471 struct inode *inode = dentry->d_inode;
1472 struct task_struct *task;
1473 const struct cred *cred;
1474
1475 generic_fillattr(inode, stat);
1476
1477 rcu_read_lock();
1478 stat->uid = 0;
1479 stat->gid = 0;
1480 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1481 if (task) {
1482 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1483 task_dumpable(task)) {
1484 cred = __task_cred(task);
1485 stat->uid = cred->euid;
1486 stat->gid = cred->egid;
1487 }
1488 }
1489 rcu_read_unlock();
1490 return 0;
1491 }
1492
1493 /* dentry stuff */
1494
1495 /*
1496 * Exceptional case: normally we are not allowed to unhash a busy
1497 * directory. In this case, however, we can do it - no aliasing problems
1498 * due to the way we treat inodes.
1499 *
1500 * Rewrite the inode's ownerships here because the owning task may have
1501 * performed a setuid(), etc.
1502 *
1503 * Before the /proc/pid/status file was created the only way to read
1504 * the effective uid of a /process was to stat /proc/pid. Reading
1505 * /proc/pid/status is slow enough that procps and other packages
1506 * kept stating /proc/pid. To keep the rules in /proc simple I have
1507 * made this apply to all per process world readable and executable
1508 * directories.
1509 */
1510 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1511 {
1512 struct inode *inode = dentry->d_inode;
1513 struct task_struct *task = get_proc_task(inode);
1514 const struct cred *cred;
1515
1516 if (task) {
1517 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1518 task_dumpable(task)) {
1519 rcu_read_lock();
1520 cred = __task_cred(task);
1521 inode->i_uid = cred->euid;
1522 inode->i_gid = cred->egid;
1523 rcu_read_unlock();
1524 } else {
1525 inode->i_uid = 0;
1526 inode->i_gid = 0;
1527 }
1528 inode->i_mode &= ~(S_ISUID | S_ISGID);
1529 security_task_to_inode(task, inode);
1530 put_task_struct(task);
1531 return 1;
1532 }
1533 d_drop(dentry);
1534 return 0;
1535 }
1536
1537 static int pid_delete_dentry(struct dentry * dentry)
1538 {
1539 /* Is the task we represent dead?
1540 * If so, then don't put the dentry on the lru list,
1541 * kill it immediately.
1542 */
1543 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1544 }
1545
1546 static const struct dentry_operations pid_dentry_operations =
1547 {
1548 .d_revalidate = pid_revalidate,
1549 .d_delete = pid_delete_dentry,
1550 };
1551
1552 /* Lookups */
1553
1554 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1555 struct task_struct *, const void *);
1556
1557 /*
1558 * Fill a directory entry.
1559 *
1560 * If possible create the dcache entry and derive our inode number and
1561 * file type from dcache entry.
1562 *
1563 * Since all of the proc inode numbers are dynamically generated, the inode
1564 * numbers do not exist until the inode is cache. This means creating the
1565 * the dcache entry in readdir is necessary to keep the inode numbers
1566 * reported by readdir in sync with the inode numbers reported
1567 * by stat.
1568 */
1569 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1570 char *name, int len,
1571 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1572 {
1573 struct dentry *child, *dir = filp->f_path.dentry;
1574 struct inode *inode;
1575 struct qstr qname;
1576 ino_t ino = 0;
1577 unsigned type = DT_UNKNOWN;
1578
1579 qname.name = name;
1580 qname.len = len;
1581 qname.hash = full_name_hash(name, len);
1582
1583 child = d_lookup(dir, &qname);
1584 if (!child) {
1585 struct dentry *new;
1586 new = d_alloc(dir, &qname);
1587 if (new) {
1588 child = instantiate(dir->d_inode, new, task, ptr);
1589 if (child)
1590 dput(new);
1591 else
1592 child = new;
1593 }
1594 }
1595 if (!child || IS_ERR(child) || !child->d_inode)
1596 goto end_instantiate;
1597 inode = child->d_inode;
1598 if (inode) {
1599 ino = inode->i_ino;
1600 type = inode->i_mode >> 12;
1601 }
1602 dput(child);
1603 end_instantiate:
1604 if (!ino)
1605 ino = find_inode_number(dir, &qname);
1606 if (!ino)
1607 ino = 1;
1608 return filldir(dirent, name, len, filp->f_pos, ino, type);
1609 }
1610
1611 static unsigned name_to_int(struct dentry *dentry)
1612 {
1613 const char *name = dentry->d_name.name;
1614 int len = dentry->d_name.len;
1615 unsigned n = 0;
1616
1617 if (len > 1 && *name == '0')
1618 goto out;
1619 while (len-- > 0) {
1620 unsigned c = *name++ - '0';
1621 if (c > 9)
1622 goto out;
1623 if (n >= (~0U-9)/10)
1624 goto out;
1625 n *= 10;
1626 n += c;
1627 }
1628 return n;
1629 out:
1630 return ~0U;
1631 }
1632
1633 #define PROC_FDINFO_MAX 64
1634
1635 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1636 {
1637 struct task_struct *task = get_proc_task(inode);
1638 struct files_struct *files = NULL;
1639 struct file *file;
1640 int fd = proc_fd(inode);
1641
1642 if (task) {
1643 files = get_files_struct(task);
1644 put_task_struct(task);
1645 }
1646 if (files) {
1647 /*
1648 * We are not taking a ref to the file structure, so we must
1649 * hold ->file_lock.
1650 */
1651 spin_lock(&files->file_lock);
1652 file = fcheck_files(files, fd);
1653 if (file) {
1654 if (path) {
1655 *path = file->f_path;
1656 path_get(&file->f_path);
1657 }
1658 if (info)
1659 snprintf(info, PROC_FDINFO_MAX,
1660 "pos:\t%lli\n"
1661 "flags:\t0%o\n",
1662 (long long) file->f_pos,
1663 file->f_flags);
1664 spin_unlock(&files->file_lock);
1665 put_files_struct(files);
1666 return 0;
1667 }
1668 spin_unlock(&files->file_lock);
1669 put_files_struct(files);
1670 }
1671 return -ENOENT;
1672 }
1673
1674 static int proc_fd_link(struct inode *inode, struct path *path)
1675 {
1676 return proc_fd_info(inode, path, NULL);
1677 }
1678
1679 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1680 {
1681 struct inode *inode = dentry->d_inode;
1682 struct task_struct *task = get_proc_task(inode);
1683 int fd = proc_fd(inode);
1684 struct files_struct *files;
1685 const struct cred *cred;
1686
1687 if (task) {
1688 files = get_files_struct(task);
1689 if (files) {
1690 rcu_read_lock();
1691 if (fcheck_files(files, fd)) {
1692 rcu_read_unlock();
1693 put_files_struct(files);
1694 if (task_dumpable(task)) {
1695 rcu_read_lock();
1696 cred = __task_cred(task);
1697 inode->i_uid = cred->euid;
1698 inode->i_gid = cred->egid;
1699 rcu_read_unlock();
1700 } else {
1701 inode->i_uid = 0;
1702 inode->i_gid = 0;
1703 }
1704 inode->i_mode &= ~(S_ISUID | S_ISGID);
1705 security_task_to_inode(task, inode);
1706 put_task_struct(task);
1707 return 1;
1708 }
1709 rcu_read_unlock();
1710 put_files_struct(files);
1711 }
1712 put_task_struct(task);
1713 }
1714 d_drop(dentry);
1715 return 0;
1716 }
1717
1718 static const struct dentry_operations tid_fd_dentry_operations =
1719 {
1720 .d_revalidate = tid_fd_revalidate,
1721 .d_delete = pid_delete_dentry,
1722 };
1723
1724 static struct dentry *proc_fd_instantiate(struct inode *dir,
1725 struct dentry *dentry, struct task_struct *task, const void *ptr)
1726 {
1727 unsigned fd = *(const unsigned *)ptr;
1728 struct file *file;
1729 struct files_struct *files;
1730 struct inode *inode;
1731 struct proc_inode *ei;
1732 struct dentry *error = ERR_PTR(-ENOENT);
1733
1734 inode = proc_pid_make_inode(dir->i_sb, task);
1735 if (!inode)
1736 goto out;
1737 ei = PROC_I(inode);
1738 ei->fd = fd;
1739 files = get_files_struct(task);
1740 if (!files)
1741 goto out_iput;
1742 inode->i_mode = S_IFLNK;
1743
1744 /*
1745 * We are not taking a ref to the file structure, so we must
1746 * hold ->file_lock.
1747 */
1748 spin_lock(&files->file_lock);
1749 file = fcheck_files(files, fd);
1750 if (!file)
1751 goto out_unlock;
1752 if (file->f_mode & FMODE_READ)
1753 inode->i_mode |= S_IRUSR | S_IXUSR;
1754 if (file->f_mode & FMODE_WRITE)
1755 inode->i_mode |= S_IWUSR | S_IXUSR;
1756 spin_unlock(&files->file_lock);
1757 put_files_struct(files);
1758
1759 inode->i_op = &proc_pid_link_inode_operations;
1760 inode->i_size = 64;
1761 ei->op.proc_get_link = proc_fd_link;
1762 dentry->d_op = &tid_fd_dentry_operations;
1763 d_add(dentry, inode);
1764 /* Close the race of the process dying before we return the dentry */
1765 if (tid_fd_revalidate(dentry, NULL))
1766 error = NULL;
1767
1768 out:
1769 return error;
1770 out_unlock:
1771 spin_unlock(&files->file_lock);
1772 put_files_struct(files);
1773 out_iput:
1774 iput(inode);
1775 goto out;
1776 }
1777
1778 static struct dentry *proc_lookupfd_common(struct inode *dir,
1779 struct dentry *dentry,
1780 instantiate_t instantiate)
1781 {
1782 struct task_struct *task = get_proc_task(dir);
1783 unsigned fd = name_to_int(dentry);
1784 struct dentry *result = ERR_PTR(-ENOENT);
1785
1786 if (!task)
1787 goto out_no_task;
1788 if (fd == ~0U)
1789 goto out;
1790
1791 result = instantiate(dir, dentry, task, &fd);
1792 out:
1793 put_task_struct(task);
1794 out_no_task:
1795 return result;
1796 }
1797
1798 static int proc_readfd_common(struct file * filp, void * dirent,
1799 filldir_t filldir, instantiate_t instantiate)
1800 {
1801 struct dentry *dentry = filp->f_path.dentry;
1802 struct inode *inode = dentry->d_inode;
1803 struct task_struct *p = get_proc_task(inode);
1804 unsigned int fd, ino;
1805 int retval;
1806 struct files_struct * files;
1807
1808 retval = -ENOENT;
1809 if (!p)
1810 goto out_no_task;
1811 retval = 0;
1812
1813 fd = filp->f_pos;
1814 switch (fd) {
1815 case 0:
1816 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1817 goto out;
1818 filp->f_pos++;
1819 case 1:
1820 ino = parent_ino(dentry);
1821 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1822 goto out;
1823 filp->f_pos++;
1824 default:
1825 files = get_files_struct(p);
1826 if (!files)
1827 goto out;
1828 rcu_read_lock();
1829 for (fd = filp->f_pos-2;
1830 fd < files_fdtable(files)->max_fds;
1831 fd++, filp->f_pos++) {
1832 char name[PROC_NUMBUF];
1833 int len;
1834
1835 if (!fcheck_files(files, fd))
1836 continue;
1837 rcu_read_unlock();
1838
1839 len = snprintf(name, sizeof(name), "%d", fd);
1840 if (proc_fill_cache(filp, dirent, filldir,
1841 name, len, instantiate,
1842 p, &fd) < 0) {
1843 rcu_read_lock();
1844 break;
1845 }
1846 rcu_read_lock();
1847 }
1848 rcu_read_unlock();
1849 put_files_struct(files);
1850 }
1851 out:
1852 put_task_struct(p);
1853 out_no_task:
1854 return retval;
1855 }
1856
1857 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1858 struct nameidata *nd)
1859 {
1860 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1861 }
1862
1863 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1864 {
1865 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1866 }
1867
1868 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1869 size_t len, loff_t *ppos)
1870 {
1871 char tmp[PROC_FDINFO_MAX];
1872 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1873 if (!err)
1874 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1875 return err;
1876 }
1877
1878 static const struct file_operations proc_fdinfo_file_operations = {
1879 .open = nonseekable_open,
1880 .read = proc_fdinfo_read,
1881 };
1882
1883 static const struct file_operations proc_fd_operations = {
1884 .read = generic_read_dir,
1885 .readdir = proc_readfd,
1886 };
1887
1888 /*
1889 * /proc/pid/fd needs a special permission handler so that a process can still
1890 * access /proc/self/fd after it has executed a setuid().
1891 */
1892 static int proc_fd_permission(struct inode *inode, int mask)
1893 {
1894 int rv;
1895
1896 rv = generic_permission(inode, mask, NULL);
1897 if (rv == 0)
1898 return 0;
1899 if (task_pid(current) == proc_pid(inode))
1900 rv = 0;
1901 return rv;
1902 }
1903
1904 /*
1905 * proc directories can do almost nothing..
1906 */
1907 static const struct inode_operations proc_fd_inode_operations = {
1908 .lookup = proc_lookupfd,
1909 .permission = proc_fd_permission,
1910 .setattr = proc_setattr,
1911 };
1912
1913 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1914 struct dentry *dentry, struct task_struct *task, const void *ptr)
1915 {
1916 unsigned fd = *(unsigned *)ptr;
1917 struct inode *inode;
1918 struct proc_inode *ei;
1919 struct dentry *error = ERR_PTR(-ENOENT);
1920
1921 inode = proc_pid_make_inode(dir->i_sb, task);
1922 if (!inode)
1923 goto out;
1924 ei = PROC_I(inode);
1925 ei->fd = fd;
1926 inode->i_mode = S_IFREG | S_IRUSR;
1927 inode->i_fop = &proc_fdinfo_file_operations;
1928 dentry->d_op = &tid_fd_dentry_operations;
1929 d_add(dentry, inode);
1930 /* Close the race of the process dying before we return the dentry */
1931 if (tid_fd_revalidate(dentry, NULL))
1932 error = NULL;
1933
1934 out:
1935 return error;
1936 }
1937
1938 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1939 struct dentry *dentry,
1940 struct nameidata *nd)
1941 {
1942 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1943 }
1944
1945 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1946 {
1947 return proc_readfd_common(filp, dirent, filldir,
1948 proc_fdinfo_instantiate);
1949 }
1950
1951 static const struct file_operations proc_fdinfo_operations = {
1952 .read = generic_read_dir,
1953 .readdir = proc_readfdinfo,
1954 };
1955
1956 /*
1957 * proc directories can do almost nothing..
1958 */
1959 static const struct inode_operations proc_fdinfo_inode_operations = {
1960 .lookup = proc_lookupfdinfo,
1961 .setattr = proc_setattr,
1962 };
1963
1964
1965 static struct dentry *proc_pident_instantiate(struct inode *dir,
1966 struct dentry *dentry, struct task_struct *task, const void *ptr)
1967 {
1968 const struct pid_entry *p = ptr;
1969 struct inode *inode;
1970 struct proc_inode *ei;
1971 struct dentry *error = ERR_PTR(-ENOENT);
1972
1973 inode = proc_pid_make_inode(dir->i_sb, task);
1974 if (!inode)
1975 goto out;
1976
1977 ei = PROC_I(inode);
1978 inode->i_mode = p->mode;
1979 if (S_ISDIR(inode->i_mode))
1980 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1981 if (p->iop)
1982 inode->i_op = p->iop;
1983 if (p->fop)
1984 inode->i_fop = p->fop;
1985 ei->op = p->op;
1986 dentry->d_op = &pid_dentry_operations;
1987 d_add(dentry, inode);
1988 /* Close the race of the process dying before we return the dentry */
1989 if (pid_revalidate(dentry, NULL))
1990 error = NULL;
1991 out:
1992 return error;
1993 }
1994
1995 static struct dentry *proc_pident_lookup(struct inode *dir,
1996 struct dentry *dentry,
1997 const struct pid_entry *ents,
1998 unsigned int nents)
1999 {
2000 struct dentry *error;
2001 struct task_struct *task = get_proc_task(dir);
2002 const struct pid_entry *p, *last;
2003
2004 error = ERR_PTR(-ENOENT);
2005
2006 if (!task)
2007 goto out_no_task;
2008
2009 /*
2010 * Yes, it does not scale. And it should not. Don't add
2011 * new entries into /proc/<tgid>/ without very good reasons.
2012 */
2013 last = &ents[nents - 1];
2014 for (p = ents; p <= last; p++) {
2015 if (p->len != dentry->d_name.len)
2016 continue;
2017 if (!memcmp(dentry->d_name.name, p->name, p->len))
2018 break;
2019 }
2020 if (p > last)
2021 goto out;
2022
2023 error = proc_pident_instantiate(dir, dentry, task, p);
2024 out:
2025 put_task_struct(task);
2026 out_no_task:
2027 return error;
2028 }
2029
2030 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2031 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2032 {
2033 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2034 proc_pident_instantiate, task, p);
2035 }
2036
2037 static int proc_pident_readdir(struct file *filp,
2038 void *dirent, filldir_t filldir,
2039 const struct pid_entry *ents, unsigned int nents)
2040 {
2041 int i;
2042 struct dentry *dentry = filp->f_path.dentry;
2043 struct inode *inode = dentry->d_inode;
2044 struct task_struct *task = get_proc_task(inode);
2045 const struct pid_entry *p, *last;
2046 ino_t ino;
2047 int ret;
2048
2049 ret = -ENOENT;
2050 if (!task)
2051 goto out_no_task;
2052
2053 ret = 0;
2054 i = filp->f_pos;
2055 switch (i) {
2056 case 0:
2057 ino = inode->i_ino;
2058 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2059 goto out;
2060 i++;
2061 filp->f_pos++;
2062 /* fall through */
2063 case 1:
2064 ino = parent_ino(dentry);
2065 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2066 goto out;
2067 i++;
2068 filp->f_pos++;
2069 /* fall through */
2070 default:
2071 i -= 2;
2072 if (i >= nents) {
2073 ret = 1;
2074 goto out;
2075 }
2076 p = ents + i;
2077 last = &ents[nents - 1];
2078 while (p <= last) {
2079 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2080 goto out;
2081 filp->f_pos++;
2082 p++;
2083 }
2084 }
2085
2086 ret = 1;
2087 out:
2088 put_task_struct(task);
2089 out_no_task:
2090 return ret;
2091 }
2092
2093 #ifdef CONFIG_SECURITY
2094 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2095 size_t count, loff_t *ppos)
2096 {
2097 struct inode * inode = file->f_path.dentry->d_inode;
2098 char *p = NULL;
2099 ssize_t length;
2100 struct task_struct *task = get_proc_task(inode);
2101
2102 if (!task)
2103 return -ESRCH;
2104
2105 length = security_getprocattr(task,
2106 (char*)file->f_path.dentry->d_name.name,
2107 &p);
2108 put_task_struct(task);
2109 if (length > 0)
2110 length = simple_read_from_buffer(buf, count, ppos, p, length);
2111 kfree(p);
2112 return length;
2113 }
2114
2115 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2116 size_t count, loff_t *ppos)
2117 {
2118 struct inode * inode = file->f_path.dentry->d_inode;
2119 char *page;
2120 ssize_t length;
2121 struct task_struct *task = get_proc_task(inode);
2122
2123 length = -ESRCH;
2124 if (!task)
2125 goto out_no_task;
2126 if (count > PAGE_SIZE)
2127 count = PAGE_SIZE;
2128
2129 /* No partial writes. */
2130 length = -EINVAL;
2131 if (*ppos != 0)
2132 goto out;
2133
2134 length = -ENOMEM;
2135 page = (char*)__get_free_page(GFP_TEMPORARY);
2136 if (!page)
2137 goto out;
2138
2139 length = -EFAULT;
2140 if (copy_from_user(page, buf, count))
2141 goto out_free;
2142
2143 /* Guard against adverse ptrace interaction */
2144 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2145 if (length < 0)
2146 goto out_free;
2147
2148 length = security_setprocattr(task,
2149 (char*)file->f_path.dentry->d_name.name,
2150 (void*)page, count);
2151 mutex_unlock(&task->cred_guard_mutex);
2152 out_free:
2153 free_page((unsigned long) page);
2154 out:
2155 put_task_struct(task);
2156 out_no_task:
2157 return length;
2158 }
2159
2160 static const struct file_operations proc_pid_attr_operations = {
2161 .read = proc_pid_attr_read,
2162 .write = proc_pid_attr_write,
2163 };
2164
2165 static const struct pid_entry attr_dir_stuff[] = {
2166 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2167 REG("prev", S_IRUGO, proc_pid_attr_operations),
2168 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2169 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2170 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2171 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2172 };
2173
2174 static int proc_attr_dir_readdir(struct file * filp,
2175 void * dirent, filldir_t filldir)
2176 {
2177 return proc_pident_readdir(filp,dirent,filldir,
2178 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2179 }
2180
2181 static const struct file_operations proc_attr_dir_operations = {
2182 .read = generic_read_dir,
2183 .readdir = proc_attr_dir_readdir,
2184 };
2185
2186 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2187 struct dentry *dentry, struct nameidata *nd)
2188 {
2189 return proc_pident_lookup(dir, dentry,
2190 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2191 }
2192
2193 static const struct inode_operations proc_attr_dir_inode_operations = {
2194 .lookup = proc_attr_dir_lookup,
2195 .getattr = pid_getattr,
2196 .setattr = proc_setattr,
2197 };
2198
2199 #endif
2200
2201 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2202 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2203 size_t count, loff_t *ppos)
2204 {
2205 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2206 struct mm_struct *mm;
2207 char buffer[PROC_NUMBUF];
2208 size_t len;
2209 int ret;
2210
2211 if (!task)
2212 return -ESRCH;
2213
2214 ret = 0;
2215 mm = get_task_mm(task);
2216 if (mm) {
2217 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2218 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2219 MMF_DUMP_FILTER_SHIFT));
2220 mmput(mm);
2221 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2222 }
2223
2224 put_task_struct(task);
2225
2226 return ret;
2227 }
2228
2229 static ssize_t proc_coredump_filter_write(struct file *file,
2230 const char __user *buf,
2231 size_t count,
2232 loff_t *ppos)
2233 {
2234 struct task_struct *task;
2235 struct mm_struct *mm;
2236 char buffer[PROC_NUMBUF], *end;
2237 unsigned int val;
2238 int ret;
2239 int i;
2240 unsigned long mask;
2241
2242 ret = -EFAULT;
2243 memset(buffer, 0, sizeof(buffer));
2244 if (count > sizeof(buffer) - 1)
2245 count = sizeof(buffer) - 1;
2246 if (copy_from_user(buffer, buf, count))
2247 goto out_no_task;
2248
2249 ret = -EINVAL;
2250 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2251 if (*end == '\n')
2252 end++;
2253 if (end - buffer == 0)
2254 goto out_no_task;
2255
2256 ret = -ESRCH;
2257 task = get_proc_task(file->f_dentry->d_inode);
2258 if (!task)
2259 goto out_no_task;
2260
2261 ret = end - buffer;
2262 mm = get_task_mm(task);
2263 if (!mm)
2264 goto out_no_mm;
2265
2266 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2267 if (val & mask)
2268 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2269 else
2270 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2271 }
2272
2273 mmput(mm);
2274 out_no_mm:
2275 put_task_struct(task);
2276 out_no_task:
2277 return ret;
2278 }
2279
2280 static const struct file_operations proc_coredump_filter_operations = {
2281 .read = proc_coredump_filter_read,
2282 .write = proc_coredump_filter_write,
2283 };
2284 #endif
2285
2286 /*
2287 * /proc/self:
2288 */
2289 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2290 int buflen)
2291 {
2292 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2293 pid_t tgid = task_tgid_nr_ns(current, ns);
2294 char tmp[PROC_NUMBUF];
2295 if (!tgid)
2296 return -ENOENT;
2297 sprintf(tmp, "%d", tgid);
2298 return vfs_readlink(dentry,buffer,buflen,tmp);
2299 }
2300
2301 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2302 {
2303 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2304 pid_t tgid = task_tgid_nr_ns(current, ns);
2305 char tmp[PROC_NUMBUF];
2306 if (!tgid)
2307 return ERR_PTR(-ENOENT);
2308 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2309 return ERR_PTR(vfs_follow_link(nd,tmp));
2310 }
2311
2312 static const struct inode_operations proc_self_inode_operations = {
2313 .readlink = proc_self_readlink,
2314 .follow_link = proc_self_follow_link,
2315 };
2316
2317 /*
2318 * proc base
2319 *
2320 * These are the directory entries in the root directory of /proc
2321 * that properly belong to the /proc filesystem, as they describe
2322 * describe something that is process related.
2323 */
2324 static const struct pid_entry proc_base_stuff[] = {
2325 NOD("self", S_IFLNK|S_IRWXUGO,
2326 &proc_self_inode_operations, NULL, {}),
2327 };
2328
2329 /*
2330 * Exceptional case: normally we are not allowed to unhash a busy
2331 * directory. In this case, however, we can do it - no aliasing problems
2332 * due to the way we treat inodes.
2333 */
2334 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2335 {
2336 struct inode *inode = dentry->d_inode;
2337 struct task_struct *task = get_proc_task(inode);
2338 if (task) {
2339 put_task_struct(task);
2340 return 1;
2341 }
2342 d_drop(dentry);
2343 return 0;
2344 }
2345
2346 static const struct dentry_operations proc_base_dentry_operations =
2347 {
2348 .d_revalidate = proc_base_revalidate,
2349 .d_delete = pid_delete_dentry,
2350 };
2351
2352 static struct dentry *proc_base_instantiate(struct inode *dir,
2353 struct dentry *dentry, struct task_struct *task, const void *ptr)
2354 {
2355 const struct pid_entry *p = ptr;
2356 struct inode *inode;
2357 struct proc_inode *ei;
2358 struct dentry *error = ERR_PTR(-EINVAL);
2359
2360 /* Allocate the inode */
2361 error = ERR_PTR(-ENOMEM);
2362 inode = new_inode(dir->i_sb);
2363 if (!inode)
2364 goto out;
2365
2366 /* Initialize the inode */
2367 ei = PROC_I(inode);
2368 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2369
2370 /*
2371 * grab the reference to the task.
2372 */
2373 ei->pid = get_task_pid(task, PIDTYPE_PID);
2374 if (!ei->pid)
2375 goto out_iput;
2376
2377 inode->i_mode = p->mode;
2378 if (S_ISDIR(inode->i_mode))
2379 inode->i_nlink = 2;
2380 if (S_ISLNK(inode->i_mode))
2381 inode->i_size = 64;
2382 if (p->iop)
2383 inode->i_op = p->iop;
2384 if (p->fop)
2385 inode->i_fop = p->fop;
2386 ei->op = p->op;
2387 dentry->d_op = &proc_base_dentry_operations;
2388 d_add(dentry, inode);
2389 error = NULL;
2390 out:
2391 return error;
2392 out_iput:
2393 iput(inode);
2394 goto out;
2395 }
2396
2397 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2398 {
2399 struct dentry *error;
2400 struct task_struct *task = get_proc_task(dir);
2401 const struct pid_entry *p, *last;
2402
2403 error = ERR_PTR(-ENOENT);
2404
2405 if (!task)
2406 goto out_no_task;
2407
2408 /* Lookup the directory entry */
2409 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2410 for (p = proc_base_stuff; p <= last; p++) {
2411 if (p->len != dentry->d_name.len)
2412 continue;
2413 if (!memcmp(dentry->d_name.name, p->name, p->len))
2414 break;
2415 }
2416 if (p > last)
2417 goto out;
2418
2419 error = proc_base_instantiate(dir, dentry, task, p);
2420
2421 out:
2422 put_task_struct(task);
2423 out_no_task:
2424 return error;
2425 }
2426
2427 static int proc_base_fill_cache(struct file *filp, void *dirent,
2428 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2429 {
2430 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2431 proc_base_instantiate, task, p);
2432 }
2433
2434 #ifdef CONFIG_TASK_IO_ACCOUNTING
2435 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2436 {
2437 struct task_io_accounting acct = task->ioac;
2438 unsigned long flags;
2439
2440 if (whole && lock_task_sighand(task, &flags)) {
2441 struct task_struct *t = task;
2442
2443 task_io_accounting_add(&acct, &task->signal->ioac);
2444 while_each_thread(task, t)
2445 task_io_accounting_add(&acct, &t->ioac);
2446
2447 unlock_task_sighand(task, &flags);
2448 }
2449 return sprintf(buffer,
2450 "rchar: %llu\n"
2451 "wchar: %llu\n"
2452 "syscr: %llu\n"
2453 "syscw: %llu\n"
2454 "read_bytes: %llu\n"
2455 "write_bytes: %llu\n"
2456 "cancelled_write_bytes: %llu\n",
2457 (unsigned long long)acct.rchar,
2458 (unsigned long long)acct.wchar,
2459 (unsigned long long)acct.syscr,
2460 (unsigned long long)acct.syscw,
2461 (unsigned long long)acct.read_bytes,
2462 (unsigned long long)acct.write_bytes,
2463 (unsigned long long)acct.cancelled_write_bytes);
2464 }
2465
2466 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2467 {
2468 return do_io_accounting(task, buffer, 0);
2469 }
2470
2471 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2472 {
2473 return do_io_accounting(task, buffer, 1);
2474 }
2475 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2476
2477 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2478 struct pid *pid, struct task_struct *task)
2479 {
2480 seq_printf(m, "%08x\n", task->personality);
2481 return 0;
2482 }
2483
2484 /*
2485 * Thread groups
2486 */
2487 static const struct file_operations proc_task_operations;
2488 static const struct inode_operations proc_task_inode_operations;
2489
2490 static const struct pid_entry tgid_base_stuff[] = {
2491 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2492 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2493 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2494 #ifdef CONFIG_NET
2495 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2496 #endif
2497 REG("environ", S_IRUSR, proc_environ_operations),
2498 INF("auxv", S_IRUSR, proc_pid_auxv),
2499 ONE("status", S_IRUGO, proc_pid_status),
2500 ONE("personality", S_IRUSR, proc_pid_personality),
2501 INF("limits", S_IRUSR, proc_pid_limits),
2502 #ifdef CONFIG_SCHED_DEBUG
2503 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2504 #endif
2505 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2506 INF("syscall", S_IRUSR, proc_pid_syscall),
2507 #endif
2508 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2509 ONE("stat", S_IRUGO, proc_tgid_stat),
2510 ONE("statm", S_IRUGO, proc_pid_statm),
2511 REG("maps", S_IRUGO, proc_maps_operations),
2512 #ifdef CONFIG_NUMA
2513 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2514 #endif
2515 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2516 LNK("cwd", proc_cwd_link),
2517 LNK("root", proc_root_link),
2518 LNK("exe", proc_exe_link),
2519 REG("mounts", S_IRUGO, proc_mounts_operations),
2520 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2521 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2522 #ifdef CONFIG_PROC_PAGE_MONITOR
2523 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2524 REG("smaps", S_IRUGO, proc_smaps_operations),
2525 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2526 #endif
2527 #ifdef CONFIG_SECURITY
2528 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2529 #endif
2530 #ifdef CONFIG_KALLSYMS
2531 INF("wchan", S_IRUGO, proc_pid_wchan),
2532 #endif
2533 #ifdef CONFIG_STACKTRACE
2534 ONE("stack", S_IRUSR, proc_pid_stack),
2535 #endif
2536 #ifdef CONFIG_SCHEDSTATS
2537 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2538 #endif
2539 #ifdef CONFIG_LATENCYTOP
2540 REG("latency", S_IRUGO, proc_lstats_operations),
2541 #endif
2542 #ifdef CONFIG_PROC_PID_CPUSET
2543 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2544 #endif
2545 #ifdef CONFIG_CGROUPS
2546 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2547 #endif
2548 INF("oom_score", S_IRUGO, proc_oom_score),
2549 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2550 #ifdef CONFIG_AUDITSYSCALL
2551 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2552 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2553 #endif
2554 #ifdef CONFIG_FAULT_INJECTION
2555 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2556 #endif
2557 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2558 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2559 #endif
2560 #ifdef CONFIG_TASK_IO_ACCOUNTING
2561 INF("io", S_IRUGO, proc_tgid_io_accounting),
2562 #endif
2563 };
2564
2565 static int proc_tgid_base_readdir(struct file * filp,
2566 void * dirent, filldir_t filldir)
2567 {
2568 return proc_pident_readdir(filp,dirent,filldir,
2569 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2570 }
2571
2572 static const struct file_operations proc_tgid_base_operations = {
2573 .read = generic_read_dir,
2574 .readdir = proc_tgid_base_readdir,
2575 };
2576
2577 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2578 return proc_pident_lookup(dir, dentry,
2579 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2580 }
2581
2582 static const struct inode_operations proc_tgid_base_inode_operations = {
2583 .lookup = proc_tgid_base_lookup,
2584 .getattr = pid_getattr,
2585 .setattr = proc_setattr,
2586 };
2587
2588 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2589 {
2590 struct dentry *dentry, *leader, *dir;
2591 char buf[PROC_NUMBUF];
2592 struct qstr name;
2593
2594 name.name = buf;
2595 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2596 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2597 if (dentry) {
2598 if (!(current->flags & PF_EXITING))
2599 shrink_dcache_parent(dentry);
2600 d_drop(dentry);
2601 dput(dentry);
2602 }
2603
2604 if (tgid == 0)
2605 goto out;
2606
2607 name.name = buf;
2608 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2609 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2610 if (!leader)
2611 goto out;
2612
2613 name.name = "task";
2614 name.len = strlen(name.name);
2615 dir = d_hash_and_lookup(leader, &name);
2616 if (!dir)
2617 goto out_put_leader;
2618
2619 name.name = buf;
2620 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2621 dentry = d_hash_and_lookup(dir, &name);
2622 if (dentry) {
2623 shrink_dcache_parent(dentry);
2624 d_drop(dentry);
2625 dput(dentry);
2626 }
2627
2628 dput(dir);
2629 out_put_leader:
2630 dput(leader);
2631 out:
2632 return;
2633 }
2634
2635 /**
2636 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2637 * @task: task that should be flushed.
2638 *
2639 * When flushing dentries from proc, one needs to flush them from global
2640 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2641 * in. This call is supposed to do all of this job.
2642 *
2643 * Looks in the dcache for
2644 * /proc/@pid
2645 * /proc/@tgid/task/@pid
2646 * if either directory is present flushes it and all of it'ts children
2647 * from the dcache.
2648 *
2649 * It is safe and reasonable to cache /proc entries for a task until
2650 * that task exits. After that they just clog up the dcache with
2651 * useless entries, possibly causing useful dcache entries to be
2652 * flushed instead. This routine is proved to flush those useless
2653 * dcache entries at process exit time.
2654 *
2655 * NOTE: This routine is just an optimization so it does not guarantee
2656 * that no dcache entries will exist at process exit time it
2657 * just makes it very unlikely that any will persist.
2658 */
2659
2660 void proc_flush_task(struct task_struct *task)
2661 {
2662 int i;
2663 struct pid *pid, *tgid = NULL;
2664 struct upid *upid;
2665
2666 pid = task_pid(task);
2667 if (thread_group_leader(task))
2668 tgid = task_tgid(task);
2669
2670 for (i = 0; i <= pid->level; i++) {
2671 upid = &pid->numbers[i];
2672 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2673 tgid ? tgid->numbers[i].nr : 0);
2674 }
2675
2676 upid = &pid->numbers[pid->level];
2677 if (upid->nr == 1)
2678 pid_ns_release_proc(upid->ns);
2679 }
2680
2681 static struct dentry *proc_pid_instantiate(struct inode *dir,
2682 struct dentry * dentry,
2683 struct task_struct *task, const void *ptr)
2684 {
2685 struct dentry *error = ERR_PTR(-ENOENT);
2686 struct inode *inode;
2687
2688 inode = proc_pid_make_inode(dir->i_sb, task);
2689 if (!inode)
2690 goto out;
2691
2692 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2693 inode->i_op = &proc_tgid_base_inode_operations;
2694 inode->i_fop = &proc_tgid_base_operations;
2695 inode->i_flags|=S_IMMUTABLE;
2696
2697 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2698 ARRAY_SIZE(tgid_base_stuff));
2699
2700 dentry->d_op = &pid_dentry_operations;
2701
2702 d_add(dentry, inode);
2703 /* Close the race of the process dying before we return the dentry */
2704 if (pid_revalidate(dentry, NULL))
2705 error = NULL;
2706 out:
2707 return error;
2708 }
2709
2710 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2711 {
2712 struct dentry *result = ERR_PTR(-ENOENT);
2713 struct task_struct *task;
2714 unsigned tgid;
2715 struct pid_namespace *ns;
2716
2717 result = proc_base_lookup(dir, dentry);
2718 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2719 goto out;
2720
2721 tgid = name_to_int(dentry);
2722 if (tgid == ~0U)
2723 goto out;
2724
2725 ns = dentry->d_sb->s_fs_info;
2726 rcu_read_lock();
2727 task = find_task_by_pid_ns(tgid, ns);
2728 if (task)
2729 get_task_struct(task);
2730 rcu_read_unlock();
2731 if (!task)
2732 goto out;
2733
2734 result = proc_pid_instantiate(dir, dentry, task, NULL);
2735 put_task_struct(task);
2736 out:
2737 return result;
2738 }
2739
2740 /*
2741 * Find the first task with tgid >= tgid
2742 *
2743 */
2744 struct tgid_iter {
2745 unsigned int tgid;
2746 struct task_struct *task;
2747 };
2748 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2749 {
2750 struct pid *pid;
2751
2752 if (iter.task)
2753 put_task_struct(iter.task);
2754 rcu_read_lock();
2755 retry:
2756 iter.task = NULL;
2757 pid = find_ge_pid(iter.tgid, ns);
2758 if (pid) {
2759 iter.tgid = pid_nr_ns(pid, ns);
2760 iter.task = pid_task(pid, PIDTYPE_PID);
2761 /* What we to know is if the pid we have find is the
2762 * pid of a thread_group_leader. Testing for task
2763 * being a thread_group_leader is the obvious thing
2764 * todo but there is a window when it fails, due to
2765 * the pid transfer logic in de_thread.
2766 *
2767 * So we perform the straight forward test of seeing
2768 * if the pid we have found is the pid of a thread
2769 * group leader, and don't worry if the task we have
2770 * found doesn't happen to be a thread group leader.
2771 * As we don't care in the case of readdir.
2772 */
2773 if (!iter.task || !has_group_leader_pid(iter.task)) {
2774 iter.tgid += 1;
2775 goto retry;
2776 }
2777 get_task_struct(iter.task);
2778 }
2779 rcu_read_unlock();
2780 return iter;
2781 }
2782
2783 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2784
2785 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2786 struct tgid_iter iter)
2787 {
2788 char name[PROC_NUMBUF];
2789 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2790 return proc_fill_cache(filp, dirent, filldir, name, len,
2791 proc_pid_instantiate, iter.task, NULL);
2792 }
2793
2794 /* for the /proc/ directory itself, after non-process stuff has been done */
2795 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2796 {
2797 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2798 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2799 struct tgid_iter iter;
2800 struct pid_namespace *ns;
2801
2802 if (!reaper)
2803 goto out_no_task;
2804
2805 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2806 const struct pid_entry *p = &proc_base_stuff[nr];
2807 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2808 goto out;
2809 }
2810
2811 ns = filp->f_dentry->d_sb->s_fs_info;
2812 iter.task = NULL;
2813 iter.tgid = filp->f_pos - TGID_OFFSET;
2814 for (iter = next_tgid(ns, iter);
2815 iter.task;
2816 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2817 filp->f_pos = iter.tgid + TGID_OFFSET;
2818 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2819 put_task_struct(iter.task);
2820 goto out;
2821 }
2822 }
2823 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2824 out:
2825 put_task_struct(reaper);
2826 out_no_task:
2827 return 0;
2828 }
2829
2830 /*
2831 * Tasks
2832 */
2833 static const struct pid_entry tid_base_stuff[] = {
2834 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2835 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2836 REG("environ", S_IRUSR, proc_environ_operations),
2837 INF("auxv", S_IRUSR, proc_pid_auxv),
2838 ONE("status", S_IRUGO, proc_pid_status),
2839 ONE("personality", S_IRUSR, proc_pid_personality),
2840 INF("limits", S_IRUSR, proc_pid_limits),
2841 #ifdef CONFIG_SCHED_DEBUG
2842 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2843 #endif
2844 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2845 INF("syscall", S_IRUSR, proc_pid_syscall),
2846 #endif
2847 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2848 ONE("stat", S_IRUGO, proc_tid_stat),
2849 ONE("statm", S_IRUGO, proc_pid_statm),
2850 REG("maps", S_IRUGO, proc_maps_operations),
2851 #ifdef CONFIG_NUMA
2852 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2853 #endif
2854 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2855 LNK("cwd", proc_cwd_link),
2856 LNK("root", proc_root_link),
2857 LNK("exe", proc_exe_link),
2858 REG("mounts", S_IRUGO, proc_mounts_operations),
2859 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2860 #ifdef CONFIG_PROC_PAGE_MONITOR
2861 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2862 REG("smaps", S_IRUGO, proc_smaps_operations),
2863 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2864 #endif
2865 #ifdef CONFIG_SECURITY
2866 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2867 #endif
2868 #ifdef CONFIG_KALLSYMS
2869 INF("wchan", S_IRUGO, proc_pid_wchan),
2870 #endif
2871 #ifdef CONFIG_STACKTRACE
2872 ONE("stack", S_IRUSR, proc_pid_stack),
2873 #endif
2874 #ifdef CONFIG_SCHEDSTATS
2875 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2876 #endif
2877 #ifdef CONFIG_LATENCYTOP
2878 REG("latency", S_IRUGO, proc_lstats_operations),
2879 #endif
2880 #ifdef CONFIG_PROC_PID_CPUSET
2881 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2882 #endif
2883 #ifdef CONFIG_CGROUPS
2884 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2885 #endif
2886 INF("oom_score", S_IRUGO, proc_oom_score),
2887 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2888 #ifdef CONFIG_AUDITSYSCALL
2889 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2890 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2891 #endif
2892 #ifdef CONFIG_FAULT_INJECTION
2893 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2894 #endif
2895 #ifdef CONFIG_TASK_IO_ACCOUNTING
2896 INF("io", S_IRUGO, proc_tid_io_accounting),
2897 #endif
2898 };
2899
2900 static int proc_tid_base_readdir(struct file * filp,
2901 void * dirent, filldir_t filldir)
2902 {
2903 return proc_pident_readdir(filp,dirent,filldir,
2904 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2905 }
2906
2907 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2908 return proc_pident_lookup(dir, dentry,
2909 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2910 }
2911
2912 static const struct file_operations proc_tid_base_operations = {
2913 .read = generic_read_dir,
2914 .readdir = proc_tid_base_readdir,
2915 };
2916
2917 static const struct inode_operations proc_tid_base_inode_operations = {
2918 .lookup = proc_tid_base_lookup,
2919 .getattr = pid_getattr,
2920 .setattr = proc_setattr,
2921 };
2922
2923 static struct dentry *proc_task_instantiate(struct inode *dir,
2924 struct dentry *dentry, struct task_struct *task, const void *ptr)
2925 {
2926 struct dentry *error = ERR_PTR(-ENOENT);
2927 struct inode *inode;
2928 inode = proc_pid_make_inode(dir->i_sb, task);
2929
2930 if (!inode)
2931 goto out;
2932 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2933 inode->i_op = &proc_tid_base_inode_operations;
2934 inode->i_fop = &proc_tid_base_operations;
2935 inode->i_flags|=S_IMMUTABLE;
2936
2937 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2938 ARRAY_SIZE(tid_base_stuff));
2939
2940 dentry->d_op = &pid_dentry_operations;
2941
2942 d_add(dentry, inode);
2943 /* Close the race of the process dying before we return the dentry */
2944 if (pid_revalidate(dentry, NULL))
2945 error = NULL;
2946 out:
2947 return error;
2948 }
2949
2950 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2951 {
2952 struct dentry *result = ERR_PTR(-ENOENT);
2953 struct task_struct *task;
2954 struct task_struct *leader = get_proc_task(dir);
2955 unsigned tid;
2956 struct pid_namespace *ns;
2957
2958 if (!leader)
2959 goto out_no_task;
2960
2961 tid = name_to_int(dentry);
2962 if (tid == ~0U)
2963 goto out;
2964
2965 ns = dentry->d_sb->s_fs_info;
2966 rcu_read_lock();
2967 task = find_task_by_pid_ns(tid, ns);
2968 if (task)
2969 get_task_struct(task);
2970 rcu_read_unlock();
2971 if (!task)
2972 goto out;
2973 if (!same_thread_group(leader, task))
2974 goto out_drop_task;
2975
2976 result = proc_task_instantiate(dir, dentry, task, NULL);
2977 out_drop_task:
2978 put_task_struct(task);
2979 out:
2980 put_task_struct(leader);
2981 out_no_task:
2982 return result;
2983 }
2984
2985 /*
2986 * Find the first tid of a thread group to return to user space.
2987 *
2988 * Usually this is just the thread group leader, but if the users
2989 * buffer was too small or there was a seek into the middle of the
2990 * directory we have more work todo.
2991 *
2992 * In the case of a short read we start with find_task_by_pid.
2993 *
2994 * In the case of a seek we start with the leader and walk nr
2995 * threads past it.
2996 */
2997 static struct task_struct *first_tid(struct task_struct *leader,
2998 int tid, int nr, struct pid_namespace *ns)
2999 {
3000 struct task_struct *pos;
3001
3002 rcu_read_lock();
3003 /* Attempt to start with the pid of a thread */
3004 if (tid && (nr > 0)) {
3005 pos = find_task_by_pid_ns(tid, ns);
3006 if (pos && (pos->group_leader == leader))
3007 goto found;
3008 }
3009
3010 /* If nr exceeds the number of threads there is nothing todo */
3011 pos = NULL;
3012 if (nr && nr >= get_nr_threads(leader))
3013 goto out;
3014
3015 /* If we haven't found our starting place yet start
3016 * with the leader and walk nr threads forward.
3017 */
3018 for (pos = leader; nr > 0; --nr) {
3019 pos = next_thread(pos);
3020 if (pos == leader) {
3021 pos = NULL;
3022 goto out;
3023 }
3024 }
3025 found:
3026 get_task_struct(pos);
3027 out:
3028 rcu_read_unlock();
3029 return pos;
3030 }
3031
3032 /*
3033 * Find the next thread in the thread list.
3034 * Return NULL if there is an error or no next thread.
3035 *
3036 * The reference to the input task_struct is released.
3037 */
3038 static struct task_struct *next_tid(struct task_struct *start)
3039 {
3040 struct task_struct *pos = NULL;
3041 rcu_read_lock();
3042 if (pid_alive(start)) {
3043 pos = next_thread(start);
3044 if (thread_group_leader(pos))
3045 pos = NULL;
3046 else
3047 get_task_struct(pos);
3048 }
3049 rcu_read_unlock();
3050 put_task_struct(start);
3051 return pos;
3052 }
3053
3054 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3055 struct task_struct *task, int tid)
3056 {
3057 char name[PROC_NUMBUF];
3058 int len = snprintf(name, sizeof(name), "%d", tid);
3059 return proc_fill_cache(filp, dirent, filldir, name, len,
3060 proc_task_instantiate, task, NULL);
3061 }
3062
3063 /* for the /proc/TGID/task/ directories */
3064 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3065 {
3066 struct dentry *dentry = filp->f_path.dentry;
3067 struct inode *inode = dentry->d_inode;
3068 struct task_struct *leader = NULL;
3069 struct task_struct *task;
3070 int retval = -ENOENT;
3071 ino_t ino;
3072 int tid;
3073 struct pid_namespace *ns;
3074
3075 task = get_proc_task(inode);
3076 if (!task)
3077 goto out_no_task;
3078 rcu_read_lock();
3079 if (pid_alive(task)) {
3080 leader = task->group_leader;
3081 get_task_struct(leader);
3082 }
3083 rcu_read_unlock();
3084 put_task_struct(task);
3085 if (!leader)
3086 goto out_no_task;
3087 retval = 0;
3088
3089 switch ((unsigned long)filp->f_pos) {
3090 case 0:
3091 ino = inode->i_ino;
3092 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3093 goto out;
3094 filp->f_pos++;
3095 /* fall through */
3096 case 1:
3097 ino = parent_ino(dentry);
3098 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3099 goto out;
3100 filp->f_pos++;
3101 /* fall through */
3102 }
3103
3104 /* f_version caches the tgid value that the last readdir call couldn't
3105 * return. lseek aka telldir automagically resets f_version to 0.
3106 */
3107 ns = filp->f_dentry->d_sb->s_fs_info;
3108 tid = (int)filp->f_version;
3109 filp->f_version = 0;
3110 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3111 task;
3112 task = next_tid(task), filp->f_pos++) {
3113 tid = task_pid_nr_ns(task, ns);
3114 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3115 /* returning this tgid failed, save it as the first
3116 * pid for the next readir call */
3117 filp->f_version = (u64)tid;
3118 put_task_struct(task);
3119 break;
3120 }
3121 }
3122 out:
3123 put_task_struct(leader);
3124 out_no_task:
3125 return retval;
3126 }
3127
3128 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3129 {
3130 struct inode *inode = dentry->d_inode;
3131 struct task_struct *p = get_proc_task(inode);
3132 generic_fillattr(inode, stat);
3133
3134 if (p) {
3135 stat->nlink += get_nr_threads(p);
3136 put_task_struct(p);
3137 }
3138
3139 return 0;
3140 }
3141
3142 static const struct inode_operations proc_task_inode_operations = {
3143 .lookup = proc_task_lookup,
3144 .getattr = proc_task_getattr,
3145 .setattr = proc_setattr,
3146 };
3147
3148 static const struct file_operations proc_task_operations = {
3149 .read = generic_read_dir,
3150 .readdir = proc_task_readdir,
3151 };