]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/base.c
Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[mirror_ubuntu-zesty-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/config.h>
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/string.h>
61 #include <linux/seq_file.h>
62 #include <linux/namei.h>
63 #include <linux/namespace.h>
64 #include <linux/mm.h>
65 #include <linux/smp_lock.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/seccomp.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include "internal.h"
76
77 /* NOTE:
78 * Implementing inode permission operations in /proc is almost
79 * certainly an error. Permission checks need to happen during
80 * each system call not at open time. The reason is that most of
81 * what we wish to check for permissions in /proc varies at runtime.
82 *
83 * The classic example of a problem is opening file descriptors
84 * in /proc for a task before it execs a suid executable.
85 */
86
87 /*
88 * For hysterical raisins we keep the same inumbers as in the old procfs.
89 * Feel free to change the macro below - just keep the range distinct from
90 * inumbers of the rest of procfs (currently those are in 0x0000--0xffff).
91 * As soon as we'll get a separate superblock we will be able to forget
92 * about magical ranges too.
93 */
94
95 #define fake_ino(pid,ino) (((pid)<<16)|(ino))
96
97 enum pid_directory_inos {
98 PROC_TGID_INO = 2,
99 PROC_TGID_TASK,
100 PROC_TGID_STATUS,
101 PROC_TGID_MEM,
102 #ifdef CONFIG_SECCOMP
103 PROC_TGID_SECCOMP,
104 #endif
105 PROC_TGID_CWD,
106 PROC_TGID_ROOT,
107 PROC_TGID_EXE,
108 PROC_TGID_FD,
109 PROC_TGID_ENVIRON,
110 PROC_TGID_AUXV,
111 PROC_TGID_CMDLINE,
112 PROC_TGID_STAT,
113 PROC_TGID_STATM,
114 PROC_TGID_MAPS,
115 PROC_TGID_NUMA_MAPS,
116 PROC_TGID_MOUNTS,
117 PROC_TGID_MOUNTSTATS,
118 PROC_TGID_WCHAN,
119 #ifdef CONFIG_MMU
120 PROC_TGID_SMAPS,
121 #endif
122 #ifdef CONFIG_SCHEDSTATS
123 PROC_TGID_SCHEDSTAT,
124 #endif
125 #ifdef CONFIG_CPUSETS
126 PROC_TGID_CPUSET,
127 #endif
128 #ifdef CONFIG_SECURITY
129 PROC_TGID_ATTR,
130 PROC_TGID_ATTR_CURRENT,
131 PROC_TGID_ATTR_PREV,
132 PROC_TGID_ATTR_EXEC,
133 PROC_TGID_ATTR_FSCREATE,
134 PROC_TGID_ATTR_KEYCREATE,
135 PROC_TGID_ATTR_SOCKCREATE,
136 #endif
137 #ifdef CONFIG_AUDITSYSCALL
138 PROC_TGID_LOGINUID,
139 #endif
140 PROC_TGID_OOM_SCORE,
141 PROC_TGID_OOM_ADJUST,
142 PROC_TID_INO,
143 PROC_TID_STATUS,
144 PROC_TID_MEM,
145 #ifdef CONFIG_SECCOMP
146 PROC_TID_SECCOMP,
147 #endif
148 PROC_TID_CWD,
149 PROC_TID_ROOT,
150 PROC_TID_EXE,
151 PROC_TID_FD,
152 PROC_TID_ENVIRON,
153 PROC_TID_AUXV,
154 PROC_TID_CMDLINE,
155 PROC_TID_STAT,
156 PROC_TID_STATM,
157 PROC_TID_MAPS,
158 PROC_TID_NUMA_MAPS,
159 PROC_TID_MOUNTS,
160 PROC_TID_MOUNTSTATS,
161 PROC_TID_WCHAN,
162 #ifdef CONFIG_MMU
163 PROC_TID_SMAPS,
164 #endif
165 #ifdef CONFIG_SCHEDSTATS
166 PROC_TID_SCHEDSTAT,
167 #endif
168 #ifdef CONFIG_CPUSETS
169 PROC_TID_CPUSET,
170 #endif
171 #ifdef CONFIG_SECURITY
172 PROC_TID_ATTR,
173 PROC_TID_ATTR_CURRENT,
174 PROC_TID_ATTR_PREV,
175 PROC_TID_ATTR_EXEC,
176 PROC_TID_ATTR_FSCREATE,
177 PROC_TID_ATTR_KEYCREATE,
178 PROC_TID_ATTR_SOCKCREATE,
179 #endif
180 #ifdef CONFIG_AUDITSYSCALL
181 PROC_TID_LOGINUID,
182 #endif
183 PROC_TID_OOM_SCORE,
184 PROC_TID_OOM_ADJUST,
185
186 /* Add new entries before this */
187 PROC_TID_FD_DIR = 0x8000, /* 0x8000-0xffff */
188 };
189
190 /* Worst case buffer size needed for holding an integer. */
191 #define PROC_NUMBUF 10
192
193 struct pid_entry {
194 int type;
195 int len;
196 char *name;
197 mode_t mode;
198 };
199
200 #define E(type,name,mode) {(type),sizeof(name)-1,(name),(mode)}
201
202 static struct pid_entry tgid_base_stuff[] = {
203 E(PROC_TGID_TASK, "task", S_IFDIR|S_IRUGO|S_IXUGO),
204 E(PROC_TGID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR),
205 E(PROC_TGID_ENVIRON, "environ", S_IFREG|S_IRUSR),
206 E(PROC_TGID_AUXV, "auxv", S_IFREG|S_IRUSR),
207 E(PROC_TGID_STATUS, "status", S_IFREG|S_IRUGO),
208 E(PROC_TGID_CMDLINE, "cmdline", S_IFREG|S_IRUGO),
209 E(PROC_TGID_STAT, "stat", S_IFREG|S_IRUGO),
210 E(PROC_TGID_STATM, "statm", S_IFREG|S_IRUGO),
211 E(PROC_TGID_MAPS, "maps", S_IFREG|S_IRUGO),
212 #ifdef CONFIG_NUMA
213 E(PROC_TGID_NUMA_MAPS, "numa_maps", S_IFREG|S_IRUGO),
214 #endif
215 E(PROC_TGID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR),
216 #ifdef CONFIG_SECCOMP
217 E(PROC_TGID_SECCOMP, "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
218 #endif
219 E(PROC_TGID_CWD, "cwd", S_IFLNK|S_IRWXUGO),
220 E(PROC_TGID_ROOT, "root", S_IFLNK|S_IRWXUGO),
221 E(PROC_TGID_EXE, "exe", S_IFLNK|S_IRWXUGO),
222 E(PROC_TGID_MOUNTS, "mounts", S_IFREG|S_IRUGO),
223 E(PROC_TGID_MOUNTSTATS, "mountstats", S_IFREG|S_IRUSR),
224 #ifdef CONFIG_MMU
225 E(PROC_TGID_SMAPS, "smaps", S_IFREG|S_IRUGO),
226 #endif
227 #ifdef CONFIG_SECURITY
228 E(PROC_TGID_ATTR, "attr", S_IFDIR|S_IRUGO|S_IXUGO),
229 #endif
230 #ifdef CONFIG_KALLSYMS
231 E(PROC_TGID_WCHAN, "wchan", S_IFREG|S_IRUGO),
232 #endif
233 #ifdef CONFIG_SCHEDSTATS
234 E(PROC_TGID_SCHEDSTAT, "schedstat", S_IFREG|S_IRUGO),
235 #endif
236 #ifdef CONFIG_CPUSETS
237 E(PROC_TGID_CPUSET, "cpuset", S_IFREG|S_IRUGO),
238 #endif
239 E(PROC_TGID_OOM_SCORE, "oom_score",S_IFREG|S_IRUGO),
240 E(PROC_TGID_OOM_ADJUST,"oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
241 #ifdef CONFIG_AUDITSYSCALL
242 E(PROC_TGID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
243 #endif
244 {0,0,NULL,0}
245 };
246 static struct pid_entry tid_base_stuff[] = {
247 E(PROC_TID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR),
248 E(PROC_TID_ENVIRON, "environ", S_IFREG|S_IRUSR),
249 E(PROC_TID_AUXV, "auxv", S_IFREG|S_IRUSR),
250 E(PROC_TID_STATUS, "status", S_IFREG|S_IRUGO),
251 E(PROC_TID_CMDLINE, "cmdline", S_IFREG|S_IRUGO),
252 E(PROC_TID_STAT, "stat", S_IFREG|S_IRUGO),
253 E(PROC_TID_STATM, "statm", S_IFREG|S_IRUGO),
254 E(PROC_TID_MAPS, "maps", S_IFREG|S_IRUGO),
255 #ifdef CONFIG_NUMA
256 E(PROC_TID_NUMA_MAPS, "numa_maps", S_IFREG|S_IRUGO),
257 #endif
258 E(PROC_TID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR),
259 #ifdef CONFIG_SECCOMP
260 E(PROC_TID_SECCOMP, "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
261 #endif
262 E(PROC_TID_CWD, "cwd", S_IFLNK|S_IRWXUGO),
263 E(PROC_TID_ROOT, "root", S_IFLNK|S_IRWXUGO),
264 E(PROC_TID_EXE, "exe", S_IFLNK|S_IRWXUGO),
265 E(PROC_TID_MOUNTS, "mounts", S_IFREG|S_IRUGO),
266 #ifdef CONFIG_MMU
267 E(PROC_TID_SMAPS, "smaps", S_IFREG|S_IRUGO),
268 #endif
269 #ifdef CONFIG_SECURITY
270 E(PROC_TID_ATTR, "attr", S_IFDIR|S_IRUGO|S_IXUGO),
271 #endif
272 #ifdef CONFIG_KALLSYMS
273 E(PROC_TID_WCHAN, "wchan", S_IFREG|S_IRUGO),
274 #endif
275 #ifdef CONFIG_SCHEDSTATS
276 E(PROC_TID_SCHEDSTAT, "schedstat",S_IFREG|S_IRUGO),
277 #endif
278 #ifdef CONFIG_CPUSETS
279 E(PROC_TID_CPUSET, "cpuset", S_IFREG|S_IRUGO),
280 #endif
281 E(PROC_TID_OOM_SCORE, "oom_score",S_IFREG|S_IRUGO),
282 E(PROC_TID_OOM_ADJUST, "oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
283 #ifdef CONFIG_AUDITSYSCALL
284 E(PROC_TID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
285 #endif
286 {0,0,NULL,0}
287 };
288
289 #ifdef CONFIG_SECURITY
290 static struct pid_entry tgid_attr_stuff[] = {
291 E(PROC_TGID_ATTR_CURRENT, "current", S_IFREG|S_IRUGO|S_IWUGO),
292 E(PROC_TGID_ATTR_PREV, "prev", S_IFREG|S_IRUGO),
293 E(PROC_TGID_ATTR_EXEC, "exec", S_IFREG|S_IRUGO|S_IWUGO),
294 E(PROC_TGID_ATTR_FSCREATE, "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
295 E(PROC_TGID_ATTR_KEYCREATE, "keycreate", S_IFREG|S_IRUGO|S_IWUGO),
296 E(PROC_TGID_ATTR_SOCKCREATE, "sockcreate", S_IFREG|S_IRUGO|S_IWUGO),
297 {0,0,NULL,0}
298 };
299 static struct pid_entry tid_attr_stuff[] = {
300 E(PROC_TID_ATTR_CURRENT, "current", S_IFREG|S_IRUGO|S_IWUGO),
301 E(PROC_TID_ATTR_PREV, "prev", S_IFREG|S_IRUGO),
302 E(PROC_TID_ATTR_EXEC, "exec", S_IFREG|S_IRUGO|S_IWUGO),
303 E(PROC_TID_ATTR_FSCREATE, "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
304 E(PROC_TID_ATTR_KEYCREATE, "keycreate", S_IFREG|S_IRUGO|S_IWUGO),
305 E(PROC_TID_ATTR_SOCKCREATE, "sockcreate", S_IFREG|S_IRUGO|S_IWUGO),
306 {0,0,NULL,0}
307 };
308 #endif
309
310 #undef E
311
312 static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
313 {
314 struct task_struct *task = get_proc_task(inode);
315 struct files_struct *files = NULL;
316 struct file *file;
317 int fd = proc_fd(inode);
318
319 if (task) {
320 files = get_files_struct(task);
321 put_task_struct(task);
322 }
323 if (files) {
324 /*
325 * We are not taking a ref to the file structure, so we must
326 * hold ->file_lock.
327 */
328 spin_lock(&files->file_lock);
329 file = fcheck_files(files, fd);
330 if (file) {
331 *mnt = mntget(file->f_vfsmnt);
332 *dentry = dget(file->f_dentry);
333 spin_unlock(&files->file_lock);
334 put_files_struct(files);
335 return 0;
336 }
337 spin_unlock(&files->file_lock);
338 put_files_struct(files);
339 }
340 return -ENOENT;
341 }
342
343 static struct fs_struct *get_fs_struct(struct task_struct *task)
344 {
345 struct fs_struct *fs;
346 task_lock(task);
347 fs = task->fs;
348 if(fs)
349 atomic_inc(&fs->count);
350 task_unlock(task);
351 return fs;
352 }
353
354 static int get_nr_threads(struct task_struct *tsk)
355 {
356 /* Must be called with the rcu_read_lock held */
357 unsigned long flags;
358 int count = 0;
359
360 if (lock_task_sighand(tsk, &flags)) {
361 count = atomic_read(&tsk->signal->count);
362 unlock_task_sighand(tsk, &flags);
363 }
364 return count;
365 }
366
367 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
368 {
369 struct task_struct *task = get_proc_task(inode);
370 struct fs_struct *fs = NULL;
371 int result = -ENOENT;
372
373 if (task) {
374 fs = get_fs_struct(task);
375 put_task_struct(task);
376 }
377 if (fs) {
378 read_lock(&fs->lock);
379 *mnt = mntget(fs->pwdmnt);
380 *dentry = dget(fs->pwd);
381 read_unlock(&fs->lock);
382 result = 0;
383 put_fs_struct(fs);
384 }
385 return result;
386 }
387
388 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
389 {
390 struct task_struct *task = get_proc_task(inode);
391 struct fs_struct *fs = NULL;
392 int result = -ENOENT;
393
394 if (task) {
395 fs = get_fs_struct(task);
396 put_task_struct(task);
397 }
398 if (fs) {
399 read_lock(&fs->lock);
400 *mnt = mntget(fs->rootmnt);
401 *dentry = dget(fs->root);
402 read_unlock(&fs->lock);
403 result = 0;
404 put_fs_struct(fs);
405 }
406 return result;
407 }
408
409 #define MAY_PTRACE(task) \
410 (task == current || \
411 (task->parent == current && \
412 (task->ptrace & PT_PTRACED) && \
413 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
414 security_ptrace(current,task) == 0))
415
416 static int proc_pid_environ(struct task_struct *task, char * buffer)
417 {
418 int res = 0;
419 struct mm_struct *mm = get_task_mm(task);
420 if (mm) {
421 unsigned int len = mm->env_end - mm->env_start;
422 if (len > PAGE_SIZE)
423 len = PAGE_SIZE;
424 res = access_process_vm(task, mm->env_start, buffer, len, 0);
425 if (!ptrace_may_attach(task))
426 res = -ESRCH;
427 mmput(mm);
428 }
429 return res;
430 }
431
432 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
433 {
434 int res = 0;
435 unsigned int len;
436 struct mm_struct *mm = get_task_mm(task);
437 if (!mm)
438 goto out;
439 if (!mm->arg_end)
440 goto out_mm; /* Shh! No looking before we're done */
441
442 len = mm->arg_end - mm->arg_start;
443
444 if (len > PAGE_SIZE)
445 len = PAGE_SIZE;
446
447 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
448
449 // If the nul at the end of args has been overwritten, then
450 // assume application is using setproctitle(3).
451 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
452 len = strnlen(buffer, res);
453 if (len < res) {
454 res = len;
455 } else {
456 len = mm->env_end - mm->env_start;
457 if (len > PAGE_SIZE - res)
458 len = PAGE_SIZE - res;
459 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
460 res = strnlen(buffer, res);
461 }
462 }
463 out_mm:
464 mmput(mm);
465 out:
466 return res;
467 }
468
469 static int proc_pid_auxv(struct task_struct *task, char *buffer)
470 {
471 int res = 0;
472 struct mm_struct *mm = get_task_mm(task);
473 if (mm) {
474 unsigned int nwords = 0;
475 do
476 nwords += 2;
477 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
478 res = nwords * sizeof(mm->saved_auxv[0]);
479 if (res > PAGE_SIZE)
480 res = PAGE_SIZE;
481 memcpy(buffer, mm->saved_auxv, res);
482 mmput(mm);
483 }
484 return res;
485 }
486
487
488 #ifdef CONFIG_KALLSYMS
489 /*
490 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
491 * Returns the resolved symbol. If that fails, simply return the address.
492 */
493 static int proc_pid_wchan(struct task_struct *task, char *buffer)
494 {
495 char *modname;
496 const char *sym_name;
497 unsigned long wchan, size, offset;
498 char namebuf[KSYM_NAME_LEN+1];
499
500 wchan = get_wchan(task);
501
502 sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf);
503 if (sym_name)
504 return sprintf(buffer, "%s", sym_name);
505 return sprintf(buffer, "%lu", wchan);
506 }
507 #endif /* CONFIG_KALLSYMS */
508
509 #ifdef CONFIG_SCHEDSTATS
510 /*
511 * Provides /proc/PID/schedstat
512 */
513 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
514 {
515 return sprintf(buffer, "%lu %lu %lu\n",
516 task->sched_info.cpu_time,
517 task->sched_info.run_delay,
518 task->sched_info.pcnt);
519 }
520 #endif
521
522 /* The badness from the OOM killer */
523 unsigned long badness(struct task_struct *p, unsigned long uptime);
524 static int proc_oom_score(struct task_struct *task, char *buffer)
525 {
526 unsigned long points;
527 struct timespec uptime;
528
529 do_posix_clock_monotonic_gettime(&uptime);
530 points = badness(task, uptime.tv_sec);
531 return sprintf(buffer, "%lu\n", points);
532 }
533
534 /************************************************************************/
535 /* Here the fs part begins */
536 /************************************************************************/
537
538 /* permission checks */
539 static int proc_fd_access_allowed(struct inode *inode)
540 {
541 struct task_struct *task;
542 int allowed = 0;
543 /* Allow access to a task's file descriptors if it is us or we
544 * may use ptrace attach to the process and find out that
545 * information.
546 */
547 task = get_proc_task(inode);
548 if (task) {
549 allowed = ptrace_may_attach(task);
550 put_task_struct(task);
551 }
552 return allowed;
553 }
554
555 extern struct seq_operations mounts_op;
556 struct proc_mounts {
557 struct seq_file m;
558 int event;
559 };
560
561 static int mounts_open(struct inode *inode, struct file *file)
562 {
563 struct task_struct *task = get_proc_task(inode);
564 struct namespace *namespace = NULL;
565 struct proc_mounts *p;
566 int ret = -EINVAL;
567
568 if (task) {
569 task_lock(task);
570 namespace = task->namespace;
571 if (namespace)
572 get_namespace(namespace);
573 task_unlock(task);
574 put_task_struct(task);
575 }
576
577 if (namespace) {
578 ret = -ENOMEM;
579 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
580 if (p) {
581 file->private_data = &p->m;
582 ret = seq_open(file, &mounts_op);
583 if (!ret) {
584 p->m.private = namespace;
585 p->event = namespace->event;
586 return 0;
587 }
588 kfree(p);
589 }
590 put_namespace(namespace);
591 }
592 return ret;
593 }
594
595 static int mounts_release(struct inode *inode, struct file *file)
596 {
597 struct seq_file *m = file->private_data;
598 struct namespace *namespace = m->private;
599 put_namespace(namespace);
600 return seq_release(inode, file);
601 }
602
603 static unsigned mounts_poll(struct file *file, poll_table *wait)
604 {
605 struct proc_mounts *p = file->private_data;
606 struct namespace *ns = p->m.private;
607 unsigned res = 0;
608
609 poll_wait(file, &ns->poll, wait);
610
611 spin_lock(&vfsmount_lock);
612 if (p->event != ns->event) {
613 p->event = ns->event;
614 res = POLLERR;
615 }
616 spin_unlock(&vfsmount_lock);
617
618 return res;
619 }
620
621 static struct file_operations proc_mounts_operations = {
622 .open = mounts_open,
623 .read = seq_read,
624 .llseek = seq_lseek,
625 .release = mounts_release,
626 .poll = mounts_poll,
627 };
628
629 extern struct seq_operations mountstats_op;
630 static int mountstats_open(struct inode *inode, struct file *file)
631 {
632 int ret = seq_open(file, &mountstats_op);
633
634 if (!ret) {
635 struct seq_file *m = file->private_data;
636 struct namespace *namespace = NULL;
637 struct task_struct *task = get_proc_task(inode);
638
639 if (task) {
640 task_lock(task);
641 namespace = task->namespace;
642 if (namespace)
643 get_namespace(namespace);
644 task_unlock(task);
645 put_task_struct(task);
646 }
647
648 if (namespace)
649 m->private = namespace;
650 else {
651 seq_release(inode, file);
652 ret = -EINVAL;
653 }
654 }
655 return ret;
656 }
657
658 static struct file_operations proc_mountstats_operations = {
659 .open = mountstats_open,
660 .read = seq_read,
661 .llseek = seq_lseek,
662 .release = mounts_release,
663 };
664
665 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
666
667 static ssize_t proc_info_read(struct file * file, char __user * buf,
668 size_t count, loff_t *ppos)
669 {
670 struct inode * inode = file->f_dentry->d_inode;
671 unsigned long page;
672 ssize_t length;
673 struct task_struct *task = get_proc_task(inode);
674
675 length = -ESRCH;
676 if (!task)
677 goto out_no_task;
678
679 if (count > PROC_BLOCK_SIZE)
680 count = PROC_BLOCK_SIZE;
681
682 length = -ENOMEM;
683 if (!(page = __get_free_page(GFP_KERNEL)))
684 goto out;
685
686 length = PROC_I(inode)->op.proc_read(task, (char*)page);
687
688 if (length >= 0)
689 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
690 free_page(page);
691 out:
692 put_task_struct(task);
693 out_no_task:
694 return length;
695 }
696
697 static struct file_operations proc_info_file_operations = {
698 .read = proc_info_read,
699 };
700
701 static int mem_open(struct inode* inode, struct file* file)
702 {
703 file->private_data = (void*)((long)current->self_exec_id);
704 return 0;
705 }
706
707 static ssize_t mem_read(struct file * file, char __user * buf,
708 size_t count, loff_t *ppos)
709 {
710 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
711 char *page;
712 unsigned long src = *ppos;
713 int ret = -ESRCH;
714 struct mm_struct *mm;
715
716 if (!task)
717 goto out_no_task;
718
719 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
720 goto out;
721
722 ret = -ENOMEM;
723 page = (char *)__get_free_page(GFP_USER);
724 if (!page)
725 goto out;
726
727 ret = 0;
728
729 mm = get_task_mm(task);
730 if (!mm)
731 goto out_free;
732
733 ret = -EIO;
734
735 if (file->private_data != (void*)((long)current->self_exec_id))
736 goto out_put;
737
738 ret = 0;
739
740 while (count > 0) {
741 int this_len, retval;
742
743 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
744 retval = access_process_vm(task, src, page, this_len, 0);
745 if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
746 if (!ret)
747 ret = -EIO;
748 break;
749 }
750
751 if (copy_to_user(buf, page, retval)) {
752 ret = -EFAULT;
753 break;
754 }
755
756 ret += retval;
757 src += retval;
758 buf += retval;
759 count -= retval;
760 }
761 *ppos = src;
762
763 out_put:
764 mmput(mm);
765 out_free:
766 free_page((unsigned long) page);
767 out:
768 put_task_struct(task);
769 out_no_task:
770 return ret;
771 }
772
773 #define mem_write NULL
774
775 #ifndef mem_write
776 /* This is a security hazard */
777 static ssize_t mem_write(struct file * file, const char * buf,
778 size_t count, loff_t *ppos)
779 {
780 int copied = 0;
781 char *page;
782 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
783 unsigned long dst = *ppos;
784
785 copied = -ESRCH;
786 if (!task)
787 goto out_no_task;
788
789 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
790 goto out;
791
792 copied = -ENOMEM;
793 page = (char *)__get_free_page(GFP_USER);
794 if (!page)
795 goto out;
796
797 while (count > 0) {
798 int this_len, retval;
799
800 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
801 if (copy_from_user(page, buf, this_len)) {
802 copied = -EFAULT;
803 break;
804 }
805 retval = access_process_vm(task, dst, page, this_len, 1);
806 if (!retval) {
807 if (!copied)
808 copied = -EIO;
809 break;
810 }
811 copied += retval;
812 buf += retval;
813 dst += retval;
814 count -= retval;
815 }
816 *ppos = dst;
817 free_page((unsigned long) page);
818 out:
819 put_task_struct(task);
820 out_no_task:
821 return copied;
822 }
823 #endif
824
825 static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
826 {
827 switch (orig) {
828 case 0:
829 file->f_pos = offset;
830 break;
831 case 1:
832 file->f_pos += offset;
833 break;
834 default:
835 return -EINVAL;
836 }
837 force_successful_syscall_return();
838 return file->f_pos;
839 }
840
841 static struct file_operations proc_mem_operations = {
842 .llseek = mem_lseek,
843 .read = mem_read,
844 .write = mem_write,
845 .open = mem_open,
846 };
847
848 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
849 size_t count, loff_t *ppos)
850 {
851 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
852 char buffer[PROC_NUMBUF];
853 size_t len;
854 int oom_adjust;
855 loff_t __ppos = *ppos;
856
857 if (!task)
858 return -ESRCH;
859 oom_adjust = task->oomkilladj;
860 put_task_struct(task);
861
862 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
863 if (__ppos >= len)
864 return 0;
865 if (count > len-__ppos)
866 count = len-__ppos;
867 if (copy_to_user(buf, buffer + __ppos, count))
868 return -EFAULT;
869 *ppos = __ppos + count;
870 return count;
871 }
872
873 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
874 size_t count, loff_t *ppos)
875 {
876 struct task_struct *task;
877 char buffer[PROC_NUMBUF], *end;
878 int oom_adjust;
879
880 if (!capable(CAP_SYS_RESOURCE))
881 return -EPERM;
882 memset(buffer, 0, sizeof(buffer));
883 if (count > sizeof(buffer) - 1)
884 count = sizeof(buffer) - 1;
885 if (copy_from_user(buffer, buf, count))
886 return -EFAULT;
887 oom_adjust = simple_strtol(buffer, &end, 0);
888 if ((oom_adjust < -16 || oom_adjust > 15) && oom_adjust != OOM_DISABLE)
889 return -EINVAL;
890 if (*end == '\n')
891 end++;
892 task = get_proc_task(file->f_dentry->d_inode);
893 if (!task)
894 return -ESRCH;
895 task->oomkilladj = oom_adjust;
896 put_task_struct(task);
897 if (end - buffer == 0)
898 return -EIO;
899 return end - buffer;
900 }
901
902 static struct file_operations proc_oom_adjust_operations = {
903 .read = oom_adjust_read,
904 .write = oom_adjust_write,
905 };
906
907 #ifdef CONFIG_AUDITSYSCALL
908 #define TMPBUFLEN 21
909 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
910 size_t count, loff_t *ppos)
911 {
912 struct inode * inode = file->f_dentry->d_inode;
913 struct task_struct *task = get_proc_task(inode);
914 ssize_t length;
915 char tmpbuf[TMPBUFLEN];
916
917 if (!task)
918 return -ESRCH;
919 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
920 audit_get_loginuid(task->audit_context));
921 put_task_struct(task);
922 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
923 }
924
925 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
926 size_t count, loff_t *ppos)
927 {
928 struct inode * inode = file->f_dentry->d_inode;
929 char *page, *tmp;
930 ssize_t length;
931 uid_t loginuid;
932
933 if (!capable(CAP_AUDIT_CONTROL))
934 return -EPERM;
935
936 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
937 return -EPERM;
938
939 if (count >= PAGE_SIZE)
940 count = PAGE_SIZE - 1;
941
942 if (*ppos != 0) {
943 /* No partial writes. */
944 return -EINVAL;
945 }
946 page = (char*)__get_free_page(GFP_USER);
947 if (!page)
948 return -ENOMEM;
949 length = -EFAULT;
950 if (copy_from_user(page, buf, count))
951 goto out_free_page;
952
953 page[count] = '\0';
954 loginuid = simple_strtoul(page, &tmp, 10);
955 if (tmp == page) {
956 length = -EINVAL;
957 goto out_free_page;
958
959 }
960 length = audit_set_loginuid(current, loginuid);
961 if (likely(length == 0))
962 length = count;
963
964 out_free_page:
965 free_page((unsigned long) page);
966 return length;
967 }
968
969 static struct file_operations proc_loginuid_operations = {
970 .read = proc_loginuid_read,
971 .write = proc_loginuid_write,
972 };
973 #endif
974
975 #ifdef CONFIG_SECCOMP
976 static ssize_t seccomp_read(struct file *file, char __user *buf,
977 size_t count, loff_t *ppos)
978 {
979 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode);
980 char __buf[20];
981 loff_t __ppos = *ppos;
982 size_t len;
983
984 if (!tsk)
985 return -ESRCH;
986 /* no need to print the trailing zero, so use only len */
987 len = sprintf(__buf, "%u\n", tsk->seccomp.mode);
988 put_task_struct(tsk);
989 if (__ppos >= len)
990 return 0;
991 if (count > len - __ppos)
992 count = len - __ppos;
993 if (copy_to_user(buf, __buf + __ppos, count))
994 return -EFAULT;
995 *ppos = __ppos + count;
996 return count;
997 }
998
999 static ssize_t seccomp_write(struct file *file, const char __user *buf,
1000 size_t count, loff_t *ppos)
1001 {
1002 struct task_struct *tsk = get_proc_task(file->f_dentry->d_inode);
1003 char __buf[20], *end;
1004 unsigned int seccomp_mode;
1005 ssize_t result;
1006
1007 result = -ESRCH;
1008 if (!tsk)
1009 goto out_no_task;
1010
1011 /* can set it only once to be even more secure */
1012 result = -EPERM;
1013 if (unlikely(tsk->seccomp.mode))
1014 goto out;
1015
1016 result = -EFAULT;
1017 memset(__buf, 0, sizeof(__buf));
1018 count = min(count, sizeof(__buf) - 1);
1019 if (copy_from_user(__buf, buf, count))
1020 goto out;
1021
1022 seccomp_mode = simple_strtoul(__buf, &end, 0);
1023 if (*end == '\n')
1024 end++;
1025 result = -EINVAL;
1026 if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) {
1027 tsk->seccomp.mode = seccomp_mode;
1028 set_tsk_thread_flag(tsk, TIF_SECCOMP);
1029 } else
1030 goto out;
1031 result = -EIO;
1032 if (unlikely(!(end - __buf)))
1033 goto out;
1034 result = end - __buf;
1035 out:
1036 put_task_struct(tsk);
1037 out_no_task:
1038 return result;
1039 }
1040
1041 static struct file_operations proc_seccomp_operations = {
1042 .read = seccomp_read,
1043 .write = seccomp_write,
1044 };
1045 #endif /* CONFIG_SECCOMP */
1046
1047 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1048 {
1049 struct inode *inode = dentry->d_inode;
1050 int error = -EACCES;
1051
1052 /* We don't need a base pointer in the /proc filesystem */
1053 path_release(nd);
1054
1055 /* Are we allowed to snoop on the tasks file descriptors? */
1056 if (!proc_fd_access_allowed(inode))
1057 goto out;
1058
1059 error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
1060 nd->last_type = LAST_BIND;
1061 out:
1062 return ERR_PTR(error);
1063 }
1064
1065 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
1066 char __user *buffer, int buflen)
1067 {
1068 struct inode * inode;
1069 char *tmp = (char*)__get_free_page(GFP_KERNEL), *path;
1070 int len;
1071
1072 if (!tmp)
1073 return -ENOMEM;
1074
1075 inode = dentry->d_inode;
1076 path = d_path(dentry, mnt, tmp, PAGE_SIZE);
1077 len = PTR_ERR(path);
1078 if (IS_ERR(path))
1079 goto out;
1080 len = tmp + PAGE_SIZE - 1 - path;
1081
1082 if (len > buflen)
1083 len = buflen;
1084 if (copy_to_user(buffer, path, len))
1085 len = -EFAULT;
1086 out:
1087 free_page((unsigned long)tmp);
1088 return len;
1089 }
1090
1091 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1092 {
1093 int error = -EACCES;
1094 struct inode *inode = dentry->d_inode;
1095 struct dentry *de;
1096 struct vfsmount *mnt = NULL;
1097
1098 /* Are we allowed to snoop on the tasks file descriptors? */
1099 if (!proc_fd_access_allowed(inode))
1100 goto out;
1101
1102 error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
1103 if (error)
1104 goto out;
1105
1106 error = do_proc_readlink(de, mnt, buffer, buflen);
1107 dput(de);
1108 mntput(mnt);
1109 out:
1110 return error;
1111 }
1112
1113 static struct inode_operations proc_pid_link_inode_operations = {
1114 .readlink = proc_pid_readlink,
1115 .follow_link = proc_pid_follow_link
1116 };
1117
1118 static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir)
1119 {
1120 struct dentry *dentry = filp->f_dentry;
1121 struct inode *inode = dentry->d_inode;
1122 struct task_struct *p = get_proc_task(inode);
1123 unsigned int fd, tid, ino;
1124 int retval;
1125 char buf[PROC_NUMBUF];
1126 struct files_struct * files;
1127 struct fdtable *fdt;
1128
1129 retval = -ENOENT;
1130 if (!p)
1131 goto out_no_task;
1132 retval = 0;
1133 tid = p->pid;
1134
1135 fd = filp->f_pos;
1136 switch (fd) {
1137 case 0:
1138 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1139 goto out;
1140 filp->f_pos++;
1141 case 1:
1142 ino = parent_ino(dentry);
1143 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1144 goto out;
1145 filp->f_pos++;
1146 default:
1147 files = get_files_struct(p);
1148 if (!files)
1149 goto out;
1150 rcu_read_lock();
1151 fdt = files_fdtable(files);
1152 for (fd = filp->f_pos-2;
1153 fd < fdt->max_fds;
1154 fd++, filp->f_pos++) {
1155 unsigned int i,j;
1156
1157 if (!fcheck_files(files, fd))
1158 continue;
1159 rcu_read_unlock();
1160
1161 j = PROC_NUMBUF;
1162 i = fd;
1163 do {
1164 j--;
1165 buf[j] = '0' + (i % 10);
1166 i /= 10;
1167 } while (i);
1168
1169 ino = fake_ino(tid, PROC_TID_FD_DIR + fd);
1170 if (filldir(dirent, buf+j, PROC_NUMBUF-j, fd+2, ino, DT_LNK) < 0) {
1171 rcu_read_lock();
1172 break;
1173 }
1174 rcu_read_lock();
1175 }
1176 rcu_read_unlock();
1177 put_files_struct(files);
1178 }
1179 out:
1180 put_task_struct(p);
1181 out_no_task:
1182 return retval;
1183 }
1184
1185 static int proc_pident_readdir(struct file *filp,
1186 void *dirent, filldir_t filldir,
1187 struct pid_entry *ents, unsigned int nents)
1188 {
1189 int i;
1190 int pid;
1191 struct dentry *dentry = filp->f_dentry;
1192 struct inode *inode = dentry->d_inode;
1193 struct task_struct *task = get_proc_task(inode);
1194 struct pid_entry *p;
1195 ino_t ino;
1196 int ret;
1197
1198 ret = -ENOENT;
1199 if (!task)
1200 goto out;
1201
1202 ret = 0;
1203 pid = task->pid;
1204 put_task_struct(task);
1205 i = filp->f_pos;
1206 switch (i) {
1207 case 0:
1208 ino = inode->i_ino;
1209 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1210 goto out;
1211 i++;
1212 filp->f_pos++;
1213 /* fall through */
1214 case 1:
1215 ino = parent_ino(dentry);
1216 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1217 goto out;
1218 i++;
1219 filp->f_pos++;
1220 /* fall through */
1221 default:
1222 i -= 2;
1223 if (i >= nents) {
1224 ret = 1;
1225 goto out;
1226 }
1227 p = ents + i;
1228 while (p->name) {
1229 if (filldir(dirent, p->name, p->len, filp->f_pos,
1230 fake_ino(pid, p->type), p->mode >> 12) < 0)
1231 goto out;
1232 filp->f_pos++;
1233 p++;
1234 }
1235 }
1236
1237 ret = 1;
1238 out:
1239 return ret;
1240 }
1241
1242 static int proc_tgid_base_readdir(struct file * filp,
1243 void * dirent, filldir_t filldir)
1244 {
1245 return proc_pident_readdir(filp,dirent,filldir,
1246 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
1247 }
1248
1249 static int proc_tid_base_readdir(struct file * filp,
1250 void * dirent, filldir_t filldir)
1251 {
1252 return proc_pident_readdir(filp,dirent,filldir,
1253 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
1254 }
1255
1256 /* building an inode */
1257
1258 static int task_dumpable(struct task_struct *task)
1259 {
1260 int dumpable = 0;
1261 struct mm_struct *mm;
1262
1263 task_lock(task);
1264 mm = task->mm;
1265 if (mm)
1266 dumpable = mm->dumpable;
1267 task_unlock(task);
1268 if(dumpable == 1)
1269 return 1;
1270 return 0;
1271 }
1272
1273
1274 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task, int ino)
1275 {
1276 struct inode * inode;
1277 struct proc_inode *ei;
1278
1279 /* We need a new inode */
1280
1281 inode = new_inode(sb);
1282 if (!inode)
1283 goto out;
1284
1285 /* Common stuff */
1286 ei = PROC_I(inode);
1287 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1288 inode->i_ino = fake_ino(task->pid, ino);
1289
1290 /*
1291 * grab the reference to task.
1292 */
1293 ei->pid = get_pid(task->pids[PIDTYPE_PID].pid);
1294 if (!ei->pid)
1295 goto out_unlock;
1296
1297 inode->i_uid = 0;
1298 inode->i_gid = 0;
1299 if (task_dumpable(task)) {
1300 inode->i_uid = task->euid;
1301 inode->i_gid = task->egid;
1302 }
1303 security_task_to_inode(task, inode);
1304
1305 out:
1306 return inode;
1307
1308 out_unlock:
1309 iput(inode);
1310 return NULL;
1311 }
1312
1313 /* dentry stuff */
1314
1315 /*
1316 * Exceptional case: normally we are not allowed to unhash a busy
1317 * directory. In this case, however, we can do it - no aliasing problems
1318 * due to the way we treat inodes.
1319 *
1320 * Rewrite the inode's ownerships here because the owning task may have
1321 * performed a setuid(), etc.
1322 *
1323 * Before the /proc/pid/status file was created the only way to read
1324 * the effective uid of a /process was to stat /proc/pid. Reading
1325 * /proc/pid/status is slow enough that procps and other packages
1326 * kept stating /proc/pid. To keep the rules in /proc simple I have
1327 * made this apply to all per process world readable and executable
1328 * directories.
1329 */
1330 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1331 {
1332 struct inode *inode = dentry->d_inode;
1333 struct task_struct *task = get_proc_task(inode);
1334 if (task) {
1335 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1336 task_dumpable(task)) {
1337 inode->i_uid = task->euid;
1338 inode->i_gid = task->egid;
1339 } else {
1340 inode->i_uid = 0;
1341 inode->i_gid = 0;
1342 }
1343 security_task_to_inode(task, inode);
1344 put_task_struct(task);
1345 return 1;
1346 }
1347 d_drop(dentry);
1348 return 0;
1349 }
1350
1351 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1352 {
1353 struct inode *inode = dentry->d_inode;
1354 struct task_struct *task;
1355 generic_fillattr(inode, stat);
1356
1357 rcu_read_lock();
1358 stat->uid = 0;
1359 stat->gid = 0;
1360 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1361 if (task) {
1362 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1363 task_dumpable(task)) {
1364 stat->uid = task->euid;
1365 stat->gid = task->egid;
1366 }
1367 }
1368 rcu_read_unlock();
1369 return 0;
1370 }
1371
1372 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1373 {
1374 struct inode *inode = dentry->d_inode;
1375 struct task_struct *task = get_proc_task(inode);
1376 int fd = proc_fd(inode);
1377 struct files_struct *files;
1378
1379 if (task) {
1380 files = get_files_struct(task);
1381 if (files) {
1382 rcu_read_lock();
1383 if (fcheck_files(files, fd)) {
1384 rcu_read_unlock();
1385 put_files_struct(files);
1386 if (task_dumpable(task)) {
1387 inode->i_uid = task->euid;
1388 inode->i_gid = task->egid;
1389 } else {
1390 inode->i_uid = 0;
1391 inode->i_gid = 0;
1392 }
1393 security_task_to_inode(task, inode);
1394 put_task_struct(task);
1395 return 1;
1396 }
1397 rcu_read_unlock();
1398 put_files_struct(files);
1399 }
1400 put_task_struct(task);
1401 }
1402 d_drop(dentry);
1403 return 0;
1404 }
1405
1406 static int pid_delete_dentry(struct dentry * dentry)
1407 {
1408 /* Is the task we represent dead?
1409 * If so, then don't put the dentry on the lru list,
1410 * kill it immediately.
1411 */
1412 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1413 }
1414
1415 static struct dentry_operations tid_fd_dentry_operations =
1416 {
1417 .d_revalidate = tid_fd_revalidate,
1418 .d_delete = pid_delete_dentry,
1419 };
1420
1421 static struct dentry_operations pid_dentry_operations =
1422 {
1423 .d_revalidate = pid_revalidate,
1424 .d_delete = pid_delete_dentry,
1425 };
1426
1427 /* Lookups */
1428
1429 static unsigned name_to_int(struct dentry *dentry)
1430 {
1431 const char *name = dentry->d_name.name;
1432 int len = dentry->d_name.len;
1433 unsigned n = 0;
1434
1435 if (len > 1 && *name == '0')
1436 goto out;
1437 while (len-- > 0) {
1438 unsigned c = *name++ - '0';
1439 if (c > 9)
1440 goto out;
1441 if (n >= (~0U-9)/10)
1442 goto out;
1443 n *= 10;
1444 n += c;
1445 }
1446 return n;
1447 out:
1448 return ~0U;
1449 }
1450
1451 /* SMP-safe */
1452 static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd)
1453 {
1454 struct task_struct *task = get_proc_task(dir);
1455 unsigned fd = name_to_int(dentry);
1456 struct dentry *result = ERR_PTR(-ENOENT);
1457 struct file * file;
1458 struct files_struct * files;
1459 struct inode *inode;
1460 struct proc_inode *ei;
1461
1462 if (!task)
1463 goto out_no_task;
1464 if (fd == ~0U)
1465 goto out;
1466
1467 inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_FD_DIR+fd);
1468 if (!inode)
1469 goto out;
1470 ei = PROC_I(inode);
1471 ei->fd = fd;
1472 files = get_files_struct(task);
1473 if (!files)
1474 goto out_unlock;
1475 inode->i_mode = S_IFLNK;
1476
1477 /*
1478 * We are not taking a ref to the file structure, so we must
1479 * hold ->file_lock.
1480 */
1481 spin_lock(&files->file_lock);
1482 file = fcheck_files(files, fd);
1483 if (!file)
1484 goto out_unlock2;
1485 if (file->f_mode & 1)
1486 inode->i_mode |= S_IRUSR | S_IXUSR;
1487 if (file->f_mode & 2)
1488 inode->i_mode |= S_IWUSR | S_IXUSR;
1489 spin_unlock(&files->file_lock);
1490 put_files_struct(files);
1491 inode->i_op = &proc_pid_link_inode_operations;
1492 inode->i_size = 64;
1493 ei->op.proc_get_link = proc_fd_link;
1494 dentry->d_op = &tid_fd_dentry_operations;
1495 d_add(dentry, inode);
1496 /* Close the race of the process dying before we return the dentry */
1497 if (tid_fd_revalidate(dentry, NULL))
1498 result = NULL;
1499 out:
1500 put_task_struct(task);
1501 out_no_task:
1502 return result;
1503
1504 out_unlock2:
1505 spin_unlock(&files->file_lock);
1506 put_files_struct(files);
1507 out_unlock:
1508 iput(inode);
1509 goto out;
1510 }
1511
1512 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir);
1513 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd);
1514 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat);
1515
1516 static struct file_operations proc_fd_operations = {
1517 .read = generic_read_dir,
1518 .readdir = proc_readfd,
1519 };
1520
1521 static struct file_operations proc_task_operations = {
1522 .read = generic_read_dir,
1523 .readdir = proc_task_readdir,
1524 };
1525
1526 /*
1527 * proc directories can do almost nothing..
1528 */
1529 static struct inode_operations proc_fd_inode_operations = {
1530 .lookup = proc_lookupfd,
1531 };
1532
1533 static struct inode_operations proc_task_inode_operations = {
1534 .lookup = proc_task_lookup,
1535 .getattr = proc_task_getattr,
1536 };
1537
1538 #ifdef CONFIG_SECURITY
1539 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1540 size_t count, loff_t *ppos)
1541 {
1542 struct inode * inode = file->f_dentry->d_inode;
1543 unsigned long page;
1544 ssize_t length;
1545 struct task_struct *task = get_proc_task(inode);
1546
1547 length = -ESRCH;
1548 if (!task)
1549 goto out_no_task;
1550
1551 if (count > PAGE_SIZE)
1552 count = PAGE_SIZE;
1553 length = -ENOMEM;
1554 if (!(page = __get_free_page(GFP_KERNEL)))
1555 goto out;
1556
1557 length = security_getprocattr(task,
1558 (char*)file->f_dentry->d_name.name,
1559 (void*)page, count);
1560 if (length >= 0)
1561 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
1562 free_page(page);
1563 out:
1564 put_task_struct(task);
1565 out_no_task:
1566 return length;
1567 }
1568
1569 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1570 size_t count, loff_t *ppos)
1571 {
1572 struct inode * inode = file->f_dentry->d_inode;
1573 char *page;
1574 ssize_t length;
1575 struct task_struct *task = get_proc_task(inode);
1576
1577 length = -ESRCH;
1578 if (!task)
1579 goto out_no_task;
1580 if (count > PAGE_SIZE)
1581 count = PAGE_SIZE;
1582
1583 /* No partial writes. */
1584 length = -EINVAL;
1585 if (*ppos != 0)
1586 goto out;
1587
1588 length = -ENOMEM;
1589 page = (char*)__get_free_page(GFP_USER);
1590 if (!page)
1591 goto out;
1592
1593 length = -EFAULT;
1594 if (copy_from_user(page, buf, count))
1595 goto out_free;
1596
1597 length = security_setprocattr(task,
1598 (char*)file->f_dentry->d_name.name,
1599 (void*)page, count);
1600 out_free:
1601 free_page((unsigned long) page);
1602 out:
1603 put_task_struct(task);
1604 out_no_task:
1605 return length;
1606 }
1607
1608 static struct file_operations proc_pid_attr_operations = {
1609 .read = proc_pid_attr_read,
1610 .write = proc_pid_attr_write,
1611 };
1612
1613 static struct file_operations proc_tid_attr_operations;
1614 static struct inode_operations proc_tid_attr_inode_operations;
1615 static struct file_operations proc_tgid_attr_operations;
1616 static struct inode_operations proc_tgid_attr_inode_operations;
1617 #endif
1618
1619 /* SMP-safe */
1620 static struct dentry *proc_pident_lookup(struct inode *dir,
1621 struct dentry *dentry,
1622 struct pid_entry *ents)
1623 {
1624 struct inode *inode;
1625 struct dentry *error;
1626 struct task_struct *task = get_proc_task(dir);
1627 struct pid_entry *p;
1628 struct proc_inode *ei;
1629
1630 error = ERR_PTR(-ENOENT);
1631 inode = NULL;
1632
1633 if (!task)
1634 goto out_no_task;
1635
1636 for (p = ents; p->name; p++) {
1637 if (p->len != dentry->d_name.len)
1638 continue;
1639 if (!memcmp(dentry->d_name.name, p->name, p->len))
1640 break;
1641 }
1642 if (!p->name)
1643 goto out;
1644
1645 error = ERR_PTR(-EINVAL);
1646 inode = proc_pid_make_inode(dir->i_sb, task, p->type);
1647 if (!inode)
1648 goto out;
1649
1650 ei = PROC_I(inode);
1651 inode->i_mode = p->mode;
1652 /*
1653 * Yes, it does not scale. And it should not. Don't add
1654 * new entries into /proc/<tgid>/ without very good reasons.
1655 */
1656 switch(p->type) {
1657 case PROC_TGID_TASK:
1658 inode->i_nlink = 2;
1659 inode->i_op = &proc_task_inode_operations;
1660 inode->i_fop = &proc_task_operations;
1661 break;
1662 case PROC_TID_FD:
1663 case PROC_TGID_FD:
1664 inode->i_nlink = 2;
1665 inode->i_op = &proc_fd_inode_operations;
1666 inode->i_fop = &proc_fd_operations;
1667 break;
1668 case PROC_TID_EXE:
1669 case PROC_TGID_EXE:
1670 inode->i_op = &proc_pid_link_inode_operations;
1671 ei->op.proc_get_link = proc_exe_link;
1672 break;
1673 case PROC_TID_CWD:
1674 case PROC_TGID_CWD:
1675 inode->i_op = &proc_pid_link_inode_operations;
1676 ei->op.proc_get_link = proc_cwd_link;
1677 break;
1678 case PROC_TID_ROOT:
1679 case PROC_TGID_ROOT:
1680 inode->i_op = &proc_pid_link_inode_operations;
1681 ei->op.proc_get_link = proc_root_link;
1682 break;
1683 case PROC_TID_ENVIRON:
1684 case PROC_TGID_ENVIRON:
1685 inode->i_fop = &proc_info_file_operations;
1686 ei->op.proc_read = proc_pid_environ;
1687 break;
1688 case PROC_TID_AUXV:
1689 case PROC_TGID_AUXV:
1690 inode->i_fop = &proc_info_file_operations;
1691 ei->op.proc_read = proc_pid_auxv;
1692 break;
1693 case PROC_TID_STATUS:
1694 case PROC_TGID_STATUS:
1695 inode->i_fop = &proc_info_file_operations;
1696 ei->op.proc_read = proc_pid_status;
1697 break;
1698 case PROC_TID_STAT:
1699 inode->i_fop = &proc_info_file_operations;
1700 ei->op.proc_read = proc_tid_stat;
1701 break;
1702 case PROC_TGID_STAT:
1703 inode->i_fop = &proc_info_file_operations;
1704 ei->op.proc_read = proc_tgid_stat;
1705 break;
1706 case PROC_TID_CMDLINE:
1707 case PROC_TGID_CMDLINE:
1708 inode->i_fop = &proc_info_file_operations;
1709 ei->op.proc_read = proc_pid_cmdline;
1710 break;
1711 case PROC_TID_STATM:
1712 case PROC_TGID_STATM:
1713 inode->i_fop = &proc_info_file_operations;
1714 ei->op.proc_read = proc_pid_statm;
1715 break;
1716 case PROC_TID_MAPS:
1717 case PROC_TGID_MAPS:
1718 inode->i_fop = &proc_maps_operations;
1719 break;
1720 #ifdef CONFIG_NUMA
1721 case PROC_TID_NUMA_MAPS:
1722 case PROC_TGID_NUMA_MAPS:
1723 inode->i_fop = &proc_numa_maps_operations;
1724 break;
1725 #endif
1726 case PROC_TID_MEM:
1727 case PROC_TGID_MEM:
1728 inode->i_fop = &proc_mem_operations;
1729 break;
1730 #ifdef CONFIG_SECCOMP
1731 case PROC_TID_SECCOMP:
1732 case PROC_TGID_SECCOMP:
1733 inode->i_fop = &proc_seccomp_operations;
1734 break;
1735 #endif /* CONFIG_SECCOMP */
1736 case PROC_TID_MOUNTS:
1737 case PROC_TGID_MOUNTS:
1738 inode->i_fop = &proc_mounts_operations;
1739 break;
1740 #ifdef CONFIG_MMU
1741 case PROC_TID_SMAPS:
1742 case PROC_TGID_SMAPS:
1743 inode->i_fop = &proc_smaps_operations;
1744 break;
1745 #endif
1746 case PROC_TID_MOUNTSTATS:
1747 case PROC_TGID_MOUNTSTATS:
1748 inode->i_fop = &proc_mountstats_operations;
1749 break;
1750 #ifdef CONFIG_SECURITY
1751 case PROC_TID_ATTR:
1752 inode->i_nlink = 2;
1753 inode->i_op = &proc_tid_attr_inode_operations;
1754 inode->i_fop = &proc_tid_attr_operations;
1755 break;
1756 case PROC_TGID_ATTR:
1757 inode->i_nlink = 2;
1758 inode->i_op = &proc_tgid_attr_inode_operations;
1759 inode->i_fop = &proc_tgid_attr_operations;
1760 break;
1761 case PROC_TID_ATTR_CURRENT:
1762 case PROC_TGID_ATTR_CURRENT:
1763 case PROC_TID_ATTR_PREV:
1764 case PROC_TGID_ATTR_PREV:
1765 case PROC_TID_ATTR_EXEC:
1766 case PROC_TGID_ATTR_EXEC:
1767 case PROC_TID_ATTR_FSCREATE:
1768 case PROC_TGID_ATTR_FSCREATE:
1769 case PROC_TID_ATTR_KEYCREATE:
1770 case PROC_TGID_ATTR_KEYCREATE:
1771 case PROC_TID_ATTR_SOCKCREATE:
1772 case PROC_TGID_ATTR_SOCKCREATE:
1773 inode->i_fop = &proc_pid_attr_operations;
1774 break;
1775 #endif
1776 #ifdef CONFIG_KALLSYMS
1777 case PROC_TID_WCHAN:
1778 case PROC_TGID_WCHAN:
1779 inode->i_fop = &proc_info_file_operations;
1780 ei->op.proc_read = proc_pid_wchan;
1781 break;
1782 #endif
1783 #ifdef CONFIG_SCHEDSTATS
1784 case PROC_TID_SCHEDSTAT:
1785 case PROC_TGID_SCHEDSTAT:
1786 inode->i_fop = &proc_info_file_operations;
1787 ei->op.proc_read = proc_pid_schedstat;
1788 break;
1789 #endif
1790 #ifdef CONFIG_CPUSETS
1791 case PROC_TID_CPUSET:
1792 case PROC_TGID_CPUSET:
1793 inode->i_fop = &proc_cpuset_operations;
1794 break;
1795 #endif
1796 case PROC_TID_OOM_SCORE:
1797 case PROC_TGID_OOM_SCORE:
1798 inode->i_fop = &proc_info_file_operations;
1799 ei->op.proc_read = proc_oom_score;
1800 break;
1801 case PROC_TID_OOM_ADJUST:
1802 case PROC_TGID_OOM_ADJUST:
1803 inode->i_fop = &proc_oom_adjust_operations;
1804 break;
1805 #ifdef CONFIG_AUDITSYSCALL
1806 case PROC_TID_LOGINUID:
1807 case PROC_TGID_LOGINUID:
1808 inode->i_fop = &proc_loginuid_operations;
1809 break;
1810 #endif
1811 default:
1812 printk("procfs: impossible type (%d)",p->type);
1813 iput(inode);
1814 error = ERR_PTR(-EINVAL);
1815 goto out;
1816 }
1817 dentry->d_op = &pid_dentry_operations;
1818 d_add(dentry, inode);
1819 /* Close the race of the process dying before we return the dentry */
1820 if (pid_revalidate(dentry, NULL))
1821 error = NULL;
1822 out:
1823 put_task_struct(task);
1824 out_no_task:
1825 return error;
1826 }
1827
1828 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
1829 return proc_pident_lookup(dir, dentry, tgid_base_stuff);
1830 }
1831
1832 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
1833 return proc_pident_lookup(dir, dentry, tid_base_stuff);
1834 }
1835
1836 static struct file_operations proc_tgid_base_operations = {
1837 .read = generic_read_dir,
1838 .readdir = proc_tgid_base_readdir,
1839 };
1840
1841 static struct file_operations proc_tid_base_operations = {
1842 .read = generic_read_dir,
1843 .readdir = proc_tid_base_readdir,
1844 };
1845
1846 static struct inode_operations proc_tgid_base_inode_operations = {
1847 .lookup = proc_tgid_base_lookup,
1848 .getattr = pid_getattr,
1849 };
1850
1851 static struct inode_operations proc_tid_base_inode_operations = {
1852 .lookup = proc_tid_base_lookup,
1853 .getattr = pid_getattr,
1854 };
1855
1856 #ifdef CONFIG_SECURITY
1857 static int proc_tgid_attr_readdir(struct file * filp,
1858 void * dirent, filldir_t filldir)
1859 {
1860 return proc_pident_readdir(filp,dirent,filldir,
1861 tgid_attr_stuff,ARRAY_SIZE(tgid_attr_stuff));
1862 }
1863
1864 static int proc_tid_attr_readdir(struct file * filp,
1865 void * dirent, filldir_t filldir)
1866 {
1867 return proc_pident_readdir(filp,dirent,filldir,
1868 tid_attr_stuff,ARRAY_SIZE(tid_attr_stuff));
1869 }
1870
1871 static struct file_operations proc_tgid_attr_operations = {
1872 .read = generic_read_dir,
1873 .readdir = proc_tgid_attr_readdir,
1874 };
1875
1876 static struct file_operations proc_tid_attr_operations = {
1877 .read = generic_read_dir,
1878 .readdir = proc_tid_attr_readdir,
1879 };
1880
1881 static struct dentry *proc_tgid_attr_lookup(struct inode *dir,
1882 struct dentry *dentry, struct nameidata *nd)
1883 {
1884 return proc_pident_lookup(dir, dentry, tgid_attr_stuff);
1885 }
1886
1887 static struct dentry *proc_tid_attr_lookup(struct inode *dir,
1888 struct dentry *dentry, struct nameidata *nd)
1889 {
1890 return proc_pident_lookup(dir, dentry, tid_attr_stuff);
1891 }
1892
1893 static struct inode_operations proc_tgid_attr_inode_operations = {
1894 .lookup = proc_tgid_attr_lookup,
1895 .getattr = pid_getattr,
1896 };
1897
1898 static struct inode_operations proc_tid_attr_inode_operations = {
1899 .lookup = proc_tid_attr_lookup,
1900 .getattr = pid_getattr,
1901 };
1902 #endif
1903
1904 /*
1905 * /proc/self:
1906 */
1907 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
1908 int buflen)
1909 {
1910 char tmp[PROC_NUMBUF];
1911 sprintf(tmp, "%d", current->tgid);
1912 return vfs_readlink(dentry,buffer,buflen,tmp);
1913 }
1914
1915 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
1916 {
1917 char tmp[PROC_NUMBUF];
1918 sprintf(tmp, "%d", current->tgid);
1919 return ERR_PTR(vfs_follow_link(nd,tmp));
1920 }
1921
1922 static struct inode_operations proc_self_inode_operations = {
1923 .readlink = proc_self_readlink,
1924 .follow_link = proc_self_follow_link,
1925 };
1926
1927 /**
1928 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
1929 *
1930 * @task: task that should be flushed.
1931 *
1932 * Looks in the dcache for
1933 * /proc/@pid
1934 * /proc/@tgid/task/@pid
1935 * if either directory is present flushes it and all of it'ts children
1936 * from the dcache.
1937 *
1938 * It is safe and reasonable to cache /proc entries for a task until
1939 * that task exits. After that they just clog up the dcache with
1940 * useless entries, possibly causing useful dcache entries to be
1941 * flushed instead. This routine is proved to flush those useless
1942 * dcache entries at process exit time.
1943 *
1944 * NOTE: This routine is just an optimization so it does not guarantee
1945 * that no dcache entries will exist at process exit time it
1946 * just makes it very unlikely that any will persist.
1947 */
1948 void proc_flush_task(struct task_struct *task)
1949 {
1950 struct dentry *dentry, *leader, *dir;
1951 char buf[PROC_NUMBUF];
1952 struct qstr name;
1953
1954 name.name = buf;
1955 name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
1956 dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name);
1957 if (dentry) {
1958 shrink_dcache_parent(dentry);
1959 d_drop(dentry);
1960 dput(dentry);
1961 }
1962
1963 if (thread_group_leader(task))
1964 goto out;
1965
1966 name.name = buf;
1967 name.len = snprintf(buf, sizeof(buf), "%d", task->tgid);
1968 leader = d_hash_and_lookup(proc_mnt->mnt_root, &name);
1969 if (!leader)
1970 goto out;
1971
1972 name.name = "task";
1973 name.len = strlen(name.name);
1974 dir = d_hash_and_lookup(leader, &name);
1975 if (!dir)
1976 goto out_put_leader;
1977
1978 name.name = buf;
1979 name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
1980 dentry = d_hash_and_lookup(dir, &name);
1981 if (dentry) {
1982 shrink_dcache_parent(dentry);
1983 d_drop(dentry);
1984 dput(dentry);
1985 }
1986
1987 dput(dir);
1988 out_put_leader:
1989 dput(leader);
1990 out:
1991 return;
1992 }
1993
1994 /* SMP-safe */
1995 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1996 {
1997 struct dentry *result = ERR_PTR(-ENOENT);
1998 struct task_struct *task;
1999 struct inode *inode;
2000 struct proc_inode *ei;
2001 unsigned tgid;
2002
2003 if (dentry->d_name.len == 4 && !memcmp(dentry->d_name.name,"self",4)) {
2004 inode = new_inode(dir->i_sb);
2005 if (!inode)
2006 return ERR_PTR(-ENOMEM);
2007 ei = PROC_I(inode);
2008 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2009 inode->i_ino = fake_ino(0, PROC_TGID_INO);
2010 ei->pde = NULL;
2011 inode->i_mode = S_IFLNK|S_IRWXUGO;
2012 inode->i_uid = inode->i_gid = 0;
2013 inode->i_size = 64;
2014 inode->i_op = &proc_self_inode_operations;
2015 d_add(dentry, inode);
2016 return NULL;
2017 }
2018 tgid = name_to_int(dentry);
2019 if (tgid == ~0U)
2020 goto out;
2021
2022 rcu_read_lock();
2023 task = find_task_by_pid(tgid);
2024 if (task)
2025 get_task_struct(task);
2026 rcu_read_unlock();
2027 if (!task)
2028 goto out;
2029
2030 inode = proc_pid_make_inode(dir->i_sb, task, PROC_TGID_INO);
2031 if (!inode)
2032 goto out_put_task;
2033
2034 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2035 inode->i_op = &proc_tgid_base_inode_operations;
2036 inode->i_fop = &proc_tgid_base_operations;
2037 inode->i_flags|=S_IMMUTABLE;
2038 #ifdef CONFIG_SECURITY
2039 inode->i_nlink = 5;
2040 #else
2041 inode->i_nlink = 4;
2042 #endif
2043
2044 dentry->d_op = &pid_dentry_operations;
2045
2046 d_add(dentry, inode);
2047 /* Close the race of the process dying before we return the dentry */
2048 if (pid_revalidate(dentry, NULL))
2049 result = NULL;
2050
2051 out_put_task:
2052 put_task_struct(task);
2053 out:
2054 return result;
2055 }
2056
2057 /* SMP-safe */
2058 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2059 {
2060 struct dentry *result = ERR_PTR(-ENOENT);
2061 struct task_struct *task;
2062 struct task_struct *leader = get_proc_task(dir);
2063 struct inode *inode;
2064 unsigned tid;
2065
2066 if (!leader)
2067 goto out_no_task;
2068
2069 tid = name_to_int(dentry);
2070 if (tid == ~0U)
2071 goto out;
2072
2073 rcu_read_lock();
2074 task = find_task_by_pid(tid);
2075 if (task)
2076 get_task_struct(task);
2077 rcu_read_unlock();
2078 if (!task)
2079 goto out;
2080 if (leader->tgid != task->tgid)
2081 goto out_drop_task;
2082
2083 inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_INO);
2084
2085
2086 if (!inode)
2087 goto out_drop_task;
2088 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2089 inode->i_op = &proc_tid_base_inode_operations;
2090 inode->i_fop = &proc_tid_base_operations;
2091 inode->i_flags|=S_IMMUTABLE;
2092 #ifdef CONFIG_SECURITY
2093 inode->i_nlink = 4;
2094 #else
2095 inode->i_nlink = 3;
2096 #endif
2097
2098 dentry->d_op = &pid_dentry_operations;
2099
2100 d_add(dentry, inode);
2101 /* Close the race of the process dying before we return the dentry */
2102 if (pid_revalidate(dentry, NULL))
2103 result = NULL;
2104
2105 out_drop_task:
2106 put_task_struct(task);
2107 out:
2108 put_task_struct(leader);
2109 out_no_task:
2110 return result;
2111 }
2112
2113 /*
2114 * Find the first tgid to return to user space.
2115 *
2116 * Usually this is just whatever follows &init_task, but if the users
2117 * buffer was too small to hold the full list or there was a seek into
2118 * the middle of the directory we have more work to do.
2119 *
2120 * In the case of a short read we start with find_task_by_pid.
2121 *
2122 * In the case of a seek we start with &init_task and walk nr
2123 * threads past it.
2124 */
2125 static struct task_struct *first_tgid(int tgid, unsigned int nr)
2126 {
2127 struct task_struct *pos;
2128 rcu_read_lock();
2129 if (tgid && nr) {
2130 pos = find_task_by_pid(tgid);
2131 if (pos && thread_group_leader(pos))
2132 goto found;
2133 }
2134 /* If nr exceeds the number of processes get out quickly */
2135 pos = NULL;
2136 if (nr && nr >= nr_processes())
2137 goto done;
2138
2139 /* If we haven't found our starting place yet start with
2140 * the init_task and walk nr tasks forward.
2141 */
2142 for (pos = next_task(&init_task); nr > 0; --nr) {
2143 pos = next_task(pos);
2144 if (pos == &init_task) {
2145 pos = NULL;
2146 goto done;
2147 }
2148 }
2149 found:
2150 get_task_struct(pos);
2151 done:
2152 rcu_read_unlock();
2153 return pos;
2154 }
2155
2156 /*
2157 * Find the next task in the task list.
2158 * Return NULL if we loop or there is any error.
2159 *
2160 * The reference to the input task_struct is released.
2161 */
2162 static struct task_struct *next_tgid(struct task_struct *start)
2163 {
2164 struct task_struct *pos;
2165 rcu_read_lock();
2166 pos = start;
2167 if (pid_alive(start))
2168 pos = next_task(start);
2169 if (pid_alive(pos) && (pos != &init_task)) {
2170 get_task_struct(pos);
2171 goto done;
2172 }
2173 pos = NULL;
2174 done:
2175 rcu_read_unlock();
2176 put_task_struct(start);
2177 return pos;
2178 }
2179
2180 /* for the /proc/ directory itself, after non-process stuff has been done */
2181 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2182 {
2183 char buf[PROC_NUMBUF];
2184 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2185 struct task_struct *task;
2186 int tgid;
2187
2188 if (!nr) {
2189 ino_t ino = fake_ino(0,PROC_TGID_INO);
2190 if (filldir(dirent, "self", 4, filp->f_pos, ino, DT_LNK) < 0)
2191 return 0;
2192 filp->f_pos++;
2193 nr++;
2194 }
2195 nr -= 1;
2196
2197 /* f_version caches the tgid value that the last readdir call couldn't
2198 * return. lseek aka telldir automagically resets f_version to 0.
2199 */
2200 tgid = filp->f_version;
2201 filp->f_version = 0;
2202 for (task = first_tgid(tgid, nr);
2203 task;
2204 task = next_tgid(task), filp->f_pos++) {
2205 int len;
2206 ino_t ino;
2207 tgid = task->pid;
2208 len = snprintf(buf, sizeof(buf), "%d", tgid);
2209 ino = fake_ino(tgid, PROC_TGID_INO);
2210 if (filldir(dirent, buf, len, filp->f_pos, ino, DT_DIR) < 0) {
2211 /* returning this tgid failed, save it as the first
2212 * pid for the next readir call */
2213 filp->f_version = tgid;
2214 put_task_struct(task);
2215 break;
2216 }
2217 }
2218 return 0;
2219 }
2220
2221 /*
2222 * Find the first tid of a thread group to return to user space.
2223 *
2224 * Usually this is just the thread group leader, but if the users
2225 * buffer was too small or there was a seek into the middle of the
2226 * directory we have more work todo.
2227 *
2228 * In the case of a short read we start with find_task_by_pid.
2229 *
2230 * In the case of a seek we start with the leader and walk nr
2231 * threads past it.
2232 */
2233 static struct task_struct *first_tid(struct task_struct *leader,
2234 int tid, int nr)
2235 {
2236 struct task_struct *pos;
2237
2238 rcu_read_lock();
2239 /* Attempt to start with the pid of a thread */
2240 if (tid && (nr > 0)) {
2241 pos = find_task_by_pid(tid);
2242 if (pos && (pos->group_leader == leader))
2243 goto found;
2244 }
2245
2246 /* If nr exceeds the number of threads there is nothing todo */
2247 pos = NULL;
2248 if (nr && nr >= get_nr_threads(leader))
2249 goto out;
2250
2251 /* If we haven't found our starting place yet start
2252 * with the leader and walk nr threads forward.
2253 */
2254 for (pos = leader; nr > 0; --nr) {
2255 pos = next_thread(pos);
2256 if (pos == leader) {
2257 pos = NULL;
2258 goto out;
2259 }
2260 }
2261 found:
2262 get_task_struct(pos);
2263 out:
2264 rcu_read_unlock();
2265 return pos;
2266 }
2267
2268 /*
2269 * Find the next thread in the thread list.
2270 * Return NULL if there is an error or no next thread.
2271 *
2272 * The reference to the input task_struct is released.
2273 */
2274 static struct task_struct *next_tid(struct task_struct *start)
2275 {
2276 struct task_struct *pos = NULL;
2277 rcu_read_lock();
2278 if (pid_alive(start)) {
2279 pos = next_thread(start);
2280 if (thread_group_leader(pos))
2281 pos = NULL;
2282 else
2283 get_task_struct(pos);
2284 }
2285 rcu_read_unlock();
2286 put_task_struct(start);
2287 return pos;
2288 }
2289
2290 /* for the /proc/TGID/task/ directories */
2291 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2292 {
2293 char buf[PROC_NUMBUF];
2294 struct dentry *dentry = filp->f_dentry;
2295 struct inode *inode = dentry->d_inode;
2296 struct task_struct *leader = get_proc_task(inode);
2297 struct task_struct *task;
2298 int retval = -ENOENT;
2299 ino_t ino;
2300 int tid;
2301 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
2302
2303 if (!leader)
2304 goto out_no_task;
2305 retval = 0;
2306
2307 switch (pos) {
2308 case 0:
2309 ino = inode->i_ino;
2310 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2311 goto out;
2312 pos++;
2313 /* fall through */
2314 case 1:
2315 ino = parent_ino(dentry);
2316 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2317 goto out;
2318 pos++;
2319 /* fall through */
2320 }
2321
2322 /* f_version caches the tgid value that the last readdir call couldn't
2323 * return. lseek aka telldir automagically resets f_version to 0.
2324 */
2325 tid = filp->f_version;
2326 filp->f_version = 0;
2327 for (task = first_tid(leader, tid, pos - 2);
2328 task;
2329 task = next_tid(task), pos++) {
2330 int len;
2331 tid = task->pid;
2332 len = snprintf(buf, sizeof(buf), "%d", tid);
2333 ino = fake_ino(tid, PROC_TID_INO);
2334 if (filldir(dirent, buf, len, pos, ino, DT_DIR < 0)) {
2335 /* returning this tgid failed, save it as the first
2336 * pid for the next readir call */
2337 filp->f_version = tid;
2338 put_task_struct(task);
2339 break;
2340 }
2341 }
2342 out:
2343 filp->f_pos = pos;
2344 put_task_struct(leader);
2345 out_no_task:
2346 return retval;
2347 }
2348
2349 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2350 {
2351 struct inode *inode = dentry->d_inode;
2352 struct task_struct *p = get_proc_task(inode);
2353 generic_fillattr(inode, stat);
2354
2355 if (p) {
2356 rcu_read_lock();
2357 stat->nlink += get_nr_threads(p);
2358 rcu_read_unlock();
2359 put_task_struct(p);
2360 }
2361
2362 return 0;
2363 }