]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/base.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cgroup.h>
79 #include <linux/cpuset.h>
80 #include <linux/audit.h>
81 #include <linux/poll.h>
82 #include <linux/nsproxy.h>
83 #include <linux/oom.h>
84 #include <linux/elf.h>
85 #include <linux/pid_namespace.h>
86 #include <linux/user_namespace.h>
87 #include <linux/fs_struct.h>
88 #include <linux/slab.h>
89 #include <linux/sched/autogroup.h>
90 #include <linux/sched/mm.h>
91 #include <linux/sched/coredump.h>
92 #include <linux/sched/debug.h>
93 #include <linux/sched/stat.h>
94 #include <linux/flex_array.h>
95 #include <linux/posix-timers.h>
96 #ifdef CONFIG_HARDWALL
97 #include <asm/hardwall.h>
98 #endif
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid;
114 static u8 nlink_tgid;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
209 size_t _count, loff_t *pos)
210 {
211 struct task_struct *tsk;
212 struct mm_struct *mm;
213 char *page;
214 unsigned long count = _count;
215 unsigned long arg_start, arg_end, env_start, env_end;
216 unsigned long len1, len2, len;
217 unsigned long p;
218 char c;
219 ssize_t rv;
220
221 BUG_ON(*pos < 0);
222
223 tsk = get_proc_task(file_inode(file));
224 if (!tsk)
225 return -ESRCH;
226 mm = get_task_mm(tsk);
227 put_task_struct(tsk);
228 if (!mm)
229 return 0;
230 /* Check if process spawned far enough to have cmdline. */
231 if (!mm->env_end) {
232 rv = 0;
233 goto out_mmput;
234 }
235
236 page = (char *)__get_free_page(GFP_KERNEL);
237 if (!page) {
238 rv = -ENOMEM;
239 goto out_mmput;
240 }
241
242 down_read(&mm->mmap_sem);
243 arg_start = mm->arg_start;
244 arg_end = mm->arg_end;
245 env_start = mm->env_start;
246 env_end = mm->env_end;
247 up_read(&mm->mmap_sem);
248
249 BUG_ON(arg_start > arg_end);
250 BUG_ON(env_start > env_end);
251
252 len1 = arg_end - arg_start;
253 len2 = env_end - env_start;
254
255 /* Empty ARGV. */
256 if (len1 == 0) {
257 rv = 0;
258 goto out_free_page;
259 }
260 /*
261 * Inherently racy -- command line shares address space
262 * with code and data.
263 */
264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
265 if (rv <= 0)
266 goto out_free_page;
267
268 rv = 0;
269
270 if (c == '\0') {
271 /* Command line (set of strings) occupies whole ARGV. */
272 if (len1 <= *pos)
273 goto out_free_page;
274
275 p = arg_start + *pos;
276 len = len1 - *pos;
277 while (count > 0 && len > 0) {
278 unsigned int _count;
279 int nr_read;
280
281 _count = min3(count, len, PAGE_SIZE);
282 nr_read = access_remote_vm(mm, p, page, _count, 0);
283 if (nr_read < 0)
284 rv = nr_read;
285 if (nr_read <= 0)
286 goto out_free_page;
287
288 if (copy_to_user(buf, page, nr_read)) {
289 rv = -EFAULT;
290 goto out_free_page;
291 }
292
293 p += nr_read;
294 len -= nr_read;
295 buf += nr_read;
296 count -= nr_read;
297 rv += nr_read;
298 }
299 } else {
300 /*
301 * Command line (1 string) occupies ARGV and
302 * extends into ENVP.
303 */
304 struct {
305 unsigned long p;
306 unsigned long len;
307 } cmdline[2] = {
308 { .p = arg_start, .len = len1 },
309 { .p = env_start, .len = len2 },
310 };
311 loff_t pos1 = *pos;
312 unsigned int i;
313
314 i = 0;
315 while (i < 2 && pos1 >= cmdline[i].len) {
316 pos1 -= cmdline[i].len;
317 i++;
318 }
319 while (i < 2) {
320 p = cmdline[i].p + pos1;
321 len = cmdline[i].len - pos1;
322 while (count > 0 && len > 0) {
323 unsigned int _count, l;
324 int nr_read;
325 bool final;
326
327 _count = min3(count, len, PAGE_SIZE);
328 nr_read = access_remote_vm(mm, p, page, _count, 0);
329 if (nr_read < 0)
330 rv = nr_read;
331 if (nr_read <= 0)
332 goto out_free_page;
333
334 /*
335 * Command line can be shorter than whole ARGV
336 * even if last "marker" byte says it is not.
337 */
338 final = false;
339 l = strnlen(page, nr_read);
340 if (l < nr_read) {
341 nr_read = l;
342 final = true;
343 }
344
345 if (copy_to_user(buf, page, nr_read)) {
346 rv = -EFAULT;
347 goto out_free_page;
348 }
349
350 p += nr_read;
351 len -= nr_read;
352 buf += nr_read;
353 count -= nr_read;
354 rv += nr_read;
355
356 if (final)
357 goto out_free_page;
358 }
359
360 /* Only first chunk can be read partially. */
361 pos1 = 0;
362 i++;
363 }
364 }
365
366 out_free_page:
367 free_page((unsigned long)page);
368 out_mmput:
369 mmput(mm);
370 if (rv > 0)
371 *pos += rv;
372 return rv;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 wchan = get_wchan(task);
392
393 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
394 && !lookup_symbol_name(wchan, symname))
395 seq_printf(m, "%s", symname);
396 else
397 seq_putc(m, '0');
398
399 return 0;
400 }
401 #endif /* CONFIG_KALLSYMS */
402
403 static int lock_trace(struct task_struct *task)
404 {
405 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
406 if (err)
407 return err;
408 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
409 mutex_unlock(&task->signal->cred_guard_mutex);
410 return -EPERM;
411 }
412 return 0;
413 }
414
415 static void unlock_trace(struct task_struct *task)
416 {
417 mutex_unlock(&task->signal->cred_guard_mutex);
418 }
419
420 #ifdef CONFIG_STACKTRACE
421
422 #define MAX_STACK_TRACE_DEPTH 64
423
424 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
425 struct pid *pid, struct task_struct *task)
426 {
427 struct stack_trace trace;
428 unsigned long *entries;
429 int err;
430 int i;
431
432 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
433 if (!entries)
434 return -ENOMEM;
435
436 trace.nr_entries = 0;
437 trace.max_entries = MAX_STACK_TRACE_DEPTH;
438 trace.entries = entries;
439 trace.skip = 0;
440
441 err = lock_trace(task);
442 if (!err) {
443 save_stack_trace_tsk(task, &trace);
444
445 for (i = 0; i < trace.nr_entries; i++) {
446 seq_printf(m, "[<%pK>] %pB\n",
447 (void *)entries[i], (void *)entries[i]);
448 }
449 unlock_trace(task);
450 }
451 kfree(entries);
452
453 return err;
454 }
455 #endif
456
457 #ifdef CONFIG_SCHED_INFO
458 /*
459 * Provides /proc/PID/schedstat
460 */
461 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
462 struct pid *pid, struct task_struct *task)
463 {
464 if (unlikely(!sched_info_on()))
465 seq_printf(m, "0 0 0\n");
466 else
467 seq_printf(m, "%llu %llu %lu\n",
468 (unsigned long long)task->se.sum_exec_runtime,
469 (unsigned long long)task->sched_info.run_delay,
470 task->sched_info.pcount);
471
472 return 0;
473 }
474 #endif
475
476 #ifdef CONFIG_LATENCYTOP
477 static int lstats_show_proc(struct seq_file *m, void *v)
478 {
479 int i;
480 struct inode *inode = m->private;
481 struct task_struct *task = get_proc_task(inode);
482
483 if (!task)
484 return -ESRCH;
485 seq_puts(m, "Latency Top version : v0.1\n");
486 for (i = 0; i < 32; i++) {
487 struct latency_record *lr = &task->latency_record[i];
488 if (lr->backtrace[0]) {
489 int q;
490 seq_printf(m, "%i %li %li",
491 lr->count, lr->time, lr->max);
492 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
493 unsigned long bt = lr->backtrace[q];
494 if (!bt)
495 break;
496 if (bt == ULONG_MAX)
497 break;
498 seq_printf(m, " %ps", (void *)bt);
499 }
500 seq_putc(m, '\n');
501 }
502
503 }
504 put_task_struct(task);
505 return 0;
506 }
507
508 static int lstats_open(struct inode *inode, struct file *file)
509 {
510 return single_open(file, lstats_show_proc, inode);
511 }
512
513 static ssize_t lstats_write(struct file *file, const char __user *buf,
514 size_t count, loff_t *offs)
515 {
516 struct task_struct *task = get_proc_task(file_inode(file));
517
518 if (!task)
519 return -ESRCH;
520 clear_all_latency_tracing(task);
521 put_task_struct(task);
522
523 return count;
524 }
525
526 static const struct file_operations proc_lstats_operations = {
527 .open = lstats_open,
528 .read = seq_read,
529 .write = lstats_write,
530 .llseek = seq_lseek,
531 .release = single_release,
532 };
533
534 #endif
535
536 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
537 struct pid *pid, struct task_struct *task)
538 {
539 unsigned long totalpages = totalram_pages + total_swap_pages;
540 unsigned long points = 0;
541
542 points = oom_badness(task, NULL, NULL, totalpages) *
543 1000 / totalpages;
544 seq_printf(m, "%lu\n", points);
545
546 return 0;
547 }
548
549 struct limit_names {
550 const char *name;
551 const char *unit;
552 };
553
554 static const struct limit_names lnames[RLIM_NLIMITS] = {
555 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
556 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
557 [RLIMIT_DATA] = {"Max data size", "bytes"},
558 [RLIMIT_STACK] = {"Max stack size", "bytes"},
559 [RLIMIT_CORE] = {"Max core file size", "bytes"},
560 [RLIMIT_RSS] = {"Max resident set", "bytes"},
561 [RLIMIT_NPROC] = {"Max processes", "processes"},
562 [RLIMIT_NOFILE] = {"Max open files", "files"},
563 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
564 [RLIMIT_AS] = {"Max address space", "bytes"},
565 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
566 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
567 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
568 [RLIMIT_NICE] = {"Max nice priority", NULL},
569 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
570 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
571 };
572
573 /* Display limits for a process */
574 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
575 struct pid *pid, struct task_struct *task)
576 {
577 unsigned int i;
578 unsigned long flags;
579
580 struct rlimit rlim[RLIM_NLIMITS];
581
582 if (!lock_task_sighand(task, &flags))
583 return 0;
584 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
585 unlock_task_sighand(task, &flags);
586
587 /*
588 * print the file header
589 */
590 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
591 "Limit", "Soft Limit", "Hard Limit", "Units");
592
593 for (i = 0; i < RLIM_NLIMITS; i++) {
594 if (rlim[i].rlim_cur == RLIM_INFINITY)
595 seq_printf(m, "%-25s %-20s ",
596 lnames[i].name, "unlimited");
597 else
598 seq_printf(m, "%-25s %-20lu ",
599 lnames[i].name, rlim[i].rlim_cur);
600
601 if (rlim[i].rlim_max == RLIM_INFINITY)
602 seq_printf(m, "%-20s ", "unlimited");
603 else
604 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
605
606 if (lnames[i].unit)
607 seq_printf(m, "%-10s\n", lnames[i].unit);
608 else
609 seq_putc(m, '\n');
610 }
611
612 return 0;
613 }
614
615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
617 struct pid *pid, struct task_struct *task)
618 {
619 long nr;
620 unsigned long args[6], sp, pc;
621 int res;
622
623 res = lock_trace(task);
624 if (res)
625 return res;
626
627 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
628 seq_puts(m, "running\n");
629 else if (nr < 0)
630 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
631 else
632 seq_printf(m,
633 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
634 nr,
635 args[0], args[1], args[2], args[3], args[4], args[5],
636 sp, pc);
637 unlock_trace(task);
638
639 return 0;
640 }
641 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
642
643 /************************************************************************/
644 /* Here the fs part begins */
645 /************************************************************************/
646
647 /* permission checks */
648 static int proc_fd_access_allowed(struct inode *inode)
649 {
650 struct task_struct *task;
651 int allowed = 0;
652 /* Allow access to a task's file descriptors if it is us or we
653 * may use ptrace attach to the process and find out that
654 * information.
655 */
656 task = get_proc_task(inode);
657 if (task) {
658 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
659 put_task_struct(task);
660 }
661 return allowed;
662 }
663
664 int proc_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666 int error;
667 struct inode *inode = d_inode(dentry);
668
669 if (attr->ia_valid & ATTR_MODE)
670 return -EPERM;
671
672 error = setattr_prepare(dentry, attr);
673 if (error)
674 return error;
675
676 setattr_copy(inode, attr);
677 mark_inode_dirty(inode);
678 return 0;
679 }
680
681 /*
682 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
683 * or euid/egid (for hide_pid_min=2)?
684 */
685 static bool has_pid_permissions(struct pid_namespace *pid,
686 struct task_struct *task,
687 int hide_pid_min)
688 {
689 if (pid->hide_pid < hide_pid_min)
690 return true;
691 if (in_group_p(pid->pid_gid))
692 return true;
693 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
694 }
695
696
697 static int proc_pid_permission(struct inode *inode, int mask)
698 {
699 struct pid_namespace *pid = inode->i_sb->s_fs_info;
700 struct task_struct *task;
701 bool has_perms;
702
703 task = get_proc_task(inode);
704 if (!task)
705 return -ESRCH;
706 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
707 put_task_struct(task);
708
709 if (!has_perms) {
710 if (pid->hide_pid == HIDEPID_INVISIBLE) {
711 /*
712 * Let's make getdents(), stat(), and open()
713 * consistent with each other. If a process
714 * may not stat() a file, it shouldn't be seen
715 * in procfs at all.
716 */
717 return -ENOENT;
718 }
719
720 return -EPERM;
721 }
722 return generic_permission(inode, mask);
723 }
724
725
726
727 static const struct inode_operations proc_def_inode_operations = {
728 .setattr = proc_setattr,
729 };
730
731 static int proc_single_show(struct seq_file *m, void *v)
732 {
733 struct inode *inode = m->private;
734 struct pid_namespace *ns;
735 struct pid *pid;
736 struct task_struct *task;
737 int ret;
738
739 ns = inode->i_sb->s_fs_info;
740 pid = proc_pid(inode);
741 task = get_pid_task(pid, PIDTYPE_PID);
742 if (!task)
743 return -ESRCH;
744
745 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
746
747 put_task_struct(task);
748 return ret;
749 }
750
751 static int proc_single_open(struct inode *inode, struct file *filp)
752 {
753 return single_open(filp, proc_single_show, inode);
754 }
755
756 static const struct file_operations proc_single_file_operations = {
757 .open = proc_single_open,
758 .read = seq_read,
759 .llseek = seq_lseek,
760 .release = single_release,
761 };
762
763
764 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
765 {
766 struct task_struct *task = get_proc_task(inode);
767 struct mm_struct *mm = ERR_PTR(-ESRCH);
768
769 if (task) {
770 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
771 put_task_struct(task);
772
773 if (!IS_ERR_OR_NULL(mm)) {
774 /* ensure this mm_struct can't be freed */
775 mmgrab(mm);
776 /* but do not pin its memory */
777 mmput(mm);
778 }
779 }
780
781 return mm;
782 }
783
784 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
785 {
786 struct mm_struct *mm = proc_mem_open(inode, mode);
787
788 if (IS_ERR(mm))
789 return PTR_ERR(mm);
790
791 file->private_data = mm;
792 return 0;
793 }
794
795 static int mem_open(struct inode *inode, struct file *file)
796 {
797 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
798
799 /* OK to pass negative loff_t, we can catch out-of-range */
800 file->f_mode |= FMODE_UNSIGNED_OFFSET;
801
802 return ret;
803 }
804
805 static ssize_t mem_rw(struct file *file, char __user *buf,
806 size_t count, loff_t *ppos, int write)
807 {
808 struct mm_struct *mm = file->private_data;
809 unsigned long addr = *ppos;
810 ssize_t copied;
811 char *page;
812 unsigned int flags;
813
814 if (!mm)
815 return 0;
816
817 page = (char *)__get_free_page(GFP_KERNEL);
818 if (!page)
819 return -ENOMEM;
820
821 copied = 0;
822 if (!mmget_not_zero(mm))
823 goto free;
824
825 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
826
827 while (count > 0) {
828 int this_len = min_t(int, count, PAGE_SIZE);
829
830 if (write && copy_from_user(page, buf, this_len)) {
831 copied = -EFAULT;
832 break;
833 }
834
835 this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 if (!this_len) {
837 if (!copied)
838 copied = -EIO;
839 break;
840 }
841
842 if (!write && copy_to_user(buf, page, this_len)) {
843 copied = -EFAULT;
844 break;
845 }
846
847 buf += this_len;
848 addr += this_len;
849 copied += this_len;
850 count -= this_len;
851 }
852 *ppos = addr;
853
854 mmput(mm);
855 free:
856 free_page((unsigned long) page);
857 return copied;
858 }
859
860 static ssize_t mem_read(struct file *file, char __user *buf,
861 size_t count, loff_t *ppos)
862 {
863 return mem_rw(file, buf, count, ppos, 0);
864 }
865
866 static ssize_t mem_write(struct file *file, const char __user *buf,
867 size_t count, loff_t *ppos)
868 {
869 return mem_rw(file, (char __user*)buf, count, ppos, 1);
870 }
871
872 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 {
874 switch (orig) {
875 case 0:
876 file->f_pos = offset;
877 break;
878 case 1:
879 file->f_pos += offset;
880 break;
881 default:
882 return -EINVAL;
883 }
884 force_successful_syscall_return();
885 return file->f_pos;
886 }
887
888 static int mem_release(struct inode *inode, struct file *file)
889 {
890 struct mm_struct *mm = file->private_data;
891 if (mm)
892 mmdrop(mm);
893 return 0;
894 }
895
896 static const struct file_operations proc_mem_operations = {
897 .llseek = mem_lseek,
898 .read = mem_read,
899 .write = mem_write,
900 .open = mem_open,
901 .release = mem_release,
902 };
903
904 static int environ_open(struct inode *inode, struct file *file)
905 {
906 return __mem_open(inode, file, PTRACE_MODE_READ);
907 }
908
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 size_t count, loff_t *ppos)
911 {
912 char *page;
913 unsigned long src = *ppos;
914 int ret = 0;
915 struct mm_struct *mm = file->private_data;
916 unsigned long env_start, env_end;
917
918 /* Ensure the process spawned far enough to have an environment. */
919 if (!mm || !mm->env_end)
920 return 0;
921
922 page = (char *)__get_free_page(GFP_KERNEL);
923 if (!page)
924 return -ENOMEM;
925
926 ret = 0;
927 if (!mmget_not_zero(mm))
928 goto free;
929
930 down_read(&mm->mmap_sem);
931 env_start = mm->env_start;
932 env_end = mm->env_end;
933 up_read(&mm->mmap_sem);
934
935 while (count > 0) {
936 size_t this_len, max_len;
937 int retval;
938
939 if (src >= (env_end - env_start))
940 break;
941
942 this_len = env_end - (env_start + src);
943
944 max_len = min_t(size_t, PAGE_SIZE, count);
945 this_len = min(max_len, this_len);
946
947 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
948
949 if (retval <= 0) {
950 ret = retval;
951 break;
952 }
953
954 if (copy_to_user(buf, page, retval)) {
955 ret = -EFAULT;
956 break;
957 }
958
959 ret += retval;
960 src += retval;
961 buf += retval;
962 count -= retval;
963 }
964 *ppos = src;
965 mmput(mm);
966
967 free:
968 free_page((unsigned long) page);
969 return ret;
970 }
971
972 static const struct file_operations proc_environ_operations = {
973 .open = environ_open,
974 .read = environ_read,
975 .llseek = generic_file_llseek,
976 .release = mem_release,
977 };
978
979 static int auxv_open(struct inode *inode, struct file *file)
980 {
981 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
982 }
983
984 static ssize_t auxv_read(struct file *file, char __user *buf,
985 size_t count, loff_t *ppos)
986 {
987 struct mm_struct *mm = file->private_data;
988 unsigned int nwords = 0;
989
990 if (!mm)
991 return 0;
992 do {
993 nwords += 2;
994 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
995 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
996 nwords * sizeof(mm->saved_auxv[0]));
997 }
998
999 static const struct file_operations proc_auxv_operations = {
1000 .open = auxv_open,
1001 .read = auxv_read,
1002 .llseek = generic_file_llseek,
1003 .release = mem_release,
1004 };
1005
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 loff_t *ppos)
1008 {
1009 struct task_struct *task = get_proc_task(file_inode(file));
1010 char buffer[PROC_NUMBUF];
1011 int oom_adj = OOM_ADJUST_MIN;
1012 size_t len;
1013
1014 if (!task)
1015 return -ESRCH;
1016 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1017 oom_adj = OOM_ADJUST_MAX;
1018 else
1019 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1020 OOM_SCORE_ADJ_MAX;
1021 put_task_struct(task);
1022 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1023 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1024 }
1025
1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 {
1028 static DEFINE_MUTEX(oom_adj_mutex);
1029 struct mm_struct *mm = NULL;
1030 struct task_struct *task;
1031 int err = 0;
1032
1033 task = get_proc_task(file_inode(file));
1034 if (!task)
1035 return -ESRCH;
1036
1037 mutex_lock(&oom_adj_mutex);
1038 if (legacy) {
1039 if (oom_adj < task->signal->oom_score_adj &&
1040 !capable(CAP_SYS_RESOURCE)) {
1041 err = -EACCES;
1042 goto err_unlock;
1043 }
1044 /*
1045 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1046 * /proc/pid/oom_score_adj instead.
1047 */
1048 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 current->comm, task_pid_nr(current), task_pid_nr(task),
1050 task_pid_nr(task));
1051 } else {
1052 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1053 !capable(CAP_SYS_RESOURCE)) {
1054 err = -EACCES;
1055 goto err_unlock;
1056 }
1057 }
1058
1059 /*
1060 * Make sure we will check other processes sharing the mm if this is
1061 * not vfrok which wants its own oom_score_adj.
1062 * pin the mm so it doesn't go away and get reused after task_unlock
1063 */
1064 if (!task->vfork_done) {
1065 struct task_struct *p = find_lock_task_mm(task);
1066
1067 if (p) {
1068 if (atomic_read(&p->mm->mm_users) > 1) {
1069 mm = p->mm;
1070 mmgrab(mm);
1071 }
1072 task_unlock(p);
1073 }
1074 }
1075
1076 task->signal->oom_score_adj = oom_adj;
1077 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1078 task->signal->oom_score_adj_min = (short)oom_adj;
1079 trace_oom_score_adj_update(task);
1080
1081 if (mm) {
1082 struct task_struct *p;
1083
1084 rcu_read_lock();
1085 for_each_process(p) {
1086 if (same_thread_group(task, p))
1087 continue;
1088
1089 /* do not touch kernel threads or the global init */
1090 if (p->flags & PF_KTHREAD || is_global_init(p))
1091 continue;
1092
1093 task_lock(p);
1094 if (!p->vfork_done && process_shares_mm(p, mm)) {
1095 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1096 task_pid_nr(p), p->comm,
1097 p->signal->oom_score_adj, oom_adj,
1098 task_pid_nr(task), task->comm);
1099 p->signal->oom_score_adj = oom_adj;
1100 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1101 p->signal->oom_score_adj_min = (short)oom_adj;
1102 }
1103 task_unlock(p);
1104 }
1105 rcu_read_unlock();
1106 mmdrop(mm);
1107 }
1108 err_unlock:
1109 mutex_unlock(&oom_adj_mutex);
1110 put_task_struct(task);
1111 return err;
1112 }
1113
1114 /*
1115 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1116 * kernels. The effective policy is defined by oom_score_adj, which has a
1117 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1118 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1119 * Processes that become oom disabled via oom_adj will still be oom disabled
1120 * with this implementation.
1121 *
1122 * oom_adj cannot be removed since existing userspace binaries use it.
1123 */
1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1125 size_t count, loff_t *ppos)
1126 {
1127 char buffer[PROC_NUMBUF];
1128 int oom_adj;
1129 int err;
1130
1131 memset(buffer, 0, sizeof(buffer));
1132 if (count > sizeof(buffer) - 1)
1133 count = sizeof(buffer) - 1;
1134 if (copy_from_user(buffer, buf, count)) {
1135 err = -EFAULT;
1136 goto out;
1137 }
1138
1139 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1140 if (err)
1141 goto out;
1142 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1143 oom_adj != OOM_DISABLE) {
1144 err = -EINVAL;
1145 goto out;
1146 }
1147
1148 /*
1149 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1150 * value is always attainable.
1151 */
1152 if (oom_adj == OOM_ADJUST_MAX)
1153 oom_adj = OOM_SCORE_ADJ_MAX;
1154 else
1155 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156
1157 err = __set_oom_adj(file, oom_adj, true);
1158 out:
1159 return err < 0 ? err : count;
1160 }
1161
1162 static const struct file_operations proc_oom_adj_operations = {
1163 .read = oom_adj_read,
1164 .write = oom_adj_write,
1165 .llseek = generic_file_llseek,
1166 };
1167
1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1169 size_t count, loff_t *ppos)
1170 {
1171 struct task_struct *task = get_proc_task(file_inode(file));
1172 char buffer[PROC_NUMBUF];
1173 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1174 size_t len;
1175
1176 if (!task)
1177 return -ESRCH;
1178 oom_score_adj = task->signal->oom_score_adj;
1179 put_task_struct(task);
1180 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1181 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183
1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1185 size_t count, loff_t *ppos)
1186 {
1187 char buffer[PROC_NUMBUF];
1188 int oom_score_adj;
1189 int err;
1190
1191 memset(buffer, 0, sizeof(buffer));
1192 if (count > sizeof(buffer) - 1)
1193 count = sizeof(buffer) - 1;
1194 if (copy_from_user(buffer, buf, count)) {
1195 err = -EFAULT;
1196 goto out;
1197 }
1198
1199 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1200 if (err)
1201 goto out;
1202 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1203 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207
1208 err = __set_oom_adj(file, oom_score_adj, false);
1209 out:
1210 return err < 0 ? err : count;
1211 }
1212
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214 .read = oom_score_adj_read,
1215 .write = oom_score_adj_write,
1216 .llseek = default_llseek,
1217 };
1218
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 11
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222 size_t count, loff_t *ppos)
1223 {
1224 struct inode * inode = file_inode(file);
1225 struct task_struct *task = get_proc_task(inode);
1226 ssize_t length;
1227 char tmpbuf[TMPBUFLEN];
1228
1229 if (!task)
1230 return -ESRCH;
1231 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232 from_kuid(file->f_cred->user_ns,
1233 audit_get_loginuid(task)));
1234 put_task_struct(task);
1235 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239 size_t count, loff_t *ppos)
1240 {
1241 struct inode * inode = file_inode(file);
1242 uid_t loginuid;
1243 kuid_t kloginuid;
1244 int rv;
1245
1246 rcu_read_lock();
1247 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248 rcu_read_unlock();
1249 return -EPERM;
1250 }
1251 rcu_read_unlock();
1252
1253 if (*ppos != 0) {
1254 /* No partial writes. */
1255 return -EINVAL;
1256 }
1257
1258 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259 if (rv < 0)
1260 return rv;
1261
1262 /* is userspace tring to explicitly UNSET the loginuid? */
1263 if (loginuid == AUDIT_UID_UNSET) {
1264 kloginuid = INVALID_UID;
1265 } else {
1266 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 if (!uid_valid(kloginuid))
1268 return -EINVAL;
1269 }
1270
1271 rv = audit_set_loginuid(kloginuid);
1272 if (rv < 0)
1273 return rv;
1274 return count;
1275 }
1276
1277 static const struct file_operations proc_loginuid_operations = {
1278 .read = proc_loginuid_read,
1279 .write = proc_loginuid_write,
1280 .llseek = generic_file_llseek,
1281 };
1282
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284 size_t count, loff_t *ppos)
1285 {
1286 struct inode * inode = file_inode(file);
1287 struct task_struct *task = get_proc_task(inode);
1288 ssize_t length;
1289 char tmpbuf[TMPBUFLEN];
1290
1291 if (!task)
1292 return -ESRCH;
1293 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294 audit_get_sessionid(task));
1295 put_task_struct(task);
1296 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298
1299 static const struct file_operations proc_sessionid_operations = {
1300 .read = proc_sessionid_read,
1301 .llseek = generic_file_llseek,
1302 };
1303 #endif
1304
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307 size_t count, loff_t *ppos)
1308 {
1309 struct task_struct *task = get_proc_task(file_inode(file));
1310 char buffer[PROC_NUMBUF];
1311 size_t len;
1312 int make_it_fail;
1313
1314 if (!task)
1315 return -ESRCH;
1316 make_it_fail = task->make_it_fail;
1317 put_task_struct(task);
1318
1319 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320
1321 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325 const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327 struct task_struct *task;
1328 char buffer[PROC_NUMBUF];
1329 int make_it_fail;
1330 int rv;
1331
1332 if (!capable(CAP_SYS_RESOURCE))
1333 return -EPERM;
1334 memset(buffer, 0, sizeof(buffer));
1335 if (count > sizeof(buffer) - 1)
1336 count = sizeof(buffer) - 1;
1337 if (copy_from_user(buffer, buf, count))
1338 return -EFAULT;
1339 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340 if (rv < 0)
1341 return rv;
1342 if (make_it_fail < 0 || make_it_fail > 1)
1343 return -EINVAL;
1344
1345 task = get_proc_task(file_inode(file));
1346 if (!task)
1347 return -ESRCH;
1348 task->make_it_fail = make_it_fail;
1349 put_task_struct(task);
1350
1351 return count;
1352 }
1353
1354 static const struct file_operations proc_fault_inject_operations = {
1355 .read = proc_fault_inject_read,
1356 .write = proc_fault_inject_write,
1357 .llseek = generic_file_llseek,
1358 };
1359
1360 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1361 size_t count, loff_t *ppos)
1362 {
1363 struct task_struct *task;
1364 int err;
1365 unsigned int n;
1366
1367 err = kstrtouint_from_user(buf, count, 0, &n);
1368 if (err)
1369 return err;
1370
1371 task = get_proc_task(file_inode(file));
1372 if (!task)
1373 return -ESRCH;
1374 WRITE_ONCE(task->fail_nth, n);
1375 put_task_struct(task);
1376
1377 return count;
1378 }
1379
1380 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1381 size_t count, loff_t *ppos)
1382 {
1383 struct task_struct *task;
1384 char numbuf[PROC_NUMBUF];
1385 ssize_t len;
1386
1387 task = get_proc_task(file_inode(file));
1388 if (!task)
1389 return -ESRCH;
1390 len = snprintf(numbuf, sizeof(numbuf), "%u\n",
1391 READ_ONCE(task->fail_nth));
1392 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1393 put_task_struct(task);
1394
1395 return len;
1396 }
1397
1398 static const struct file_operations proc_fail_nth_operations = {
1399 .read = proc_fail_nth_read,
1400 .write = proc_fail_nth_write,
1401 };
1402 #endif
1403
1404
1405 #ifdef CONFIG_SCHED_DEBUG
1406 /*
1407 * Print out various scheduling related per-task fields:
1408 */
1409 static int sched_show(struct seq_file *m, void *v)
1410 {
1411 struct inode *inode = m->private;
1412 struct pid_namespace *ns = inode->i_sb->s_fs_info;
1413 struct task_struct *p;
1414
1415 p = get_proc_task(inode);
1416 if (!p)
1417 return -ESRCH;
1418 proc_sched_show_task(p, ns, m);
1419
1420 put_task_struct(p);
1421
1422 return 0;
1423 }
1424
1425 static ssize_t
1426 sched_write(struct file *file, const char __user *buf,
1427 size_t count, loff_t *offset)
1428 {
1429 struct inode *inode = file_inode(file);
1430 struct task_struct *p;
1431
1432 p = get_proc_task(inode);
1433 if (!p)
1434 return -ESRCH;
1435 proc_sched_set_task(p);
1436
1437 put_task_struct(p);
1438
1439 return count;
1440 }
1441
1442 static int sched_open(struct inode *inode, struct file *filp)
1443 {
1444 return single_open(filp, sched_show, inode);
1445 }
1446
1447 static const struct file_operations proc_pid_sched_operations = {
1448 .open = sched_open,
1449 .read = seq_read,
1450 .write = sched_write,
1451 .llseek = seq_lseek,
1452 .release = single_release,
1453 };
1454
1455 #endif
1456
1457 #ifdef CONFIG_SCHED_AUTOGROUP
1458 /*
1459 * Print out autogroup related information:
1460 */
1461 static int sched_autogroup_show(struct seq_file *m, void *v)
1462 {
1463 struct inode *inode = m->private;
1464 struct task_struct *p;
1465
1466 p = get_proc_task(inode);
1467 if (!p)
1468 return -ESRCH;
1469 proc_sched_autogroup_show_task(p, m);
1470
1471 put_task_struct(p);
1472
1473 return 0;
1474 }
1475
1476 static ssize_t
1477 sched_autogroup_write(struct file *file, const char __user *buf,
1478 size_t count, loff_t *offset)
1479 {
1480 struct inode *inode = file_inode(file);
1481 struct task_struct *p;
1482 char buffer[PROC_NUMBUF];
1483 int nice;
1484 int err;
1485
1486 memset(buffer, 0, sizeof(buffer));
1487 if (count > sizeof(buffer) - 1)
1488 count = sizeof(buffer) - 1;
1489 if (copy_from_user(buffer, buf, count))
1490 return -EFAULT;
1491
1492 err = kstrtoint(strstrip(buffer), 0, &nice);
1493 if (err < 0)
1494 return err;
1495
1496 p = get_proc_task(inode);
1497 if (!p)
1498 return -ESRCH;
1499
1500 err = proc_sched_autogroup_set_nice(p, nice);
1501 if (err)
1502 count = err;
1503
1504 put_task_struct(p);
1505
1506 return count;
1507 }
1508
1509 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1510 {
1511 int ret;
1512
1513 ret = single_open(filp, sched_autogroup_show, NULL);
1514 if (!ret) {
1515 struct seq_file *m = filp->private_data;
1516
1517 m->private = inode;
1518 }
1519 return ret;
1520 }
1521
1522 static const struct file_operations proc_pid_sched_autogroup_operations = {
1523 .open = sched_autogroup_open,
1524 .read = seq_read,
1525 .write = sched_autogroup_write,
1526 .llseek = seq_lseek,
1527 .release = single_release,
1528 };
1529
1530 #endif /* CONFIG_SCHED_AUTOGROUP */
1531
1532 static ssize_t comm_write(struct file *file, const char __user *buf,
1533 size_t count, loff_t *offset)
1534 {
1535 struct inode *inode = file_inode(file);
1536 struct task_struct *p;
1537 char buffer[TASK_COMM_LEN];
1538 const size_t maxlen = sizeof(buffer) - 1;
1539
1540 memset(buffer, 0, sizeof(buffer));
1541 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1542 return -EFAULT;
1543
1544 p = get_proc_task(inode);
1545 if (!p)
1546 return -ESRCH;
1547
1548 if (same_thread_group(current, p))
1549 set_task_comm(p, buffer);
1550 else
1551 count = -EINVAL;
1552
1553 put_task_struct(p);
1554
1555 return count;
1556 }
1557
1558 static int comm_show(struct seq_file *m, void *v)
1559 {
1560 struct inode *inode = m->private;
1561 struct task_struct *p;
1562
1563 p = get_proc_task(inode);
1564 if (!p)
1565 return -ESRCH;
1566
1567 task_lock(p);
1568 seq_printf(m, "%s\n", p->comm);
1569 task_unlock(p);
1570
1571 put_task_struct(p);
1572
1573 return 0;
1574 }
1575
1576 static int comm_open(struct inode *inode, struct file *filp)
1577 {
1578 return single_open(filp, comm_show, inode);
1579 }
1580
1581 static const struct file_operations proc_pid_set_comm_operations = {
1582 .open = comm_open,
1583 .read = seq_read,
1584 .write = comm_write,
1585 .llseek = seq_lseek,
1586 .release = single_release,
1587 };
1588
1589 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1590 {
1591 struct task_struct *task;
1592 struct file *exe_file;
1593
1594 task = get_proc_task(d_inode(dentry));
1595 if (!task)
1596 return -ENOENT;
1597 exe_file = get_task_exe_file(task);
1598 put_task_struct(task);
1599 if (exe_file) {
1600 *exe_path = exe_file->f_path;
1601 path_get(&exe_file->f_path);
1602 fput(exe_file);
1603 return 0;
1604 } else
1605 return -ENOENT;
1606 }
1607
1608 static const char *proc_pid_get_link(struct dentry *dentry,
1609 struct inode *inode,
1610 struct delayed_call *done)
1611 {
1612 struct path path;
1613 int error = -EACCES;
1614
1615 if (!dentry)
1616 return ERR_PTR(-ECHILD);
1617
1618 /* Are we allowed to snoop on the tasks file descriptors? */
1619 if (!proc_fd_access_allowed(inode))
1620 goto out;
1621
1622 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1623 if (error)
1624 goto out;
1625
1626 nd_jump_link(&path);
1627 return NULL;
1628 out:
1629 return ERR_PTR(error);
1630 }
1631
1632 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1633 {
1634 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1635 char *pathname;
1636 int len;
1637
1638 if (!tmp)
1639 return -ENOMEM;
1640
1641 pathname = d_path(path, tmp, PAGE_SIZE);
1642 len = PTR_ERR(pathname);
1643 if (IS_ERR(pathname))
1644 goto out;
1645 len = tmp + PAGE_SIZE - 1 - pathname;
1646
1647 if (len > buflen)
1648 len = buflen;
1649 if (copy_to_user(buffer, pathname, len))
1650 len = -EFAULT;
1651 out:
1652 free_page((unsigned long)tmp);
1653 return len;
1654 }
1655
1656 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1657 {
1658 int error = -EACCES;
1659 struct inode *inode = d_inode(dentry);
1660 struct path path;
1661
1662 /* Are we allowed to snoop on the tasks file descriptors? */
1663 if (!proc_fd_access_allowed(inode))
1664 goto out;
1665
1666 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1667 if (error)
1668 goto out;
1669
1670 error = do_proc_readlink(&path, buffer, buflen);
1671 path_put(&path);
1672 out:
1673 return error;
1674 }
1675
1676 const struct inode_operations proc_pid_link_inode_operations = {
1677 .readlink = proc_pid_readlink,
1678 .get_link = proc_pid_get_link,
1679 .setattr = proc_setattr,
1680 };
1681
1682
1683 /* building an inode */
1684
1685 void task_dump_owner(struct task_struct *task, mode_t mode,
1686 kuid_t *ruid, kgid_t *rgid)
1687 {
1688 /* Depending on the state of dumpable compute who should own a
1689 * proc file for a task.
1690 */
1691 const struct cred *cred;
1692 kuid_t uid;
1693 kgid_t gid;
1694
1695 /* Default to the tasks effective ownership */
1696 rcu_read_lock();
1697 cred = __task_cred(task);
1698 uid = cred->euid;
1699 gid = cred->egid;
1700 rcu_read_unlock();
1701
1702 /*
1703 * Before the /proc/pid/status file was created the only way to read
1704 * the effective uid of a /process was to stat /proc/pid. Reading
1705 * /proc/pid/status is slow enough that procps and other packages
1706 * kept stating /proc/pid. To keep the rules in /proc simple I have
1707 * made this apply to all per process world readable and executable
1708 * directories.
1709 */
1710 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1711 struct mm_struct *mm;
1712 task_lock(task);
1713 mm = task->mm;
1714 /* Make non-dumpable tasks owned by some root */
1715 if (mm) {
1716 if (get_dumpable(mm) != SUID_DUMP_USER) {
1717 struct user_namespace *user_ns = mm->user_ns;
1718
1719 uid = make_kuid(user_ns, 0);
1720 if (!uid_valid(uid))
1721 uid = GLOBAL_ROOT_UID;
1722
1723 gid = make_kgid(user_ns, 0);
1724 if (!gid_valid(gid))
1725 gid = GLOBAL_ROOT_GID;
1726 }
1727 } else {
1728 uid = GLOBAL_ROOT_UID;
1729 gid = GLOBAL_ROOT_GID;
1730 }
1731 task_unlock(task);
1732 }
1733 *ruid = uid;
1734 *rgid = gid;
1735 }
1736
1737 struct inode *proc_pid_make_inode(struct super_block * sb,
1738 struct task_struct *task, umode_t mode)
1739 {
1740 struct inode * inode;
1741 struct proc_inode *ei;
1742
1743 /* We need a new inode */
1744
1745 inode = new_inode(sb);
1746 if (!inode)
1747 goto out;
1748
1749 /* Common stuff */
1750 ei = PROC_I(inode);
1751 inode->i_mode = mode;
1752 inode->i_ino = get_next_ino();
1753 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1754 inode->i_op = &proc_def_inode_operations;
1755
1756 /*
1757 * grab the reference to task.
1758 */
1759 ei->pid = get_task_pid(task, PIDTYPE_PID);
1760 if (!ei->pid)
1761 goto out_unlock;
1762
1763 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1764 security_task_to_inode(task, inode);
1765
1766 out:
1767 return inode;
1768
1769 out_unlock:
1770 iput(inode);
1771 return NULL;
1772 }
1773
1774 int pid_getattr(const struct path *path, struct kstat *stat,
1775 u32 request_mask, unsigned int query_flags)
1776 {
1777 struct inode *inode = d_inode(path->dentry);
1778 struct task_struct *task;
1779 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1780
1781 generic_fillattr(inode, stat);
1782
1783 rcu_read_lock();
1784 stat->uid = GLOBAL_ROOT_UID;
1785 stat->gid = GLOBAL_ROOT_GID;
1786 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1787 if (task) {
1788 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1789 rcu_read_unlock();
1790 /*
1791 * This doesn't prevent learning whether PID exists,
1792 * it only makes getattr() consistent with readdir().
1793 */
1794 return -ENOENT;
1795 }
1796 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1797 }
1798 rcu_read_unlock();
1799 return 0;
1800 }
1801
1802 /* dentry stuff */
1803
1804 /*
1805 * Exceptional case: normally we are not allowed to unhash a busy
1806 * directory. In this case, however, we can do it - no aliasing problems
1807 * due to the way we treat inodes.
1808 *
1809 * Rewrite the inode's ownerships here because the owning task may have
1810 * performed a setuid(), etc.
1811 *
1812 */
1813 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1814 {
1815 struct inode *inode;
1816 struct task_struct *task;
1817
1818 if (flags & LOOKUP_RCU)
1819 return -ECHILD;
1820
1821 inode = d_inode(dentry);
1822 task = get_proc_task(inode);
1823
1824 if (task) {
1825 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1826
1827 inode->i_mode &= ~(S_ISUID | S_ISGID);
1828 security_task_to_inode(task, inode);
1829 put_task_struct(task);
1830 return 1;
1831 }
1832 return 0;
1833 }
1834
1835 static inline bool proc_inode_is_dead(struct inode *inode)
1836 {
1837 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1838 }
1839
1840 int pid_delete_dentry(const struct dentry *dentry)
1841 {
1842 /* Is the task we represent dead?
1843 * If so, then don't put the dentry on the lru list,
1844 * kill it immediately.
1845 */
1846 return proc_inode_is_dead(d_inode(dentry));
1847 }
1848
1849 const struct dentry_operations pid_dentry_operations =
1850 {
1851 .d_revalidate = pid_revalidate,
1852 .d_delete = pid_delete_dentry,
1853 };
1854
1855 /* Lookups */
1856
1857 /*
1858 * Fill a directory entry.
1859 *
1860 * If possible create the dcache entry and derive our inode number and
1861 * file type from dcache entry.
1862 *
1863 * Since all of the proc inode numbers are dynamically generated, the inode
1864 * numbers do not exist until the inode is cache. This means creating the
1865 * the dcache entry in readdir is necessary to keep the inode numbers
1866 * reported by readdir in sync with the inode numbers reported
1867 * by stat.
1868 */
1869 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1870 const char *name, int len,
1871 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1872 {
1873 struct dentry *child, *dir = file->f_path.dentry;
1874 struct qstr qname = QSTR_INIT(name, len);
1875 struct inode *inode;
1876 unsigned type;
1877 ino_t ino;
1878
1879 child = d_hash_and_lookup(dir, &qname);
1880 if (!child) {
1881 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1882 child = d_alloc_parallel(dir, &qname, &wq);
1883 if (IS_ERR(child))
1884 goto end_instantiate;
1885 if (d_in_lookup(child)) {
1886 int err = instantiate(d_inode(dir), child, task, ptr);
1887 d_lookup_done(child);
1888 if (err < 0) {
1889 dput(child);
1890 goto end_instantiate;
1891 }
1892 }
1893 }
1894 inode = d_inode(child);
1895 ino = inode->i_ino;
1896 type = inode->i_mode >> 12;
1897 dput(child);
1898 return dir_emit(ctx, name, len, ino, type);
1899
1900 end_instantiate:
1901 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1902 }
1903
1904 /*
1905 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1906 * which represent vma start and end addresses.
1907 */
1908 static int dname_to_vma_addr(struct dentry *dentry,
1909 unsigned long *start, unsigned long *end)
1910 {
1911 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1912 return -EINVAL;
1913
1914 return 0;
1915 }
1916
1917 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1918 {
1919 unsigned long vm_start, vm_end;
1920 bool exact_vma_exists = false;
1921 struct mm_struct *mm = NULL;
1922 struct task_struct *task;
1923 struct inode *inode;
1924 int status = 0;
1925
1926 if (flags & LOOKUP_RCU)
1927 return -ECHILD;
1928
1929 inode = d_inode(dentry);
1930 task = get_proc_task(inode);
1931 if (!task)
1932 goto out_notask;
1933
1934 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1935 if (IS_ERR_OR_NULL(mm))
1936 goto out;
1937
1938 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1939 down_read(&mm->mmap_sem);
1940 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1941 up_read(&mm->mmap_sem);
1942 }
1943
1944 mmput(mm);
1945
1946 if (exact_vma_exists) {
1947 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1948
1949 security_task_to_inode(task, inode);
1950 status = 1;
1951 }
1952
1953 out:
1954 put_task_struct(task);
1955
1956 out_notask:
1957 return status;
1958 }
1959
1960 static const struct dentry_operations tid_map_files_dentry_operations = {
1961 .d_revalidate = map_files_d_revalidate,
1962 .d_delete = pid_delete_dentry,
1963 };
1964
1965 static int map_files_get_link(struct dentry *dentry, struct path *path)
1966 {
1967 unsigned long vm_start, vm_end;
1968 struct vm_area_struct *vma;
1969 struct task_struct *task;
1970 struct mm_struct *mm;
1971 int rc;
1972
1973 rc = -ENOENT;
1974 task = get_proc_task(d_inode(dentry));
1975 if (!task)
1976 goto out;
1977
1978 mm = get_task_mm(task);
1979 put_task_struct(task);
1980 if (!mm)
1981 goto out;
1982
1983 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1984 if (rc)
1985 goto out_mmput;
1986
1987 rc = -ENOENT;
1988 down_read(&mm->mmap_sem);
1989 vma = find_exact_vma(mm, vm_start, vm_end);
1990 if (vma && vma->vm_file) {
1991 *path = vma->vm_file->f_path;
1992 path_get(path);
1993 rc = 0;
1994 }
1995 up_read(&mm->mmap_sem);
1996
1997 out_mmput:
1998 mmput(mm);
1999 out:
2000 return rc;
2001 }
2002
2003 struct map_files_info {
2004 fmode_t mode;
2005 unsigned int len;
2006 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2007 };
2008
2009 /*
2010 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2011 * symlinks may be used to bypass permissions on ancestor directories in the
2012 * path to the file in question.
2013 */
2014 static const char *
2015 proc_map_files_get_link(struct dentry *dentry,
2016 struct inode *inode,
2017 struct delayed_call *done)
2018 {
2019 if (!capable(CAP_SYS_ADMIN))
2020 return ERR_PTR(-EPERM);
2021
2022 return proc_pid_get_link(dentry, inode, done);
2023 }
2024
2025 /*
2026 * Identical to proc_pid_link_inode_operations except for get_link()
2027 */
2028 static const struct inode_operations proc_map_files_link_inode_operations = {
2029 .readlink = proc_pid_readlink,
2030 .get_link = proc_map_files_get_link,
2031 .setattr = proc_setattr,
2032 };
2033
2034 static int
2035 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2036 struct task_struct *task, const void *ptr)
2037 {
2038 fmode_t mode = (fmode_t)(unsigned long)ptr;
2039 struct proc_inode *ei;
2040 struct inode *inode;
2041
2042 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2043 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2044 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2045 if (!inode)
2046 return -ENOENT;
2047
2048 ei = PROC_I(inode);
2049 ei->op.proc_get_link = map_files_get_link;
2050
2051 inode->i_op = &proc_map_files_link_inode_operations;
2052 inode->i_size = 64;
2053
2054 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2055 d_add(dentry, inode);
2056
2057 return 0;
2058 }
2059
2060 static struct dentry *proc_map_files_lookup(struct inode *dir,
2061 struct dentry *dentry, unsigned int flags)
2062 {
2063 unsigned long vm_start, vm_end;
2064 struct vm_area_struct *vma;
2065 struct task_struct *task;
2066 int result;
2067 struct mm_struct *mm;
2068
2069 result = -ENOENT;
2070 task = get_proc_task(dir);
2071 if (!task)
2072 goto out;
2073
2074 result = -EACCES;
2075 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2076 goto out_put_task;
2077
2078 result = -ENOENT;
2079 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2080 goto out_put_task;
2081
2082 mm = get_task_mm(task);
2083 if (!mm)
2084 goto out_put_task;
2085
2086 down_read(&mm->mmap_sem);
2087 vma = find_exact_vma(mm, vm_start, vm_end);
2088 if (!vma)
2089 goto out_no_vma;
2090
2091 if (vma->vm_file)
2092 result = proc_map_files_instantiate(dir, dentry, task,
2093 (void *)(unsigned long)vma->vm_file->f_mode);
2094
2095 out_no_vma:
2096 up_read(&mm->mmap_sem);
2097 mmput(mm);
2098 out_put_task:
2099 put_task_struct(task);
2100 out:
2101 return ERR_PTR(result);
2102 }
2103
2104 static const struct inode_operations proc_map_files_inode_operations = {
2105 .lookup = proc_map_files_lookup,
2106 .permission = proc_fd_permission,
2107 .setattr = proc_setattr,
2108 };
2109
2110 static int
2111 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2112 {
2113 struct vm_area_struct *vma;
2114 struct task_struct *task;
2115 struct mm_struct *mm;
2116 unsigned long nr_files, pos, i;
2117 struct flex_array *fa = NULL;
2118 struct map_files_info info;
2119 struct map_files_info *p;
2120 int ret;
2121
2122 ret = -ENOENT;
2123 task = get_proc_task(file_inode(file));
2124 if (!task)
2125 goto out;
2126
2127 ret = -EACCES;
2128 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2129 goto out_put_task;
2130
2131 ret = 0;
2132 if (!dir_emit_dots(file, ctx))
2133 goto out_put_task;
2134
2135 mm = get_task_mm(task);
2136 if (!mm)
2137 goto out_put_task;
2138 down_read(&mm->mmap_sem);
2139
2140 nr_files = 0;
2141
2142 /*
2143 * We need two passes here:
2144 *
2145 * 1) Collect vmas of mapped files with mmap_sem taken
2146 * 2) Release mmap_sem and instantiate entries
2147 *
2148 * otherwise we get lockdep complained, since filldir()
2149 * routine might require mmap_sem taken in might_fault().
2150 */
2151
2152 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2153 if (vma->vm_file && ++pos > ctx->pos)
2154 nr_files++;
2155 }
2156
2157 if (nr_files) {
2158 fa = flex_array_alloc(sizeof(info), nr_files,
2159 GFP_KERNEL);
2160 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2161 GFP_KERNEL)) {
2162 ret = -ENOMEM;
2163 if (fa)
2164 flex_array_free(fa);
2165 up_read(&mm->mmap_sem);
2166 mmput(mm);
2167 goto out_put_task;
2168 }
2169 for (i = 0, vma = mm->mmap, pos = 2; vma;
2170 vma = vma->vm_next) {
2171 if (!vma->vm_file)
2172 continue;
2173 if (++pos <= ctx->pos)
2174 continue;
2175
2176 info.mode = vma->vm_file->f_mode;
2177 info.len = snprintf(info.name,
2178 sizeof(info.name), "%lx-%lx",
2179 vma->vm_start, vma->vm_end);
2180 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2181 BUG();
2182 }
2183 }
2184 up_read(&mm->mmap_sem);
2185
2186 for (i = 0; i < nr_files; i++) {
2187 p = flex_array_get(fa, i);
2188 if (!proc_fill_cache(file, ctx,
2189 p->name, p->len,
2190 proc_map_files_instantiate,
2191 task,
2192 (void *)(unsigned long)p->mode))
2193 break;
2194 ctx->pos++;
2195 }
2196 if (fa)
2197 flex_array_free(fa);
2198 mmput(mm);
2199
2200 out_put_task:
2201 put_task_struct(task);
2202 out:
2203 return ret;
2204 }
2205
2206 static const struct file_operations proc_map_files_operations = {
2207 .read = generic_read_dir,
2208 .iterate_shared = proc_map_files_readdir,
2209 .llseek = generic_file_llseek,
2210 };
2211
2212 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2213 struct timers_private {
2214 struct pid *pid;
2215 struct task_struct *task;
2216 struct sighand_struct *sighand;
2217 struct pid_namespace *ns;
2218 unsigned long flags;
2219 };
2220
2221 static void *timers_start(struct seq_file *m, loff_t *pos)
2222 {
2223 struct timers_private *tp = m->private;
2224
2225 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2226 if (!tp->task)
2227 return ERR_PTR(-ESRCH);
2228
2229 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2230 if (!tp->sighand)
2231 return ERR_PTR(-ESRCH);
2232
2233 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2234 }
2235
2236 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2237 {
2238 struct timers_private *tp = m->private;
2239 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2240 }
2241
2242 static void timers_stop(struct seq_file *m, void *v)
2243 {
2244 struct timers_private *tp = m->private;
2245
2246 if (tp->sighand) {
2247 unlock_task_sighand(tp->task, &tp->flags);
2248 tp->sighand = NULL;
2249 }
2250
2251 if (tp->task) {
2252 put_task_struct(tp->task);
2253 tp->task = NULL;
2254 }
2255 }
2256
2257 static int show_timer(struct seq_file *m, void *v)
2258 {
2259 struct k_itimer *timer;
2260 struct timers_private *tp = m->private;
2261 int notify;
2262 static const char * const nstr[] = {
2263 [SIGEV_SIGNAL] = "signal",
2264 [SIGEV_NONE] = "none",
2265 [SIGEV_THREAD] = "thread",
2266 };
2267
2268 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2269 notify = timer->it_sigev_notify;
2270
2271 seq_printf(m, "ID: %d\n", timer->it_id);
2272 seq_printf(m, "signal: %d/%p\n",
2273 timer->sigq->info.si_signo,
2274 timer->sigq->info.si_value.sival_ptr);
2275 seq_printf(m, "notify: %s/%s.%d\n",
2276 nstr[notify & ~SIGEV_THREAD_ID],
2277 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2278 pid_nr_ns(timer->it_pid, tp->ns));
2279 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2280
2281 return 0;
2282 }
2283
2284 static const struct seq_operations proc_timers_seq_ops = {
2285 .start = timers_start,
2286 .next = timers_next,
2287 .stop = timers_stop,
2288 .show = show_timer,
2289 };
2290
2291 static int proc_timers_open(struct inode *inode, struct file *file)
2292 {
2293 struct timers_private *tp;
2294
2295 tp = __seq_open_private(file, &proc_timers_seq_ops,
2296 sizeof(struct timers_private));
2297 if (!tp)
2298 return -ENOMEM;
2299
2300 tp->pid = proc_pid(inode);
2301 tp->ns = inode->i_sb->s_fs_info;
2302 return 0;
2303 }
2304
2305 static const struct file_operations proc_timers_operations = {
2306 .open = proc_timers_open,
2307 .read = seq_read,
2308 .llseek = seq_lseek,
2309 .release = seq_release_private,
2310 };
2311 #endif
2312
2313 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2314 size_t count, loff_t *offset)
2315 {
2316 struct inode *inode = file_inode(file);
2317 struct task_struct *p;
2318 u64 slack_ns;
2319 int err;
2320
2321 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2322 if (err < 0)
2323 return err;
2324
2325 p = get_proc_task(inode);
2326 if (!p)
2327 return -ESRCH;
2328
2329 if (p != current) {
2330 if (!capable(CAP_SYS_NICE)) {
2331 count = -EPERM;
2332 goto out;
2333 }
2334
2335 err = security_task_setscheduler(p);
2336 if (err) {
2337 count = err;
2338 goto out;
2339 }
2340 }
2341
2342 task_lock(p);
2343 if (slack_ns == 0)
2344 p->timer_slack_ns = p->default_timer_slack_ns;
2345 else
2346 p->timer_slack_ns = slack_ns;
2347 task_unlock(p);
2348
2349 out:
2350 put_task_struct(p);
2351
2352 return count;
2353 }
2354
2355 static int timerslack_ns_show(struct seq_file *m, void *v)
2356 {
2357 struct inode *inode = m->private;
2358 struct task_struct *p;
2359 int err = 0;
2360
2361 p = get_proc_task(inode);
2362 if (!p)
2363 return -ESRCH;
2364
2365 if (p != current) {
2366
2367 if (!capable(CAP_SYS_NICE)) {
2368 err = -EPERM;
2369 goto out;
2370 }
2371 err = security_task_getscheduler(p);
2372 if (err)
2373 goto out;
2374 }
2375
2376 task_lock(p);
2377 seq_printf(m, "%llu\n", p->timer_slack_ns);
2378 task_unlock(p);
2379
2380 out:
2381 put_task_struct(p);
2382
2383 return err;
2384 }
2385
2386 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2387 {
2388 return single_open(filp, timerslack_ns_show, inode);
2389 }
2390
2391 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2392 .open = timerslack_ns_open,
2393 .read = seq_read,
2394 .write = timerslack_ns_write,
2395 .llseek = seq_lseek,
2396 .release = single_release,
2397 };
2398
2399 static int proc_pident_instantiate(struct inode *dir,
2400 struct dentry *dentry, struct task_struct *task, const void *ptr)
2401 {
2402 const struct pid_entry *p = ptr;
2403 struct inode *inode;
2404 struct proc_inode *ei;
2405
2406 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2407 if (!inode)
2408 goto out;
2409
2410 ei = PROC_I(inode);
2411 if (S_ISDIR(inode->i_mode))
2412 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2413 if (p->iop)
2414 inode->i_op = p->iop;
2415 if (p->fop)
2416 inode->i_fop = p->fop;
2417 ei->op = p->op;
2418 d_set_d_op(dentry, &pid_dentry_operations);
2419 d_add(dentry, inode);
2420 /* Close the race of the process dying before we return the dentry */
2421 if (pid_revalidate(dentry, 0))
2422 return 0;
2423 out:
2424 return -ENOENT;
2425 }
2426
2427 static struct dentry *proc_pident_lookup(struct inode *dir,
2428 struct dentry *dentry,
2429 const struct pid_entry *ents,
2430 unsigned int nents)
2431 {
2432 int error;
2433 struct task_struct *task = get_proc_task(dir);
2434 const struct pid_entry *p, *last;
2435
2436 error = -ENOENT;
2437
2438 if (!task)
2439 goto out_no_task;
2440
2441 /*
2442 * Yes, it does not scale. And it should not. Don't add
2443 * new entries into /proc/<tgid>/ without very good reasons.
2444 */
2445 last = &ents[nents];
2446 for (p = ents; p < last; p++) {
2447 if (p->len != dentry->d_name.len)
2448 continue;
2449 if (!memcmp(dentry->d_name.name, p->name, p->len))
2450 break;
2451 }
2452 if (p >= last)
2453 goto out;
2454
2455 error = proc_pident_instantiate(dir, dentry, task, p);
2456 out:
2457 put_task_struct(task);
2458 out_no_task:
2459 return ERR_PTR(error);
2460 }
2461
2462 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2463 const struct pid_entry *ents, unsigned int nents)
2464 {
2465 struct task_struct *task = get_proc_task(file_inode(file));
2466 const struct pid_entry *p;
2467
2468 if (!task)
2469 return -ENOENT;
2470
2471 if (!dir_emit_dots(file, ctx))
2472 goto out;
2473
2474 if (ctx->pos >= nents + 2)
2475 goto out;
2476
2477 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2478 if (!proc_fill_cache(file, ctx, p->name, p->len,
2479 proc_pident_instantiate, task, p))
2480 break;
2481 ctx->pos++;
2482 }
2483 out:
2484 put_task_struct(task);
2485 return 0;
2486 }
2487
2488 #ifdef CONFIG_SECURITY
2489 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2490 size_t count, loff_t *ppos)
2491 {
2492 struct inode * inode = file_inode(file);
2493 char *p = NULL;
2494 ssize_t length;
2495 struct task_struct *task = get_proc_task(inode);
2496
2497 if (!task)
2498 return -ESRCH;
2499
2500 length = security_getprocattr(task,
2501 (char*)file->f_path.dentry->d_name.name,
2502 &p);
2503 put_task_struct(task);
2504 if (length > 0)
2505 length = simple_read_from_buffer(buf, count, ppos, p, length);
2506 kfree(p);
2507 return length;
2508 }
2509
2510 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2511 size_t count, loff_t *ppos)
2512 {
2513 struct inode * inode = file_inode(file);
2514 void *page;
2515 ssize_t length;
2516 struct task_struct *task = get_proc_task(inode);
2517
2518 length = -ESRCH;
2519 if (!task)
2520 goto out_no_task;
2521
2522 /* A task may only write its own attributes. */
2523 length = -EACCES;
2524 if (current != task)
2525 goto out;
2526
2527 if (count > PAGE_SIZE)
2528 count = PAGE_SIZE;
2529
2530 /* No partial writes. */
2531 length = -EINVAL;
2532 if (*ppos != 0)
2533 goto out;
2534
2535 page = memdup_user(buf, count);
2536 if (IS_ERR(page)) {
2537 length = PTR_ERR(page);
2538 goto out;
2539 }
2540
2541 /* Guard against adverse ptrace interaction */
2542 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2543 if (length < 0)
2544 goto out_free;
2545
2546 length = security_setprocattr(file->f_path.dentry->d_name.name,
2547 page, count);
2548 mutex_unlock(&current->signal->cred_guard_mutex);
2549 out_free:
2550 kfree(page);
2551 out:
2552 put_task_struct(task);
2553 out_no_task:
2554 return length;
2555 }
2556
2557 static const struct file_operations proc_pid_attr_operations = {
2558 .read = proc_pid_attr_read,
2559 .write = proc_pid_attr_write,
2560 .llseek = generic_file_llseek,
2561 };
2562
2563 static const struct pid_entry attr_dir_stuff[] = {
2564 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2565 REG("prev", S_IRUGO, proc_pid_attr_operations),
2566 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2567 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2568 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2569 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2570 };
2571
2572 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2573 {
2574 return proc_pident_readdir(file, ctx,
2575 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2576 }
2577
2578 static const struct file_operations proc_attr_dir_operations = {
2579 .read = generic_read_dir,
2580 .iterate_shared = proc_attr_dir_readdir,
2581 .llseek = generic_file_llseek,
2582 };
2583
2584 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2585 struct dentry *dentry, unsigned int flags)
2586 {
2587 return proc_pident_lookup(dir, dentry,
2588 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2589 }
2590
2591 static const struct inode_operations proc_attr_dir_inode_operations = {
2592 .lookup = proc_attr_dir_lookup,
2593 .getattr = pid_getattr,
2594 .setattr = proc_setattr,
2595 };
2596
2597 #endif
2598
2599 #ifdef CONFIG_ELF_CORE
2600 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2601 size_t count, loff_t *ppos)
2602 {
2603 struct task_struct *task = get_proc_task(file_inode(file));
2604 struct mm_struct *mm;
2605 char buffer[PROC_NUMBUF];
2606 size_t len;
2607 int ret;
2608
2609 if (!task)
2610 return -ESRCH;
2611
2612 ret = 0;
2613 mm = get_task_mm(task);
2614 if (mm) {
2615 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2616 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2617 MMF_DUMP_FILTER_SHIFT));
2618 mmput(mm);
2619 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2620 }
2621
2622 put_task_struct(task);
2623
2624 return ret;
2625 }
2626
2627 static ssize_t proc_coredump_filter_write(struct file *file,
2628 const char __user *buf,
2629 size_t count,
2630 loff_t *ppos)
2631 {
2632 struct task_struct *task;
2633 struct mm_struct *mm;
2634 unsigned int val;
2635 int ret;
2636 int i;
2637 unsigned long mask;
2638
2639 ret = kstrtouint_from_user(buf, count, 0, &val);
2640 if (ret < 0)
2641 return ret;
2642
2643 ret = -ESRCH;
2644 task = get_proc_task(file_inode(file));
2645 if (!task)
2646 goto out_no_task;
2647
2648 mm = get_task_mm(task);
2649 if (!mm)
2650 goto out_no_mm;
2651 ret = 0;
2652
2653 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2654 if (val & mask)
2655 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2656 else
2657 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2658 }
2659
2660 mmput(mm);
2661 out_no_mm:
2662 put_task_struct(task);
2663 out_no_task:
2664 if (ret < 0)
2665 return ret;
2666 return count;
2667 }
2668
2669 static const struct file_operations proc_coredump_filter_operations = {
2670 .read = proc_coredump_filter_read,
2671 .write = proc_coredump_filter_write,
2672 .llseek = generic_file_llseek,
2673 };
2674 #endif
2675
2676 #ifdef CONFIG_TASK_IO_ACCOUNTING
2677 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2678 {
2679 struct task_io_accounting acct = task->ioac;
2680 unsigned long flags;
2681 int result;
2682
2683 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2684 if (result)
2685 return result;
2686
2687 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2688 result = -EACCES;
2689 goto out_unlock;
2690 }
2691
2692 if (whole && lock_task_sighand(task, &flags)) {
2693 struct task_struct *t = task;
2694
2695 task_io_accounting_add(&acct, &task->signal->ioac);
2696 while_each_thread(task, t)
2697 task_io_accounting_add(&acct, &t->ioac);
2698
2699 unlock_task_sighand(task, &flags);
2700 }
2701 seq_printf(m,
2702 "rchar: %llu\n"
2703 "wchar: %llu\n"
2704 "syscr: %llu\n"
2705 "syscw: %llu\n"
2706 "read_bytes: %llu\n"
2707 "write_bytes: %llu\n"
2708 "cancelled_write_bytes: %llu\n",
2709 (unsigned long long)acct.rchar,
2710 (unsigned long long)acct.wchar,
2711 (unsigned long long)acct.syscr,
2712 (unsigned long long)acct.syscw,
2713 (unsigned long long)acct.read_bytes,
2714 (unsigned long long)acct.write_bytes,
2715 (unsigned long long)acct.cancelled_write_bytes);
2716 result = 0;
2717
2718 out_unlock:
2719 mutex_unlock(&task->signal->cred_guard_mutex);
2720 return result;
2721 }
2722
2723 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2724 struct pid *pid, struct task_struct *task)
2725 {
2726 return do_io_accounting(task, m, 0);
2727 }
2728
2729 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2730 struct pid *pid, struct task_struct *task)
2731 {
2732 return do_io_accounting(task, m, 1);
2733 }
2734 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2735
2736 #ifdef CONFIG_USER_NS
2737 static int proc_id_map_open(struct inode *inode, struct file *file,
2738 const struct seq_operations *seq_ops)
2739 {
2740 struct user_namespace *ns = NULL;
2741 struct task_struct *task;
2742 struct seq_file *seq;
2743 int ret = -EINVAL;
2744
2745 task = get_proc_task(inode);
2746 if (task) {
2747 rcu_read_lock();
2748 ns = get_user_ns(task_cred_xxx(task, user_ns));
2749 rcu_read_unlock();
2750 put_task_struct(task);
2751 }
2752 if (!ns)
2753 goto err;
2754
2755 ret = seq_open(file, seq_ops);
2756 if (ret)
2757 goto err_put_ns;
2758
2759 seq = file->private_data;
2760 seq->private = ns;
2761
2762 return 0;
2763 err_put_ns:
2764 put_user_ns(ns);
2765 err:
2766 return ret;
2767 }
2768
2769 static int proc_id_map_release(struct inode *inode, struct file *file)
2770 {
2771 struct seq_file *seq = file->private_data;
2772 struct user_namespace *ns = seq->private;
2773 put_user_ns(ns);
2774 return seq_release(inode, file);
2775 }
2776
2777 static int proc_uid_map_open(struct inode *inode, struct file *file)
2778 {
2779 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2780 }
2781
2782 static int proc_gid_map_open(struct inode *inode, struct file *file)
2783 {
2784 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2785 }
2786
2787 static int proc_projid_map_open(struct inode *inode, struct file *file)
2788 {
2789 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2790 }
2791
2792 static const struct file_operations proc_uid_map_operations = {
2793 .open = proc_uid_map_open,
2794 .write = proc_uid_map_write,
2795 .read = seq_read,
2796 .llseek = seq_lseek,
2797 .release = proc_id_map_release,
2798 };
2799
2800 static const struct file_operations proc_gid_map_operations = {
2801 .open = proc_gid_map_open,
2802 .write = proc_gid_map_write,
2803 .read = seq_read,
2804 .llseek = seq_lseek,
2805 .release = proc_id_map_release,
2806 };
2807
2808 static const struct file_operations proc_projid_map_operations = {
2809 .open = proc_projid_map_open,
2810 .write = proc_projid_map_write,
2811 .read = seq_read,
2812 .llseek = seq_lseek,
2813 .release = proc_id_map_release,
2814 };
2815
2816 static int proc_setgroups_open(struct inode *inode, struct file *file)
2817 {
2818 struct user_namespace *ns = NULL;
2819 struct task_struct *task;
2820 int ret;
2821
2822 ret = -ESRCH;
2823 task = get_proc_task(inode);
2824 if (task) {
2825 rcu_read_lock();
2826 ns = get_user_ns(task_cred_xxx(task, user_ns));
2827 rcu_read_unlock();
2828 put_task_struct(task);
2829 }
2830 if (!ns)
2831 goto err;
2832
2833 if (file->f_mode & FMODE_WRITE) {
2834 ret = -EACCES;
2835 if (!ns_capable(ns, CAP_SYS_ADMIN))
2836 goto err_put_ns;
2837 }
2838
2839 ret = single_open(file, &proc_setgroups_show, ns);
2840 if (ret)
2841 goto err_put_ns;
2842
2843 return 0;
2844 err_put_ns:
2845 put_user_ns(ns);
2846 err:
2847 return ret;
2848 }
2849
2850 static int proc_setgroups_release(struct inode *inode, struct file *file)
2851 {
2852 struct seq_file *seq = file->private_data;
2853 struct user_namespace *ns = seq->private;
2854 int ret = single_release(inode, file);
2855 put_user_ns(ns);
2856 return ret;
2857 }
2858
2859 static const struct file_operations proc_setgroups_operations = {
2860 .open = proc_setgroups_open,
2861 .write = proc_setgroups_write,
2862 .read = seq_read,
2863 .llseek = seq_lseek,
2864 .release = proc_setgroups_release,
2865 };
2866 #endif /* CONFIG_USER_NS */
2867
2868 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2869 struct pid *pid, struct task_struct *task)
2870 {
2871 int err = lock_trace(task);
2872 if (!err) {
2873 seq_printf(m, "%08x\n", task->personality);
2874 unlock_trace(task);
2875 }
2876 return err;
2877 }
2878
2879 #ifdef CONFIG_LIVEPATCH
2880 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2881 struct pid *pid, struct task_struct *task)
2882 {
2883 seq_printf(m, "%d\n", task->patch_state);
2884 return 0;
2885 }
2886 #endif /* CONFIG_LIVEPATCH */
2887
2888 /*
2889 * Thread groups
2890 */
2891 static const struct file_operations proc_task_operations;
2892 static const struct inode_operations proc_task_inode_operations;
2893
2894 static const struct pid_entry tgid_base_stuff[] = {
2895 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2896 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2897 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2898 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2899 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2900 #ifdef CONFIG_NET
2901 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2902 #endif
2903 REG("environ", S_IRUSR, proc_environ_operations),
2904 REG("auxv", S_IRUSR, proc_auxv_operations),
2905 ONE("status", S_IRUGO, proc_pid_status),
2906 ONE("personality", S_IRUSR, proc_pid_personality),
2907 ONE("limits", S_IRUGO, proc_pid_limits),
2908 #ifdef CONFIG_SCHED_DEBUG
2909 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2910 #endif
2911 #ifdef CONFIG_SCHED_AUTOGROUP
2912 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2913 #endif
2914 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2915 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2916 ONE("syscall", S_IRUSR, proc_pid_syscall),
2917 #endif
2918 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2919 ONE("stat", S_IRUGO, proc_tgid_stat),
2920 ONE("statm", S_IRUGO, proc_pid_statm),
2921 REG("maps", S_IRUGO, proc_pid_maps_operations),
2922 #ifdef CONFIG_NUMA
2923 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2924 #endif
2925 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2926 LNK("cwd", proc_cwd_link),
2927 LNK("root", proc_root_link),
2928 LNK("exe", proc_exe_link),
2929 REG("mounts", S_IRUGO, proc_mounts_operations),
2930 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2931 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2932 #ifdef CONFIG_PROC_PAGE_MONITOR
2933 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2934 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2935 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2936 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2937 #endif
2938 #ifdef CONFIG_SECURITY
2939 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2940 #endif
2941 #ifdef CONFIG_KALLSYMS
2942 ONE("wchan", S_IRUGO, proc_pid_wchan),
2943 #endif
2944 #ifdef CONFIG_STACKTRACE
2945 ONE("stack", S_IRUSR, proc_pid_stack),
2946 #endif
2947 #ifdef CONFIG_SCHED_INFO
2948 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2949 #endif
2950 #ifdef CONFIG_LATENCYTOP
2951 REG("latency", S_IRUGO, proc_lstats_operations),
2952 #endif
2953 #ifdef CONFIG_PROC_PID_CPUSET
2954 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2955 #endif
2956 #ifdef CONFIG_CGROUPS
2957 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2958 #endif
2959 ONE("oom_score", S_IRUGO, proc_oom_score),
2960 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2961 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2962 #ifdef CONFIG_AUDITSYSCALL
2963 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2964 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2965 #endif
2966 #ifdef CONFIG_FAULT_INJECTION
2967 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2968 REG("fail-nth", 0644, proc_fail_nth_operations),
2969 #endif
2970 #ifdef CONFIG_ELF_CORE
2971 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2972 #endif
2973 #ifdef CONFIG_TASK_IO_ACCOUNTING
2974 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2975 #endif
2976 #ifdef CONFIG_HARDWALL
2977 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2978 #endif
2979 #ifdef CONFIG_USER_NS
2980 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2981 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2982 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2983 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2984 #endif
2985 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2986 REG("timers", S_IRUGO, proc_timers_operations),
2987 #endif
2988 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2989 #ifdef CONFIG_LIVEPATCH
2990 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
2991 #endif
2992 };
2993
2994 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2995 {
2996 return proc_pident_readdir(file, ctx,
2997 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2998 }
2999
3000 static const struct file_operations proc_tgid_base_operations = {
3001 .read = generic_read_dir,
3002 .iterate_shared = proc_tgid_base_readdir,
3003 .llseek = generic_file_llseek,
3004 };
3005
3006 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3007 {
3008 return proc_pident_lookup(dir, dentry,
3009 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3010 }
3011
3012 static const struct inode_operations proc_tgid_base_inode_operations = {
3013 .lookup = proc_tgid_base_lookup,
3014 .getattr = pid_getattr,
3015 .setattr = proc_setattr,
3016 .permission = proc_pid_permission,
3017 };
3018
3019 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3020 {
3021 struct dentry *dentry, *leader, *dir;
3022 char buf[PROC_NUMBUF];
3023 struct qstr name;
3024
3025 name.name = buf;
3026 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3027 /* no ->d_hash() rejects on procfs */
3028 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3029 if (dentry) {
3030 d_invalidate(dentry);
3031 dput(dentry);
3032 }
3033
3034 if (pid == tgid)
3035 return;
3036
3037 name.name = buf;
3038 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3039 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3040 if (!leader)
3041 goto out;
3042
3043 name.name = "task";
3044 name.len = strlen(name.name);
3045 dir = d_hash_and_lookup(leader, &name);
3046 if (!dir)
3047 goto out_put_leader;
3048
3049 name.name = buf;
3050 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3051 dentry = d_hash_and_lookup(dir, &name);
3052 if (dentry) {
3053 d_invalidate(dentry);
3054 dput(dentry);
3055 }
3056
3057 dput(dir);
3058 out_put_leader:
3059 dput(leader);
3060 out:
3061 return;
3062 }
3063
3064 /**
3065 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3066 * @task: task that should be flushed.
3067 *
3068 * When flushing dentries from proc, one needs to flush them from global
3069 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3070 * in. This call is supposed to do all of this job.
3071 *
3072 * Looks in the dcache for
3073 * /proc/@pid
3074 * /proc/@tgid/task/@pid
3075 * if either directory is present flushes it and all of it'ts children
3076 * from the dcache.
3077 *
3078 * It is safe and reasonable to cache /proc entries for a task until
3079 * that task exits. After that they just clog up the dcache with
3080 * useless entries, possibly causing useful dcache entries to be
3081 * flushed instead. This routine is proved to flush those useless
3082 * dcache entries at process exit time.
3083 *
3084 * NOTE: This routine is just an optimization so it does not guarantee
3085 * that no dcache entries will exist at process exit time it
3086 * just makes it very unlikely that any will persist.
3087 */
3088
3089 void proc_flush_task(struct task_struct *task)
3090 {
3091 int i;
3092 struct pid *pid, *tgid;
3093 struct upid *upid;
3094
3095 pid = task_pid(task);
3096 tgid = task_tgid(task);
3097
3098 for (i = 0; i <= pid->level; i++) {
3099 upid = &pid->numbers[i];
3100 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3101 tgid->numbers[i].nr);
3102 }
3103 }
3104
3105 static int proc_pid_instantiate(struct inode *dir,
3106 struct dentry * dentry,
3107 struct task_struct *task, const void *ptr)
3108 {
3109 struct inode *inode;
3110
3111 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3112 if (!inode)
3113 goto out;
3114
3115 inode->i_op = &proc_tgid_base_inode_operations;
3116 inode->i_fop = &proc_tgid_base_operations;
3117 inode->i_flags|=S_IMMUTABLE;
3118
3119 set_nlink(inode, nlink_tgid);
3120
3121 d_set_d_op(dentry, &pid_dentry_operations);
3122
3123 d_add(dentry, inode);
3124 /* Close the race of the process dying before we return the dentry */
3125 if (pid_revalidate(dentry, 0))
3126 return 0;
3127 out:
3128 return -ENOENT;
3129 }
3130
3131 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3132 {
3133 int result = -ENOENT;
3134 struct task_struct *task;
3135 unsigned tgid;
3136 struct pid_namespace *ns;
3137
3138 tgid = name_to_int(&dentry->d_name);
3139 if (tgid == ~0U)
3140 goto out;
3141
3142 ns = dentry->d_sb->s_fs_info;
3143 rcu_read_lock();
3144 task = find_task_by_pid_ns(tgid, ns);
3145 if (task)
3146 get_task_struct(task);
3147 rcu_read_unlock();
3148 if (!task)
3149 goto out;
3150
3151 result = proc_pid_instantiate(dir, dentry, task, NULL);
3152 put_task_struct(task);
3153 out:
3154 return ERR_PTR(result);
3155 }
3156
3157 /*
3158 * Find the first task with tgid >= tgid
3159 *
3160 */
3161 struct tgid_iter {
3162 unsigned int tgid;
3163 struct task_struct *task;
3164 };
3165 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3166 {
3167 struct pid *pid;
3168
3169 if (iter.task)
3170 put_task_struct(iter.task);
3171 rcu_read_lock();
3172 retry:
3173 iter.task = NULL;
3174 pid = find_ge_pid(iter.tgid, ns);
3175 if (pid) {
3176 iter.tgid = pid_nr_ns(pid, ns);
3177 iter.task = pid_task(pid, PIDTYPE_PID);
3178 /* What we to know is if the pid we have find is the
3179 * pid of a thread_group_leader. Testing for task
3180 * being a thread_group_leader is the obvious thing
3181 * todo but there is a window when it fails, due to
3182 * the pid transfer logic in de_thread.
3183 *
3184 * So we perform the straight forward test of seeing
3185 * if the pid we have found is the pid of a thread
3186 * group leader, and don't worry if the task we have
3187 * found doesn't happen to be a thread group leader.
3188 * As we don't care in the case of readdir.
3189 */
3190 if (!iter.task || !has_group_leader_pid(iter.task)) {
3191 iter.tgid += 1;
3192 goto retry;
3193 }
3194 get_task_struct(iter.task);
3195 }
3196 rcu_read_unlock();
3197 return iter;
3198 }
3199
3200 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3201
3202 /* for the /proc/ directory itself, after non-process stuff has been done */
3203 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3204 {
3205 struct tgid_iter iter;
3206 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3207 loff_t pos = ctx->pos;
3208
3209 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3210 return 0;
3211
3212 if (pos == TGID_OFFSET - 2) {
3213 struct inode *inode = d_inode(ns->proc_self);
3214 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3215 return 0;
3216 ctx->pos = pos = pos + 1;
3217 }
3218 if (pos == TGID_OFFSET - 1) {
3219 struct inode *inode = d_inode(ns->proc_thread_self);
3220 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3221 return 0;
3222 ctx->pos = pos = pos + 1;
3223 }
3224 iter.tgid = pos - TGID_OFFSET;
3225 iter.task = NULL;
3226 for (iter = next_tgid(ns, iter);
3227 iter.task;
3228 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3229 char name[PROC_NUMBUF];
3230 int len;
3231
3232 cond_resched();
3233 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3234 continue;
3235
3236 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3237 ctx->pos = iter.tgid + TGID_OFFSET;
3238 if (!proc_fill_cache(file, ctx, name, len,
3239 proc_pid_instantiate, iter.task, NULL)) {
3240 put_task_struct(iter.task);
3241 return 0;
3242 }
3243 }
3244 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3245 return 0;
3246 }
3247
3248 /*
3249 * proc_tid_comm_permission is a special permission function exclusively
3250 * used for the node /proc/<pid>/task/<tid>/comm.
3251 * It bypasses generic permission checks in the case where a task of the same
3252 * task group attempts to access the node.
3253 * The rationale behind this is that glibc and bionic access this node for
3254 * cross thread naming (pthread_set/getname_np(!self)). However, if
3255 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3256 * which locks out the cross thread naming implementation.
3257 * This function makes sure that the node is always accessible for members of
3258 * same thread group.
3259 */
3260 static int proc_tid_comm_permission(struct inode *inode, int mask)
3261 {
3262 bool is_same_tgroup;
3263 struct task_struct *task;
3264
3265 task = get_proc_task(inode);
3266 if (!task)
3267 return -ESRCH;
3268 is_same_tgroup = same_thread_group(current, task);
3269 put_task_struct(task);
3270
3271 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3272 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3273 * read or written by the members of the corresponding
3274 * thread group.
3275 */
3276 return 0;
3277 }
3278
3279 return generic_permission(inode, mask);
3280 }
3281
3282 static const struct inode_operations proc_tid_comm_inode_operations = {
3283 .permission = proc_tid_comm_permission,
3284 };
3285
3286 /*
3287 * Tasks
3288 */
3289 static const struct pid_entry tid_base_stuff[] = {
3290 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3291 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3292 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3293 #ifdef CONFIG_NET
3294 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3295 #endif
3296 REG("environ", S_IRUSR, proc_environ_operations),
3297 REG("auxv", S_IRUSR, proc_auxv_operations),
3298 ONE("status", S_IRUGO, proc_pid_status),
3299 ONE("personality", S_IRUSR, proc_pid_personality),
3300 ONE("limits", S_IRUGO, proc_pid_limits),
3301 #ifdef CONFIG_SCHED_DEBUG
3302 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3303 #endif
3304 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3305 &proc_tid_comm_inode_operations,
3306 &proc_pid_set_comm_operations, {}),
3307 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3308 ONE("syscall", S_IRUSR, proc_pid_syscall),
3309 #endif
3310 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3311 ONE("stat", S_IRUGO, proc_tid_stat),
3312 ONE("statm", S_IRUGO, proc_pid_statm),
3313 REG("maps", S_IRUGO, proc_tid_maps_operations),
3314 #ifdef CONFIG_PROC_CHILDREN
3315 REG("children", S_IRUGO, proc_tid_children_operations),
3316 #endif
3317 #ifdef CONFIG_NUMA
3318 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3319 #endif
3320 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3321 LNK("cwd", proc_cwd_link),
3322 LNK("root", proc_root_link),
3323 LNK("exe", proc_exe_link),
3324 REG("mounts", S_IRUGO, proc_mounts_operations),
3325 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3326 #ifdef CONFIG_PROC_PAGE_MONITOR
3327 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3328 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3329 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3330 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3331 #endif
3332 #ifdef CONFIG_SECURITY
3333 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3334 #endif
3335 #ifdef CONFIG_KALLSYMS
3336 ONE("wchan", S_IRUGO, proc_pid_wchan),
3337 #endif
3338 #ifdef CONFIG_STACKTRACE
3339 ONE("stack", S_IRUSR, proc_pid_stack),
3340 #endif
3341 #ifdef CONFIG_SCHED_INFO
3342 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3343 #endif
3344 #ifdef CONFIG_LATENCYTOP
3345 REG("latency", S_IRUGO, proc_lstats_operations),
3346 #endif
3347 #ifdef CONFIG_PROC_PID_CPUSET
3348 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3349 #endif
3350 #ifdef CONFIG_CGROUPS
3351 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3352 #endif
3353 ONE("oom_score", S_IRUGO, proc_oom_score),
3354 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3355 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3356 #ifdef CONFIG_AUDITSYSCALL
3357 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3358 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3359 #endif
3360 #ifdef CONFIG_FAULT_INJECTION
3361 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3362 REG("fail-nth", 0644, proc_fail_nth_operations),
3363 #endif
3364 #ifdef CONFIG_TASK_IO_ACCOUNTING
3365 ONE("io", S_IRUSR, proc_tid_io_accounting),
3366 #endif
3367 #ifdef CONFIG_HARDWALL
3368 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3369 #endif
3370 #ifdef CONFIG_USER_NS
3371 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3372 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3373 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3374 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3375 #endif
3376 #ifdef CONFIG_LIVEPATCH
3377 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3378 #endif
3379 };
3380
3381 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3382 {
3383 return proc_pident_readdir(file, ctx,
3384 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3385 }
3386
3387 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3388 {
3389 return proc_pident_lookup(dir, dentry,
3390 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3391 }
3392
3393 static const struct file_operations proc_tid_base_operations = {
3394 .read = generic_read_dir,
3395 .iterate_shared = proc_tid_base_readdir,
3396 .llseek = generic_file_llseek,
3397 };
3398
3399 static const struct inode_operations proc_tid_base_inode_operations = {
3400 .lookup = proc_tid_base_lookup,
3401 .getattr = pid_getattr,
3402 .setattr = proc_setattr,
3403 };
3404
3405 static int proc_task_instantiate(struct inode *dir,
3406 struct dentry *dentry, struct task_struct *task, const void *ptr)
3407 {
3408 struct inode *inode;
3409 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3410
3411 if (!inode)
3412 goto out;
3413 inode->i_op = &proc_tid_base_inode_operations;
3414 inode->i_fop = &proc_tid_base_operations;
3415 inode->i_flags|=S_IMMUTABLE;
3416
3417 set_nlink(inode, nlink_tid);
3418
3419 d_set_d_op(dentry, &pid_dentry_operations);
3420
3421 d_add(dentry, inode);
3422 /* Close the race of the process dying before we return the dentry */
3423 if (pid_revalidate(dentry, 0))
3424 return 0;
3425 out:
3426 return -ENOENT;
3427 }
3428
3429 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3430 {
3431 int result = -ENOENT;
3432 struct task_struct *task;
3433 struct task_struct *leader = get_proc_task(dir);
3434 unsigned tid;
3435 struct pid_namespace *ns;
3436
3437 if (!leader)
3438 goto out_no_task;
3439
3440 tid = name_to_int(&dentry->d_name);
3441 if (tid == ~0U)
3442 goto out;
3443
3444 ns = dentry->d_sb->s_fs_info;
3445 rcu_read_lock();
3446 task = find_task_by_pid_ns(tid, ns);
3447 if (task)
3448 get_task_struct(task);
3449 rcu_read_unlock();
3450 if (!task)
3451 goto out;
3452 if (!same_thread_group(leader, task))
3453 goto out_drop_task;
3454
3455 result = proc_task_instantiate(dir, dentry, task, NULL);
3456 out_drop_task:
3457 put_task_struct(task);
3458 out:
3459 put_task_struct(leader);
3460 out_no_task:
3461 return ERR_PTR(result);
3462 }
3463
3464 /*
3465 * Find the first tid of a thread group to return to user space.
3466 *
3467 * Usually this is just the thread group leader, but if the users
3468 * buffer was too small or there was a seek into the middle of the
3469 * directory we have more work todo.
3470 *
3471 * In the case of a short read we start with find_task_by_pid.
3472 *
3473 * In the case of a seek we start with the leader and walk nr
3474 * threads past it.
3475 */
3476 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3477 struct pid_namespace *ns)
3478 {
3479 struct task_struct *pos, *task;
3480 unsigned long nr = f_pos;
3481
3482 if (nr != f_pos) /* 32bit overflow? */
3483 return NULL;
3484
3485 rcu_read_lock();
3486 task = pid_task(pid, PIDTYPE_PID);
3487 if (!task)
3488 goto fail;
3489
3490 /* Attempt to start with the tid of a thread */
3491 if (tid && nr) {
3492 pos = find_task_by_pid_ns(tid, ns);
3493 if (pos && same_thread_group(pos, task))
3494 goto found;
3495 }
3496
3497 /* If nr exceeds the number of threads there is nothing todo */
3498 if (nr >= get_nr_threads(task))
3499 goto fail;
3500
3501 /* If we haven't found our starting place yet start
3502 * with the leader and walk nr threads forward.
3503 */
3504 pos = task = task->group_leader;
3505 do {
3506 if (!nr--)
3507 goto found;
3508 } while_each_thread(task, pos);
3509 fail:
3510 pos = NULL;
3511 goto out;
3512 found:
3513 get_task_struct(pos);
3514 out:
3515 rcu_read_unlock();
3516 return pos;
3517 }
3518
3519 /*
3520 * Find the next thread in the thread list.
3521 * Return NULL if there is an error or no next thread.
3522 *
3523 * The reference to the input task_struct is released.
3524 */
3525 static struct task_struct *next_tid(struct task_struct *start)
3526 {
3527 struct task_struct *pos = NULL;
3528 rcu_read_lock();
3529 if (pid_alive(start)) {
3530 pos = next_thread(start);
3531 if (thread_group_leader(pos))
3532 pos = NULL;
3533 else
3534 get_task_struct(pos);
3535 }
3536 rcu_read_unlock();
3537 put_task_struct(start);
3538 return pos;
3539 }
3540
3541 /* for the /proc/TGID/task/ directories */
3542 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3543 {
3544 struct inode *inode = file_inode(file);
3545 struct task_struct *task;
3546 struct pid_namespace *ns;
3547 int tid;
3548
3549 if (proc_inode_is_dead(inode))
3550 return -ENOENT;
3551
3552 if (!dir_emit_dots(file, ctx))
3553 return 0;
3554
3555 /* f_version caches the tgid value that the last readdir call couldn't
3556 * return. lseek aka telldir automagically resets f_version to 0.
3557 */
3558 ns = inode->i_sb->s_fs_info;
3559 tid = (int)file->f_version;
3560 file->f_version = 0;
3561 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3562 task;
3563 task = next_tid(task), ctx->pos++) {
3564 char name[PROC_NUMBUF];
3565 int len;
3566 tid = task_pid_nr_ns(task, ns);
3567 len = snprintf(name, sizeof(name), "%d", tid);
3568 if (!proc_fill_cache(file, ctx, name, len,
3569 proc_task_instantiate, task, NULL)) {
3570 /* returning this tgid failed, save it as the first
3571 * pid for the next readir call */
3572 file->f_version = (u64)tid;
3573 put_task_struct(task);
3574 break;
3575 }
3576 }
3577
3578 return 0;
3579 }
3580
3581 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3582 u32 request_mask, unsigned int query_flags)
3583 {
3584 struct inode *inode = d_inode(path->dentry);
3585 struct task_struct *p = get_proc_task(inode);
3586 generic_fillattr(inode, stat);
3587
3588 if (p) {
3589 stat->nlink += get_nr_threads(p);
3590 put_task_struct(p);
3591 }
3592
3593 return 0;
3594 }
3595
3596 static const struct inode_operations proc_task_inode_operations = {
3597 .lookup = proc_task_lookup,
3598 .getattr = proc_task_getattr,
3599 .setattr = proc_setattr,
3600 .permission = proc_pid_permission,
3601 };
3602
3603 static const struct file_operations proc_task_operations = {
3604 .read = generic_read_dir,
3605 .iterate_shared = proc_task_readdir,
3606 .llseek = generic_file_llseek,
3607 };
3608
3609 void __init set_proc_pid_nlink(void)
3610 {
3611 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3612 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3613 }