]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/proc/base.c
ccf86f16d9f0190c18e7f4345b7ca0960709eb05
[mirror_ubuntu-hirsute-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 size_t count, loff_t *ppos)
210 {
211 unsigned long arg_start, arg_end, env_start, env_end;
212 unsigned long pos, len;
213 char *page;
214
215 /* Check if process spawned far enough to have cmdline. */
216 if (!mm->env_end)
217 return 0;
218
219 spin_lock(&mm->arg_lock);
220 arg_start = mm->arg_start;
221 arg_end = mm->arg_end;
222 env_start = mm->env_start;
223 env_end = mm->env_end;
224 spin_unlock(&mm->arg_lock);
225
226 if (arg_start >= arg_end)
227 return 0;
228
229 /*
230 * We have traditionally allowed the user to re-write
231 * the argument strings and overflow the end result
232 * into the environment section. But only do that if
233 * the environment area is contiguous to the arguments.
234 */
235 if (env_start != arg_end || env_start >= env_end)
236 env_start = env_end = arg_end;
237
238 /* .. and limit it to a maximum of one page of slop */
239 if (env_end >= arg_end + PAGE_SIZE)
240 env_end = arg_end + PAGE_SIZE - 1;
241
242 /* We're not going to care if "*ppos" has high bits set */
243 pos = arg_start + *ppos;
244
245 /* .. but we do check the result is in the proper range */
246 if (pos < arg_start || pos >= env_end)
247 return 0;
248
249 /* .. and we never go past env_end */
250 if (env_end - pos < count)
251 count = env_end - pos;
252
253 page = (char *)__get_free_page(GFP_KERNEL);
254 if (!page)
255 return -ENOMEM;
256
257 len = 0;
258 while (count) {
259 int got;
260 size_t size = min_t(size_t, PAGE_SIZE, count);
261 long offset;
262
263 /*
264 * Are we already starting past the official end?
265 * We always include the last byte that is *supposed*
266 * to be NUL
267 */
268 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
269
270 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
271 if (got <= offset)
272 break;
273 got -= offset;
274
275 /* Don't walk past a NUL character once you hit arg_end */
276 if (pos + got >= arg_end) {
277 int n = 0;
278
279 /*
280 * If we started before 'arg_end' but ended up
281 * at or after it, we start the NUL character
282 * check at arg_end-1 (where we expect the normal
283 * EOF to be).
284 *
285 * NOTE! This is smaller than 'got', because
286 * pos + got >= arg_end
287 */
288 if (pos < arg_end)
289 n = arg_end - pos - 1;
290
291 /* Cut off at first NUL after 'n' */
292 got = n + strnlen(page+n, offset+got-n);
293 if (got < offset)
294 break;
295 got -= offset;
296
297 /* Include the NUL if it existed */
298 if (got < size)
299 got++;
300 }
301
302 got -= copy_to_user(buf, page+offset, got);
303 if (unlikely(!got)) {
304 if (!len)
305 len = -EFAULT;
306 break;
307 }
308 pos += got;
309 buf += got;
310 len += got;
311 count -= got;
312 }
313
314 free_page((unsigned long)page);
315 return len;
316 }
317
318 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
319 size_t count, loff_t *pos)
320 {
321 struct mm_struct *mm;
322 ssize_t ret;
323
324 mm = get_task_mm(tsk);
325 if (!mm)
326 return 0;
327
328 ret = get_mm_cmdline(mm, buf, count, pos);
329 mmput(mm);
330 return ret;
331 }
332
333 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
334 size_t count, loff_t *pos)
335 {
336 struct task_struct *tsk;
337 ssize_t ret;
338
339 BUG_ON(*pos < 0);
340
341 tsk = get_proc_task(file_inode(file));
342 if (!tsk)
343 return -ESRCH;
344 ret = get_task_cmdline(tsk, buf, count, pos);
345 put_task_struct(tsk);
346 if (ret > 0)
347 *pos += ret;
348 return ret;
349 }
350
351 static const struct file_operations proc_pid_cmdline_ops = {
352 .read = proc_pid_cmdline_read,
353 .llseek = generic_file_llseek,
354 };
355
356 #ifdef CONFIG_KALLSYMS
357 /*
358 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
359 * Returns the resolved symbol. If that fails, simply return the address.
360 */
361 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
362 struct pid *pid, struct task_struct *task)
363 {
364 unsigned long wchan;
365 char symname[KSYM_NAME_LEN];
366
367 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
368 goto print0;
369
370 wchan = get_wchan(task);
371 if (wchan && !lookup_symbol_name(wchan, symname)) {
372 seq_puts(m, symname);
373 return 0;
374 }
375
376 print0:
377 seq_putc(m, '0');
378 return 0;
379 }
380 #endif /* CONFIG_KALLSYMS */
381
382 static int lock_trace(struct task_struct *task)
383 {
384 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
385 if (err)
386 return err;
387 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
388 mutex_unlock(&task->signal->cred_guard_mutex);
389 return -EPERM;
390 }
391 return 0;
392 }
393
394 static void unlock_trace(struct task_struct *task)
395 {
396 mutex_unlock(&task->signal->cred_guard_mutex);
397 }
398
399 #ifdef CONFIG_STACKTRACE
400
401 #define MAX_STACK_TRACE_DEPTH 64
402
403 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
404 struct pid *pid, struct task_struct *task)
405 {
406 struct stack_trace trace;
407 unsigned long *entries;
408 int err;
409
410 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
411 GFP_KERNEL);
412 if (!entries)
413 return -ENOMEM;
414
415 trace.nr_entries = 0;
416 trace.max_entries = MAX_STACK_TRACE_DEPTH;
417 trace.entries = entries;
418 trace.skip = 0;
419
420 err = lock_trace(task);
421 if (!err) {
422 unsigned int i;
423
424 save_stack_trace_tsk(task, &trace);
425
426 for (i = 0; i < trace.nr_entries; i++) {
427 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
428 }
429 unlock_trace(task);
430 }
431 kfree(entries);
432
433 return err;
434 }
435 #endif
436
437 #ifdef CONFIG_SCHED_INFO
438 /*
439 * Provides /proc/PID/schedstat
440 */
441 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
442 struct pid *pid, struct task_struct *task)
443 {
444 if (unlikely(!sched_info_on()))
445 seq_printf(m, "0 0 0\n");
446 else
447 seq_printf(m, "%llu %llu %lu\n",
448 (unsigned long long)task->se.sum_exec_runtime,
449 (unsigned long long)task->sched_info.run_delay,
450 task->sched_info.pcount);
451
452 return 0;
453 }
454 #endif
455
456 #ifdef CONFIG_LATENCYTOP
457 static int lstats_show_proc(struct seq_file *m, void *v)
458 {
459 int i;
460 struct inode *inode = m->private;
461 struct task_struct *task = get_proc_task(inode);
462
463 if (!task)
464 return -ESRCH;
465 seq_puts(m, "Latency Top version : v0.1\n");
466 for (i = 0; i < LT_SAVECOUNT; i++) {
467 struct latency_record *lr = &task->latency_record[i];
468 if (lr->backtrace[0]) {
469 int q;
470 seq_printf(m, "%i %li %li",
471 lr->count, lr->time, lr->max);
472 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
473 unsigned long bt = lr->backtrace[q];
474 if (!bt)
475 break;
476 if (bt == ULONG_MAX)
477 break;
478 seq_printf(m, " %ps", (void *)bt);
479 }
480 seq_putc(m, '\n');
481 }
482
483 }
484 put_task_struct(task);
485 return 0;
486 }
487
488 static int lstats_open(struct inode *inode, struct file *file)
489 {
490 return single_open(file, lstats_show_proc, inode);
491 }
492
493 static ssize_t lstats_write(struct file *file, const char __user *buf,
494 size_t count, loff_t *offs)
495 {
496 struct task_struct *task = get_proc_task(file_inode(file));
497
498 if (!task)
499 return -ESRCH;
500 clear_all_latency_tracing(task);
501 put_task_struct(task);
502
503 return count;
504 }
505
506 static const struct file_operations proc_lstats_operations = {
507 .open = lstats_open,
508 .read = seq_read,
509 .write = lstats_write,
510 .llseek = seq_lseek,
511 .release = single_release,
512 };
513
514 #endif
515
516 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
517 struct pid *pid, struct task_struct *task)
518 {
519 unsigned long totalpages = totalram_pages + total_swap_pages;
520 unsigned long points = 0;
521
522 points = oom_badness(task, NULL, NULL, totalpages) *
523 1000 / totalpages;
524 seq_printf(m, "%lu\n", points);
525
526 return 0;
527 }
528
529 struct limit_names {
530 const char *name;
531 const char *unit;
532 };
533
534 static const struct limit_names lnames[RLIM_NLIMITS] = {
535 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
536 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
537 [RLIMIT_DATA] = {"Max data size", "bytes"},
538 [RLIMIT_STACK] = {"Max stack size", "bytes"},
539 [RLIMIT_CORE] = {"Max core file size", "bytes"},
540 [RLIMIT_RSS] = {"Max resident set", "bytes"},
541 [RLIMIT_NPROC] = {"Max processes", "processes"},
542 [RLIMIT_NOFILE] = {"Max open files", "files"},
543 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
544 [RLIMIT_AS] = {"Max address space", "bytes"},
545 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
546 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
547 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
548 [RLIMIT_NICE] = {"Max nice priority", NULL},
549 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
550 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
551 };
552
553 /* Display limits for a process */
554 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
555 struct pid *pid, struct task_struct *task)
556 {
557 unsigned int i;
558 unsigned long flags;
559
560 struct rlimit rlim[RLIM_NLIMITS];
561
562 if (!lock_task_sighand(task, &flags))
563 return 0;
564 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
565 unlock_task_sighand(task, &flags);
566
567 /*
568 * print the file header
569 */
570 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
571 "Limit", "Soft Limit", "Hard Limit", "Units");
572
573 for (i = 0; i < RLIM_NLIMITS; i++) {
574 if (rlim[i].rlim_cur == RLIM_INFINITY)
575 seq_printf(m, "%-25s %-20s ",
576 lnames[i].name, "unlimited");
577 else
578 seq_printf(m, "%-25s %-20lu ",
579 lnames[i].name, rlim[i].rlim_cur);
580
581 if (rlim[i].rlim_max == RLIM_INFINITY)
582 seq_printf(m, "%-20s ", "unlimited");
583 else
584 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
585
586 if (lnames[i].unit)
587 seq_printf(m, "%-10s\n", lnames[i].unit);
588 else
589 seq_putc(m, '\n');
590 }
591
592 return 0;
593 }
594
595 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
596 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
597 struct pid *pid, struct task_struct *task)
598 {
599 long nr;
600 unsigned long args[6], sp, pc;
601 int res;
602
603 res = lock_trace(task);
604 if (res)
605 return res;
606
607 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
608 seq_puts(m, "running\n");
609 else if (nr < 0)
610 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
611 else
612 seq_printf(m,
613 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
614 nr,
615 args[0], args[1], args[2], args[3], args[4], args[5],
616 sp, pc);
617 unlock_trace(task);
618
619 return 0;
620 }
621 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
622
623 /************************************************************************/
624 /* Here the fs part begins */
625 /************************************************************************/
626
627 /* permission checks */
628 static int proc_fd_access_allowed(struct inode *inode)
629 {
630 struct task_struct *task;
631 int allowed = 0;
632 /* Allow access to a task's file descriptors if it is us or we
633 * may use ptrace attach to the process and find out that
634 * information.
635 */
636 task = get_proc_task(inode);
637 if (task) {
638 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
639 put_task_struct(task);
640 }
641 return allowed;
642 }
643
644 int proc_setattr(struct dentry *dentry, struct iattr *attr)
645 {
646 int error;
647 struct inode *inode = d_inode(dentry);
648
649 if (attr->ia_valid & ATTR_MODE)
650 return -EPERM;
651
652 error = setattr_prepare(dentry, attr);
653 if (error)
654 return error;
655
656 setattr_copy(inode, attr);
657 mark_inode_dirty(inode);
658 return 0;
659 }
660
661 /*
662 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
663 * or euid/egid (for hide_pid_min=2)?
664 */
665 static bool has_pid_permissions(struct pid_namespace *pid,
666 struct task_struct *task,
667 int hide_pid_min)
668 {
669 if (pid->hide_pid < hide_pid_min)
670 return true;
671 if (in_group_p(pid->pid_gid))
672 return true;
673 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
674 }
675
676
677 static int proc_pid_permission(struct inode *inode, int mask)
678 {
679 struct pid_namespace *pid = proc_pid_ns(inode);
680 struct task_struct *task;
681 bool has_perms;
682
683 task = get_proc_task(inode);
684 if (!task)
685 return -ESRCH;
686 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
687 put_task_struct(task);
688
689 if (!has_perms) {
690 if (pid->hide_pid == HIDEPID_INVISIBLE) {
691 /*
692 * Let's make getdents(), stat(), and open()
693 * consistent with each other. If a process
694 * may not stat() a file, it shouldn't be seen
695 * in procfs at all.
696 */
697 return -ENOENT;
698 }
699
700 return -EPERM;
701 }
702 return generic_permission(inode, mask);
703 }
704
705
706
707 static const struct inode_operations proc_def_inode_operations = {
708 .setattr = proc_setattr,
709 };
710
711 static int proc_single_show(struct seq_file *m, void *v)
712 {
713 struct inode *inode = m->private;
714 struct pid_namespace *ns = proc_pid_ns(inode);
715 struct pid *pid = proc_pid(inode);
716 struct task_struct *task;
717 int ret;
718
719 task = get_pid_task(pid, PIDTYPE_PID);
720 if (!task)
721 return -ESRCH;
722
723 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
724
725 put_task_struct(task);
726 return ret;
727 }
728
729 static int proc_single_open(struct inode *inode, struct file *filp)
730 {
731 return single_open(filp, proc_single_show, inode);
732 }
733
734 static const struct file_operations proc_single_file_operations = {
735 .open = proc_single_open,
736 .read = seq_read,
737 .llseek = seq_lseek,
738 .release = single_release,
739 };
740
741
742 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
743 {
744 struct task_struct *task = get_proc_task(inode);
745 struct mm_struct *mm = ERR_PTR(-ESRCH);
746
747 if (task) {
748 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
749 put_task_struct(task);
750
751 if (!IS_ERR_OR_NULL(mm)) {
752 /* ensure this mm_struct can't be freed */
753 mmgrab(mm);
754 /* but do not pin its memory */
755 mmput(mm);
756 }
757 }
758
759 return mm;
760 }
761
762 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
763 {
764 struct mm_struct *mm = proc_mem_open(inode, mode);
765
766 if (IS_ERR(mm))
767 return PTR_ERR(mm);
768
769 file->private_data = mm;
770 return 0;
771 }
772
773 static int mem_open(struct inode *inode, struct file *file)
774 {
775 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
776
777 /* OK to pass negative loff_t, we can catch out-of-range */
778 file->f_mode |= FMODE_UNSIGNED_OFFSET;
779
780 return ret;
781 }
782
783 static ssize_t mem_rw(struct file *file, char __user *buf,
784 size_t count, loff_t *ppos, int write)
785 {
786 struct mm_struct *mm = file->private_data;
787 unsigned long addr = *ppos;
788 ssize_t copied;
789 char *page;
790 unsigned int flags;
791
792 if (!mm)
793 return 0;
794
795 page = (char *)__get_free_page(GFP_KERNEL);
796 if (!page)
797 return -ENOMEM;
798
799 copied = 0;
800 if (!mmget_not_zero(mm))
801 goto free;
802
803 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
804
805 while (count > 0) {
806 int this_len = min_t(int, count, PAGE_SIZE);
807
808 if (write && copy_from_user(page, buf, this_len)) {
809 copied = -EFAULT;
810 break;
811 }
812
813 this_len = access_remote_vm(mm, addr, page, this_len, flags);
814 if (!this_len) {
815 if (!copied)
816 copied = -EIO;
817 break;
818 }
819
820 if (!write && copy_to_user(buf, page, this_len)) {
821 copied = -EFAULT;
822 break;
823 }
824
825 buf += this_len;
826 addr += this_len;
827 copied += this_len;
828 count -= this_len;
829 }
830 *ppos = addr;
831
832 mmput(mm);
833 free:
834 free_page((unsigned long) page);
835 return copied;
836 }
837
838 static ssize_t mem_read(struct file *file, char __user *buf,
839 size_t count, loff_t *ppos)
840 {
841 return mem_rw(file, buf, count, ppos, 0);
842 }
843
844 static ssize_t mem_write(struct file *file, const char __user *buf,
845 size_t count, loff_t *ppos)
846 {
847 return mem_rw(file, (char __user*)buf, count, ppos, 1);
848 }
849
850 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
851 {
852 switch (orig) {
853 case 0:
854 file->f_pos = offset;
855 break;
856 case 1:
857 file->f_pos += offset;
858 break;
859 default:
860 return -EINVAL;
861 }
862 force_successful_syscall_return();
863 return file->f_pos;
864 }
865
866 static int mem_release(struct inode *inode, struct file *file)
867 {
868 struct mm_struct *mm = file->private_data;
869 if (mm)
870 mmdrop(mm);
871 return 0;
872 }
873
874 static const struct file_operations proc_mem_operations = {
875 .llseek = mem_lseek,
876 .read = mem_read,
877 .write = mem_write,
878 .open = mem_open,
879 .release = mem_release,
880 };
881
882 static int environ_open(struct inode *inode, struct file *file)
883 {
884 return __mem_open(inode, file, PTRACE_MODE_READ);
885 }
886
887 static ssize_t environ_read(struct file *file, char __user *buf,
888 size_t count, loff_t *ppos)
889 {
890 char *page;
891 unsigned long src = *ppos;
892 int ret = 0;
893 struct mm_struct *mm = file->private_data;
894 unsigned long env_start, env_end;
895
896 /* Ensure the process spawned far enough to have an environment. */
897 if (!mm || !mm->env_end)
898 return 0;
899
900 page = (char *)__get_free_page(GFP_KERNEL);
901 if (!page)
902 return -ENOMEM;
903
904 ret = 0;
905 if (!mmget_not_zero(mm))
906 goto free;
907
908 spin_lock(&mm->arg_lock);
909 env_start = mm->env_start;
910 env_end = mm->env_end;
911 spin_unlock(&mm->arg_lock);
912
913 while (count > 0) {
914 size_t this_len, max_len;
915 int retval;
916
917 if (src >= (env_end - env_start))
918 break;
919
920 this_len = env_end - (env_start + src);
921
922 max_len = min_t(size_t, PAGE_SIZE, count);
923 this_len = min(max_len, this_len);
924
925 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
926
927 if (retval <= 0) {
928 ret = retval;
929 break;
930 }
931
932 if (copy_to_user(buf, page, retval)) {
933 ret = -EFAULT;
934 break;
935 }
936
937 ret += retval;
938 src += retval;
939 buf += retval;
940 count -= retval;
941 }
942 *ppos = src;
943 mmput(mm);
944
945 free:
946 free_page((unsigned long) page);
947 return ret;
948 }
949
950 static const struct file_operations proc_environ_operations = {
951 .open = environ_open,
952 .read = environ_read,
953 .llseek = generic_file_llseek,
954 .release = mem_release,
955 };
956
957 static int auxv_open(struct inode *inode, struct file *file)
958 {
959 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
960 }
961
962 static ssize_t auxv_read(struct file *file, char __user *buf,
963 size_t count, loff_t *ppos)
964 {
965 struct mm_struct *mm = file->private_data;
966 unsigned int nwords = 0;
967
968 if (!mm)
969 return 0;
970 do {
971 nwords += 2;
972 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
973 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
974 nwords * sizeof(mm->saved_auxv[0]));
975 }
976
977 static const struct file_operations proc_auxv_operations = {
978 .open = auxv_open,
979 .read = auxv_read,
980 .llseek = generic_file_llseek,
981 .release = mem_release,
982 };
983
984 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
985 loff_t *ppos)
986 {
987 struct task_struct *task = get_proc_task(file_inode(file));
988 char buffer[PROC_NUMBUF];
989 int oom_adj = OOM_ADJUST_MIN;
990 size_t len;
991
992 if (!task)
993 return -ESRCH;
994 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
995 oom_adj = OOM_ADJUST_MAX;
996 else
997 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
998 OOM_SCORE_ADJ_MAX;
999 put_task_struct(task);
1000 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1001 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1002 }
1003
1004 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1005 {
1006 static DEFINE_MUTEX(oom_adj_mutex);
1007 struct mm_struct *mm = NULL;
1008 struct task_struct *task;
1009 int err = 0;
1010
1011 task = get_proc_task(file_inode(file));
1012 if (!task)
1013 return -ESRCH;
1014
1015 mutex_lock(&oom_adj_mutex);
1016 if (legacy) {
1017 if (oom_adj < task->signal->oom_score_adj &&
1018 !capable(CAP_SYS_RESOURCE)) {
1019 err = -EACCES;
1020 goto err_unlock;
1021 }
1022 /*
1023 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1024 * /proc/pid/oom_score_adj instead.
1025 */
1026 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1027 current->comm, task_pid_nr(current), task_pid_nr(task),
1028 task_pid_nr(task));
1029 } else {
1030 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1031 !capable(CAP_SYS_RESOURCE)) {
1032 err = -EACCES;
1033 goto err_unlock;
1034 }
1035 }
1036
1037 /*
1038 * Make sure we will check other processes sharing the mm if this is
1039 * not vfrok which wants its own oom_score_adj.
1040 * pin the mm so it doesn't go away and get reused after task_unlock
1041 */
1042 if (!task->vfork_done) {
1043 struct task_struct *p = find_lock_task_mm(task);
1044
1045 if (p) {
1046 if (atomic_read(&p->mm->mm_users) > 1) {
1047 mm = p->mm;
1048 mmgrab(mm);
1049 }
1050 task_unlock(p);
1051 }
1052 }
1053
1054 task->signal->oom_score_adj = oom_adj;
1055 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1056 task->signal->oom_score_adj_min = (short)oom_adj;
1057 trace_oom_score_adj_update(task);
1058
1059 if (mm) {
1060 struct task_struct *p;
1061
1062 rcu_read_lock();
1063 for_each_process(p) {
1064 if (same_thread_group(task, p))
1065 continue;
1066
1067 /* do not touch kernel threads or the global init */
1068 if (p->flags & PF_KTHREAD || is_global_init(p))
1069 continue;
1070
1071 task_lock(p);
1072 if (!p->vfork_done && process_shares_mm(p, mm)) {
1073 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1074 task_pid_nr(p), p->comm,
1075 p->signal->oom_score_adj, oom_adj,
1076 task_pid_nr(task), task->comm);
1077 p->signal->oom_score_adj = oom_adj;
1078 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1079 p->signal->oom_score_adj_min = (short)oom_adj;
1080 }
1081 task_unlock(p);
1082 }
1083 rcu_read_unlock();
1084 mmdrop(mm);
1085 }
1086 err_unlock:
1087 mutex_unlock(&oom_adj_mutex);
1088 put_task_struct(task);
1089 return err;
1090 }
1091
1092 /*
1093 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1094 * kernels. The effective policy is defined by oom_score_adj, which has a
1095 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1096 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1097 * Processes that become oom disabled via oom_adj will still be oom disabled
1098 * with this implementation.
1099 *
1100 * oom_adj cannot be removed since existing userspace binaries use it.
1101 */
1102 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1103 size_t count, loff_t *ppos)
1104 {
1105 char buffer[PROC_NUMBUF];
1106 int oom_adj;
1107 int err;
1108
1109 memset(buffer, 0, sizeof(buffer));
1110 if (count > sizeof(buffer) - 1)
1111 count = sizeof(buffer) - 1;
1112 if (copy_from_user(buffer, buf, count)) {
1113 err = -EFAULT;
1114 goto out;
1115 }
1116
1117 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1118 if (err)
1119 goto out;
1120 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1121 oom_adj != OOM_DISABLE) {
1122 err = -EINVAL;
1123 goto out;
1124 }
1125
1126 /*
1127 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1128 * value is always attainable.
1129 */
1130 if (oom_adj == OOM_ADJUST_MAX)
1131 oom_adj = OOM_SCORE_ADJ_MAX;
1132 else
1133 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1134
1135 err = __set_oom_adj(file, oom_adj, true);
1136 out:
1137 return err < 0 ? err : count;
1138 }
1139
1140 static const struct file_operations proc_oom_adj_operations = {
1141 .read = oom_adj_read,
1142 .write = oom_adj_write,
1143 .llseek = generic_file_llseek,
1144 };
1145
1146 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1147 size_t count, loff_t *ppos)
1148 {
1149 struct task_struct *task = get_proc_task(file_inode(file));
1150 char buffer[PROC_NUMBUF];
1151 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1152 size_t len;
1153
1154 if (!task)
1155 return -ESRCH;
1156 oom_score_adj = task->signal->oom_score_adj;
1157 put_task_struct(task);
1158 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1159 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1160 }
1161
1162 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1163 size_t count, loff_t *ppos)
1164 {
1165 char buffer[PROC_NUMBUF];
1166 int oom_score_adj;
1167 int err;
1168
1169 memset(buffer, 0, sizeof(buffer));
1170 if (count > sizeof(buffer) - 1)
1171 count = sizeof(buffer) - 1;
1172 if (copy_from_user(buffer, buf, count)) {
1173 err = -EFAULT;
1174 goto out;
1175 }
1176
1177 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1178 if (err)
1179 goto out;
1180 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1181 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1182 err = -EINVAL;
1183 goto out;
1184 }
1185
1186 err = __set_oom_adj(file, oom_score_adj, false);
1187 out:
1188 return err < 0 ? err : count;
1189 }
1190
1191 static const struct file_operations proc_oom_score_adj_operations = {
1192 .read = oom_score_adj_read,
1193 .write = oom_score_adj_write,
1194 .llseek = default_llseek,
1195 };
1196
1197 #ifdef CONFIG_AUDITSYSCALL
1198 #define TMPBUFLEN 11
1199 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1200 size_t count, loff_t *ppos)
1201 {
1202 struct inode * inode = file_inode(file);
1203 struct task_struct *task = get_proc_task(inode);
1204 ssize_t length;
1205 char tmpbuf[TMPBUFLEN];
1206
1207 if (!task)
1208 return -ESRCH;
1209 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1210 from_kuid(file->f_cred->user_ns,
1211 audit_get_loginuid(task)));
1212 put_task_struct(task);
1213 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1214 }
1215
1216 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1217 size_t count, loff_t *ppos)
1218 {
1219 struct inode * inode = file_inode(file);
1220 uid_t loginuid;
1221 kuid_t kloginuid;
1222 int rv;
1223
1224 rcu_read_lock();
1225 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1226 rcu_read_unlock();
1227 return -EPERM;
1228 }
1229 rcu_read_unlock();
1230
1231 if (*ppos != 0) {
1232 /* No partial writes. */
1233 return -EINVAL;
1234 }
1235
1236 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1237 if (rv < 0)
1238 return rv;
1239
1240 /* is userspace tring to explicitly UNSET the loginuid? */
1241 if (loginuid == AUDIT_UID_UNSET) {
1242 kloginuid = INVALID_UID;
1243 } else {
1244 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1245 if (!uid_valid(kloginuid))
1246 return -EINVAL;
1247 }
1248
1249 rv = audit_set_loginuid(kloginuid);
1250 if (rv < 0)
1251 return rv;
1252 return count;
1253 }
1254
1255 static const struct file_operations proc_loginuid_operations = {
1256 .read = proc_loginuid_read,
1257 .write = proc_loginuid_write,
1258 .llseek = generic_file_llseek,
1259 };
1260
1261 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1262 size_t count, loff_t *ppos)
1263 {
1264 struct inode * inode = file_inode(file);
1265 struct task_struct *task = get_proc_task(inode);
1266 ssize_t length;
1267 char tmpbuf[TMPBUFLEN];
1268
1269 if (!task)
1270 return -ESRCH;
1271 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1272 audit_get_sessionid(task));
1273 put_task_struct(task);
1274 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1275 }
1276
1277 static const struct file_operations proc_sessionid_operations = {
1278 .read = proc_sessionid_read,
1279 .llseek = generic_file_llseek,
1280 };
1281 #endif
1282
1283 #ifdef CONFIG_FAULT_INJECTION
1284 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1285 size_t count, loff_t *ppos)
1286 {
1287 struct task_struct *task = get_proc_task(file_inode(file));
1288 char buffer[PROC_NUMBUF];
1289 size_t len;
1290 int make_it_fail;
1291
1292 if (!task)
1293 return -ESRCH;
1294 make_it_fail = task->make_it_fail;
1295 put_task_struct(task);
1296
1297 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1298
1299 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1300 }
1301
1302 static ssize_t proc_fault_inject_write(struct file * file,
1303 const char __user * buf, size_t count, loff_t *ppos)
1304 {
1305 struct task_struct *task;
1306 char buffer[PROC_NUMBUF];
1307 int make_it_fail;
1308 int rv;
1309
1310 if (!capable(CAP_SYS_RESOURCE))
1311 return -EPERM;
1312 memset(buffer, 0, sizeof(buffer));
1313 if (count > sizeof(buffer) - 1)
1314 count = sizeof(buffer) - 1;
1315 if (copy_from_user(buffer, buf, count))
1316 return -EFAULT;
1317 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1318 if (rv < 0)
1319 return rv;
1320 if (make_it_fail < 0 || make_it_fail > 1)
1321 return -EINVAL;
1322
1323 task = get_proc_task(file_inode(file));
1324 if (!task)
1325 return -ESRCH;
1326 task->make_it_fail = make_it_fail;
1327 put_task_struct(task);
1328
1329 return count;
1330 }
1331
1332 static const struct file_operations proc_fault_inject_operations = {
1333 .read = proc_fault_inject_read,
1334 .write = proc_fault_inject_write,
1335 .llseek = generic_file_llseek,
1336 };
1337
1338 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1339 size_t count, loff_t *ppos)
1340 {
1341 struct task_struct *task;
1342 int err;
1343 unsigned int n;
1344
1345 err = kstrtouint_from_user(buf, count, 0, &n);
1346 if (err)
1347 return err;
1348
1349 task = get_proc_task(file_inode(file));
1350 if (!task)
1351 return -ESRCH;
1352 task->fail_nth = n;
1353 put_task_struct(task);
1354
1355 return count;
1356 }
1357
1358 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1359 size_t count, loff_t *ppos)
1360 {
1361 struct task_struct *task;
1362 char numbuf[PROC_NUMBUF];
1363 ssize_t len;
1364
1365 task = get_proc_task(file_inode(file));
1366 if (!task)
1367 return -ESRCH;
1368 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1369 put_task_struct(task);
1370 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1371 }
1372
1373 static const struct file_operations proc_fail_nth_operations = {
1374 .read = proc_fail_nth_read,
1375 .write = proc_fail_nth_write,
1376 };
1377 #endif
1378
1379
1380 #ifdef CONFIG_SCHED_DEBUG
1381 /*
1382 * Print out various scheduling related per-task fields:
1383 */
1384 static int sched_show(struct seq_file *m, void *v)
1385 {
1386 struct inode *inode = m->private;
1387 struct pid_namespace *ns = proc_pid_ns(inode);
1388 struct task_struct *p;
1389
1390 p = get_proc_task(inode);
1391 if (!p)
1392 return -ESRCH;
1393 proc_sched_show_task(p, ns, m);
1394
1395 put_task_struct(p);
1396
1397 return 0;
1398 }
1399
1400 static ssize_t
1401 sched_write(struct file *file, const char __user *buf,
1402 size_t count, loff_t *offset)
1403 {
1404 struct inode *inode = file_inode(file);
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410 proc_sched_set_task(p);
1411
1412 put_task_struct(p);
1413
1414 return count;
1415 }
1416
1417 static int sched_open(struct inode *inode, struct file *filp)
1418 {
1419 return single_open(filp, sched_show, inode);
1420 }
1421
1422 static const struct file_operations proc_pid_sched_operations = {
1423 .open = sched_open,
1424 .read = seq_read,
1425 .write = sched_write,
1426 .llseek = seq_lseek,
1427 .release = single_release,
1428 };
1429
1430 #endif
1431
1432 #ifdef CONFIG_SCHED_AUTOGROUP
1433 /*
1434 * Print out autogroup related information:
1435 */
1436 static int sched_autogroup_show(struct seq_file *m, void *v)
1437 {
1438 struct inode *inode = m->private;
1439 struct task_struct *p;
1440
1441 p = get_proc_task(inode);
1442 if (!p)
1443 return -ESRCH;
1444 proc_sched_autogroup_show_task(p, m);
1445
1446 put_task_struct(p);
1447
1448 return 0;
1449 }
1450
1451 static ssize_t
1452 sched_autogroup_write(struct file *file, const char __user *buf,
1453 size_t count, loff_t *offset)
1454 {
1455 struct inode *inode = file_inode(file);
1456 struct task_struct *p;
1457 char buffer[PROC_NUMBUF];
1458 int nice;
1459 int err;
1460
1461 memset(buffer, 0, sizeof(buffer));
1462 if (count > sizeof(buffer) - 1)
1463 count = sizeof(buffer) - 1;
1464 if (copy_from_user(buffer, buf, count))
1465 return -EFAULT;
1466
1467 err = kstrtoint(strstrip(buffer), 0, &nice);
1468 if (err < 0)
1469 return err;
1470
1471 p = get_proc_task(inode);
1472 if (!p)
1473 return -ESRCH;
1474
1475 err = proc_sched_autogroup_set_nice(p, nice);
1476 if (err)
1477 count = err;
1478
1479 put_task_struct(p);
1480
1481 return count;
1482 }
1483
1484 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1485 {
1486 int ret;
1487
1488 ret = single_open(filp, sched_autogroup_show, NULL);
1489 if (!ret) {
1490 struct seq_file *m = filp->private_data;
1491
1492 m->private = inode;
1493 }
1494 return ret;
1495 }
1496
1497 static const struct file_operations proc_pid_sched_autogroup_operations = {
1498 .open = sched_autogroup_open,
1499 .read = seq_read,
1500 .write = sched_autogroup_write,
1501 .llseek = seq_lseek,
1502 .release = single_release,
1503 };
1504
1505 #endif /* CONFIG_SCHED_AUTOGROUP */
1506
1507 static ssize_t comm_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1509 {
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[TASK_COMM_LEN];
1513 const size_t maxlen = sizeof(buffer) - 1;
1514
1515 memset(buffer, 0, sizeof(buffer));
1516 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1517 return -EFAULT;
1518
1519 p = get_proc_task(inode);
1520 if (!p)
1521 return -ESRCH;
1522
1523 if (same_thread_group(current, p))
1524 set_task_comm(p, buffer);
1525 else
1526 count = -EINVAL;
1527
1528 put_task_struct(p);
1529
1530 return count;
1531 }
1532
1533 static int comm_show(struct seq_file *m, void *v)
1534 {
1535 struct inode *inode = m->private;
1536 struct task_struct *p;
1537
1538 p = get_proc_task(inode);
1539 if (!p)
1540 return -ESRCH;
1541
1542 proc_task_name(m, p, false);
1543 seq_putc(m, '\n');
1544
1545 put_task_struct(p);
1546
1547 return 0;
1548 }
1549
1550 static int comm_open(struct inode *inode, struct file *filp)
1551 {
1552 return single_open(filp, comm_show, inode);
1553 }
1554
1555 static const struct file_operations proc_pid_set_comm_operations = {
1556 .open = comm_open,
1557 .read = seq_read,
1558 .write = comm_write,
1559 .llseek = seq_lseek,
1560 .release = single_release,
1561 };
1562
1563 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1564 {
1565 struct task_struct *task;
1566 struct file *exe_file;
1567
1568 task = get_proc_task(d_inode(dentry));
1569 if (!task)
1570 return -ENOENT;
1571 exe_file = get_task_exe_file(task);
1572 put_task_struct(task);
1573 if (exe_file) {
1574 *exe_path = exe_file->f_path;
1575 path_get(&exe_file->f_path);
1576 fput(exe_file);
1577 return 0;
1578 } else
1579 return -ENOENT;
1580 }
1581
1582 static const char *proc_pid_get_link(struct dentry *dentry,
1583 struct inode *inode,
1584 struct delayed_call *done)
1585 {
1586 struct path path;
1587 int error = -EACCES;
1588
1589 if (!dentry)
1590 return ERR_PTR(-ECHILD);
1591
1592 /* Are we allowed to snoop on the tasks file descriptors? */
1593 if (!proc_fd_access_allowed(inode))
1594 goto out;
1595
1596 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1597 if (error)
1598 goto out;
1599
1600 nd_jump_link(&path);
1601 return NULL;
1602 out:
1603 return ERR_PTR(error);
1604 }
1605
1606 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1607 {
1608 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1609 char *pathname;
1610 int len;
1611
1612 if (!tmp)
1613 return -ENOMEM;
1614
1615 pathname = d_path(path, tmp, PAGE_SIZE);
1616 len = PTR_ERR(pathname);
1617 if (IS_ERR(pathname))
1618 goto out;
1619 len = tmp + PAGE_SIZE - 1 - pathname;
1620
1621 if (len > buflen)
1622 len = buflen;
1623 if (copy_to_user(buffer, pathname, len))
1624 len = -EFAULT;
1625 out:
1626 free_page((unsigned long)tmp);
1627 return len;
1628 }
1629
1630 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1631 {
1632 int error = -EACCES;
1633 struct inode *inode = d_inode(dentry);
1634 struct path path;
1635
1636 /* Are we allowed to snoop on the tasks file descriptors? */
1637 if (!proc_fd_access_allowed(inode))
1638 goto out;
1639
1640 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1641 if (error)
1642 goto out;
1643
1644 error = do_proc_readlink(&path, buffer, buflen);
1645 path_put(&path);
1646 out:
1647 return error;
1648 }
1649
1650 const struct inode_operations proc_pid_link_inode_operations = {
1651 .readlink = proc_pid_readlink,
1652 .get_link = proc_pid_get_link,
1653 .setattr = proc_setattr,
1654 };
1655
1656
1657 /* building an inode */
1658
1659 void task_dump_owner(struct task_struct *task, umode_t mode,
1660 kuid_t *ruid, kgid_t *rgid)
1661 {
1662 /* Depending on the state of dumpable compute who should own a
1663 * proc file for a task.
1664 */
1665 const struct cred *cred;
1666 kuid_t uid;
1667 kgid_t gid;
1668
1669 if (unlikely(task->flags & PF_KTHREAD)) {
1670 *ruid = GLOBAL_ROOT_UID;
1671 *rgid = GLOBAL_ROOT_GID;
1672 return;
1673 }
1674
1675 /* Default to the tasks effective ownership */
1676 rcu_read_lock();
1677 cred = __task_cred(task);
1678 uid = cred->euid;
1679 gid = cred->egid;
1680 rcu_read_unlock();
1681
1682 /*
1683 * Before the /proc/pid/status file was created the only way to read
1684 * the effective uid of a /process was to stat /proc/pid. Reading
1685 * /proc/pid/status is slow enough that procps and other packages
1686 * kept stating /proc/pid. To keep the rules in /proc simple I have
1687 * made this apply to all per process world readable and executable
1688 * directories.
1689 */
1690 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1691 struct mm_struct *mm;
1692 task_lock(task);
1693 mm = task->mm;
1694 /* Make non-dumpable tasks owned by some root */
1695 if (mm) {
1696 if (get_dumpable(mm) != SUID_DUMP_USER) {
1697 struct user_namespace *user_ns = mm->user_ns;
1698
1699 uid = make_kuid(user_ns, 0);
1700 if (!uid_valid(uid))
1701 uid = GLOBAL_ROOT_UID;
1702
1703 gid = make_kgid(user_ns, 0);
1704 if (!gid_valid(gid))
1705 gid = GLOBAL_ROOT_GID;
1706 }
1707 } else {
1708 uid = GLOBAL_ROOT_UID;
1709 gid = GLOBAL_ROOT_GID;
1710 }
1711 task_unlock(task);
1712 }
1713 *ruid = uid;
1714 *rgid = gid;
1715 }
1716
1717 struct inode *proc_pid_make_inode(struct super_block * sb,
1718 struct task_struct *task, umode_t mode)
1719 {
1720 struct inode * inode;
1721 struct proc_inode *ei;
1722
1723 /* We need a new inode */
1724
1725 inode = new_inode(sb);
1726 if (!inode)
1727 goto out;
1728
1729 /* Common stuff */
1730 ei = PROC_I(inode);
1731 inode->i_mode = mode;
1732 inode->i_ino = get_next_ino();
1733 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1734 inode->i_op = &proc_def_inode_operations;
1735
1736 /*
1737 * grab the reference to task.
1738 */
1739 ei->pid = get_task_pid(task, PIDTYPE_PID);
1740 if (!ei->pid)
1741 goto out_unlock;
1742
1743 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1744 security_task_to_inode(task, inode);
1745
1746 out:
1747 return inode;
1748
1749 out_unlock:
1750 iput(inode);
1751 return NULL;
1752 }
1753
1754 int pid_getattr(const struct path *path, struct kstat *stat,
1755 u32 request_mask, unsigned int query_flags)
1756 {
1757 struct inode *inode = d_inode(path->dentry);
1758 struct pid_namespace *pid = proc_pid_ns(inode);
1759 struct task_struct *task;
1760
1761 generic_fillattr(inode, stat);
1762
1763 stat->uid = GLOBAL_ROOT_UID;
1764 stat->gid = GLOBAL_ROOT_GID;
1765 rcu_read_lock();
1766 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 if (task) {
1768 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1769 rcu_read_unlock();
1770 /*
1771 * This doesn't prevent learning whether PID exists,
1772 * it only makes getattr() consistent with readdir().
1773 */
1774 return -ENOENT;
1775 }
1776 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1777 }
1778 rcu_read_unlock();
1779 return 0;
1780 }
1781
1782 /* dentry stuff */
1783
1784 /*
1785 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1786 */
1787 void pid_update_inode(struct task_struct *task, struct inode *inode)
1788 {
1789 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1790
1791 inode->i_mode &= ~(S_ISUID | S_ISGID);
1792 security_task_to_inode(task, inode);
1793 }
1794
1795 /*
1796 * Rewrite the inode's ownerships here because the owning task may have
1797 * performed a setuid(), etc.
1798 *
1799 */
1800 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1801 {
1802 struct inode *inode;
1803 struct task_struct *task;
1804
1805 if (flags & LOOKUP_RCU)
1806 return -ECHILD;
1807
1808 inode = d_inode(dentry);
1809 task = get_proc_task(inode);
1810
1811 if (task) {
1812 pid_update_inode(task, inode);
1813 put_task_struct(task);
1814 return 1;
1815 }
1816 return 0;
1817 }
1818
1819 static inline bool proc_inode_is_dead(struct inode *inode)
1820 {
1821 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1822 }
1823
1824 int pid_delete_dentry(const struct dentry *dentry)
1825 {
1826 /* Is the task we represent dead?
1827 * If so, then don't put the dentry on the lru list,
1828 * kill it immediately.
1829 */
1830 return proc_inode_is_dead(d_inode(dentry));
1831 }
1832
1833 const struct dentry_operations pid_dentry_operations =
1834 {
1835 .d_revalidate = pid_revalidate,
1836 .d_delete = pid_delete_dentry,
1837 };
1838
1839 /* Lookups */
1840
1841 /*
1842 * Fill a directory entry.
1843 *
1844 * If possible create the dcache entry and derive our inode number and
1845 * file type from dcache entry.
1846 *
1847 * Since all of the proc inode numbers are dynamically generated, the inode
1848 * numbers do not exist until the inode is cache. This means creating the
1849 * the dcache entry in readdir is necessary to keep the inode numbers
1850 * reported by readdir in sync with the inode numbers reported
1851 * by stat.
1852 */
1853 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1854 const char *name, unsigned int len,
1855 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1856 {
1857 struct dentry *child, *dir = file->f_path.dentry;
1858 struct qstr qname = QSTR_INIT(name, len);
1859 struct inode *inode;
1860 unsigned type = DT_UNKNOWN;
1861 ino_t ino = 1;
1862
1863 child = d_hash_and_lookup(dir, &qname);
1864 if (!child) {
1865 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1866 child = d_alloc_parallel(dir, &qname, &wq);
1867 if (IS_ERR(child))
1868 goto end_instantiate;
1869 if (d_in_lookup(child)) {
1870 struct dentry *res;
1871 res = instantiate(child, task, ptr);
1872 d_lookup_done(child);
1873 if (unlikely(res)) {
1874 dput(child);
1875 child = res;
1876 if (IS_ERR(child))
1877 goto end_instantiate;
1878 }
1879 }
1880 }
1881 inode = d_inode(child);
1882 ino = inode->i_ino;
1883 type = inode->i_mode >> 12;
1884 dput(child);
1885 end_instantiate:
1886 return dir_emit(ctx, name, len, ino, type);
1887 }
1888
1889 /*
1890 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1891 * which represent vma start and end addresses.
1892 */
1893 static int dname_to_vma_addr(struct dentry *dentry,
1894 unsigned long *start, unsigned long *end)
1895 {
1896 const char *str = dentry->d_name.name;
1897 unsigned long long sval, eval;
1898 unsigned int len;
1899
1900 if (str[0] == '0' && str[1] != '-')
1901 return -EINVAL;
1902 len = _parse_integer(str, 16, &sval);
1903 if (len & KSTRTOX_OVERFLOW)
1904 return -EINVAL;
1905 if (sval != (unsigned long)sval)
1906 return -EINVAL;
1907 str += len;
1908
1909 if (*str != '-')
1910 return -EINVAL;
1911 str++;
1912
1913 if (str[0] == '0' && str[1])
1914 return -EINVAL;
1915 len = _parse_integer(str, 16, &eval);
1916 if (len & KSTRTOX_OVERFLOW)
1917 return -EINVAL;
1918 if (eval != (unsigned long)eval)
1919 return -EINVAL;
1920 str += len;
1921
1922 if (*str != '\0')
1923 return -EINVAL;
1924
1925 *start = sval;
1926 *end = eval;
1927
1928 return 0;
1929 }
1930
1931 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1932 {
1933 unsigned long vm_start, vm_end;
1934 bool exact_vma_exists = false;
1935 struct mm_struct *mm = NULL;
1936 struct task_struct *task;
1937 struct inode *inode;
1938 int status = 0;
1939
1940 if (flags & LOOKUP_RCU)
1941 return -ECHILD;
1942
1943 inode = d_inode(dentry);
1944 task = get_proc_task(inode);
1945 if (!task)
1946 goto out_notask;
1947
1948 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1949 if (IS_ERR_OR_NULL(mm))
1950 goto out;
1951
1952 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1953 down_read(&mm->mmap_sem);
1954 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1955 up_read(&mm->mmap_sem);
1956 }
1957
1958 mmput(mm);
1959
1960 if (exact_vma_exists) {
1961 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1962
1963 security_task_to_inode(task, inode);
1964 status = 1;
1965 }
1966
1967 out:
1968 put_task_struct(task);
1969
1970 out_notask:
1971 return status;
1972 }
1973
1974 static const struct dentry_operations tid_map_files_dentry_operations = {
1975 .d_revalidate = map_files_d_revalidate,
1976 .d_delete = pid_delete_dentry,
1977 };
1978
1979 static int map_files_get_link(struct dentry *dentry, struct path *path)
1980 {
1981 unsigned long vm_start, vm_end;
1982 struct vm_area_struct *vma;
1983 struct task_struct *task;
1984 struct mm_struct *mm;
1985 int rc;
1986
1987 rc = -ENOENT;
1988 task = get_proc_task(d_inode(dentry));
1989 if (!task)
1990 goto out;
1991
1992 mm = get_task_mm(task);
1993 put_task_struct(task);
1994 if (!mm)
1995 goto out;
1996
1997 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1998 if (rc)
1999 goto out_mmput;
2000
2001 rc = -ENOENT;
2002 down_read(&mm->mmap_sem);
2003 vma = find_exact_vma(mm, vm_start, vm_end);
2004 if (vma && vma->vm_file) {
2005 *path = vma->vm_file->f_path;
2006 path_get(path);
2007 rc = 0;
2008 }
2009 up_read(&mm->mmap_sem);
2010
2011 out_mmput:
2012 mmput(mm);
2013 out:
2014 return rc;
2015 }
2016
2017 struct map_files_info {
2018 unsigned long start;
2019 unsigned long end;
2020 fmode_t mode;
2021 };
2022
2023 /*
2024 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2025 * symlinks may be used to bypass permissions on ancestor directories in the
2026 * path to the file in question.
2027 */
2028 static const char *
2029 proc_map_files_get_link(struct dentry *dentry,
2030 struct inode *inode,
2031 struct delayed_call *done)
2032 {
2033 if (!capable(CAP_SYS_ADMIN))
2034 return ERR_PTR(-EPERM);
2035
2036 return proc_pid_get_link(dentry, inode, done);
2037 }
2038
2039 /*
2040 * Identical to proc_pid_link_inode_operations except for get_link()
2041 */
2042 static const struct inode_operations proc_map_files_link_inode_operations = {
2043 .readlink = proc_pid_readlink,
2044 .get_link = proc_map_files_get_link,
2045 .setattr = proc_setattr,
2046 };
2047
2048 static struct dentry *
2049 proc_map_files_instantiate(struct dentry *dentry,
2050 struct task_struct *task, const void *ptr)
2051 {
2052 fmode_t mode = (fmode_t)(unsigned long)ptr;
2053 struct proc_inode *ei;
2054 struct inode *inode;
2055
2056 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2057 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2058 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2059 if (!inode)
2060 return ERR_PTR(-ENOENT);
2061
2062 ei = PROC_I(inode);
2063 ei->op.proc_get_link = map_files_get_link;
2064
2065 inode->i_op = &proc_map_files_link_inode_operations;
2066 inode->i_size = 64;
2067
2068 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2069 return d_splice_alias(inode, dentry);
2070 }
2071
2072 static struct dentry *proc_map_files_lookup(struct inode *dir,
2073 struct dentry *dentry, unsigned int flags)
2074 {
2075 unsigned long vm_start, vm_end;
2076 struct vm_area_struct *vma;
2077 struct task_struct *task;
2078 struct dentry *result;
2079 struct mm_struct *mm;
2080
2081 result = ERR_PTR(-ENOENT);
2082 task = get_proc_task(dir);
2083 if (!task)
2084 goto out;
2085
2086 result = ERR_PTR(-EACCES);
2087 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2088 goto out_put_task;
2089
2090 result = ERR_PTR(-ENOENT);
2091 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2092 goto out_put_task;
2093
2094 mm = get_task_mm(task);
2095 if (!mm)
2096 goto out_put_task;
2097
2098 down_read(&mm->mmap_sem);
2099 vma = find_exact_vma(mm, vm_start, vm_end);
2100 if (!vma)
2101 goto out_no_vma;
2102
2103 if (vma->vm_file)
2104 result = proc_map_files_instantiate(dentry, task,
2105 (void *)(unsigned long)vma->vm_file->f_mode);
2106
2107 out_no_vma:
2108 up_read(&mm->mmap_sem);
2109 mmput(mm);
2110 out_put_task:
2111 put_task_struct(task);
2112 out:
2113 return result;
2114 }
2115
2116 static const struct inode_operations proc_map_files_inode_operations = {
2117 .lookup = proc_map_files_lookup,
2118 .permission = proc_fd_permission,
2119 .setattr = proc_setattr,
2120 };
2121
2122 static int
2123 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2124 {
2125 struct vm_area_struct *vma;
2126 struct task_struct *task;
2127 struct mm_struct *mm;
2128 unsigned long nr_files, pos, i;
2129 struct flex_array *fa = NULL;
2130 struct map_files_info info;
2131 struct map_files_info *p;
2132 int ret;
2133
2134 ret = -ENOENT;
2135 task = get_proc_task(file_inode(file));
2136 if (!task)
2137 goto out;
2138
2139 ret = -EACCES;
2140 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2141 goto out_put_task;
2142
2143 ret = 0;
2144 if (!dir_emit_dots(file, ctx))
2145 goto out_put_task;
2146
2147 mm = get_task_mm(task);
2148 if (!mm)
2149 goto out_put_task;
2150 down_read(&mm->mmap_sem);
2151
2152 nr_files = 0;
2153
2154 /*
2155 * We need two passes here:
2156 *
2157 * 1) Collect vmas of mapped files with mmap_sem taken
2158 * 2) Release mmap_sem and instantiate entries
2159 *
2160 * otherwise we get lockdep complained, since filldir()
2161 * routine might require mmap_sem taken in might_fault().
2162 */
2163
2164 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2165 if (vma->vm_file && ++pos > ctx->pos)
2166 nr_files++;
2167 }
2168
2169 if (nr_files) {
2170 fa = flex_array_alloc(sizeof(info), nr_files,
2171 GFP_KERNEL);
2172 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2173 GFP_KERNEL)) {
2174 ret = -ENOMEM;
2175 if (fa)
2176 flex_array_free(fa);
2177 up_read(&mm->mmap_sem);
2178 mmput(mm);
2179 goto out_put_task;
2180 }
2181 for (i = 0, vma = mm->mmap, pos = 2; vma;
2182 vma = vma->vm_next) {
2183 if (!vma->vm_file)
2184 continue;
2185 if (++pos <= ctx->pos)
2186 continue;
2187
2188 info.start = vma->vm_start;
2189 info.end = vma->vm_end;
2190 info.mode = vma->vm_file->f_mode;
2191 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2192 BUG();
2193 }
2194 }
2195 up_read(&mm->mmap_sem);
2196 mmput(mm);
2197
2198 for (i = 0; i < nr_files; i++) {
2199 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2200 unsigned int len;
2201
2202 p = flex_array_get(fa, i);
2203 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2204 if (!proc_fill_cache(file, ctx,
2205 buf, len,
2206 proc_map_files_instantiate,
2207 task,
2208 (void *)(unsigned long)p->mode))
2209 break;
2210 ctx->pos++;
2211 }
2212 if (fa)
2213 flex_array_free(fa);
2214
2215 out_put_task:
2216 put_task_struct(task);
2217 out:
2218 return ret;
2219 }
2220
2221 static const struct file_operations proc_map_files_operations = {
2222 .read = generic_read_dir,
2223 .iterate_shared = proc_map_files_readdir,
2224 .llseek = generic_file_llseek,
2225 };
2226
2227 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2228 struct timers_private {
2229 struct pid *pid;
2230 struct task_struct *task;
2231 struct sighand_struct *sighand;
2232 struct pid_namespace *ns;
2233 unsigned long flags;
2234 };
2235
2236 static void *timers_start(struct seq_file *m, loff_t *pos)
2237 {
2238 struct timers_private *tp = m->private;
2239
2240 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2241 if (!tp->task)
2242 return ERR_PTR(-ESRCH);
2243
2244 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2245 if (!tp->sighand)
2246 return ERR_PTR(-ESRCH);
2247
2248 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2249 }
2250
2251 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2252 {
2253 struct timers_private *tp = m->private;
2254 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2255 }
2256
2257 static void timers_stop(struct seq_file *m, void *v)
2258 {
2259 struct timers_private *tp = m->private;
2260
2261 if (tp->sighand) {
2262 unlock_task_sighand(tp->task, &tp->flags);
2263 tp->sighand = NULL;
2264 }
2265
2266 if (tp->task) {
2267 put_task_struct(tp->task);
2268 tp->task = NULL;
2269 }
2270 }
2271
2272 static int show_timer(struct seq_file *m, void *v)
2273 {
2274 struct k_itimer *timer;
2275 struct timers_private *tp = m->private;
2276 int notify;
2277 static const char * const nstr[] = {
2278 [SIGEV_SIGNAL] = "signal",
2279 [SIGEV_NONE] = "none",
2280 [SIGEV_THREAD] = "thread",
2281 };
2282
2283 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2284 notify = timer->it_sigev_notify;
2285
2286 seq_printf(m, "ID: %d\n", timer->it_id);
2287 seq_printf(m, "signal: %d/%px\n",
2288 timer->sigq->info.si_signo,
2289 timer->sigq->info.si_value.sival_ptr);
2290 seq_printf(m, "notify: %s/%s.%d\n",
2291 nstr[notify & ~SIGEV_THREAD_ID],
2292 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2293 pid_nr_ns(timer->it_pid, tp->ns));
2294 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2295
2296 return 0;
2297 }
2298
2299 static const struct seq_operations proc_timers_seq_ops = {
2300 .start = timers_start,
2301 .next = timers_next,
2302 .stop = timers_stop,
2303 .show = show_timer,
2304 };
2305
2306 static int proc_timers_open(struct inode *inode, struct file *file)
2307 {
2308 struct timers_private *tp;
2309
2310 tp = __seq_open_private(file, &proc_timers_seq_ops,
2311 sizeof(struct timers_private));
2312 if (!tp)
2313 return -ENOMEM;
2314
2315 tp->pid = proc_pid(inode);
2316 tp->ns = proc_pid_ns(inode);
2317 return 0;
2318 }
2319
2320 static const struct file_operations proc_timers_operations = {
2321 .open = proc_timers_open,
2322 .read = seq_read,
2323 .llseek = seq_lseek,
2324 .release = seq_release_private,
2325 };
2326 #endif
2327
2328 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2329 size_t count, loff_t *offset)
2330 {
2331 struct inode *inode = file_inode(file);
2332 struct task_struct *p;
2333 u64 slack_ns;
2334 int err;
2335
2336 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2337 if (err < 0)
2338 return err;
2339
2340 p = get_proc_task(inode);
2341 if (!p)
2342 return -ESRCH;
2343
2344 if (p != current) {
2345 if (!capable(CAP_SYS_NICE)) {
2346 count = -EPERM;
2347 goto out;
2348 }
2349
2350 err = security_task_setscheduler(p);
2351 if (err) {
2352 count = err;
2353 goto out;
2354 }
2355 }
2356
2357 task_lock(p);
2358 if (slack_ns == 0)
2359 p->timer_slack_ns = p->default_timer_slack_ns;
2360 else
2361 p->timer_slack_ns = slack_ns;
2362 task_unlock(p);
2363
2364 out:
2365 put_task_struct(p);
2366
2367 return count;
2368 }
2369
2370 static int timerslack_ns_show(struct seq_file *m, void *v)
2371 {
2372 struct inode *inode = m->private;
2373 struct task_struct *p;
2374 int err = 0;
2375
2376 p = get_proc_task(inode);
2377 if (!p)
2378 return -ESRCH;
2379
2380 if (p != current) {
2381
2382 if (!capable(CAP_SYS_NICE)) {
2383 err = -EPERM;
2384 goto out;
2385 }
2386 err = security_task_getscheduler(p);
2387 if (err)
2388 goto out;
2389 }
2390
2391 task_lock(p);
2392 seq_printf(m, "%llu\n", p->timer_slack_ns);
2393 task_unlock(p);
2394
2395 out:
2396 put_task_struct(p);
2397
2398 return err;
2399 }
2400
2401 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2402 {
2403 return single_open(filp, timerslack_ns_show, inode);
2404 }
2405
2406 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2407 .open = timerslack_ns_open,
2408 .read = seq_read,
2409 .write = timerslack_ns_write,
2410 .llseek = seq_lseek,
2411 .release = single_release,
2412 };
2413
2414 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2415 struct task_struct *task, const void *ptr)
2416 {
2417 const struct pid_entry *p = ptr;
2418 struct inode *inode;
2419 struct proc_inode *ei;
2420
2421 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2422 if (!inode)
2423 return ERR_PTR(-ENOENT);
2424
2425 ei = PROC_I(inode);
2426 if (S_ISDIR(inode->i_mode))
2427 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2428 if (p->iop)
2429 inode->i_op = p->iop;
2430 if (p->fop)
2431 inode->i_fop = p->fop;
2432 ei->op = p->op;
2433 pid_update_inode(task, inode);
2434 d_set_d_op(dentry, &pid_dentry_operations);
2435 return d_splice_alias(inode, dentry);
2436 }
2437
2438 static struct dentry *proc_pident_lookup(struct inode *dir,
2439 struct dentry *dentry,
2440 const struct pid_entry *ents,
2441 unsigned int nents)
2442 {
2443 struct task_struct *task = get_proc_task(dir);
2444 const struct pid_entry *p, *last;
2445 struct dentry *res = ERR_PTR(-ENOENT);
2446
2447 if (!task)
2448 goto out_no_task;
2449
2450 /*
2451 * Yes, it does not scale. And it should not. Don't add
2452 * new entries into /proc/<tgid>/ without very good reasons.
2453 */
2454 last = &ents[nents];
2455 for (p = ents; p < last; p++) {
2456 if (p->len != dentry->d_name.len)
2457 continue;
2458 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2459 res = proc_pident_instantiate(dentry, task, p);
2460 break;
2461 }
2462 }
2463 put_task_struct(task);
2464 out_no_task:
2465 return res;
2466 }
2467
2468 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2469 const struct pid_entry *ents, unsigned int nents)
2470 {
2471 struct task_struct *task = get_proc_task(file_inode(file));
2472 const struct pid_entry *p;
2473
2474 if (!task)
2475 return -ENOENT;
2476
2477 if (!dir_emit_dots(file, ctx))
2478 goto out;
2479
2480 if (ctx->pos >= nents + 2)
2481 goto out;
2482
2483 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2484 if (!proc_fill_cache(file, ctx, p->name, p->len,
2485 proc_pident_instantiate, task, p))
2486 break;
2487 ctx->pos++;
2488 }
2489 out:
2490 put_task_struct(task);
2491 return 0;
2492 }
2493
2494 #ifdef CONFIG_SECURITY
2495 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2496 size_t count, loff_t *ppos)
2497 {
2498 struct inode * inode = file_inode(file);
2499 char *p = NULL;
2500 ssize_t length;
2501 struct task_struct *task = get_proc_task(inode);
2502
2503 if (!task)
2504 return -ESRCH;
2505
2506 length = security_getprocattr(task,
2507 (char*)file->f_path.dentry->d_name.name,
2508 &p);
2509 put_task_struct(task);
2510 if (length > 0)
2511 length = simple_read_from_buffer(buf, count, ppos, p, length);
2512 kfree(p);
2513 return length;
2514 }
2515
2516 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2517 size_t count, loff_t *ppos)
2518 {
2519 struct inode * inode = file_inode(file);
2520 struct task_struct *task;
2521 void *page;
2522 int rv;
2523
2524 rcu_read_lock();
2525 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2526 if (!task) {
2527 rcu_read_unlock();
2528 return -ESRCH;
2529 }
2530 /* A task may only write its own attributes. */
2531 if (current != task) {
2532 rcu_read_unlock();
2533 return -EACCES;
2534 }
2535 rcu_read_unlock();
2536
2537 if (count > PAGE_SIZE)
2538 count = PAGE_SIZE;
2539
2540 /* No partial writes. */
2541 if (*ppos != 0)
2542 return -EINVAL;
2543
2544 page = memdup_user(buf, count);
2545 if (IS_ERR(page)) {
2546 rv = PTR_ERR(page);
2547 goto out;
2548 }
2549
2550 /* Guard against adverse ptrace interaction */
2551 rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2552 if (rv < 0)
2553 goto out_free;
2554
2555 rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2556 mutex_unlock(&current->signal->cred_guard_mutex);
2557 out_free:
2558 kfree(page);
2559 out:
2560 return rv;
2561 }
2562
2563 static const struct file_operations proc_pid_attr_operations = {
2564 .read = proc_pid_attr_read,
2565 .write = proc_pid_attr_write,
2566 .llseek = generic_file_llseek,
2567 };
2568
2569 static const struct pid_entry attr_dir_stuff[] = {
2570 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2571 REG("prev", S_IRUGO, proc_pid_attr_operations),
2572 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2573 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2574 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2575 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2576 };
2577
2578 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2579 {
2580 return proc_pident_readdir(file, ctx,
2581 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2582 }
2583
2584 static const struct file_operations proc_attr_dir_operations = {
2585 .read = generic_read_dir,
2586 .iterate_shared = proc_attr_dir_readdir,
2587 .llseek = generic_file_llseek,
2588 };
2589
2590 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2591 struct dentry *dentry, unsigned int flags)
2592 {
2593 return proc_pident_lookup(dir, dentry,
2594 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2595 }
2596
2597 static const struct inode_operations proc_attr_dir_inode_operations = {
2598 .lookup = proc_attr_dir_lookup,
2599 .getattr = pid_getattr,
2600 .setattr = proc_setattr,
2601 };
2602
2603 #endif
2604
2605 #ifdef CONFIG_ELF_CORE
2606 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2607 size_t count, loff_t *ppos)
2608 {
2609 struct task_struct *task = get_proc_task(file_inode(file));
2610 struct mm_struct *mm;
2611 char buffer[PROC_NUMBUF];
2612 size_t len;
2613 int ret;
2614
2615 if (!task)
2616 return -ESRCH;
2617
2618 ret = 0;
2619 mm = get_task_mm(task);
2620 if (mm) {
2621 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2622 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2623 MMF_DUMP_FILTER_SHIFT));
2624 mmput(mm);
2625 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2626 }
2627
2628 put_task_struct(task);
2629
2630 return ret;
2631 }
2632
2633 static ssize_t proc_coredump_filter_write(struct file *file,
2634 const char __user *buf,
2635 size_t count,
2636 loff_t *ppos)
2637 {
2638 struct task_struct *task;
2639 struct mm_struct *mm;
2640 unsigned int val;
2641 int ret;
2642 int i;
2643 unsigned long mask;
2644
2645 ret = kstrtouint_from_user(buf, count, 0, &val);
2646 if (ret < 0)
2647 return ret;
2648
2649 ret = -ESRCH;
2650 task = get_proc_task(file_inode(file));
2651 if (!task)
2652 goto out_no_task;
2653
2654 mm = get_task_mm(task);
2655 if (!mm)
2656 goto out_no_mm;
2657 ret = 0;
2658
2659 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2660 if (val & mask)
2661 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2662 else
2663 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2664 }
2665
2666 mmput(mm);
2667 out_no_mm:
2668 put_task_struct(task);
2669 out_no_task:
2670 if (ret < 0)
2671 return ret;
2672 return count;
2673 }
2674
2675 static const struct file_operations proc_coredump_filter_operations = {
2676 .read = proc_coredump_filter_read,
2677 .write = proc_coredump_filter_write,
2678 .llseek = generic_file_llseek,
2679 };
2680 #endif
2681
2682 #ifdef CONFIG_TASK_IO_ACCOUNTING
2683 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2684 {
2685 struct task_io_accounting acct = task->ioac;
2686 unsigned long flags;
2687 int result;
2688
2689 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2690 if (result)
2691 return result;
2692
2693 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2694 result = -EACCES;
2695 goto out_unlock;
2696 }
2697
2698 if (whole && lock_task_sighand(task, &flags)) {
2699 struct task_struct *t = task;
2700
2701 task_io_accounting_add(&acct, &task->signal->ioac);
2702 while_each_thread(task, t)
2703 task_io_accounting_add(&acct, &t->ioac);
2704
2705 unlock_task_sighand(task, &flags);
2706 }
2707 seq_printf(m,
2708 "rchar: %llu\n"
2709 "wchar: %llu\n"
2710 "syscr: %llu\n"
2711 "syscw: %llu\n"
2712 "read_bytes: %llu\n"
2713 "write_bytes: %llu\n"
2714 "cancelled_write_bytes: %llu\n",
2715 (unsigned long long)acct.rchar,
2716 (unsigned long long)acct.wchar,
2717 (unsigned long long)acct.syscr,
2718 (unsigned long long)acct.syscw,
2719 (unsigned long long)acct.read_bytes,
2720 (unsigned long long)acct.write_bytes,
2721 (unsigned long long)acct.cancelled_write_bytes);
2722 result = 0;
2723
2724 out_unlock:
2725 mutex_unlock(&task->signal->cred_guard_mutex);
2726 return result;
2727 }
2728
2729 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2730 struct pid *pid, struct task_struct *task)
2731 {
2732 return do_io_accounting(task, m, 0);
2733 }
2734
2735 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2736 struct pid *pid, struct task_struct *task)
2737 {
2738 return do_io_accounting(task, m, 1);
2739 }
2740 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2741
2742 #ifdef CONFIG_USER_NS
2743 static int proc_id_map_open(struct inode *inode, struct file *file,
2744 const struct seq_operations *seq_ops)
2745 {
2746 struct user_namespace *ns = NULL;
2747 struct task_struct *task;
2748 struct seq_file *seq;
2749 int ret = -EINVAL;
2750
2751 task = get_proc_task(inode);
2752 if (task) {
2753 rcu_read_lock();
2754 ns = get_user_ns(task_cred_xxx(task, user_ns));
2755 rcu_read_unlock();
2756 put_task_struct(task);
2757 }
2758 if (!ns)
2759 goto err;
2760
2761 ret = seq_open(file, seq_ops);
2762 if (ret)
2763 goto err_put_ns;
2764
2765 seq = file->private_data;
2766 seq->private = ns;
2767
2768 return 0;
2769 err_put_ns:
2770 put_user_ns(ns);
2771 err:
2772 return ret;
2773 }
2774
2775 static int proc_id_map_release(struct inode *inode, struct file *file)
2776 {
2777 struct seq_file *seq = file->private_data;
2778 struct user_namespace *ns = seq->private;
2779 put_user_ns(ns);
2780 return seq_release(inode, file);
2781 }
2782
2783 static int proc_uid_map_open(struct inode *inode, struct file *file)
2784 {
2785 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2786 }
2787
2788 static int proc_gid_map_open(struct inode *inode, struct file *file)
2789 {
2790 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2791 }
2792
2793 static int proc_projid_map_open(struct inode *inode, struct file *file)
2794 {
2795 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2796 }
2797
2798 static const struct file_operations proc_uid_map_operations = {
2799 .open = proc_uid_map_open,
2800 .write = proc_uid_map_write,
2801 .read = seq_read,
2802 .llseek = seq_lseek,
2803 .release = proc_id_map_release,
2804 };
2805
2806 static const struct file_operations proc_gid_map_operations = {
2807 .open = proc_gid_map_open,
2808 .write = proc_gid_map_write,
2809 .read = seq_read,
2810 .llseek = seq_lseek,
2811 .release = proc_id_map_release,
2812 };
2813
2814 static const struct file_operations proc_projid_map_operations = {
2815 .open = proc_projid_map_open,
2816 .write = proc_projid_map_write,
2817 .read = seq_read,
2818 .llseek = seq_lseek,
2819 .release = proc_id_map_release,
2820 };
2821
2822 static int proc_setgroups_open(struct inode *inode, struct file *file)
2823 {
2824 struct user_namespace *ns = NULL;
2825 struct task_struct *task;
2826 int ret;
2827
2828 ret = -ESRCH;
2829 task = get_proc_task(inode);
2830 if (task) {
2831 rcu_read_lock();
2832 ns = get_user_ns(task_cred_xxx(task, user_ns));
2833 rcu_read_unlock();
2834 put_task_struct(task);
2835 }
2836 if (!ns)
2837 goto err;
2838
2839 if (file->f_mode & FMODE_WRITE) {
2840 ret = -EACCES;
2841 if (!ns_capable(ns, CAP_SYS_ADMIN))
2842 goto err_put_ns;
2843 }
2844
2845 ret = single_open(file, &proc_setgroups_show, ns);
2846 if (ret)
2847 goto err_put_ns;
2848
2849 return 0;
2850 err_put_ns:
2851 put_user_ns(ns);
2852 err:
2853 return ret;
2854 }
2855
2856 static int proc_setgroups_release(struct inode *inode, struct file *file)
2857 {
2858 struct seq_file *seq = file->private_data;
2859 struct user_namespace *ns = seq->private;
2860 int ret = single_release(inode, file);
2861 put_user_ns(ns);
2862 return ret;
2863 }
2864
2865 static const struct file_operations proc_setgroups_operations = {
2866 .open = proc_setgroups_open,
2867 .write = proc_setgroups_write,
2868 .read = seq_read,
2869 .llseek = seq_lseek,
2870 .release = proc_setgroups_release,
2871 };
2872 #endif /* CONFIG_USER_NS */
2873
2874 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2875 struct pid *pid, struct task_struct *task)
2876 {
2877 int err = lock_trace(task);
2878 if (!err) {
2879 seq_printf(m, "%08x\n", task->personality);
2880 unlock_trace(task);
2881 }
2882 return err;
2883 }
2884
2885 #ifdef CONFIG_LIVEPATCH
2886 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2887 struct pid *pid, struct task_struct *task)
2888 {
2889 seq_printf(m, "%d\n", task->patch_state);
2890 return 0;
2891 }
2892 #endif /* CONFIG_LIVEPATCH */
2893
2894 /*
2895 * Thread groups
2896 */
2897 static const struct file_operations proc_task_operations;
2898 static const struct inode_operations proc_task_inode_operations;
2899
2900 static const struct pid_entry tgid_base_stuff[] = {
2901 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2902 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2903 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2904 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2905 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2906 #ifdef CONFIG_NET
2907 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2908 #endif
2909 REG("environ", S_IRUSR, proc_environ_operations),
2910 REG("auxv", S_IRUSR, proc_auxv_operations),
2911 ONE("status", S_IRUGO, proc_pid_status),
2912 ONE("personality", S_IRUSR, proc_pid_personality),
2913 ONE("limits", S_IRUGO, proc_pid_limits),
2914 #ifdef CONFIG_SCHED_DEBUG
2915 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2916 #endif
2917 #ifdef CONFIG_SCHED_AUTOGROUP
2918 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2919 #endif
2920 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2922 ONE("syscall", S_IRUSR, proc_pid_syscall),
2923 #endif
2924 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2925 ONE("stat", S_IRUGO, proc_tgid_stat),
2926 ONE("statm", S_IRUGO, proc_pid_statm),
2927 REG("maps", S_IRUGO, proc_pid_maps_operations),
2928 #ifdef CONFIG_NUMA
2929 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2930 #endif
2931 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2932 LNK("cwd", proc_cwd_link),
2933 LNK("root", proc_root_link),
2934 LNK("exe", proc_exe_link),
2935 REG("mounts", S_IRUGO, proc_mounts_operations),
2936 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2937 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2938 #ifdef CONFIG_PROC_PAGE_MONITOR
2939 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2940 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2941 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2942 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2943 #endif
2944 #ifdef CONFIG_SECURITY
2945 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2946 #endif
2947 #ifdef CONFIG_KALLSYMS
2948 ONE("wchan", S_IRUGO, proc_pid_wchan),
2949 #endif
2950 #ifdef CONFIG_STACKTRACE
2951 ONE("stack", S_IRUSR, proc_pid_stack),
2952 #endif
2953 #ifdef CONFIG_SCHED_INFO
2954 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2955 #endif
2956 #ifdef CONFIG_LATENCYTOP
2957 REG("latency", S_IRUGO, proc_lstats_operations),
2958 #endif
2959 #ifdef CONFIG_PROC_PID_CPUSET
2960 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2961 #endif
2962 #ifdef CONFIG_CGROUPS
2963 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2964 #endif
2965 ONE("oom_score", S_IRUGO, proc_oom_score),
2966 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2967 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2968 #ifdef CONFIG_AUDITSYSCALL
2969 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2970 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2971 #endif
2972 #ifdef CONFIG_FAULT_INJECTION
2973 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2974 REG("fail-nth", 0644, proc_fail_nth_operations),
2975 #endif
2976 #ifdef CONFIG_ELF_CORE
2977 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2978 #endif
2979 #ifdef CONFIG_TASK_IO_ACCOUNTING
2980 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2981 #endif
2982 #ifdef CONFIG_USER_NS
2983 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2984 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2985 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2986 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2987 #endif
2988 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2989 REG("timers", S_IRUGO, proc_timers_operations),
2990 #endif
2991 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2992 #ifdef CONFIG_LIVEPATCH
2993 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
2994 #endif
2995 };
2996
2997 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2998 {
2999 return proc_pident_readdir(file, ctx,
3000 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3001 }
3002
3003 static const struct file_operations proc_tgid_base_operations = {
3004 .read = generic_read_dir,
3005 .iterate_shared = proc_tgid_base_readdir,
3006 .llseek = generic_file_llseek,
3007 };
3008
3009 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3010 {
3011 return proc_pident_lookup(dir, dentry,
3012 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3013 }
3014
3015 static const struct inode_operations proc_tgid_base_inode_operations = {
3016 .lookup = proc_tgid_base_lookup,
3017 .getattr = pid_getattr,
3018 .setattr = proc_setattr,
3019 .permission = proc_pid_permission,
3020 };
3021
3022 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3023 {
3024 struct dentry *dentry, *leader, *dir;
3025 char buf[10 + 1];
3026 struct qstr name;
3027
3028 name.name = buf;
3029 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3030 /* no ->d_hash() rejects on procfs */
3031 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3032 if (dentry) {
3033 d_invalidate(dentry);
3034 dput(dentry);
3035 }
3036
3037 if (pid == tgid)
3038 return;
3039
3040 name.name = buf;
3041 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3042 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3043 if (!leader)
3044 goto out;
3045
3046 name.name = "task";
3047 name.len = strlen(name.name);
3048 dir = d_hash_and_lookup(leader, &name);
3049 if (!dir)
3050 goto out_put_leader;
3051
3052 name.name = buf;
3053 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3054 dentry = d_hash_and_lookup(dir, &name);
3055 if (dentry) {
3056 d_invalidate(dentry);
3057 dput(dentry);
3058 }
3059
3060 dput(dir);
3061 out_put_leader:
3062 dput(leader);
3063 out:
3064 return;
3065 }
3066
3067 /**
3068 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3069 * @task: task that should be flushed.
3070 *
3071 * When flushing dentries from proc, one needs to flush them from global
3072 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3073 * in. This call is supposed to do all of this job.
3074 *
3075 * Looks in the dcache for
3076 * /proc/@pid
3077 * /proc/@tgid/task/@pid
3078 * if either directory is present flushes it and all of it'ts children
3079 * from the dcache.
3080 *
3081 * It is safe and reasonable to cache /proc entries for a task until
3082 * that task exits. After that they just clog up the dcache with
3083 * useless entries, possibly causing useful dcache entries to be
3084 * flushed instead. This routine is proved to flush those useless
3085 * dcache entries at process exit time.
3086 *
3087 * NOTE: This routine is just an optimization so it does not guarantee
3088 * that no dcache entries will exist at process exit time it
3089 * just makes it very unlikely that any will persist.
3090 */
3091
3092 void proc_flush_task(struct task_struct *task)
3093 {
3094 int i;
3095 struct pid *pid, *tgid;
3096 struct upid *upid;
3097
3098 pid = task_pid(task);
3099 tgid = task_tgid(task);
3100
3101 for (i = 0; i <= pid->level; i++) {
3102 upid = &pid->numbers[i];
3103 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3104 tgid->numbers[i].nr);
3105 }
3106 }
3107
3108 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3109 struct task_struct *task, const void *ptr)
3110 {
3111 struct inode *inode;
3112
3113 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3114 if (!inode)
3115 return ERR_PTR(-ENOENT);
3116
3117 inode->i_op = &proc_tgid_base_inode_operations;
3118 inode->i_fop = &proc_tgid_base_operations;
3119 inode->i_flags|=S_IMMUTABLE;
3120
3121 set_nlink(inode, nlink_tgid);
3122 pid_update_inode(task, inode);
3123
3124 d_set_d_op(dentry, &pid_dentry_operations);
3125 return d_splice_alias(inode, dentry);
3126 }
3127
3128 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3129 {
3130 struct task_struct *task;
3131 unsigned tgid;
3132 struct pid_namespace *ns;
3133 struct dentry *result = ERR_PTR(-ENOENT);
3134
3135 tgid = name_to_int(&dentry->d_name);
3136 if (tgid == ~0U)
3137 goto out;
3138
3139 ns = dentry->d_sb->s_fs_info;
3140 rcu_read_lock();
3141 task = find_task_by_pid_ns(tgid, ns);
3142 if (task)
3143 get_task_struct(task);
3144 rcu_read_unlock();
3145 if (!task)
3146 goto out;
3147
3148 result = proc_pid_instantiate(dentry, task, NULL);
3149 put_task_struct(task);
3150 out:
3151 return result;
3152 }
3153
3154 /*
3155 * Find the first task with tgid >= tgid
3156 *
3157 */
3158 struct tgid_iter {
3159 unsigned int tgid;
3160 struct task_struct *task;
3161 };
3162 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3163 {
3164 struct pid *pid;
3165
3166 if (iter.task)
3167 put_task_struct(iter.task);
3168 rcu_read_lock();
3169 retry:
3170 iter.task = NULL;
3171 pid = find_ge_pid(iter.tgid, ns);
3172 if (pid) {
3173 iter.tgid = pid_nr_ns(pid, ns);
3174 iter.task = pid_task(pid, PIDTYPE_PID);
3175 /* What we to know is if the pid we have find is the
3176 * pid of a thread_group_leader. Testing for task
3177 * being a thread_group_leader is the obvious thing
3178 * todo but there is a window when it fails, due to
3179 * the pid transfer logic in de_thread.
3180 *
3181 * So we perform the straight forward test of seeing
3182 * if the pid we have found is the pid of a thread
3183 * group leader, and don't worry if the task we have
3184 * found doesn't happen to be a thread group leader.
3185 * As we don't care in the case of readdir.
3186 */
3187 if (!iter.task || !has_group_leader_pid(iter.task)) {
3188 iter.tgid += 1;
3189 goto retry;
3190 }
3191 get_task_struct(iter.task);
3192 }
3193 rcu_read_unlock();
3194 return iter;
3195 }
3196
3197 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3198
3199 /* for the /proc/ directory itself, after non-process stuff has been done */
3200 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3201 {
3202 struct tgid_iter iter;
3203 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3204 loff_t pos = ctx->pos;
3205
3206 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3207 return 0;
3208
3209 if (pos == TGID_OFFSET - 2) {
3210 struct inode *inode = d_inode(ns->proc_self);
3211 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3212 return 0;
3213 ctx->pos = pos = pos + 1;
3214 }
3215 if (pos == TGID_OFFSET - 1) {
3216 struct inode *inode = d_inode(ns->proc_thread_self);
3217 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3218 return 0;
3219 ctx->pos = pos = pos + 1;
3220 }
3221 iter.tgid = pos - TGID_OFFSET;
3222 iter.task = NULL;
3223 for (iter = next_tgid(ns, iter);
3224 iter.task;
3225 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3226 char name[10 + 1];
3227 unsigned int len;
3228
3229 cond_resched();
3230 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3231 continue;
3232
3233 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3234 ctx->pos = iter.tgid + TGID_OFFSET;
3235 if (!proc_fill_cache(file, ctx, name, len,
3236 proc_pid_instantiate, iter.task, NULL)) {
3237 put_task_struct(iter.task);
3238 return 0;
3239 }
3240 }
3241 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3242 return 0;
3243 }
3244
3245 /*
3246 * proc_tid_comm_permission is a special permission function exclusively
3247 * used for the node /proc/<pid>/task/<tid>/comm.
3248 * It bypasses generic permission checks in the case where a task of the same
3249 * task group attempts to access the node.
3250 * The rationale behind this is that glibc and bionic access this node for
3251 * cross thread naming (pthread_set/getname_np(!self)). However, if
3252 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3253 * which locks out the cross thread naming implementation.
3254 * This function makes sure that the node is always accessible for members of
3255 * same thread group.
3256 */
3257 static int proc_tid_comm_permission(struct inode *inode, int mask)
3258 {
3259 bool is_same_tgroup;
3260 struct task_struct *task;
3261
3262 task = get_proc_task(inode);
3263 if (!task)
3264 return -ESRCH;
3265 is_same_tgroup = same_thread_group(current, task);
3266 put_task_struct(task);
3267
3268 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3269 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3270 * read or written by the members of the corresponding
3271 * thread group.
3272 */
3273 return 0;
3274 }
3275
3276 return generic_permission(inode, mask);
3277 }
3278
3279 static const struct inode_operations proc_tid_comm_inode_operations = {
3280 .permission = proc_tid_comm_permission,
3281 };
3282
3283 /*
3284 * Tasks
3285 */
3286 static const struct pid_entry tid_base_stuff[] = {
3287 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3288 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3289 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3290 #ifdef CONFIG_NET
3291 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3292 #endif
3293 REG("environ", S_IRUSR, proc_environ_operations),
3294 REG("auxv", S_IRUSR, proc_auxv_operations),
3295 ONE("status", S_IRUGO, proc_pid_status),
3296 ONE("personality", S_IRUSR, proc_pid_personality),
3297 ONE("limits", S_IRUGO, proc_pid_limits),
3298 #ifdef CONFIG_SCHED_DEBUG
3299 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3300 #endif
3301 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3302 &proc_tid_comm_inode_operations,
3303 &proc_pid_set_comm_operations, {}),
3304 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3305 ONE("syscall", S_IRUSR, proc_pid_syscall),
3306 #endif
3307 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3308 ONE("stat", S_IRUGO, proc_tid_stat),
3309 ONE("statm", S_IRUGO, proc_pid_statm),
3310 REG("maps", S_IRUGO, proc_pid_maps_operations),
3311 #ifdef CONFIG_PROC_CHILDREN
3312 REG("children", S_IRUGO, proc_tid_children_operations),
3313 #endif
3314 #ifdef CONFIG_NUMA
3315 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3316 #endif
3317 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3318 LNK("cwd", proc_cwd_link),
3319 LNK("root", proc_root_link),
3320 LNK("exe", proc_exe_link),
3321 REG("mounts", S_IRUGO, proc_mounts_operations),
3322 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3323 #ifdef CONFIG_PROC_PAGE_MONITOR
3324 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3325 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3326 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3327 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3328 #endif
3329 #ifdef CONFIG_SECURITY
3330 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3331 #endif
3332 #ifdef CONFIG_KALLSYMS
3333 ONE("wchan", S_IRUGO, proc_pid_wchan),
3334 #endif
3335 #ifdef CONFIG_STACKTRACE
3336 ONE("stack", S_IRUSR, proc_pid_stack),
3337 #endif
3338 #ifdef CONFIG_SCHED_INFO
3339 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3340 #endif
3341 #ifdef CONFIG_LATENCYTOP
3342 REG("latency", S_IRUGO, proc_lstats_operations),
3343 #endif
3344 #ifdef CONFIG_PROC_PID_CPUSET
3345 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3346 #endif
3347 #ifdef CONFIG_CGROUPS
3348 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3349 #endif
3350 ONE("oom_score", S_IRUGO, proc_oom_score),
3351 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3352 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3353 #ifdef CONFIG_AUDITSYSCALL
3354 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3355 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3356 #endif
3357 #ifdef CONFIG_FAULT_INJECTION
3358 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3359 REG("fail-nth", 0644, proc_fail_nth_operations),
3360 #endif
3361 #ifdef CONFIG_TASK_IO_ACCOUNTING
3362 ONE("io", S_IRUSR, proc_tid_io_accounting),
3363 #endif
3364 #ifdef CONFIG_USER_NS
3365 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3366 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3367 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3368 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3369 #endif
3370 #ifdef CONFIG_LIVEPATCH
3371 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3372 #endif
3373 };
3374
3375 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3376 {
3377 return proc_pident_readdir(file, ctx,
3378 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3379 }
3380
3381 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3382 {
3383 return proc_pident_lookup(dir, dentry,
3384 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3385 }
3386
3387 static const struct file_operations proc_tid_base_operations = {
3388 .read = generic_read_dir,
3389 .iterate_shared = proc_tid_base_readdir,
3390 .llseek = generic_file_llseek,
3391 };
3392
3393 static const struct inode_operations proc_tid_base_inode_operations = {
3394 .lookup = proc_tid_base_lookup,
3395 .getattr = pid_getattr,
3396 .setattr = proc_setattr,
3397 };
3398
3399 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3400 struct task_struct *task, const void *ptr)
3401 {
3402 struct inode *inode;
3403 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3404 if (!inode)
3405 return ERR_PTR(-ENOENT);
3406
3407 inode->i_op = &proc_tid_base_inode_operations;
3408 inode->i_fop = &proc_tid_base_operations;
3409 inode->i_flags |= S_IMMUTABLE;
3410
3411 set_nlink(inode, nlink_tid);
3412 pid_update_inode(task, inode);
3413
3414 d_set_d_op(dentry, &pid_dentry_operations);
3415 return d_splice_alias(inode, dentry);
3416 }
3417
3418 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3419 {
3420 struct task_struct *task;
3421 struct task_struct *leader = get_proc_task(dir);
3422 unsigned tid;
3423 struct pid_namespace *ns;
3424 struct dentry *result = ERR_PTR(-ENOENT);
3425
3426 if (!leader)
3427 goto out_no_task;
3428
3429 tid = name_to_int(&dentry->d_name);
3430 if (tid == ~0U)
3431 goto out;
3432
3433 ns = dentry->d_sb->s_fs_info;
3434 rcu_read_lock();
3435 task = find_task_by_pid_ns(tid, ns);
3436 if (task)
3437 get_task_struct(task);
3438 rcu_read_unlock();
3439 if (!task)
3440 goto out;
3441 if (!same_thread_group(leader, task))
3442 goto out_drop_task;
3443
3444 result = proc_task_instantiate(dentry, task, NULL);
3445 out_drop_task:
3446 put_task_struct(task);
3447 out:
3448 put_task_struct(leader);
3449 out_no_task:
3450 return result;
3451 }
3452
3453 /*
3454 * Find the first tid of a thread group to return to user space.
3455 *
3456 * Usually this is just the thread group leader, but if the users
3457 * buffer was too small or there was a seek into the middle of the
3458 * directory we have more work todo.
3459 *
3460 * In the case of a short read we start with find_task_by_pid.
3461 *
3462 * In the case of a seek we start with the leader and walk nr
3463 * threads past it.
3464 */
3465 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3466 struct pid_namespace *ns)
3467 {
3468 struct task_struct *pos, *task;
3469 unsigned long nr = f_pos;
3470
3471 if (nr != f_pos) /* 32bit overflow? */
3472 return NULL;
3473
3474 rcu_read_lock();
3475 task = pid_task(pid, PIDTYPE_PID);
3476 if (!task)
3477 goto fail;
3478
3479 /* Attempt to start with the tid of a thread */
3480 if (tid && nr) {
3481 pos = find_task_by_pid_ns(tid, ns);
3482 if (pos && same_thread_group(pos, task))
3483 goto found;
3484 }
3485
3486 /* If nr exceeds the number of threads there is nothing todo */
3487 if (nr >= get_nr_threads(task))
3488 goto fail;
3489
3490 /* If we haven't found our starting place yet start
3491 * with the leader and walk nr threads forward.
3492 */
3493 pos = task = task->group_leader;
3494 do {
3495 if (!nr--)
3496 goto found;
3497 } while_each_thread(task, pos);
3498 fail:
3499 pos = NULL;
3500 goto out;
3501 found:
3502 get_task_struct(pos);
3503 out:
3504 rcu_read_unlock();
3505 return pos;
3506 }
3507
3508 /*
3509 * Find the next thread in the thread list.
3510 * Return NULL if there is an error or no next thread.
3511 *
3512 * The reference to the input task_struct is released.
3513 */
3514 static struct task_struct *next_tid(struct task_struct *start)
3515 {
3516 struct task_struct *pos = NULL;
3517 rcu_read_lock();
3518 if (pid_alive(start)) {
3519 pos = next_thread(start);
3520 if (thread_group_leader(pos))
3521 pos = NULL;
3522 else
3523 get_task_struct(pos);
3524 }
3525 rcu_read_unlock();
3526 put_task_struct(start);
3527 return pos;
3528 }
3529
3530 /* for the /proc/TGID/task/ directories */
3531 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3532 {
3533 struct inode *inode = file_inode(file);
3534 struct task_struct *task;
3535 struct pid_namespace *ns;
3536 int tid;
3537
3538 if (proc_inode_is_dead(inode))
3539 return -ENOENT;
3540
3541 if (!dir_emit_dots(file, ctx))
3542 return 0;
3543
3544 /* f_version caches the tgid value that the last readdir call couldn't
3545 * return. lseek aka telldir automagically resets f_version to 0.
3546 */
3547 ns = proc_pid_ns(inode);
3548 tid = (int)file->f_version;
3549 file->f_version = 0;
3550 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3551 task;
3552 task = next_tid(task), ctx->pos++) {
3553 char name[10 + 1];
3554 unsigned int len;
3555 tid = task_pid_nr_ns(task, ns);
3556 len = snprintf(name, sizeof(name), "%u", tid);
3557 if (!proc_fill_cache(file, ctx, name, len,
3558 proc_task_instantiate, task, NULL)) {
3559 /* returning this tgid failed, save it as the first
3560 * pid for the next readir call */
3561 file->f_version = (u64)tid;
3562 put_task_struct(task);
3563 break;
3564 }
3565 }
3566
3567 return 0;
3568 }
3569
3570 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3571 u32 request_mask, unsigned int query_flags)
3572 {
3573 struct inode *inode = d_inode(path->dentry);
3574 struct task_struct *p = get_proc_task(inode);
3575 generic_fillattr(inode, stat);
3576
3577 if (p) {
3578 stat->nlink += get_nr_threads(p);
3579 put_task_struct(p);
3580 }
3581
3582 return 0;
3583 }
3584
3585 static const struct inode_operations proc_task_inode_operations = {
3586 .lookup = proc_task_lookup,
3587 .getattr = proc_task_getattr,
3588 .setattr = proc_setattr,
3589 .permission = proc_pid_permission,
3590 };
3591
3592 static const struct file_operations proc_task_operations = {
3593 .read = generic_read_dir,
3594 .iterate_shared = proc_task_readdir,
3595 .llseek = generic_file_llseek,
3596 };
3597
3598 void __init set_proc_pid_nlink(void)
3599 {
3600 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3601 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3602 }