]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/base.c
[PATCH] sanitize ->permission() prototype
[mirror_ubuntu-artful-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/fdtable.h>
60 #include <linux/string.h>
61 #include <linux/seq_file.h>
62 #include <linux/namei.h>
63 #include <linux/mnt_namespace.h>
64 #include <linux/mm.h>
65 #include <linux/rcupdate.h>
66 #include <linux/kallsyms.h>
67 #include <linux/resource.h>
68 #include <linux/module.h>
69 #include <linux/mount.h>
70 #include <linux/security.h>
71 #include <linux/ptrace.h>
72 #include <linux/tracehook.h>
73 #include <linux/cgroup.h>
74 #include <linux/cpuset.h>
75 #include <linux/audit.h>
76 #include <linux/poll.h>
77 #include <linux/nsproxy.h>
78 #include <linux/oom.h>
79 #include <linux/elf.h>
80 #include <linux/pid_namespace.h>
81 #include "internal.h"
82
83 /* NOTE:
84 * Implementing inode permission operations in /proc is almost
85 * certainly an error. Permission checks need to happen during
86 * each system call not at open time. The reason is that most of
87 * what we wish to check for permissions in /proc varies at runtime.
88 *
89 * The classic example of a problem is opening file descriptors
90 * in /proc for a task before it execs a suid executable.
91 */
92
93 struct pid_entry {
94 char *name;
95 int len;
96 mode_t mode;
97 const struct inode_operations *iop;
98 const struct file_operations *fop;
99 union proc_op op;
100 };
101
102 #define NOD(NAME, MODE, IOP, FOP, OP) { \
103 .name = (NAME), \
104 .len = sizeof(NAME) - 1, \
105 .mode = MODE, \
106 .iop = IOP, \
107 .fop = FOP, \
108 .op = OP, \
109 }
110
111 #define DIR(NAME, MODE, OTYPE) \
112 NOD(NAME, (S_IFDIR|(MODE)), \
113 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
114 {} )
115 #define LNK(NAME, OTYPE) \
116 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
117 &proc_pid_link_inode_operations, NULL, \
118 { .proc_get_link = &proc_##OTYPE##_link } )
119 #define REG(NAME, MODE, OTYPE) \
120 NOD(NAME, (S_IFREG|(MODE)), NULL, \
121 &proc_##OTYPE##_operations, {})
122 #define INF(NAME, MODE, OTYPE) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = &proc_##OTYPE } )
126 #define ONE(NAME, MODE, OTYPE) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = &proc_##OTYPE } )
130
131 /*
132 * Count the number of hardlinks for the pid_entry table, excluding the .
133 * and .. links.
134 */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 unsigned int n)
137 {
138 unsigned int i;
139 unsigned int count;
140
141 count = 0;
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
144 ++count;
145 }
146
147 return count;
148 }
149
150 int maps_protect;
151 EXPORT_SYMBOL(maps_protect);
152
153 static struct fs_struct *get_fs_struct(struct task_struct *task)
154 {
155 struct fs_struct *fs;
156 task_lock(task);
157 fs = task->fs;
158 if(fs)
159 atomic_inc(&fs->count);
160 task_unlock(task);
161 return fs;
162 }
163
164 static int get_nr_threads(struct task_struct *tsk)
165 {
166 /* Must be called with the rcu_read_lock held */
167 unsigned long flags;
168 int count = 0;
169
170 if (lock_task_sighand(tsk, &flags)) {
171 count = atomic_read(&tsk->signal->count);
172 unlock_task_sighand(tsk, &flags);
173 }
174 return count;
175 }
176
177 static int proc_cwd_link(struct inode *inode, struct path *path)
178 {
179 struct task_struct *task = get_proc_task(inode);
180 struct fs_struct *fs = NULL;
181 int result = -ENOENT;
182
183 if (task) {
184 fs = get_fs_struct(task);
185 put_task_struct(task);
186 }
187 if (fs) {
188 read_lock(&fs->lock);
189 *path = fs->pwd;
190 path_get(&fs->pwd);
191 read_unlock(&fs->lock);
192 result = 0;
193 put_fs_struct(fs);
194 }
195 return result;
196 }
197
198 static int proc_root_link(struct inode *inode, struct path *path)
199 {
200 struct task_struct *task = get_proc_task(inode);
201 struct fs_struct *fs = NULL;
202 int result = -ENOENT;
203
204 if (task) {
205 fs = get_fs_struct(task);
206 put_task_struct(task);
207 }
208 if (fs) {
209 read_lock(&fs->lock);
210 *path = fs->root;
211 path_get(&fs->root);
212 read_unlock(&fs->lock);
213 result = 0;
214 put_fs_struct(fs);
215 }
216 return result;
217 }
218
219 /*
220 * Return zero if current may access user memory in @task, -error if not.
221 */
222 static int check_mem_permission(struct task_struct *task)
223 {
224 /*
225 * A task can always look at itself, in case it chooses
226 * to use system calls instead of load instructions.
227 */
228 if (task == current)
229 return 0;
230
231 /*
232 * If current is actively ptrace'ing, and would also be
233 * permitted to freshly attach with ptrace now, permit it.
234 */
235 if (task_is_stopped_or_traced(task)) {
236 int match;
237 rcu_read_lock();
238 match = (tracehook_tracer_task(task) == current);
239 rcu_read_unlock();
240 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
241 return 0;
242 }
243
244 /*
245 * Noone else is allowed.
246 */
247 return -EPERM;
248 }
249
250 struct mm_struct *mm_for_maps(struct task_struct *task)
251 {
252 struct mm_struct *mm = get_task_mm(task);
253 if (!mm)
254 return NULL;
255 down_read(&mm->mmap_sem);
256 task_lock(task);
257 if (task->mm != mm)
258 goto out;
259 if (task->mm != current->mm &&
260 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
261 goto out;
262 task_unlock(task);
263 return mm;
264 out:
265 task_unlock(task);
266 up_read(&mm->mmap_sem);
267 mmput(mm);
268 return NULL;
269 }
270
271 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
272 {
273 int res = 0;
274 unsigned int len;
275 struct mm_struct *mm = get_task_mm(task);
276 if (!mm)
277 goto out;
278 if (!mm->arg_end)
279 goto out_mm; /* Shh! No looking before we're done */
280
281 len = mm->arg_end - mm->arg_start;
282
283 if (len > PAGE_SIZE)
284 len = PAGE_SIZE;
285
286 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
287
288 // If the nul at the end of args has been overwritten, then
289 // assume application is using setproctitle(3).
290 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
291 len = strnlen(buffer, res);
292 if (len < res) {
293 res = len;
294 } else {
295 len = mm->env_end - mm->env_start;
296 if (len > PAGE_SIZE - res)
297 len = PAGE_SIZE - res;
298 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
299 res = strnlen(buffer, res);
300 }
301 }
302 out_mm:
303 mmput(mm);
304 out:
305 return res;
306 }
307
308 static int proc_pid_auxv(struct task_struct *task, char *buffer)
309 {
310 int res = 0;
311 struct mm_struct *mm = get_task_mm(task);
312 if (mm) {
313 unsigned int nwords = 0;
314 do
315 nwords += 2;
316 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
317 res = nwords * sizeof(mm->saved_auxv[0]);
318 if (res > PAGE_SIZE)
319 res = PAGE_SIZE;
320 memcpy(buffer, mm->saved_auxv, res);
321 mmput(mm);
322 }
323 return res;
324 }
325
326
327 #ifdef CONFIG_KALLSYMS
328 /*
329 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
330 * Returns the resolved symbol. If that fails, simply return the address.
331 */
332 static int proc_pid_wchan(struct task_struct *task, char *buffer)
333 {
334 unsigned long wchan;
335 char symname[KSYM_NAME_LEN];
336
337 wchan = get_wchan(task);
338
339 if (lookup_symbol_name(wchan, symname) < 0)
340 return sprintf(buffer, "%lu", wchan);
341 else
342 return sprintf(buffer, "%s", symname);
343 }
344 #endif /* CONFIG_KALLSYMS */
345
346 #ifdef CONFIG_SCHEDSTATS
347 /*
348 * Provides /proc/PID/schedstat
349 */
350 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
351 {
352 return sprintf(buffer, "%llu %llu %lu\n",
353 task->sched_info.cpu_time,
354 task->sched_info.run_delay,
355 task->sched_info.pcount);
356 }
357 #endif
358
359 #ifdef CONFIG_LATENCYTOP
360 static int lstats_show_proc(struct seq_file *m, void *v)
361 {
362 int i;
363 struct inode *inode = m->private;
364 struct task_struct *task = get_proc_task(inode);
365
366 if (!task)
367 return -ESRCH;
368 seq_puts(m, "Latency Top version : v0.1\n");
369 for (i = 0; i < 32; i++) {
370 if (task->latency_record[i].backtrace[0]) {
371 int q;
372 seq_printf(m, "%i %li %li ",
373 task->latency_record[i].count,
374 task->latency_record[i].time,
375 task->latency_record[i].max);
376 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
377 char sym[KSYM_NAME_LEN];
378 char *c;
379 if (!task->latency_record[i].backtrace[q])
380 break;
381 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
382 break;
383 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
384 c = strchr(sym, '+');
385 if (c)
386 *c = 0;
387 seq_printf(m, "%s ", sym);
388 }
389 seq_printf(m, "\n");
390 }
391
392 }
393 put_task_struct(task);
394 return 0;
395 }
396
397 static int lstats_open(struct inode *inode, struct file *file)
398 {
399 return single_open(file, lstats_show_proc, inode);
400 }
401
402 static ssize_t lstats_write(struct file *file, const char __user *buf,
403 size_t count, loff_t *offs)
404 {
405 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
406
407 if (!task)
408 return -ESRCH;
409 clear_all_latency_tracing(task);
410 put_task_struct(task);
411
412 return count;
413 }
414
415 static const struct file_operations proc_lstats_operations = {
416 .open = lstats_open,
417 .read = seq_read,
418 .write = lstats_write,
419 .llseek = seq_lseek,
420 .release = single_release,
421 };
422
423 #endif
424
425 /* The badness from the OOM killer */
426 unsigned long badness(struct task_struct *p, unsigned long uptime);
427 static int proc_oom_score(struct task_struct *task, char *buffer)
428 {
429 unsigned long points;
430 struct timespec uptime;
431
432 do_posix_clock_monotonic_gettime(&uptime);
433 read_lock(&tasklist_lock);
434 points = badness(task, uptime.tv_sec);
435 read_unlock(&tasklist_lock);
436 return sprintf(buffer, "%lu\n", points);
437 }
438
439 struct limit_names {
440 char *name;
441 char *unit;
442 };
443
444 static const struct limit_names lnames[RLIM_NLIMITS] = {
445 [RLIMIT_CPU] = {"Max cpu time", "ms"},
446 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
447 [RLIMIT_DATA] = {"Max data size", "bytes"},
448 [RLIMIT_STACK] = {"Max stack size", "bytes"},
449 [RLIMIT_CORE] = {"Max core file size", "bytes"},
450 [RLIMIT_RSS] = {"Max resident set", "bytes"},
451 [RLIMIT_NPROC] = {"Max processes", "processes"},
452 [RLIMIT_NOFILE] = {"Max open files", "files"},
453 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
454 [RLIMIT_AS] = {"Max address space", "bytes"},
455 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
456 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
457 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
458 [RLIMIT_NICE] = {"Max nice priority", NULL},
459 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
460 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
461 };
462
463 /* Display limits for a process */
464 static int proc_pid_limits(struct task_struct *task, char *buffer)
465 {
466 unsigned int i;
467 int count = 0;
468 unsigned long flags;
469 char *bufptr = buffer;
470
471 struct rlimit rlim[RLIM_NLIMITS];
472
473 rcu_read_lock();
474 if (!lock_task_sighand(task,&flags)) {
475 rcu_read_unlock();
476 return 0;
477 }
478 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
479 unlock_task_sighand(task, &flags);
480 rcu_read_unlock();
481
482 /*
483 * print the file header
484 */
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
487
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
495
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 else
499 count += sprintf(&bufptr[count], "%-20lu ",
500 rlim[i].rlim_max);
501
502 if (lnames[i].unit)
503 count += sprintf(&bufptr[count], "%-10s\n",
504 lnames[i].unit);
505 else
506 count += sprintf(&bufptr[count], "\n");
507 }
508
509 return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 long nr;
516 unsigned long args[6], sp, pc;
517
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
520
521 if (nr < 0)
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 nr,
527 args[0], args[1], args[2], args[3], args[4], args[5],
528 sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 struct task_struct *task;
540 int allowed = 0;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
543 * information.
544 */
545 task = get_proc_task(inode);
546 if (task) {
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
549 }
550 return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 int error;
556 struct inode *inode = dentry->d_inode;
557
558 if (attr->ia_valid & ATTR_MODE)
559 return -EPERM;
560
561 error = inode_change_ok(inode, attr);
562 if (!error)
563 error = inode_setattr(inode, attr);
564 return error;
565 }
566
567 static const struct inode_operations proc_def_inode_operations = {
568 .setattr = proc_setattr,
569 };
570
571 static int mounts_open_common(struct inode *inode, struct file *file,
572 const struct seq_operations *op)
573 {
574 struct task_struct *task = get_proc_task(inode);
575 struct nsproxy *nsp;
576 struct mnt_namespace *ns = NULL;
577 struct fs_struct *fs = NULL;
578 struct path root;
579 struct proc_mounts *p;
580 int ret = -EINVAL;
581
582 if (task) {
583 rcu_read_lock();
584 nsp = task_nsproxy(task);
585 if (nsp) {
586 ns = nsp->mnt_ns;
587 if (ns)
588 get_mnt_ns(ns);
589 }
590 rcu_read_unlock();
591 if (ns)
592 fs = get_fs_struct(task);
593 put_task_struct(task);
594 }
595
596 if (!ns)
597 goto err;
598 if (!fs)
599 goto err_put_ns;
600
601 read_lock(&fs->lock);
602 root = fs->root;
603 path_get(&root);
604 read_unlock(&fs->lock);
605 put_fs_struct(fs);
606
607 ret = -ENOMEM;
608 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
609 if (!p)
610 goto err_put_path;
611
612 file->private_data = &p->m;
613 ret = seq_open(file, op);
614 if (ret)
615 goto err_free;
616
617 p->m.private = p;
618 p->ns = ns;
619 p->root = root;
620 p->event = ns->event;
621
622 return 0;
623
624 err_free:
625 kfree(p);
626 err_put_path:
627 path_put(&root);
628 err_put_ns:
629 put_mnt_ns(ns);
630 err:
631 return ret;
632 }
633
634 static int mounts_release(struct inode *inode, struct file *file)
635 {
636 struct proc_mounts *p = file->private_data;
637 path_put(&p->root);
638 put_mnt_ns(p->ns);
639 return seq_release(inode, file);
640 }
641
642 static unsigned mounts_poll(struct file *file, poll_table *wait)
643 {
644 struct proc_mounts *p = file->private_data;
645 struct mnt_namespace *ns = p->ns;
646 unsigned res = 0;
647
648 poll_wait(file, &ns->poll, wait);
649
650 spin_lock(&vfsmount_lock);
651 if (p->event != ns->event) {
652 p->event = ns->event;
653 res = POLLERR;
654 }
655 spin_unlock(&vfsmount_lock);
656
657 return res;
658 }
659
660 static int mounts_open(struct inode *inode, struct file *file)
661 {
662 return mounts_open_common(inode, file, &mounts_op);
663 }
664
665 static const struct file_operations proc_mounts_operations = {
666 .open = mounts_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = mounts_release,
670 .poll = mounts_poll,
671 };
672
673 static int mountinfo_open(struct inode *inode, struct file *file)
674 {
675 return mounts_open_common(inode, file, &mountinfo_op);
676 }
677
678 static const struct file_operations proc_mountinfo_operations = {
679 .open = mountinfo_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = mounts_release,
683 .poll = mounts_poll,
684 };
685
686 static int mountstats_open(struct inode *inode, struct file *file)
687 {
688 return mounts_open_common(inode, file, &mountstats_op);
689 }
690
691 static const struct file_operations proc_mountstats_operations = {
692 .open = mountstats_open,
693 .read = seq_read,
694 .llseek = seq_lseek,
695 .release = mounts_release,
696 };
697
698 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
699
700 static ssize_t proc_info_read(struct file * file, char __user * buf,
701 size_t count, loff_t *ppos)
702 {
703 struct inode * inode = file->f_path.dentry->d_inode;
704 unsigned long page;
705 ssize_t length;
706 struct task_struct *task = get_proc_task(inode);
707
708 length = -ESRCH;
709 if (!task)
710 goto out_no_task;
711
712 if (count > PROC_BLOCK_SIZE)
713 count = PROC_BLOCK_SIZE;
714
715 length = -ENOMEM;
716 if (!(page = __get_free_page(GFP_TEMPORARY)))
717 goto out;
718
719 length = PROC_I(inode)->op.proc_read(task, (char*)page);
720
721 if (length >= 0)
722 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
723 free_page(page);
724 out:
725 put_task_struct(task);
726 out_no_task:
727 return length;
728 }
729
730 static const struct file_operations proc_info_file_operations = {
731 .read = proc_info_read,
732 };
733
734 static int proc_single_show(struct seq_file *m, void *v)
735 {
736 struct inode *inode = m->private;
737 struct pid_namespace *ns;
738 struct pid *pid;
739 struct task_struct *task;
740 int ret;
741
742 ns = inode->i_sb->s_fs_info;
743 pid = proc_pid(inode);
744 task = get_pid_task(pid, PIDTYPE_PID);
745 if (!task)
746 return -ESRCH;
747
748 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
749
750 put_task_struct(task);
751 return ret;
752 }
753
754 static int proc_single_open(struct inode *inode, struct file *filp)
755 {
756 int ret;
757 ret = single_open(filp, proc_single_show, NULL);
758 if (!ret) {
759 struct seq_file *m = filp->private_data;
760
761 m->private = inode;
762 }
763 return ret;
764 }
765
766 static const struct file_operations proc_single_file_operations = {
767 .open = proc_single_open,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static int mem_open(struct inode* inode, struct file* file)
774 {
775 file->private_data = (void*)((long)current->self_exec_id);
776 return 0;
777 }
778
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 size_t count, loff_t *ppos)
781 {
782 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783 char *page;
784 unsigned long src = *ppos;
785 int ret = -ESRCH;
786 struct mm_struct *mm;
787
788 if (!task)
789 goto out_no_task;
790
791 if (check_mem_permission(task))
792 goto out;
793
794 ret = -ENOMEM;
795 page = (char *)__get_free_page(GFP_TEMPORARY);
796 if (!page)
797 goto out;
798
799 ret = 0;
800
801 mm = get_task_mm(task);
802 if (!mm)
803 goto out_free;
804
805 ret = -EIO;
806
807 if (file->private_data != (void*)((long)current->self_exec_id))
808 goto out_put;
809
810 ret = 0;
811
812 while (count > 0) {
813 int this_len, retval;
814
815 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 retval = access_process_vm(task, src, page, this_len, 0);
817 if (!retval || check_mem_permission(task)) {
818 if (!ret)
819 ret = -EIO;
820 break;
821 }
822
823 if (copy_to_user(buf, page, retval)) {
824 ret = -EFAULT;
825 break;
826 }
827
828 ret += retval;
829 src += retval;
830 buf += retval;
831 count -= retval;
832 }
833 *ppos = src;
834
835 out_put:
836 mmput(mm);
837 out_free:
838 free_page((unsigned long) page);
839 out:
840 put_task_struct(task);
841 out_no_task:
842 return ret;
843 }
844
845 #define mem_write NULL
846
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 size_t count, loff_t *ppos)
851 {
852 int copied;
853 char *page;
854 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 unsigned long dst = *ppos;
856
857 copied = -ESRCH;
858 if (!task)
859 goto out_no_task;
860
861 if (check_mem_permission(task))
862 goto out;
863
864 copied = -ENOMEM;
865 page = (char *)__get_free_page(GFP_TEMPORARY);
866 if (!page)
867 goto out;
868
869 copied = 0;
870 while (count > 0) {
871 int this_len, retval;
872
873 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 if (copy_from_user(page, buf, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878 retval = access_process_vm(task, dst, page, this_len, 1);
879 if (!retval) {
880 if (!copied)
881 copied = -EIO;
882 break;
883 }
884 copied += retval;
885 buf += retval;
886 dst += retval;
887 count -= retval;
888 }
889 *ppos = dst;
890 free_page((unsigned long) page);
891 out:
892 put_task_struct(task);
893 out_no_task:
894 return copied;
895 }
896 #endif
897
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 switch (orig) {
901 case 0:
902 file->f_pos = offset;
903 break;
904 case 1:
905 file->f_pos += offset;
906 break;
907 default:
908 return -EINVAL;
909 }
910 force_successful_syscall_return();
911 return file->f_pos;
912 }
913
914 static const struct file_operations proc_mem_operations = {
915 .llseek = mem_lseek,
916 .read = mem_read,
917 .write = mem_write,
918 .open = mem_open,
919 };
920
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 size_t count, loff_t *ppos)
923 {
924 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925 char *page;
926 unsigned long src = *ppos;
927 int ret = -ESRCH;
928 struct mm_struct *mm;
929
930 if (!task)
931 goto out_no_task;
932
933 if (!ptrace_may_access(task, PTRACE_MODE_READ))
934 goto out;
935
936 ret = -ENOMEM;
937 page = (char *)__get_free_page(GFP_TEMPORARY);
938 if (!page)
939 goto out;
940
941 ret = 0;
942
943 mm = get_task_mm(task);
944 if (!mm)
945 goto out_free;
946
947 while (count > 0) {
948 int this_len, retval, max_len;
949
950 this_len = mm->env_end - (mm->env_start + src);
951
952 if (this_len <= 0)
953 break;
954
955 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 this_len = (this_len > max_len) ? max_len : this_len;
957
958 retval = access_process_vm(task, (mm->env_start + src),
959 page, this_len, 0);
960
961 if (retval <= 0) {
962 ret = retval;
963 break;
964 }
965
966 if (copy_to_user(buf, page, retval)) {
967 ret = -EFAULT;
968 break;
969 }
970
971 ret += retval;
972 src += retval;
973 buf += retval;
974 count -= retval;
975 }
976 *ppos = src;
977
978 mmput(mm);
979 out_free:
980 free_page((unsigned long) page);
981 out:
982 put_task_struct(task);
983 out_no_task:
984 return ret;
985 }
986
987 static const struct file_operations proc_environ_operations = {
988 .read = environ_read,
989 };
990
991 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
992 size_t count, loff_t *ppos)
993 {
994 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
995 char buffer[PROC_NUMBUF];
996 size_t len;
997 int oom_adjust;
998
999 if (!task)
1000 return -ESRCH;
1001 oom_adjust = task->oomkilladj;
1002 put_task_struct(task);
1003
1004 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1005
1006 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1007 }
1008
1009 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1010 size_t count, loff_t *ppos)
1011 {
1012 struct task_struct *task;
1013 char buffer[PROC_NUMBUF], *end;
1014 int oom_adjust;
1015
1016 memset(buffer, 0, sizeof(buffer));
1017 if (count > sizeof(buffer) - 1)
1018 count = sizeof(buffer) - 1;
1019 if (copy_from_user(buffer, buf, count))
1020 return -EFAULT;
1021 oom_adjust = simple_strtol(buffer, &end, 0);
1022 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1023 oom_adjust != OOM_DISABLE)
1024 return -EINVAL;
1025 if (*end == '\n')
1026 end++;
1027 task = get_proc_task(file->f_path.dentry->d_inode);
1028 if (!task)
1029 return -ESRCH;
1030 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1031 put_task_struct(task);
1032 return -EACCES;
1033 }
1034 task->oomkilladj = oom_adjust;
1035 put_task_struct(task);
1036 if (end - buffer == 0)
1037 return -EIO;
1038 return end - buffer;
1039 }
1040
1041 static const struct file_operations proc_oom_adjust_operations = {
1042 .read = oom_adjust_read,
1043 .write = oom_adjust_write,
1044 };
1045
1046 #ifdef CONFIG_AUDITSYSCALL
1047 #define TMPBUFLEN 21
1048 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1049 size_t count, loff_t *ppos)
1050 {
1051 struct inode * inode = file->f_path.dentry->d_inode;
1052 struct task_struct *task = get_proc_task(inode);
1053 ssize_t length;
1054 char tmpbuf[TMPBUFLEN];
1055
1056 if (!task)
1057 return -ESRCH;
1058 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1059 audit_get_loginuid(task));
1060 put_task_struct(task);
1061 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1062 }
1063
1064 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1065 size_t count, loff_t *ppos)
1066 {
1067 struct inode * inode = file->f_path.dentry->d_inode;
1068 char *page, *tmp;
1069 ssize_t length;
1070 uid_t loginuid;
1071
1072 if (!capable(CAP_AUDIT_CONTROL))
1073 return -EPERM;
1074
1075 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1076 return -EPERM;
1077
1078 if (count >= PAGE_SIZE)
1079 count = PAGE_SIZE - 1;
1080
1081 if (*ppos != 0) {
1082 /* No partial writes. */
1083 return -EINVAL;
1084 }
1085 page = (char*)__get_free_page(GFP_TEMPORARY);
1086 if (!page)
1087 return -ENOMEM;
1088 length = -EFAULT;
1089 if (copy_from_user(page, buf, count))
1090 goto out_free_page;
1091
1092 page[count] = '\0';
1093 loginuid = simple_strtoul(page, &tmp, 10);
1094 if (tmp == page) {
1095 length = -EINVAL;
1096 goto out_free_page;
1097
1098 }
1099 length = audit_set_loginuid(current, loginuid);
1100 if (likely(length == 0))
1101 length = count;
1102
1103 out_free_page:
1104 free_page((unsigned long) page);
1105 return length;
1106 }
1107
1108 static const struct file_operations proc_loginuid_operations = {
1109 .read = proc_loginuid_read,
1110 .write = proc_loginuid_write,
1111 };
1112
1113 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1114 size_t count, loff_t *ppos)
1115 {
1116 struct inode * inode = file->f_path.dentry->d_inode;
1117 struct task_struct *task = get_proc_task(inode);
1118 ssize_t length;
1119 char tmpbuf[TMPBUFLEN];
1120
1121 if (!task)
1122 return -ESRCH;
1123 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1124 audit_get_sessionid(task));
1125 put_task_struct(task);
1126 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1127 }
1128
1129 static const struct file_operations proc_sessionid_operations = {
1130 .read = proc_sessionid_read,
1131 };
1132 #endif
1133
1134 #ifdef CONFIG_FAULT_INJECTION
1135 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1136 size_t count, loff_t *ppos)
1137 {
1138 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1139 char buffer[PROC_NUMBUF];
1140 size_t len;
1141 int make_it_fail;
1142
1143 if (!task)
1144 return -ESRCH;
1145 make_it_fail = task->make_it_fail;
1146 put_task_struct(task);
1147
1148 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1149
1150 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1151 }
1152
1153 static ssize_t proc_fault_inject_write(struct file * file,
1154 const char __user * buf, size_t count, loff_t *ppos)
1155 {
1156 struct task_struct *task;
1157 char buffer[PROC_NUMBUF], *end;
1158 int make_it_fail;
1159
1160 if (!capable(CAP_SYS_RESOURCE))
1161 return -EPERM;
1162 memset(buffer, 0, sizeof(buffer));
1163 if (count > sizeof(buffer) - 1)
1164 count = sizeof(buffer) - 1;
1165 if (copy_from_user(buffer, buf, count))
1166 return -EFAULT;
1167 make_it_fail = simple_strtol(buffer, &end, 0);
1168 if (*end == '\n')
1169 end++;
1170 task = get_proc_task(file->f_dentry->d_inode);
1171 if (!task)
1172 return -ESRCH;
1173 task->make_it_fail = make_it_fail;
1174 put_task_struct(task);
1175 if (end - buffer == 0)
1176 return -EIO;
1177 return end - buffer;
1178 }
1179
1180 static const struct file_operations proc_fault_inject_operations = {
1181 .read = proc_fault_inject_read,
1182 .write = proc_fault_inject_write,
1183 };
1184 #endif
1185
1186
1187 #ifdef CONFIG_SCHED_DEBUG
1188 /*
1189 * Print out various scheduling related per-task fields:
1190 */
1191 static int sched_show(struct seq_file *m, void *v)
1192 {
1193 struct inode *inode = m->private;
1194 struct task_struct *p;
1195
1196 WARN_ON(!inode);
1197
1198 p = get_proc_task(inode);
1199 if (!p)
1200 return -ESRCH;
1201 proc_sched_show_task(p, m);
1202
1203 put_task_struct(p);
1204
1205 return 0;
1206 }
1207
1208 static ssize_t
1209 sched_write(struct file *file, const char __user *buf,
1210 size_t count, loff_t *offset)
1211 {
1212 struct inode *inode = file->f_path.dentry->d_inode;
1213 struct task_struct *p;
1214
1215 WARN_ON(!inode);
1216
1217 p = get_proc_task(inode);
1218 if (!p)
1219 return -ESRCH;
1220 proc_sched_set_task(p);
1221
1222 put_task_struct(p);
1223
1224 return count;
1225 }
1226
1227 static int sched_open(struct inode *inode, struct file *filp)
1228 {
1229 int ret;
1230
1231 ret = single_open(filp, sched_show, NULL);
1232 if (!ret) {
1233 struct seq_file *m = filp->private_data;
1234
1235 m->private = inode;
1236 }
1237 return ret;
1238 }
1239
1240 static const struct file_operations proc_pid_sched_operations = {
1241 .open = sched_open,
1242 .read = seq_read,
1243 .write = sched_write,
1244 .llseek = seq_lseek,
1245 .release = single_release,
1246 };
1247
1248 #endif
1249
1250 /*
1251 * We added or removed a vma mapping the executable. The vmas are only mapped
1252 * during exec and are not mapped with the mmap system call.
1253 * Callers must hold down_write() on the mm's mmap_sem for these
1254 */
1255 void added_exe_file_vma(struct mm_struct *mm)
1256 {
1257 mm->num_exe_file_vmas++;
1258 }
1259
1260 void removed_exe_file_vma(struct mm_struct *mm)
1261 {
1262 mm->num_exe_file_vmas--;
1263 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1264 fput(mm->exe_file);
1265 mm->exe_file = NULL;
1266 }
1267
1268 }
1269
1270 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1271 {
1272 if (new_exe_file)
1273 get_file(new_exe_file);
1274 if (mm->exe_file)
1275 fput(mm->exe_file);
1276 mm->exe_file = new_exe_file;
1277 mm->num_exe_file_vmas = 0;
1278 }
1279
1280 struct file *get_mm_exe_file(struct mm_struct *mm)
1281 {
1282 struct file *exe_file;
1283
1284 /* We need mmap_sem to protect against races with removal of
1285 * VM_EXECUTABLE vmas */
1286 down_read(&mm->mmap_sem);
1287 exe_file = mm->exe_file;
1288 if (exe_file)
1289 get_file(exe_file);
1290 up_read(&mm->mmap_sem);
1291 return exe_file;
1292 }
1293
1294 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1295 {
1296 /* It's safe to write the exe_file pointer without exe_file_lock because
1297 * this is called during fork when the task is not yet in /proc */
1298 newmm->exe_file = get_mm_exe_file(oldmm);
1299 }
1300
1301 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1302 {
1303 struct task_struct *task;
1304 struct mm_struct *mm;
1305 struct file *exe_file;
1306
1307 task = get_proc_task(inode);
1308 if (!task)
1309 return -ENOENT;
1310 mm = get_task_mm(task);
1311 put_task_struct(task);
1312 if (!mm)
1313 return -ENOENT;
1314 exe_file = get_mm_exe_file(mm);
1315 mmput(mm);
1316 if (exe_file) {
1317 *exe_path = exe_file->f_path;
1318 path_get(&exe_file->f_path);
1319 fput(exe_file);
1320 return 0;
1321 } else
1322 return -ENOENT;
1323 }
1324
1325 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1326 {
1327 struct inode *inode = dentry->d_inode;
1328 int error = -EACCES;
1329
1330 /* We don't need a base pointer in the /proc filesystem */
1331 path_put(&nd->path);
1332
1333 /* Are we allowed to snoop on the tasks file descriptors? */
1334 if (!proc_fd_access_allowed(inode))
1335 goto out;
1336
1337 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1338 nd->last_type = LAST_BIND;
1339 out:
1340 return ERR_PTR(error);
1341 }
1342
1343 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1344 {
1345 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1346 char *pathname;
1347 int len;
1348
1349 if (!tmp)
1350 return -ENOMEM;
1351
1352 pathname = d_path(path, tmp, PAGE_SIZE);
1353 len = PTR_ERR(pathname);
1354 if (IS_ERR(pathname))
1355 goto out;
1356 len = tmp + PAGE_SIZE - 1 - pathname;
1357
1358 if (len > buflen)
1359 len = buflen;
1360 if (copy_to_user(buffer, pathname, len))
1361 len = -EFAULT;
1362 out:
1363 free_page((unsigned long)tmp);
1364 return len;
1365 }
1366
1367 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1368 {
1369 int error = -EACCES;
1370 struct inode *inode = dentry->d_inode;
1371 struct path path;
1372
1373 /* Are we allowed to snoop on the tasks file descriptors? */
1374 if (!proc_fd_access_allowed(inode))
1375 goto out;
1376
1377 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1378 if (error)
1379 goto out;
1380
1381 error = do_proc_readlink(&path, buffer, buflen);
1382 path_put(&path);
1383 out:
1384 return error;
1385 }
1386
1387 static const struct inode_operations proc_pid_link_inode_operations = {
1388 .readlink = proc_pid_readlink,
1389 .follow_link = proc_pid_follow_link,
1390 .setattr = proc_setattr,
1391 };
1392
1393
1394 /* building an inode */
1395
1396 static int task_dumpable(struct task_struct *task)
1397 {
1398 int dumpable = 0;
1399 struct mm_struct *mm;
1400
1401 task_lock(task);
1402 mm = task->mm;
1403 if (mm)
1404 dumpable = get_dumpable(mm);
1405 task_unlock(task);
1406 if(dumpable == 1)
1407 return 1;
1408 return 0;
1409 }
1410
1411
1412 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1413 {
1414 struct inode * inode;
1415 struct proc_inode *ei;
1416
1417 /* We need a new inode */
1418
1419 inode = new_inode(sb);
1420 if (!inode)
1421 goto out;
1422
1423 /* Common stuff */
1424 ei = PROC_I(inode);
1425 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1426 inode->i_op = &proc_def_inode_operations;
1427
1428 /*
1429 * grab the reference to task.
1430 */
1431 ei->pid = get_task_pid(task, PIDTYPE_PID);
1432 if (!ei->pid)
1433 goto out_unlock;
1434
1435 inode->i_uid = 0;
1436 inode->i_gid = 0;
1437 if (task_dumpable(task)) {
1438 inode->i_uid = task->euid;
1439 inode->i_gid = task->egid;
1440 }
1441 security_task_to_inode(task, inode);
1442
1443 out:
1444 return inode;
1445
1446 out_unlock:
1447 iput(inode);
1448 return NULL;
1449 }
1450
1451 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1452 {
1453 struct inode *inode = dentry->d_inode;
1454 struct task_struct *task;
1455 generic_fillattr(inode, stat);
1456
1457 rcu_read_lock();
1458 stat->uid = 0;
1459 stat->gid = 0;
1460 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1461 if (task) {
1462 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1463 task_dumpable(task)) {
1464 stat->uid = task->euid;
1465 stat->gid = task->egid;
1466 }
1467 }
1468 rcu_read_unlock();
1469 return 0;
1470 }
1471
1472 /* dentry stuff */
1473
1474 /*
1475 * Exceptional case: normally we are not allowed to unhash a busy
1476 * directory. In this case, however, we can do it - no aliasing problems
1477 * due to the way we treat inodes.
1478 *
1479 * Rewrite the inode's ownerships here because the owning task may have
1480 * performed a setuid(), etc.
1481 *
1482 * Before the /proc/pid/status file was created the only way to read
1483 * the effective uid of a /process was to stat /proc/pid. Reading
1484 * /proc/pid/status is slow enough that procps and other packages
1485 * kept stating /proc/pid. To keep the rules in /proc simple I have
1486 * made this apply to all per process world readable and executable
1487 * directories.
1488 */
1489 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1490 {
1491 struct inode *inode = dentry->d_inode;
1492 struct task_struct *task = get_proc_task(inode);
1493 if (task) {
1494 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1495 task_dumpable(task)) {
1496 inode->i_uid = task->euid;
1497 inode->i_gid = task->egid;
1498 } else {
1499 inode->i_uid = 0;
1500 inode->i_gid = 0;
1501 }
1502 inode->i_mode &= ~(S_ISUID | S_ISGID);
1503 security_task_to_inode(task, inode);
1504 put_task_struct(task);
1505 return 1;
1506 }
1507 d_drop(dentry);
1508 return 0;
1509 }
1510
1511 static int pid_delete_dentry(struct dentry * dentry)
1512 {
1513 /* Is the task we represent dead?
1514 * If so, then don't put the dentry on the lru list,
1515 * kill it immediately.
1516 */
1517 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1518 }
1519
1520 static struct dentry_operations pid_dentry_operations =
1521 {
1522 .d_revalidate = pid_revalidate,
1523 .d_delete = pid_delete_dentry,
1524 };
1525
1526 /* Lookups */
1527
1528 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1529 struct task_struct *, const void *);
1530
1531 /*
1532 * Fill a directory entry.
1533 *
1534 * If possible create the dcache entry and derive our inode number and
1535 * file type from dcache entry.
1536 *
1537 * Since all of the proc inode numbers are dynamically generated, the inode
1538 * numbers do not exist until the inode is cache. This means creating the
1539 * the dcache entry in readdir is necessary to keep the inode numbers
1540 * reported by readdir in sync with the inode numbers reported
1541 * by stat.
1542 */
1543 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1544 char *name, int len,
1545 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1546 {
1547 struct dentry *child, *dir = filp->f_path.dentry;
1548 struct inode *inode;
1549 struct qstr qname;
1550 ino_t ino = 0;
1551 unsigned type = DT_UNKNOWN;
1552
1553 qname.name = name;
1554 qname.len = len;
1555 qname.hash = full_name_hash(name, len);
1556
1557 child = d_lookup(dir, &qname);
1558 if (!child) {
1559 struct dentry *new;
1560 new = d_alloc(dir, &qname);
1561 if (new) {
1562 child = instantiate(dir->d_inode, new, task, ptr);
1563 if (child)
1564 dput(new);
1565 else
1566 child = new;
1567 }
1568 }
1569 if (!child || IS_ERR(child) || !child->d_inode)
1570 goto end_instantiate;
1571 inode = child->d_inode;
1572 if (inode) {
1573 ino = inode->i_ino;
1574 type = inode->i_mode >> 12;
1575 }
1576 dput(child);
1577 end_instantiate:
1578 if (!ino)
1579 ino = find_inode_number(dir, &qname);
1580 if (!ino)
1581 ino = 1;
1582 return filldir(dirent, name, len, filp->f_pos, ino, type);
1583 }
1584
1585 static unsigned name_to_int(struct dentry *dentry)
1586 {
1587 const char *name = dentry->d_name.name;
1588 int len = dentry->d_name.len;
1589 unsigned n = 0;
1590
1591 if (len > 1 && *name == '0')
1592 goto out;
1593 while (len-- > 0) {
1594 unsigned c = *name++ - '0';
1595 if (c > 9)
1596 goto out;
1597 if (n >= (~0U-9)/10)
1598 goto out;
1599 n *= 10;
1600 n += c;
1601 }
1602 return n;
1603 out:
1604 return ~0U;
1605 }
1606
1607 #define PROC_FDINFO_MAX 64
1608
1609 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1610 {
1611 struct task_struct *task = get_proc_task(inode);
1612 struct files_struct *files = NULL;
1613 struct file *file;
1614 int fd = proc_fd(inode);
1615
1616 if (task) {
1617 files = get_files_struct(task);
1618 put_task_struct(task);
1619 }
1620 if (files) {
1621 /*
1622 * We are not taking a ref to the file structure, so we must
1623 * hold ->file_lock.
1624 */
1625 spin_lock(&files->file_lock);
1626 file = fcheck_files(files, fd);
1627 if (file) {
1628 if (path) {
1629 *path = file->f_path;
1630 path_get(&file->f_path);
1631 }
1632 if (info)
1633 snprintf(info, PROC_FDINFO_MAX,
1634 "pos:\t%lli\n"
1635 "flags:\t0%o\n",
1636 (long long) file->f_pos,
1637 file->f_flags);
1638 spin_unlock(&files->file_lock);
1639 put_files_struct(files);
1640 return 0;
1641 }
1642 spin_unlock(&files->file_lock);
1643 put_files_struct(files);
1644 }
1645 return -ENOENT;
1646 }
1647
1648 static int proc_fd_link(struct inode *inode, struct path *path)
1649 {
1650 return proc_fd_info(inode, path, NULL);
1651 }
1652
1653 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1654 {
1655 struct inode *inode = dentry->d_inode;
1656 struct task_struct *task = get_proc_task(inode);
1657 int fd = proc_fd(inode);
1658 struct files_struct *files;
1659
1660 if (task) {
1661 files = get_files_struct(task);
1662 if (files) {
1663 rcu_read_lock();
1664 if (fcheck_files(files, fd)) {
1665 rcu_read_unlock();
1666 put_files_struct(files);
1667 if (task_dumpable(task)) {
1668 inode->i_uid = task->euid;
1669 inode->i_gid = task->egid;
1670 } else {
1671 inode->i_uid = 0;
1672 inode->i_gid = 0;
1673 }
1674 inode->i_mode &= ~(S_ISUID | S_ISGID);
1675 security_task_to_inode(task, inode);
1676 put_task_struct(task);
1677 return 1;
1678 }
1679 rcu_read_unlock();
1680 put_files_struct(files);
1681 }
1682 put_task_struct(task);
1683 }
1684 d_drop(dentry);
1685 return 0;
1686 }
1687
1688 static struct dentry_operations tid_fd_dentry_operations =
1689 {
1690 .d_revalidate = tid_fd_revalidate,
1691 .d_delete = pid_delete_dentry,
1692 };
1693
1694 static struct dentry *proc_fd_instantiate(struct inode *dir,
1695 struct dentry *dentry, struct task_struct *task, const void *ptr)
1696 {
1697 unsigned fd = *(const unsigned *)ptr;
1698 struct file *file;
1699 struct files_struct *files;
1700 struct inode *inode;
1701 struct proc_inode *ei;
1702 struct dentry *error = ERR_PTR(-ENOENT);
1703
1704 inode = proc_pid_make_inode(dir->i_sb, task);
1705 if (!inode)
1706 goto out;
1707 ei = PROC_I(inode);
1708 ei->fd = fd;
1709 files = get_files_struct(task);
1710 if (!files)
1711 goto out_iput;
1712 inode->i_mode = S_IFLNK;
1713
1714 /*
1715 * We are not taking a ref to the file structure, so we must
1716 * hold ->file_lock.
1717 */
1718 spin_lock(&files->file_lock);
1719 file = fcheck_files(files, fd);
1720 if (!file)
1721 goto out_unlock;
1722 if (file->f_mode & 1)
1723 inode->i_mode |= S_IRUSR | S_IXUSR;
1724 if (file->f_mode & 2)
1725 inode->i_mode |= S_IWUSR | S_IXUSR;
1726 spin_unlock(&files->file_lock);
1727 put_files_struct(files);
1728
1729 inode->i_op = &proc_pid_link_inode_operations;
1730 inode->i_size = 64;
1731 ei->op.proc_get_link = proc_fd_link;
1732 dentry->d_op = &tid_fd_dentry_operations;
1733 d_add(dentry, inode);
1734 /* Close the race of the process dying before we return the dentry */
1735 if (tid_fd_revalidate(dentry, NULL))
1736 error = NULL;
1737
1738 out:
1739 return error;
1740 out_unlock:
1741 spin_unlock(&files->file_lock);
1742 put_files_struct(files);
1743 out_iput:
1744 iput(inode);
1745 goto out;
1746 }
1747
1748 static struct dentry *proc_lookupfd_common(struct inode *dir,
1749 struct dentry *dentry,
1750 instantiate_t instantiate)
1751 {
1752 struct task_struct *task = get_proc_task(dir);
1753 unsigned fd = name_to_int(dentry);
1754 struct dentry *result = ERR_PTR(-ENOENT);
1755
1756 if (!task)
1757 goto out_no_task;
1758 if (fd == ~0U)
1759 goto out;
1760
1761 result = instantiate(dir, dentry, task, &fd);
1762 out:
1763 put_task_struct(task);
1764 out_no_task:
1765 return result;
1766 }
1767
1768 static int proc_readfd_common(struct file * filp, void * dirent,
1769 filldir_t filldir, instantiate_t instantiate)
1770 {
1771 struct dentry *dentry = filp->f_path.dentry;
1772 struct inode *inode = dentry->d_inode;
1773 struct task_struct *p = get_proc_task(inode);
1774 unsigned int fd, ino;
1775 int retval;
1776 struct files_struct * files;
1777
1778 retval = -ENOENT;
1779 if (!p)
1780 goto out_no_task;
1781 retval = 0;
1782
1783 fd = filp->f_pos;
1784 switch (fd) {
1785 case 0:
1786 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1787 goto out;
1788 filp->f_pos++;
1789 case 1:
1790 ino = parent_ino(dentry);
1791 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1792 goto out;
1793 filp->f_pos++;
1794 default:
1795 files = get_files_struct(p);
1796 if (!files)
1797 goto out;
1798 rcu_read_lock();
1799 for (fd = filp->f_pos-2;
1800 fd < files_fdtable(files)->max_fds;
1801 fd++, filp->f_pos++) {
1802 char name[PROC_NUMBUF];
1803 int len;
1804
1805 if (!fcheck_files(files, fd))
1806 continue;
1807 rcu_read_unlock();
1808
1809 len = snprintf(name, sizeof(name), "%d", fd);
1810 if (proc_fill_cache(filp, dirent, filldir,
1811 name, len, instantiate,
1812 p, &fd) < 0) {
1813 rcu_read_lock();
1814 break;
1815 }
1816 rcu_read_lock();
1817 }
1818 rcu_read_unlock();
1819 put_files_struct(files);
1820 }
1821 out:
1822 put_task_struct(p);
1823 out_no_task:
1824 return retval;
1825 }
1826
1827 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1828 struct nameidata *nd)
1829 {
1830 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1831 }
1832
1833 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1834 {
1835 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1836 }
1837
1838 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1839 size_t len, loff_t *ppos)
1840 {
1841 char tmp[PROC_FDINFO_MAX];
1842 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1843 if (!err)
1844 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1845 return err;
1846 }
1847
1848 static const struct file_operations proc_fdinfo_file_operations = {
1849 .open = nonseekable_open,
1850 .read = proc_fdinfo_read,
1851 };
1852
1853 static const struct file_operations proc_fd_operations = {
1854 .read = generic_read_dir,
1855 .readdir = proc_readfd,
1856 };
1857
1858 /*
1859 * /proc/pid/fd needs a special permission handler so that a process can still
1860 * access /proc/self/fd after it has executed a setuid().
1861 */
1862 static int proc_fd_permission(struct inode *inode, int mask)
1863 {
1864 int rv;
1865
1866 rv = generic_permission(inode, mask, NULL);
1867 if (rv == 0)
1868 return 0;
1869 if (task_pid(current) == proc_pid(inode))
1870 rv = 0;
1871 return rv;
1872 }
1873
1874 /*
1875 * proc directories can do almost nothing..
1876 */
1877 static const struct inode_operations proc_fd_inode_operations = {
1878 .lookup = proc_lookupfd,
1879 .permission = proc_fd_permission,
1880 .setattr = proc_setattr,
1881 };
1882
1883 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1884 struct dentry *dentry, struct task_struct *task, const void *ptr)
1885 {
1886 unsigned fd = *(unsigned *)ptr;
1887 struct inode *inode;
1888 struct proc_inode *ei;
1889 struct dentry *error = ERR_PTR(-ENOENT);
1890
1891 inode = proc_pid_make_inode(dir->i_sb, task);
1892 if (!inode)
1893 goto out;
1894 ei = PROC_I(inode);
1895 ei->fd = fd;
1896 inode->i_mode = S_IFREG | S_IRUSR;
1897 inode->i_fop = &proc_fdinfo_file_operations;
1898 dentry->d_op = &tid_fd_dentry_operations;
1899 d_add(dentry, inode);
1900 /* Close the race of the process dying before we return the dentry */
1901 if (tid_fd_revalidate(dentry, NULL))
1902 error = NULL;
1903
1904 out:
1905 return error;
1906 }
1907
1908 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1909 struct dentry *dentry,
1910 struct nameidata *nd)
1911 {
1912 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1913 }
1914
1915 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1916 {
1917 return proc_readfd_common(filp, dirent, filldir,
1918 proc_fdinfo_instantiate);
1919 }
1920
1921 static const struct file_operations proc_fdinfo_operations = {
1922 .read = generic_read_dir,
1923 .readdir = proc_readfdinfo,
1924 };
1925
1926 /*
1927 * proc directories can do almost nothing..
1928 */
1929 static const struct inode_operations proc_fdinfo_inode_operations = {
1930 .lookup = proc_lookupfdinfo,
1931 .setattr = proc_setattr,
1932 };
1933
1934
1935 static struct dentry *proc_pident_instantiate(struct inode *dir,
1936 struct dentry *dentry, struct task_struct *task, const void *ptr)
1937 {
1938 const struct pid_entry *p = ptr;
1939 struct inode *inode;
1940 struct proc_inode *ei;
1941 struct dentry *error = ERR_PTR(-EINVAL);
1942
1943 inode = proc_pid_make_inode(dir->i_sb, task);
1944 if (!inode)
1945 goto out;
1946
1947 ei = PROC_I(inode);
1948 inode->i_mode = p->mode;
1949 if (S_ISDIR(inode->i_mode))
1950 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1951 if (p->iop)
1952 inode->i_op = p->iop;
1953 if (p->fop)
1954 inode->i_fop = p->fop;
1955 ei->op = p->op;
1956 dentry->d_op = &pid_dentry_operations;
1957 d_add(dentry, inode);
1958 /* Close the race of the process dying before we return the dentry */
1959 if (pid_revalidate(dentry, NULL))
1960 error = NULL;
1961 out:
1962 return error;
1963 }
1964
1965 static struct dentry *proc_pident_lookup(struct inode *dir,
1966 struct dentry *dentry,
1967 const struct pid_entry *ents,
1968 unsigned int nents)
1969 {
1970 struct inode *inode;
1971 struct dentry *error;
1972 struct task_struct *task = get_proc_task(dir);
1973 const struct pid_entry *p, *last;
1974
1975 error = ERR_PTR(-ENOENT);
1976 inode = NULL;
1977
1978 if (!task)
1979 goto out_no_task;
1980
1981 /*
1982 * Yes, it does not scale. And it should not. Don't add
1983 * new entries into /proc/<tgid>/ without very good reasons.
1984 */
1985 last = &ents[nents - 1];
1986 for (p = ents; p <= last; p++) {
1987 if (p->len != dentry->d_name.len)
1988 continue;
1989 if (!memcmp(dentry->d_name.name, p->name, p->len))
1990 break;
1991 }
1992 if (p > last)
1993 goto out;
1994
1995 error = proc_pident_instantiate(dir, dentry, task, p);
1996 out:
1997 put_task_struct(task);
1998 out_no_task:
1999 return error;
2000 }
2001
2002 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2003 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2004 {
2005 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2006 proc_pident_instantiate, task, p);
2007 }
2008
2009 static int proc_pident_readdir(struct file *filp,
2010 void *dirent, filldir_t filldir,
2011 const struct pid_entry *ents, unsigned int nents)
2012 {
2013 int i;
2014 struct dentry *dentry = filp->f_path.dentry;
2015 struct inode *inode = dentry->d_inode;
2016 struct task_struct *task = get_proc_task(inode);
2017 const struct pid_entry *p, *last;
2018 ino_t ino;
2019 int ret;
2020
2021 ret = -ENOENT;
2022 if (!task)
2023 goto out_no_task;
2024
2025 ret = 0;
2026 i = filp->f_pos;
2027 switch (i) {
2028 case 0:
2029 ino = inode->i_ino;
2030 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2031 goto out;
2032 i++;
2033 filp->f_pos++;
2034 /* fall through */
2035 case 1:
2036 ino = parent_ino(dentry);
2037 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2038 goto out;
2039 i++;
2040 filp->f_pos++;
2041 /* fall through */
2042 default:
2043 i -= 2;
2044 if (i >= nents) {
2045 ret = 1;
2046 goto out;
2047 }
2048 p = ents + i;
2049 last = &ents[nents - 1];
2050 while (p <= last) {
2051 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2052 goto out;
2053 filp->f_pos++;
2054 p++;
2055 }
2056 }
2057
2058 ret = 1;
2059 out:
2060 put_task_struct(task);
2061 out_no_task:
2062 return ret;
2063 }
2064
2065 #ifdef CONFIG_SECURITY
2066 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2067 size_t count, loff_t *ppos)
2068 {
2069 struct inode * inode = file->f_path.dentry->d_inode;
2070 char *p = NULL;
2071 ssize_t length;
2072 struct task_struct *task = get_proc_task(inode);
2073
2074 if (!task)
2075 return -ESRCH;
2076
2077 length = security_getprocattr(task,
2078 (char*)file->f_path.dentry->d_name.name,
2079 &p);
2080 put_task_struct(task);
2081 if (length > 0)
2082 length = simple_read_from_buffer(buf, count, ppos, p, length);
2083 kfree(p);
2084 return length;
2085 }
2086
2087 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2088 size_t count, loff_t *ppos)
2089 {
2090 struct inode * inode = file->f_path.dentry->d_inode;
2091 char *page;
2092 ssize_t length;
2093 struct task_struct *task = get_proc_task(inode);
2094
2095 length = -ESRCH;
2096 if (!task)
2097 goto out_no_task;
2098 if (count > PAGE_SIZE)
2099 count = PAGE_SIZE;
2100
2101 /* No partial writes. */
2102 length = -EINVAL;
2103 if (*ppos != 0)
2104 goto out;
2105
2106 length = -ENOMEM;
2107 page = (char*)__get_free_page(GFP_TEMPORARY);
2108 if (!page)
2109 goto out;
2110
2111 length = -EFAULT;
2112 if (copy_from_user(page, buf, count))
2113 goto out_free;
2114
2115 length = security_setprocattr(task,
2116 (char*)file->f_path.dentry->d_name.name,
2117 (void*)page, count);
2118 out_free:
2119 free_page((unsigned long) page);
2120 out:
2121 put_task_struct(task);
2122 out_no_task:
2123 return length;
2124 }
2125
2126 static const struct file_operations proc_pid_attr_operations = {
2127 .read = proc_pid_attr_read,
2128 .write = proc_pid_attr_write,
2129 };
2130
2131 static const struct pid_entry attr_dir_stuff[] = {
2132 REG("current", S_IRUGO|S_IWUGO, pid_attr),
2133 REG("prev", S_IRUGO, pid_attr),
2134 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
2135 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
2136 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
2137 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2138 };
2139
2140 static int proc_attr_dir_readdir(struct file * filp,
2141 void * dirent, filldir_t filldir)
2142 {
2143 return proc_pident_readdir(filp,dirent,filldir,
2144 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2145 }
2146
2147 static const struct file_operations proc_attr_dir_operations = {
2148 .read = generic_read_dir,
2149 .readdir = proc_attr_dir_readdir,
2150 };
2151
2152 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2153 struct dentry *dentry, struct nameidata *nd)
2154 {
2155 return proc_pident_lookup(dir, dentry,
2156 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2157 }
2158
2159 static const struct inode_operations proc_attr_dir_inode_operations = {
2160 .lookup = proc_attr_dir_lookup,
2161 .getattr = pid_getattr,
2162 .setattr = proc_setattr,
2163 };
2164
2165 #endif
2166
2167 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2168 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2169 size_t count, loff_t *ppos)
2170 {
2171 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2172 struct mm_struct *mm;
2173 char buffer[PROC_NUMBUF];
2174 size_t len;
2175 int ret;
2176
2177 if (!task)
2178 return -ESRCH;
2179
2180 ret = 0;
2181 mm = get_task_mm(task);
2182 if (mm) {
2183 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2184 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2185 MMF_DUMP_FILTER_SHIFT));
2186 mmput(mm);
2187 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2188 }
2189
2190 put_task_struct(task);
2191
2192 return ret;
2193 }
2194
2195 static ssize_t proc_coredump_filter_write(struct file *file,
2196 const char __user *buf,
2197 size_t count,
2198 loff_t *ppos)
2199 {
2200 struct task_struct *task;
2201 struct mm_struct *mm;
2202 char buffer[PROC_NUMBUF], *end;
2203 unsigned int val;
2204 int ret;
2205 int i;
2206 unsigned long mask;
2207
2208 ret = -EFAULT;
2209 memset(buffer, 0, sizeof(buffer));
2210 if (count > sizeof(buffer) - 1)
2211 count = sizeof(buffer) - 1;
2212 if (copy_from_user(buffer, buf, count))
2213 goto out_no_task;
2214
2215 ret = -EINVAL;
2216 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2217 if (*end == '\n')
2218 end++;
2219 if (end - buffer == 0)
2220 goto out_no_task;
2221
2222 ret = -ESRCH;
2223 task = get_proc_task(file->f_dentry->d_inode);
2224 if (!task)
2225 goto out_no_task;
2226
2227 ret = end - buffer;
2228 mm = get_task_mm(task);
2229 if (!mm)
2230 goto out_no_mm;
2231
2232 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2233 if (val & mask)
2234 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2235 else
2236 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2237 }
2238
2239 mmput(mm);
2240 out_no_mm:
2241 put_task_struct(task);
2242 out_no_task:
2243 return ret;
2244 }
2245
2246 static const struct file_operations proc_coredump_filter_operations = {
2247 .read = proc_coredump_filter_read,
2248 .write = proc_coredump_filter_write,
2249 };
2250 #endif
2251
2252 /*
2253 * /proc/self:
2254 */
2255 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2256 int buflen)
2257 {
2258 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2259 pid_t tgid = task_tgid_nr_ns(current, ns);
2260 char tmp[PROC_NUMBUF];
2261 if (!tgid)
2262 return -ENOENT;
2263 sprintf(tmp, "%d", tgid);
2264 return vfs_readlink(dentry,buffer,buflen,tmp);
2265 }
2266
2267 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2268 {
2269 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2270 pid_t tgid = task_tgid_nr_ns(current, ns);
2271 char tmp[PROC_NUMBUF];
2272 if (!tgid)
2273 return ERR_PTR(-ENOENT);
2274 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2275 return ERR_PTR(vfs_follow_link(nd,tmp));
2276 }
2277
2278 static const struct inode_operations proc_self_inode_operations = {
2279 .readlink = proc_self_readlink,
2280 .follow_link = proc_self_follow_link,
2281 };
2282
2283 /*
2284 * proc base
2285 *
2286 * These are the directory entries in the root directory of /proc
2287 * that properly belong to the /proc filesystem, as they describe
2288 * describe something that is process related.
2289 */
2290 static const struct pid_entry proc_base_stuff[] = {
2291 NOD("self", S_IFLNK|S_IRWXUGO,
2292 &proc_self_inode_operations, NULL, {}),
2293 };
2294
2295 /*
2296 * Exceptional case: normally we are not allowed to unhash a busy
2297 * directory. In this case, however, we can do it - no aliasing problems
2298 * due to the way we treat inodes.
2299 */
2300 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2301 {
2302 struct inode *inode = dentry->d_inode;
2303 struct task_struct *task = get_proc_task(inode);
2304 if (task) {
2305 put_task_struct(task);
2306 return 1;
2307 }
2308 d_drop(dentry);
2309 return 0;
2310 }
2311
2312 static struct dentry_operations proc_base_dentry_operations =
2313 {
2314 .d_revalidate = proc_base_revalidate,
2315 .d_delete = pid_delete_dentry,
2316 };
2317
2318 static struct dentry *proc_base_instantiate(struct inode *dir,
2319 struct dentry *dentry, struct task_struct *task, const void *ptr)
2320 {
2321 const struct pid_entry *p = ptr;
2322 struct inode *inode;
2323 struct proc_inode *ei;
2324 struct dentry *error = ERR_PTR(-EINVAL);
2325
2326 /* Allocate the inode */
2327 error = ERR_PTR(-ENOMEM);
2328 inode = new_inode(dir->i_sb);
2329 if (!inode)
2330 goto out;
2331
2332 /* Initialize the inode */
2333 ei = PROC_I(inode);
2334 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2335
2336 /*
2337 * grab the reference to the task.
2338 */
2339 ei->pid = get_task_pid(task, PIDTYPE_PID);
2340 if (!ei->pid)
2341 goto out_iput;
2342
2343 inode->i_uid = 0;
2344 inode->i_gid = 0;
2345 inode->i_mode = p->mode;
2346 if (S_ISDIR(inode->i_mode))
2347 inode->i_nlink = 2;
2348 if (S_ISLNK(inode->i_mode))
2349 inode->i_size = 64;
2350 if (p->iop)
2351 inode->i_op = p->iop;
2352 if (p->fop)
2353 inode->i_fop = p->fop;
2354 ei->op = p->op;
2355 dentry->d_op = &proc_base_dentry_operations;
2356 d_add(dentry, inode);
2357 error = NULL;
2358 out:
2359 return error;
2360 out_iput:
2361 iput(inode);
2362 goto out;
2363 }
2364
2365 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2366 {
2367 struct dentry *error;
2368 struct task_struct *task = get_proc_task(dir);
2369 const struct pid_entry *p, *last;
2370
2371 error = ERR_PTR(-ENOENT);
2372
2373 if (!task)
2374 goto out_no_task;
2375
2376 /* Lookup the directory entry */
2377 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2378 for (p = proc_base_stuff; p <= last; p++) {
2379 if (p->len != dentry->d_name.len)
2380 continue;
2381 if (!memcmp(dentry->d_name.name, p->name, p->len))
2382 break;
2383 }
2384 if (p > last)
2385 goto out;
2386
2387 error = proc_base_instantiate(dir, dentry, task, p);
2388
2389 out:
2390 put_task_struct(task);
2391 out_no_task:
2392 return error;
2393 }
2394
2395 static int proc_base_fill_cache(struct file *filp, void *dirent,
2396 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2397 {
2398 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2399 proc_base_instantiate, task, p);
2400 }
2401
2402 #ifdef CONFIG_TASK_IO_ACCOUNTING
2403 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2404 {
2405 u64 rchar, wchar, syscr, syscw;
2406 struct task_io_accounting ioac;
2407
2408 if (!whole) {
2409 rchar = task->rchar;
2410 wchar = task->wchar;
2411 syscr = task->syscr;
2412 syscw = task->syscw;
2413 memcpy(&ioac, &task->ioac, sizeof(ioac));
2414 } else {
2415 unsigned long flags;
2416 struct task_struct *t = task;
2417 rchar = wchar = syscr = syscw = 0;
2418 memset(&ioac, 0, sizeof(ioac));
2419
2420 rcu_read_lock();
2421 do {
2422 rchar += t->rchar;
2423 wchar += t->wchar;
2424 syscr += t->syscr;
2425 syscw += t->syscw;
2426
2427 ioac.read_bytes += t->ioac.read_bytes;
2428 ioac.write_bytes += t->ioac.write_bytes;
2429 ioac.cancelled_write_bytes +=
2430 t->ioac.cancelled_write_bytes;
2431 t = next_thread(t);
2432 } while (t != task);
2433 rcu_read_unlock();
2434
2435 if (lock_task_sighand(task, &flags)) {
2436 struct signal_struct *sig = task->signal;
2437
2438 rchar += sig->rchar;
2439 wchar += sig->wchar;
2440 syscr += sig->syscr;
2441 syscw += sig->syscw;
2442
2443 ioac.read_bytes += sig->ioac.read_bytes;
2444 ioac.write_bytes += sig->ioac.write_bytes;
2445 ioac.cancelled_write_bytes +=
2446 sig->ioac.cancelled_write_bytes;
2447
2448 unlock_task_sighand(task, &flags);
2449 }
2450 }
2451
2452 return sprintf(buffer,
2453 "rchar: %llu\n"
2454 "wchar: %llu\n"
2455 "syscr: %llu\n"
2456 "syscw: %llu\n"
2457 "read_bytes: %llu\n"
2458 "write_bytes: %llu\n"
2459 "cancelled_write_bytes: %llu\n",
2460 (unsigned long long)rchar,
2461 (unsigned long long)wchar,
2462 (unsigned long long)syscr,
2463 (unsigned long long)syscw,
2464 (unsigned long long)ioac.read_bytes,
2465 (unsigned long long)ioac.write_bytes,
2466 (unsigned long long)ioac.cancelled_write_bytes);
2467 }
2468
2469 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2470 {
2471 return do_io_accounting(task, buffer, 0);
2472 }
2473
2474 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2475 {
2476 return do_io_accounting(task, buffer, 1);
2477 }
2478 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2479
2480 /*
2481 * Thread groups
2482 */
2483 static const struct file_operations proc_task_operations;
2484 static const struct inode_operations proc_task_inode_operations;
2485
2486 static const struct pid_entry tgid_base_stuff[] = {
2487 DIR("task", S_IRUGO|S_IXUGO, task),
2488 DIR("fd", S_IRUSR|S_IXUSR, fd),
2489 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2490 #ifdef CONFIG_NET
2491 DIR("net", S_IRUGO|S_IXUGO, net),
2492 #endif
2493 REG("environ", S_IRUSR, environ),
2494 INF("auxv", S_IRUSR, pid_auxv),
2495 ONE("status", S_IRUGO, pid_status),
2496 INF("limits", S_IRUSR, pid_limits),
2497 #ifdef CONFIG_SCHED_DEBUG
2498 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2499 #endif
2500 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2501 INF("syscall", S_IRUSR, pid_syscall),
2502 #endif
2503 INF("cmdline", S_IRUGO, pid_cmdline),
2504 ONE("stat", S_IRUGO, tgid_stat),
2505 ONE("statm", S_IRUGO, pid_statm),
2506 REG("maps", S_IRUGO, maps),
2507 #ifdef CONFIG_NUMA
2508 REG("numa_maps", S_IRUGO, numa_maps),
2509 #endif
2510 REG("mem", S_IRUSR|S_IWUSR, mem),
2511 LNK("cwd", cwd),
2512 LNK("root", root),
2513 LNK("exe", exe),
2514 REG("mounts", S_IRUGO, mounts),
2515 REG("mountinfo", S_IRUGO, mountinfo),
2516 REG("mountstats", S_IRUSR, mountstats),
2517 #ifdef CONFIG_PROC_PAGE_MONITOR
2518 REG("clear_refs", S_IWUSR, clear_refs),
2519 REG("smaps", S_IRUGO, smaps),
2520 REG("pagemap", S_IRUSR, pagemap),
2521 #endif
2522 #ifdef CONFIG_SECURITY
2523 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2524 #endif
2525 #ifdef CONFIG_KALLSYMS
2526 INF("wchan", S_IRUGO, pid_wchan),
2527 #endif
2528 #ifdef CONFIG_SCHEDSTATS
2529 INF("schedstat", S_IRUGO, pid_schedstat),
2530 #endif
2531 #ifdef CONFIG_LATENCYTOP
2532 REG("latency", S_IRUGO, lstats),
2533 #endif
2534 #ifdef CONFIG_PROC_PID_CPUSET
2535 REG("cpuset", S_IRUGO, cpuset),
2536 #endif
2537 #ifdef CONFIG_CGROUPS
2538 REG("cgroup", S_IRUGO, cgroup),
2539 #endif
2540 INF("oom_score", S_IRUGO, oom_score),
2541 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2542 #ifdef CONFIG_AUDITSYSCALL
2543 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2544 REG("sessionid", S_IRUGO, sessionid),
2545 #endif
2546 #ifdef CONFIG_FAULT_INJECTION
2547 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2548 #endif
2549 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2550 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2551 #endif
2552 #ifdef CONFIG_TASK_IO_ACCOUNTING
2553 INF("io", S_IRUGO, tgid_io_accounting),
2554 #endif
2555 };
2556
2557 static int proc_tgid_base_readdir(struct file * filp,
2558 void * dirent, filldir_t filldir)
2559 {
2560 return proc_pident_readdir(filp,dirent,filldir,
2561 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2562 }
2563
2564 static const struct file_operations proc_tgid_base_operations = {
2565 .read = generic_read_dir,
2566 .readdir = proc_tgid_base_readdir,
2567 };
2568
2569 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2570 return proc_pident_lookup(dir, dentry,
2571 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2572 }
2573
2574 static const struct inode_operations proc_tgid_base_inode_operations = {
2575 .lookup = proc_tgid_base_lookup,
2576 .getattr = pid_getattr,
2577 .setattr = proc_setattr,
2578 };
2579
2580 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2581 {
2582 struct dentry *dentry, *leader, *dir;
2583 char buf[PROC_NUMBUF];
2584 struct qstr name;
2585
2586 name.name = buf;
2587 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2588 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2589 if (dentry) {
2590 if (!(current->flags & PF_EXITING))
2591 shrink_dcache_parent(dentry);
2592 d_drop(dentry);
2593 dput(dentry);
2594 }
2595
2596 if (tgid == 0)
2597 goto out;
2598
2599 name.name = buf;
2600 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2601 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2602 if (!leader)
2603 goto out;
2604
2605 name.name = "task";
2606 name.len = strlen(name.name);
2607 dir = d_hash_and_lookup(leader, &name);
2608 if (!dir)
2609 goto out_put_leader;
2610
2611 name.name = buf;
2612 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2613 dentry = d_hash_and_lookup(dir, &name);
2614 if (dentry) {
2615 shrink_dcache_parent(dentry);
2616 d_drop(dentry);
2617 dput(dentry);
2618 }
2619
2620 dput(dir);
2621 out_put_leader:
2622 dput(leader);
2623 out:
2624 return;
2625 }
2626
2627 /**
2628 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2629 * @task: task that should be flushed.
2630 *
2631 * When flushing dentries from proc, one needs to flush them from global
2632 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2633 * in. This call is supposed to do all of this job.
2634 *
2635 * Looks in the dcache for
2636 * /proc/@pid
2637 * /proc/@tgid/task/@pid
2638 * if either directory is present flushes it and all of it'ts children
2639 * from the dcache.
2640 *
2641 * It is safe and reasonable to cache /proc entries for a task until
2642 * that task exits. After that they just clog up the dcache with
2643 * useless entries, possibly causing useful dcache entries to be
2644 * flushed instead. This routine is proved to flush those useless
2645 * dcache entries at process exit time.
2646 *
2647 * NOTE: This routine is just an optimization so it does not guarantee
2648 * that no dcache entries will exist at process exit time it
2649 * just makes it very unlikely that any will persist.
2650 */
2651
2652 void proc_flush_task(struct task_struct *task)
2653 {
2654 int i;
2655 struct pid *pid, *tgid = NULL;
2656 struct upid *upid;
2657
2658 pid = task_pid(task);
2659 if (thread_group_leader(task))
2660 tgid = task_tgid(task);
2661
2662 for (i = 0; i <= pid->level; i++) {
2663 upid = &pid->numbers[i];
2664 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2665 tgid ? tgid->numbers[i].nr : 0);
2666 }
2667
2668 upid = &pid->numbers[pid->level];
2669 if (upid->nr == 1)
2670 pid_ns_release_proc(upid->ns);
2671 }
2672
2673 static struct dentry *proc_pid_instantiate(struct inode *dir,
2674 struct dentry * dentry,
2675 struct task_struct *task, const void *ptr)
2676 {
2677 struct dentry *error = ERR_PTR(-ENOENT);
2678 struct inode *inode;
2679
2680 inode = proc_pid_make_inode(dir->i_sb, task);
2681 if (!inode)
2682 goto out;
2683
2684 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2685 inode->i_op = &proc_tgid_base_inode_operations;
2686 inode->i_fop = &proc_tgid_base_operations;
2687 inode->i_flags|=S_IMMUTABLE;
2688
2689 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2690 ARRAY_SIZE(tgid_base_stuff));
2691
2692 dentry->d_op = &pid_dentry_operations;
2693
2694 d_add(dentry, inode);
2695 /* Close the race of the process dying before we return the dentry */
2696 if (pid_revalidate(dentry, NULL))
2697 error = NULL;
2698 out:
2699 return error;
2700 }
2701
2702 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2703 {
2704 struct dentry *result = ERR_PTR(-ENOENT);
2705 struct task_struct *task;
2706 unsigned tgid;
2707 struct pid_namespace *ns;
2708
2709 result = proc_base_lookup(dir, dentry);
2710 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2711 goto out;
2712
2713 tgid = name_to_int(dentry);
2714 if (tgid == ~0U)
2715 goto out;
2716
2717 ns = dentry->d_sb->s_fs_info;
2718 rcu_read_lock();
2719 task = find_task_by_pid_ns(tgid, ns);
2720 if (task)
2721 get_task_struct(task);
2722 rcu_read_unlock();
2723 if (!task)
2724 goto out;
2725
2726 result = proc_pid_instantiate(dir, dentry, task, NULL);
2727 put_task_struct(task);
2728 out:
2729 return result;
2730 }
2731
2732 /*
2733 * Find the first task with tgid >= tgid
2734 *
2735 */
2736 struct tgid_iter {
2737 unsigned int tgid;
2738 struct task_struct *task;
2739 };
2740 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2741 {
2742 struct pid *pid;
2743
2744 if (iter.task)
2745 put_task_struct(iter.task);
2746 rcu_read_lock();
2747 retry:
2748 iter.task = NULL;
2749 pid = find_ge_pid(iter.tgid, ns);
2750 if (pid) {
2751 iter.tgid = pid_nr_ns(pid, ns);
2752 iter.task = pid_task(pid, PIDTYPE_PID);
2753 /* What we to know is if the pid we have find is the
2754 * pid of a thread_group_leader. Testing for task
2755 * being a thread_group_leader is the obvious thing
2756 * todo but there is a window when it fails, due to
2757 * the pid transfer logic in de_thread.
2758 *
2759 * So we perform the straight forward test of seeing
2760 * if the pid we have found is the pid of a thread
2761 * group leader, and don't worry if the task we have
2762 * found doesn't happen to be a thread group leader.
2763 * As we don't care in the case of readdir.
2764 */
2765 if (!iter.task || !has_group_leader_pid(iter.task)) {
2766 iter.tgid += 1;
2767 goto retry;
2768 }
2769 get_task_struct(iter.task);
2770 }
2771 rcu_read_unlock();
2772 return iter;
2773 }
2774
2775 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2776
2777 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2778 struct tgid_iter iter)
2779 {
2780 char name[PROC_NUMBUF];
2781 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2782 return proc_fill_cache(filp, dirent, filldir, name, len,
2783 proc_pid_instantiate, iter.task, NULL);
2784 }
2785
2786 /* for the /proc/ directory itself, after non-process stuff has been done */
2787 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2788 {
2789 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2790 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2791 struct tgid_iter iter;
2792 struct pid_namespace *ns;
2793
2794 if (!reaper)
2795 goto out_no_task;
2796
2797 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2798 const struct pid_entry *p = &proc_base_stuff[nr];
2799 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2800 goto out;
2801 }
2802
2803 ns = filp->f_dentry->d_sb->s_fs_info;
2804 iter.task = NULL;
2805 iter.tgid = filp->f_pos - TGID_OFFSET;
2806 for (iter = next_tgid(ns, iter);
2807 iter.task;
2808 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2809 filp->f_pos = iter.tgid + TGID_OFFSET;
2810 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2811 put_task_struct(iter.task);
2812 goto out;
2813 }
2814 }
2815 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2816 out:
2817 put_task_struct(reaper);
2818 out_no_task:
2819 return 0;
2820 }
2821
2822 /*
2823 * Tasks
2824 */
2825 static const struct pid_entry tid_base_stuff[] = {
2826 DIR("fd", S_IRUSR|S_IXUSR, fd),
2827 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2828 REG("environ", S_IRUSR, environ),
2829 INF("auxv", S_IRUSR, pid_auxv),
2830 ONE("status", S_IRUGO, pid_status),
2831 INF("limits", S_IRUSR, pid_limits),
2832 #ifdef CONFIG_SCHED_DEBUG
2833 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2834 #endif
2835 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2836 INF("syscall", S_IRUSR, pid_syscall),
2837 #endif
2838 INF("cmdline", S_IRUGO, pid_cmdline),
2839 ONE("stat", S_IRUGO, tid_stat),
2840 ONE("statm", S_IRUGO, pid_statm),
2841 REG("maps", S_IRUGO, maps),
2842 #ifdef CONFIG_NUMA
2843 REG("numa_maps", S_IRUGO, numa_maps),
2844 #endif
2845 REG("mem", S_IRUSR|S_IWUSR, mem),
2846 LNK("cwd", cwd),
2847 LNK("root", root),
2848 LNK("exe", exe),
2849 REG("mounts", S_IRUGO, mounts),
2850 REG("mountinfo", S_IRUGO, mountinfo),
2851 #ifdef CONFIG_PROC_PAGE_MONITOR
2852 REG("clear_refs", S_IWUSR, clear_refs),
2853 REG("smaps", S_IRUGO, smaps),
2854 REG("pagemap", S_IRUSR, pagemap),
2855 #endif
2856 #ifdef CONFIG_SECURITY
2857 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2858 #endif
2859 #ifdef CONFIG_KALLSYMS
2860 INF("wchan", S_IRUGO, pid_wchan),
2861 #endif
2862 #ifdef CONFIG_SCHEDSTATS
2863 INF("schedstat", S_IRUGO, pid_schedstat),
2864 #endif
2865 #ifdef CONFIG_LATENCYTOP
2866 REG("latency", S_IRUGO, lstats),
2867 #endif
2868 #ifdef CONFIG_PROC_PID_CPUSET
2869 REG("cpuset", S_IRUGO, cpuset),
2870 #endif
2871 #ifdef CONFIG_CGROUPS
2872 REG("cgroup", S_IRUGO, cgroup),
2873 #endif
2874 INF("oom_score", S_IRUGO, oom_score),
2875 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2876 #ifdef CONFIG_AUDITSYSCALL
2877 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2878 REG("sessionid", S_IRUSR, sessionid),
2879 #endif
2880 #ifdef CONFIG_FAULT_INJECTION
2881 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2882 #endif
2883 #ifdef CONFIG_TASK_IO_ACCOUNTING
2884 INF("io", S_IRUGO, tid_io_accounting),
2885 #endif
2886 };
2887
2888 static int proc_tid_base_readdir(struct file * filp,
2889 void * dirent, filldir_t filldir)
2890 {
2891 return proc_pident_readdir(filp,dirent,filldir,
2892 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2893 }
2894
2895 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2896 return proc_pident_lookup(dir, dentry,
2897 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2898 }
2899
2900 static const struct file_operations proc_tid_base_operations = {
2901 .read = generic_read_dir,
2902 .readdir = proc_tid_base_readdir,
2903 };
2904
2905 static const struct inode_operations proc_tid_base_inode_operations = {
2906 .lookup = proc_tid_base_lookup,
2907 .getattr = pid_getattr,
2908 .setattr = proc_setattr,
2909 };
2910
2911 static struct dentry *proc_task_instantiate(struct inode *dir,
2912 struct dentry *dentry, struct task_struct *task, const void *ptr)
2913 {
2914 struct dentry *error = ERR_PTR(-ENOENT);
2915 struct inode *inode;
2916 inode = proc_pid_make_inode(dir->i_sb, task);
2917
2918 if (!inode)
2919 goto out;
2920 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2921 inode->i_op = &proc_tid_base_inode_operations;
2922 inode->i_fop = &proc_tid_base_operations;
2923 inode->i_flags|=S_IMMUTABLE;
2924
2925 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2926 ARRAY_SIZE(tid_base_stuff));
2927
2928 dentry->d_op = &pid_dentry_operations;
2929
2930 d_add(dentry, inode);
2931 /* Close the race of the process dying before we return the dentry */
2932 if (pid_revalidate(dentry, NULL))
2933 error = NULL;
2934 out:
2935 return error;
2936 }
2937
2938 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2939 {
2940 struct dentry *result = ERR_PTR(-ENOENT);
2941 struct task_struct *task;
2942 struct task_struct *leader = get_proc_task(dir);
2943 unsigned tid;
2944 struct pid_namespace *ns;
2945
2946 if (!leader)
2947 goto out_no_task;
2948
2949 tid = name_to_int(dentry);
2950 if (tid == ~0U)
2951 goto out;
2952
2953 ns = dentry->d_sb->s_fs_info;
2954 rcu_read_lock();
2955 task = find_task_by_pid_ns(tid, ns);
2956 if (task)
2957 get_task_struct(task);
2958 rcu_read_unlock();
2959 if (!task)
2960 goto out;
2961 if (!same_thread_group(leader, task))
2962 goto out_drop_task;
2963
2964 result = proc_task_instantiate(dir, dentry, task, NULL);
2965 out_drop_task:
2966 put_task_struct(task);
2967 out:
2968 put_task_struct(leader);
2969 out_no_task:
2970 return result;
2971 }
2972
2973 /*
2974 * Find the first tid of a thread group to return to user space.
2975 *
2976 * Usually this is just the thread group leader, but if the users
2977 * buffer was too small or there was a seek into the middle of the
2978 * directory we have more work todo.
2979 *
2980 * In the case of a short read we start with find_task_by_pid.
2981 *
2982 * In the case of a seek we start with the leader and walk nr
2983 * threads past it.
2984 */
2985 static struct task_struct *first_tid(struct task_struct *leader,
2986 int tid, int nr, struct pid_namespace *ns)
2987 {
2988 struct task_struct *pos;
2989
2990 rcu_read_lock();
2991 /* Attempt to start with the pid of a thread */
2992 if (tid && (nr > 0)) {
2993 pos = find_task_by_pid_ns(tid, ns);
2994 if (pos && (pos->group_leader == leader))
2995 goto found;
2996 }
2997
2998 /* If nr exceeds the number of threads there is nothing todo */
2999 pos = NULL;
3000 if (nr && nr >= get_nr_threads(leader))
3001 goto out;
3002
3003 /* If we haven't found our starting place yet start
3004 * with the leader and walk nr threads forward.
3005 */
3006 for (pos = leader; nr > 0; --nr) {
3007 pos = next_thread(pos);
3008 if (pos == leader) {
3009 pos = NULL;
3010 goto out;
3011 }
3012 }
3013 found:
3014 get_task_struct(pos);
3015 out:
3016 rcu_read_unlock();
3017 return pos;
3018 }
3019
3020 /*
3021 * Find the next thread in the thread list.
3022 * Return NULL if there is an error or no next thread.
3023 *
3024 * The reference to the input task_struct is released.
3025 */
3026 static struct task_struct *next_tid(struct task_struct *start)
3027 {
3028 struct task_struct *pos = NULL;
3029 rcu_read_lock();
3030 if (pid_alive(start)) {
3031 pos = next_thread(start);
3032 if (thread_group_leader(pos))
3033 pos = NULL;
3034 else
3035 get_task_struct(pos);
3036 }
3037 rcu_read_unlock();
3038 put_task_struct(start);
3039 return pos;
3040 }
3041
3042 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3043 struct task_struct *task, int tid)
3044 {
3045 char name[PROC_NUMBUF];
3046 int len = snprintf(name, sizeof(name), "%d", tid);
3047 return proc_fill_cache(filp, dirent, filldir, name, len,
3048 proc_task_instantiate, task, NULL);
3049 }
3050
3051 /* for the /proc/TGID/task/ directories */
3052 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3053 {
3054 struct dentry *dentry = filp->f_path.dentry;
3055 struct inode *inode = dentry->d_inode;
3056 struct task_struct *leader = NULL;
3057 struct task_struct *task;
3058 int retval = -ENOENT;
3059 ino_t ino;
3060 int tid;
3061 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
3062 struct pid_namespace *ns;
3063
3064 task = get_proc_task(inode);
3065 if (!task)
3066 goto out_no_task;
3067 rcu_read_lock();
3068 if (pid_alive(task)) {
3069 leader = task->group_leader;
3070 get_task_struct(leader);
3071 }
3072 rcu_read_unlock();
3073 put_task_struct(task);
3074 if (!leader)
3075 goto out_no_task;
3076 retval = 0;
3077
3078 switch (pos) {
3079 case 0:
3080 ino = inode->i_ino;
3081 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3082 goto out;
3083 pos++;
3084 /* fall through */
3085 case 1:
3086 ino = parent_ino(dentry);
3087 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3088 goto out;
3089 pos++;
3090 /* fall through */
3091 }
3092
3093 /* f_version caches the tgid value that the last readdir call couldn't
3094 * return. lseek aka telldir automagically resets f_version to 0.
3095 */
3096 ns = filp->f_dentry->d_sb->s_fs_info;
3097 tid = (int)filp->f_version;
3098 filp->f_version = 0;
3099 for (task = first_tid(leader, tid, pos - 2, ns);
3100 task;
3101 task = next_tid(task), pos++) {
3102 tid = task_pid_nr_ns(task, ns);
3103 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3104 /* returning this tgid failed, save it as the first
3105 * pid for the next readir call */
3106 filp->f_version = (u64)tid;
3107 put_task_struct(task);
3108 break;
3109 }
3110 }
3111 out:
3112 filp->f_pos = pos;
3113 put_task_struct(leader);
3114 out_no_task:
3115 return retval;
3116 }
3117
3118 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3119 {
3120 struct inode *inode = dentry->d_inode;
3121 struct task_struct *p = get_proc_task(inode);
3122 generic_fillattr(inode, stat);
3123
3124 if (p) {
3125 rcu_read_lock();
3126 stat->nlink += get_nr_threads(p);
3127 rcu_read_unlock();
3128 put_task_struct(p);
3129 }
3130
3131 return 0;
3132 }
3133
3134 static const struct inode_operations proc_task_inode_operations = {
3135 .lookup = proc_task_lookup,
3136 .getattr = proc_task_getattr,
3137 .setattr = proc_setattr,
3138 };
3139
3140 static const struct file_operations proc_task_operations = {
3141 .read = generic_read_dir,
3142 .readdir = proc_task_readdir,
3143 };