]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/base.c
Merge branch 'for-3.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-bionic-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
102 *
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
105 */
106
107 struct pid_entry {
108 char *name;
109 int len;
110 umode_t mode;
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
113 union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) { \
117 .name = (NAME), \
118 .len = sizeof(NAME) - 1, \
119 .mode = MODE, \
120 .iop = IOP, \
121 .fop = FOP, \
122 .op = OP, \
123 }
124
125 #define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define INF(NAME, MODE, read) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_info_file_operations, \
136 { .proc_read = read } )
137 #define ONE(NAME, MODE, show) \
138 NOD(NAME, (S_IFREG|(MODE)), \
139 NULL, &proc_single_file_operations, \
140 { .proc_show = show } )
141
142 /*
143 * Count the number of hardlinks for the pid_entry table, excluding the .
144 * and .. links.
145 */
146 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
147 unsigned int n)
148 {
149 unsigned int i;
150 unsigned int count;
151
152 count = 0;
153 for (i = 0; i < n; ++i) {
154 if (S_ISDIR(entries[i].mode))
155 ++count;
156 }
157
158 return count;
159 }
160
161 static int get_task_root(struct task_struct *task, struct path *root)
162 {
163 int result = -ENOENT;
164
165 task_lock(task);
166 if (task->fs) {
167 get_fs_root(task->fs, root);
168 result = 0;
169 }
170 task_unlock(task);
171 return result;
172 }
173
174 static int proc_cwd_link(struct dentry *dentry, struct path *path)
175 {
176 struct task_struct *task = get_proc_task(dentry->d_inode);
177 int result = -ENOENT;
178
179 if (task) {
180 task_lock(task);
181 if (task->fs) {
182 get_fs_pwd(task->fs, path);
183 result = 0;
184 }
185 task_unlock(task);
186 put_task_struct(task);
187 }
188 return result;
189 }
190
191 static int proc_root_link(struct dentry *dentry, struct path *path)
192 {
193 struct task_struct *task = get_proc_task(dentry->d_inode);
194 int result = -ENOENT;
195
196 if (task) {
197 result = get_task_root(task, path);
198 put_task_struct(task);
199 }
200 return result;
201 }
202
203 static int proc_pid_cmdline(struct task_struct *task, char *buffer)
204 {
205 return get_cmdline(task, buffer, PAGE_SIZE);
206 }
207
208 static int proc_pid_auxv(struct task_struct *task, char *buffer)
209 {
210 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
211 int res = PTR_ERR(mm);
212 if (mm && !IS_ERR(mm)) {
213 unsigned int nwords = 0;
214 do {
215 nwords += 2;
216 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
217 res = nwords * sizeof(mm->saved_auxv[0]);
218 if (res > PAGE_SIZE)
219 res = PAGE_SIZE;
220 memcpy(buffer, mm->saved_auxv, res);
221 mmput(mm);
222 }
223 return res;
224 }
225
226
227 #ifdef CONFIG_KALLSYMS
228 /*
229 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
230 * Returns the resolved symbol. If that fails, simply return the address.
231 */
232 static int proc_pid_wchan(struct task_struct *task, char *buffer)
233 {
234 unsigned long wchan;
235 char symname[KSYM_NAME_LEN];
236
237 wchan = get_wchan(task);
238
239 if (lookup_symbol_name(wchan, symname) < 0)
240 if (!ptrace_may_access(task, PTRACE_MODE_READ))
241 return 0;
242 else
243 return sprintf(buffer, "%lu", wchan);
244 else
245 return sprintf(buffer, "%s", symname);
246 }
247 #endif /* CONFIG_KALLSYMS */
248
249 static int lock_trace(struct task_struct *task)
250 {
251 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
252 if (err)
253 return err;
254 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
255 mutex_unlock(&task->signal->cred_guard_mutex);
256 return -EPERM;
257 }
258 return 0;
259 }
260
261 static void unlock_trace(struct task_struct *task)
262 {
263 mutex_unlock(&task->signal->cred_guard_mutex);
264 }
265
266 #ifdef CONFIG_STACKTRACE
267
268 #define MAX_STACK_TRACE_DEPTH 64
269
270 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
271 struct pid *pid, struct task_struct *task)
272 {
273 struct stack_trace trace;
274 unsigned long *entries;
275 int err;
276 int i;
277
278 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
279 if (!entries)
280 return -ENOMEM;
281
282 trace.nr_entries = 0;
283 trace.max_entries = MAX_STACK_TRACE_DEPTH;
284 trace.entries = entries;
285 trace.skip = 0;
286
287 err = lock_trace(task);
288 if (!err) {
289 save_stack_trace_tsk(task, &trace);
290
291 for (i = 0; i < trace.nr_entries; i++) {
292 seq_printf(m, "[<%pK>] %pS\n",
293 (void *)entries[i], (void *)entries[i]);
294 }
295 unlock_trace(task);
296 }
297 kfree(entries);
298
299 return err;
300 }
301 #endif
302
303 #ifdef CONFIG_SCHEDSTATS
304 /*
305 * Provides /proc/PID/schedstat
306 */
307 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
308 {
309 return sprintf(buffer, "%llu %llu %lu\n",
310 (unsigned long long)task->se.sum_exec_runtime,
311 (unsigned long long)task->sched_info.run_delay,
312 task->sched_info.pcount);
313 }
314 #endif
315
316 #ifdef CONFIG_LATENCYTOP
317 static int lstats_show_proc(struct seq_file *m, void *v)
318 {
319 int i;
320 struct inode *inode = m->private;
321 struct task_struct *task = get_proc_task(inode);
322
323 if (!task)
324 return -ESRCH;
325 seq_puts(m, "Latency Top version : v0.1\n");
326 for (i = 0; i < 32; i++) {
327 struct latency_record *lr = &task->latency_record[i];
328 if (lr->backtrace[0]) {
329 int q;
330 seq_printf(m, "%i %li %li",
331 lr->count, lr->time, lr->max);
332 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
333 unsigned long bt = lr->backtrace[q];
334 if (!bt)
335 break;
336 if (bt == ULONG_MAX)
337 break;
338 seq_printf(m, " %ps", (void *)bt);
339 }
340 seq_putc(m, '\n');
341 }
342
343 }
344 put_task_struct(task);
345 return 0;
346 }
347
348 static int lstats_open(struct inode *inode, struct file *file)
349 {
350 return single_open(file, lstats_show_proc, inode);
351 }
352
353 static ssize_t lstats_write(struct file *file, const char __user *buf,
354 size_t count, loff_t *offs)
355 {
356 struct task_struct *task = get_proc_task(file_inode(file));
357
358 if (!task)
359 return -ESRCH;
360 clear_all_latency_tracing(task);
361 put_task_struct(task);
362
363 return count;
364 }
365
366 static const struct file_operations proc_lstats_operations = {
367 .open = lstats_open,
368 .read = seq_read,
369 .write = lstats_write,
370 .llseek = seq_lseek,
371 .release = single_release,
372 };
373
374 #endif
375
376 #ifdef CONFIG_CGROUPS
377 static int cgroup_open(struct inode *inode, struct file *file)
378 {
379 struct pid *pid = PROC_I(inode)->pid;
380 return single_open(file, proc_cgroup_show, pid);
381 }
382
383 static const struct file_operations proc_cgroup_operations = {
384 .open = cgroup_open,
385 .read = seq_read,
386 .llseek = seq_lseek,
387 .release = single_release,
388 };
389 #endif
390
391 #ifdef CONFIG_PROC_PID_CPUSET
392
393 static int cpuset_open(struct inode *inode, struct file *file)
394 {
395 struct pid *pid = PROC_I(inode)->pid;
396 return single_open(file, proc_cpuset_show, pid);
397 }
398
399 static const struct file_operations proc_cpuset_operations = {
400 .open = cpuset_open,
401 .read = seq_read,
402 .llseek = seq_lseek,
403 .release = single_release,
404 };
405 #endif
406
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 unsigned long totalpages = totalram_pages + total_swap_pages;
410 unsigned long points = 0;
411
412 read_lock(&tasklist_lock);
413 if (pid_alive(task))
414 points = oom_badness(task, NULL, NULL, totalpages) *
415 1000 / totalpages;
416 read_unlock(&tasklist_lock);
417 return sprintf(buffer, "%lu\n", points);
418 }
419
420 struct limit_names {
421 char *name;
422 char *unit;
423 };
424
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 [RLIMIT_DATA] = {"Max data size", "bytes"},
429 [RLIMIT_STACK] = {"Max stack size", "bytes"},
430 [RLIMIT_CORE] = {"Max core file size", "bytes"},
431 [RLIMIT_RSS] = {"Max resident set", "bytes"},
432 [RLIMIT_NPROC] = {"Max processes", "processes"},
433 [RLIMIT_NOFILE] = {"Max open files", "files"},
434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 [RLIMIT_AS] = {"Max address space", "bytes"},
436 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 [RLIMIT_NICE] = {"Max nice priority", NULL},
440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 unsigned int i;
448 int count = 0;
449 unsigned long flags;
450 char *bufptr = buffer;
451
452 struct rlimit rlim[RLIM_NLIMITS];
453
454 if (!lock_task_sighand(task, &flags))
455 return 0;
456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 unlock_task_sighand(task, &flags);
458
459 /*
460 * print the file header
461 */
462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 "Limit", "Soft Limit", "Hard Limit", "Units");
464
465 for (i = 0; i < RLIM_NLIMITS; i++) {
466 if (rlim[i].rlim_cur == RLIM_INFINITY)
467 count += sprintf(&bufptr[count], "%-25s %-20s ",
468 lnames[i].name, "unlimited");
469 else
470 count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 lnames[i].name, rlim[i].rlim_cur);
472
473 if (rlim[i].rlim_max == RLIM_INFINITY)
474 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 else
476 count += sprintf(&bufptr[count], "%-20lu ",
477 rlim[i].rlim_max);
478
479 if (lnames[i].unit)
480 count += sprintf(&bufptr[count], "%-10s\n",
481 lnames[i].unit);
482 else
483 count += sprintf(&bufptr[count], "\n");
484 }
485
486 return count;
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 long nr;
493 unsigned long args[6], sp, pc;
494 int res = lock_trace(task);
495 if (res)
496 return res;
497
498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 res = sprintf(buffer, "running\n");
500 else if (nr < 0)
501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 else
503 res = sprintf(buffer,
504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 nr,
506 args[0], args[1], args[2], args[3], args[4], args[5],
507 sp, pc);
508 unlock_trace(task);
509 return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512
513 /************************************************************************/
514 /* Here the fs part begins */
515 /************************************************************************/
516
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 struct task_struct *task;
521 int allowed = 0;
522 /* Allow access to a task's file descriptors if it is us or we
523 * may use ptrace attach to the process and find out that
524 * information.
525 */
526 task = get_proc_task(inode);
527 if (task) {
528 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 put_task_struct(task);
530 }
531 return allowed;
532 }
533
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 int error;
537 struct inode *inode = dentry->d_inode;
538
539 if (attr->ia_valid & ATTR_MODE)
540 return -EPERM;
541
542 error = inode_change_ok(inode, attr);
543 if (error)
544 return error;
545
546 setattr_copy(inode, attr);
547 mark_inode_dirty(inode);
548 return 0;
549 }
550
551 /*
552 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
553 * or euid/egid (for hide_pid_min=2)?
554 */
555 static bool has_pid_permissions(struct pid_namespace *pid,
556 struct task_struct *task,
557 int hide_pid_min)
558 {
559 if (pid->hide_pid < hide_pid_min)
560 return true;
561 if (in_group_p(pid->pid_gid))
562 return true;
563 return ptrace_may_access(task, PTRACE_MODE_READ);
564 }
565
566
567 static int proc_pid_permission(struct inode *inode, int mask)
568 {
569 struct pid_namespace *pid = inode->i_sb->s_fs_info;
570 struct task_struct *task;
571 bool has_perms;
572
573 task = get_proc_task(inode);
574 if (!task)
575 return -ESRCH;
576 has_perms = has_pid_permissions(pid, task, 1);
577 put_task_struct(task);
578
579 if (!has_perms) {
580 if (pid->hide_pid == 2) {
581 /*
582 * Let's make getdents(), stat(), and open()
583 * consistent with each other. If a process
584 * may not stat() a file, it shouldn't be seen
585 * in procfs at all.
586 */
587 return -ENOENT;
588 }
589
590 return -EPERM;
591 }
592 return generic_permission(inode, mask);
593 }
594
595
596
597 static const struct inode_operations proc_def_inode_operations = {
598 .setattr = proc_setattr,
599 };
600
601 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
602
603 static ssize_t proc_info_read(struct file * file, char __user * buf,
604 size_t count, loff_t *ppos)
605 {
606 struct inode * inode = file_inode(file);
607 unsigned long page;
608 ssize_t length;
609 struct task_struct *task = get_proc_task(inode);
610
611 length = -ESRCH;
612 if (!task)
613 goto out_no_task;
614
615 if (count > PROC_BLOCK_SIZE)
616 count = PROC_BLOCK_SIZE;
617
618 length = -ENOMEM;
619 if (!(page = __get_free_page(GFP_TEMPORARY)))
620 goto out;
621
622 length = PROC_I(inode)->op.proc_read(task, (char*)page);
623
624 if (length >= 0)
625 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
626 free_page(page);
627 out:
628 put_task_struct(task);
629 out_no_task:
630 return length;
631 }
632
633 static const struct file_operations proc_info_file_operations = {
634 .read = proc_info_read,
635 .llseek = generic_file_llseek,
636 };
637
638 static int proc_single_show(struct seq_file *m, void *v)
639 {
640 struct inode *inode = m->private;
641 struct pid_namespace *ns;
642 struct pid *pid;
643 struct task_struct *task;
644 int ret;
645
646 ns = inode->i_sb->s_fs_info;
647 pid = proc_pid(inode);
648 task = get_pid_task(pid, PIDTYPE_PID);
649 if (!task)
650 return -ESRCH;
651
652 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
653
654 put_task_struct(task);
655 return ret;
656 }
657
658 static int proc_single_open(struct inode *inode, struct file *filp)
659 {
660 return single_open(filp, proc_single_show, inode);
661 }
662
663 static const struct file_operations proc_single_file_operations = {
664 .open = proc_single_open,
665 .read = seq_read,
666 .llseek = seq_lseek,
667 .release = single_release,
668 };
669
670 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
671 {
672 struct task_struct *task = get_proc_task(file_inode(file));
673 struct mm_struct *mm;
674
675 if (!task)
676 return -ESRCH;
677
678 mm = mm_access(task, mode);
679 put_task_struct(task);
680
681 if (IS_ERR(mm))
682 return PTR_ERR(mm);
683
684 if (mm) {
685 /* ensure this mm_struct can't be freed */
686 atomic_inc(&mm->mm_count);
687 /* but do not pin its memory */
688 mmput(mm);
689 }
690
691 file->private_data = mm;
692
693 return 0;
694 }
695
696 static int mem_open(struct inode *inode, struct file *file)
697 {
698 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
699
700 /* OK to pass negative loff_t, we can catch out-of-range */
701 file->f_mode |= FMODE_UNSIGNED_OFFSET;
702
703 return ret;
704 }
705
706 static ssize_t mem_rw(struct file *file, char __user *buf,
707 size_t count, loff_t *ppos, int write)
708 {
709 struct mm_struct *mm = file->private_data;
710 unsigned long addr = *ppos;
711 ssize_t copied;
712 char *page;
713
714 if (!mm)
715 return 0;
716
717 page = (char *)__get_free_page(GFP_TEMPORARY);
718 if (!page)
719 return -ENOMEM;
720
721 copied = 0;
722 if (!atomic_inc_not_zero(&mm->mm_users))
723 goto free;
724
725 while (count > 0) {
726 int this_len = min_t(int, count, PAGE_SIZE);
727
728 if (write && copy_from_user(page, buf, this_len)) {
729 copied = -EFAULT;
730 break;
731 }
732
733 this_len = access_remote_vm(mm, addr, page, this_len, write);
734 if (!this_len) {
735 if (!copied)
736 copied = -EIO;
737 break;
738 }
739
740 if (!write && copy_to_user(buf, page, this_len)) {
741 copied = -EFAULT;
742 break;
743 }
744
745 buf += this_len;
746 addr += this_len;
747 copied += this_len;
748 count -= this_len;
749 }
750 *ppos = addr;
751
752 mmput(mm);
753 free:
754 free_page((unsigned long) page);
755 return copied;
756 }
757
758 static ssize_t mem_read(struct file *file, char __user *buf,
759 size_t count, loff_t *ppos)
760 {
761 return mem_rw(file, buf, count, ppos, 0);
762 }
763
764 static ssize_t mem_write(struct file *file, const char __user *buf,
765 size_t count, loff_t *ppos)
766 {
767 return mem_rw(file, (char __user*)buf, count, ppos, 1);
768 }
769
770 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
771 {
772 switch (orig) {
773 case 0:
774 file->f_pos = offset;
775 break;
776 case 1:
777 file->f_pos += offset;
778 break;
779 default:
780 return -EINVAL;
781 }
782 force_successful_syscall_return();
783 return file->f_pos;
784 }
785
786 static int mem_release(struct inode *inode, struct file *file)
787 {
788 struct mm_struct *mm = file->private_data;
789 if (mm)
790 mmdrop(mm);
791 return 0;
792 }
793
794 static const struct file_operations proc_mem_operations = {
795 .llseek = mem_lseek,
796 .read = mem_read,
797 .write = mem_write,
798 .open = mem_open,
799 .release = mem_release,
800 };
801
802 static int environ_open(struct inode *inode, struct file *file)
803 {
804 return __mem_open(inode, file, PTRACE_MODE_READ);
805 }
806
807 static ssize_t environ_read(struct file *file, char __user *buf,
808 size_t count, loff_t *ppos)
809 {
810 char *page;
811 unsigned long src = *ppos;
812 int ret = 0;
813 struct mm_struct *mm = file->private_data;
814
815 if (!mm)
816 return 0;
817
818 page = (char *)__get_free_page(GFP_TEMPORARY);
819 if (!page)
820 return -ENOMEM;
821
822 ret = 0;
823 if (!atomic_inc_not_zero(&mm->mm_users))
824 goto free;
825 while (count > 0) {
826 size_t this_len, max_len;
827 int retval;
828
829 if (src >= (mm->env_end - mm->env_start))
830 break;
831
832 this_len = mm->env_end - (mm->env_start + src);
833
834 max_len = min_t(size_t, PAGE_SIZE, count);
835 this_len = min(max_len, this_len);
836
837 retval = access_remote_vm(mm, (mm->env_start + src),
838 page, this_len, 0);
839
840 if (retval <= 0) {
841 ret = retval;
842 break;
843 }
844
845 if (copy_to_user(buf, page, retval)) {
846 ret = -EFAULT;
847 break;
848 }
849
850 ret += retval;
851 src += retval;
852 buf += retval;
853 count -= retval;
854 }
855 *ppos = src;
856 mmput(mm);
857
858 free:
859 free_page((unsigned long) page);
860 return ret;
861 }
862
863 static const struct file_operations proc_environ_operations = {
864 .open = environ_open,
865 .read = environ_read,
866 .llseek = generic_file_llseek,
867 .release = mem_release,
868 };
869
870 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
871 loff_t *ppos)
872 {
873 struct task_struct *task = get_proc_task(file_inode(file));
874 char buffer[PROC_NUMBUF];
875 int oom_adj = OOM_ADJUST_MIN;
876 size_t len;
877 unsigned long flags;
878
879 if (!task)
880 return -ESRCH;
881 if (lock_task_sighand(task, &flags)) {
882 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
883 oom_adj = OOM_ADJUST_MAX;
884 else
885 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
886 OOM_SCORE_ADJ_MAX;
887 unlock_task_sighand(task, &flags);
888 }
889 put_task_struct(task);
890 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
891 return simple_read_from_buffer(buf, count, ppos, buffer, len);
892 }
893
894 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
895 size_t count, loff_t *ppos)
896 {
897 struct task_struct *task;
898 char buffer[PROC_NUMBUF];
899 int oom_adj;
900 unsigned long flags;
901 int err;
902
903 memset(buffer, 0, sizeof(buffer));
904 if (count > sizeof(buffer) - 1)
905 count = sizeof(buffer) - 1;
906 if (copy_from_user(buffer, buf, count)) {
907 err = -EFAULT;
908 goto out;
909 }
910
911 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
912 if (err)
913 goto out;
914 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
915 oom_adj != OOM_DISABLE) {
916 err = -EINVAL;
917 goto out;
918 }
919
920 task = get_proc_task(file_inode(file));
921 if (!task) {
922 err = -ESRCH;
923 goto out;
924 }
925
926 task_lock(task);
927 if (!task->mm) {
928 err = -EINVAL;
929 goto err_task_lock;
930 }
931
932 if (!lock_task_sighand(task, &flags)) {
933 err = -ESRCH;
934 goto err_task_lock;
935 }
936
937 /*
938 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
939 * value is always attainable.
940 */
941 if (oom_adj == OOM_ADJUST_MAX)
942 oom_adj = OOM_SCORE_ADJ_MAX;
943 else
944 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
945
946 if (oom_adj < task->signal->oom_score_adj &&
947 !capable(CAP_SYS_RESOURCE)) {
948 err = -EACCES;
949 goto err_sighand;
950 }
951
952 /*
953 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
954 * /proc/pid/oom_score_adj instead.
955 */
956 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
957 current->comm, task_pid_nr(current), task_pid_nr(task),
958 task_pid_nr(task));
959
960 task->signal->oom_score_adj = oom_adj;
961 trace_oom_score_adj_update(task);
962 err_sighand:
963 unlock_task_sighand(task, &flags);
964 err_task_lock:
965 task_unlock(task);
966 put_task_struct(task);
967 out:
968 return err < 0 ? err : count;
969 }
970
971 static const struct file_operations proc_oom_adj_operations = {
972 .read = oom_adj_read,
973 .write = oom_adj_write,
974 .llseek = generic_file_llseek,
975 };
976
977 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
978 size_t count, loff_t *ppos)
979 {
980 struct task_struct *task = get_proc_task(file_inode(file));
981 char buffer[PROC_NUMBUF];
982 short oom_score_adj = OOM_SCORE_ADJ_MIN;
983 unsigned long flags;
984 size_t len;
985
986 if (!task)
987 return -ESRCH;
988 if (lock_task_sighand(task, &flags)) {
989 oom_score_adj = task->signal->oom_score_adj;
990 unlock_task_sighand(task, &flags);
991 }
992 put_task_struct(task);
993 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
994 return simple_read_from_buffer(buf, count, ppos, buffer, len);
995 }
996
997 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
998 size_t count, loff_t *ppos)
999 {
1000 struct task_struct *task;
1001 char buffer[PROC_NUMBUF];
1002 unsigned long flags;
1003 int oom_score_adj;
1004 int err;
1005
1006 memset(buffer, 0, sizeof(buffer));
1007 if (count > sizeof(buffer) - 1)
1008 count = sizeof(buffer) - 1;
1009 if (copy_from_user(buffer, buf, count)) {
1010 err = -EFAULT;
1011 goto out;
1012 }
1013
1014 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015 if (err)
1016 goto out;
1017 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022
1023 task = get_proc_task(file_inode(file));
1024 if (!task) {
1025 err = -ESRCH;
1026 goto out;
1027 }
1028
1029 task_lock(task);
1030 if (!task->mm) {
1031 err = -EINVAL;
1032 goto err_task_lock;
1033 }
1034
1035 if (!lock_task_sighand(task, &flags)) {
1036 err = -ESRCH;
1037 goto err_task_lock;
1038 }
1039
1040 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041 !capable(CAP_SYS_RESOURCE)) {
1042 err = -EACCES;
1043 goto err_sighand;
1044 }
1045
1046 task->signal->oom_score_adj = (short)oom_score_adj;
1047 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048 task->signal->oom_score_adj_min = (short)oom_score_adj;
1049 trace_oom_score_adj_update(task);
1050
1051 err_sighand:
1052 unlock_task_sighand(task, &flags);
1053 err_task_lock:
1054 task_unlock(task);
1055 put_task_struct(task);
1056 out:
1057 return err < 0 ? err : count;
1058 }
1059
1060 static const struct file_operations proc_oom_score_adj_operations = {
1061 .read = oom_score_adj_read,
1062 .write = oom_score_adj_write,
1063 .llseek = default_llseek,
1064 };
1065
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069 size_t count, loff_t *ppos)
1070 {
1071 struct inode * inode = file_inode(file);
1072 struct task_struct *task = get_proc_task(inode);
1073 ssize_t length;
1074 char tmpbuf[TMPBUFLEN];
1075
1076 if (!task)
1077 return -ESRCH;
1078 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079 from_kuid(file->f_cred->user_ns,
1080 audit_get_loginuid(task)));
1081 put_task_struct(task);
1082 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 size_t count, loff_t *ppos)
1087 {
1088 struct inode * inode = file_inode(file);
1089 char *page, *tmp;
1090 ssize_t length;
1091 uid_t loginuid;
1092 kuid_t kloginuid;
1093
1094 rcu_read_lock();
1095 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096 rcu_read_unlock();
1097 return -EPERM;
1098 }
1099 rcu_read_unlock();
1100
1101 if (count >= PAGE_SIZE)
1102 count = PAGE_SIZE - 1;
1103
1104 if (*ppos != 0) {
1105 /* No partial writes. */
1106 return -EINVAL;
1107 }
1108 page = (char*)__get_free_page(GFP_TEMPORARY);
1109 if (!page)
1110 return -ENOMEM;
1111 length = -EFAULT;
1112 if (copy_from_user(page, buf, count))
1113 goto out_free_page;
1114
1115 page[count] = '\0';
1116 loginuid = simple_strtoul(page, &tmp, 10);
1117 if (tmp == page) {
1118 length = -EINVAL;
1119 goto out_free_page;
1120
1121 }
1122
1123 /* is userspace tring to explicitly UNSET the loginuid? */
1124 if (loginuid == AUDIT_UID_UNSET) {
1125 kloginuid = INVALID_UID;
1126 } else {
1127 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1128 if (!uid_valid(kloginuid)) {
1129 length = -EINVAL;
1130 goto out_free_page;
1131 }
1132 }
1133
1134 length = audit_set_loginuid(kloginuid);
1135 if (likely(length == 0))
1136 length = count;
1137
1138 out_free_page:
1139 free_page((unsigned long) page);
1140 return length;
1141 }
1142
1143 static const struct file_operations proc_loginuid_operations = {
1144 .read = proc_loginuid_read,
1145 .write = proc_loginuid_write,
1146 .llseek = generic_file_llseek,
1147 };
1148
1149 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150 size_t count, loff_t *ppos)
1151 {
1152 struct inode * inode = file_inode(file);
1153 struct task_struct *task = get_proc_task(inode);
1154 ssize_t length;
1155 char tmpbuf[TMPBUFLEN];
1156
1157 if (!task)
1158 return -ESRCH;
1159 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160 audit_get_sessionid(task));
1161 put_task_struct(task);
1162 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163 }
1164
1165 static const struct file_operations proc_sessionid_operations = {
1166 .read = proc_sessionid_read,
1167 .llseek = generic_file_llseek,
1168 };
1169 #endif
1170
1171 #ifdef CONFIG_FAULT_INJECTION
1172 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173 size_t count, loff_t *ppos)
1174 {
1175 struct task_struct *task = get_proc_task(file_inode(file));
1176 char buffer[PROC_NUMBUF];
1177 size_t len;
1178 int make_it_fail;
1179
1180 if (!task)
1181 return -ESRCH;
1182 make_it_fail = task->make_it_fail;
1183 put_task_struct(task);
1184
1185 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186
1187 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188 }
1189
1190 static ssize_t proc_fault_inject_write(struct file * file,
1191 const char __user * buf, size_t count, loff_t *ppos)
1192 {
1193 struct task_struct *task;
1194 char buffer[PROC_NUMBUF], *end;
1195 int make_it_fail;
1196
1197 if (!capable(CAP_SYS_RESOURCE))
1198 return -EPERM;
1199 memset(buffer, 0, sizeof(buffer));
1200 if (count > sizeof(buffer) - 1)
1201 count = sizeof(buffer) - 1;
1202 if (copy_from_user(buffer, buf, count))
1203 return -EFAULT;
1204 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205 if (*end)
1206 return -EINVAL;
1207 if (make_it_fail < 0 || make_it_fail > 1)
1208 return -EINVAL;
1209
1210 task = get_proc_task(file_inode(file));
1211 if (!task)
1212 return -ESRCH;
1213 task->make_it_fail = make_it_fail;
1214 put_task_struct(task);
1215
1216 return count;
1217 }
1218
1219 static const struct file_operations proc_fault_inject_operations = {
1220 .read = proc_fault_inject_read,
1221 .write = proc_fault_inject_write,
1222 .llseek = generic_file_llseek,
1223 };
1224 #endif
1225
1226
1227 #ifdef CONFIG_SCHED_DEBUG
1228 /*
1229 * Print out various scheduling related per-task fields:
1230 */
1231 static int sched_show(struct seq_file *m, void *v)
1232 {
1233 struct inode *inode = m->private;
1234 struct task_struct *p;
1235
1236 p = get_proc_task(inode);
1237 if (!p)
1238 return -ESRCH;
1239 proc_sched_show_task(p, m);
1240
1241 put_task_struct(p);
1242
1243 return 0;
1244 }
1245
1246 static ssize_t
1247 sched_write(struct file *file, const char __user *buf,
1248 size_t count, loff_t *offset)
1249 {
1250 struct inode *inode = file_inode(file);
1251 struct task_struct *p;
1252
1253 p = get_proc_task(inode);
1254 if (!p)
1255 return -ESRCH;
1256 proc_sched_set_task(p);
1257
1258 put_task_struct(p);
1259
1260 return count;
1261 }
1262
1263 static int sched_open(struct inode *inode, struct file *filp)
1264 {
1265 return single_open(filp, sched_show, inode);
1266 }
1267
1268 static const struct file_operations proc_pid_sched_operations = {
1269 .open = sched_open,
1270 .read = seq_read,
1271 .write = sched_write,
1272 .llseek = seq_lseek,
1273 .release = single_release,
1274 };
1275
1276 #endif
1277
1278 #ifdef CONFIG_SCHED_AUTOGROUP
1279 /*
1280 * Print out autogroup related information:
1281 */
1282 static int sched_autogroup_show(struct seq_file *m, void *v)
1283 {
1284 struct inode *inode = m->private;
1285 struct task_struct *p;
1286
1287 p = get_proc_task(inode);
1288 if (!p)
1289 return -ESRCH;
1290 proc_sched_autogroup_show_task(p, m);
1291
1292 put_task_struct(p);
1293
1294 return 0;
1295 }
1296
1297 static ssize_t
1298 sched_autogroup_write(struct file *file, const char __user *buf,
1299 size_t count, loff_t *offset)
1300 {
1301 struct inode *inode = file_inode(file);
1302 struct task_struct *p;
1303 char buffer[PROC_NUMBUF];
1304 int nice;
1305 int err;
1306
1307 memset(buffer, 0, sizeof(buffer));
1308 if (count > sizeof(buffer) - 1)
1309 count = sizeof(buffer) - 1;
1310 if (copy_from_user(buffer, buf, count))
1311 return -EFAULT;
1312
1313 err = kstrtoint(strstrip(buffer), 0, &nice);
1314 if (err < 0)
1315 return err;
1316
1317 p = get_proc_task(inode);
1318 if (!p)
1319 return -ESRCH;
1320
1321 err = proc_sched_autogroup_set_nice(p, nice);
1322 if (err)
1323 count = err;
1324
1325 put_task_struct(p);
1326
1327 return count;
1328 }
1329
1330 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1331 {
1332 int ret;
1333
1334 ret = single_open(filp, sched_autogroup_show, NULL);
1335 if (!ret) {
1336 struct seq_file *m = filp->private_data;
1337
1338 m->private = inode;
1339 }
1340 return ret;
1341 }
1342
1343 static const struct file_operations proc_pid_sched_autogroup_operations = {
1344 .open = sched_autogroup_open,
1345 .read = seq_read,
1346 .write = sched_autogroup_write,
1347 .llseek = seq_lseek,
1348 .release = single_release,
1349 };
1350
1351 #endif /* CONFIG_SCHED_AUTOGROUP */
1352
1353 static ssize_t comm_write(struct file *file, const char __user *buf,
1354 size_t count, loff_t *offset)
1355 {
1356 struct inode *inode = file_inode(file);
1357 struct task_struct *p;
1358 char buffer[TASK_COMM_LEN];
1359 const size_t maxlen = sizeof(buffer) - 1;
1360
1361 memset(buffer, 0, sizeof(buffer));
1362 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1363 return -EFAULT;
1364
1365 p = get_proc_task(inode);
1366 if (!p)
1367 return -ESRCH;
1368
1369 if (same_thread_group(current, p))
1370 set_task_comm(p, buffer);
1371 else
1372 count = -EINVAL;
1373
1374 put_task_struct(p);
1375
1376 return count;
1377 }
1378
1379 static int comm_show(struct seq_file *m, void *v)
1380 {
1381 struct inode *inode = m->private;
1382 struct task_struct *p;
1383
1384 p = get_proc_task(inode);
1385 if (!p)
1386 return -ESRCH;
1387
1388 task_lock(p);
1389 seq_printf(m, "%s\n", p->comm);
1390 task_unlock(p);
1391
1392 put_task_struct(p);
1393
1394 return 0;
1395 }
1396
1397 static int comm_open(struct inode *inode, struct file *filp)
1398 {
1399 return single_open(filp, comm_show, inode);
1400 }
1401
1402 static const struct file_operations proc_pid_set_comm_operations = {
1403 .open = comm_open,
1404 .read = seq_read,
1405 .write = comm_write,
1406 .llseek = seq_lseek,
1407 .release = single_release,
1408 };
1409
1410 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1411 {
1412 struct task_struct *task;
1413 struct mm_struct *mm;
1414 struct file *exe_file;
1415
1416 task = get_proc_task(dentry->d_inode);
1417 if (!task)
1418 return -ENOENT;
1419 mm = get_task_mm(task);
1420 put_task_struct(task);
1421 if (!mm)
1422 return -ENOENT;
1423 exe_file = get_mm_exe_file(mm);
1424 mmput(mm);
1425 if (exe_file) {
1426 *exe_path = exe_file->f_path;
1427 path_get(&exe_file->f_path);
1428 fput(exe_file);
1429 return 0;
1430 } else
1431 return -ENOENT;
1432 }
1433
1434 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1435 {
1436 struct inode *inode = dentry->d_inode;
1437 struct path path;
1438 int error = -EACCES;
1439
1440 /* Are we allowed to snoop on the tasks file descriptors? */
1441 if (!proc_fd_access_allowed(inode))
1442 goto out;
1443
1444 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1445 if (error)
1446 goto out;
1447
1448 nd_jump_link(nd, &path);
1449 return NULL;
1450 out:
1451 return ERR_PTR(error);
1452 }
1453
1454 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1455 {
1456 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1457 char *pathname;
1458 int len;
1459
1460 if (!tmp)
1461 return -ENOMEM;
1462
1463 pathname = d_path(path, tmp, PAGE_SIZE);
1464 len = PTR_ERR(pathname);
1465 if (IS_ERR(pathname))
1466 goto out;
1467 len = tmp + PAGE_SIZE - 1 - pathname;
1468
1469 if (len > buflen)
1470 len = buflen;
1471 if (copy_to_user(buffer, pathname, len))
1472 len = -EFAULT;
1473 out:
1474 free_page((unsigned long)tmp);
1475 return len;
1476 }
1477
1478 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1479 {
1480 int error = -EACCES;
1481 struct inode *inode = dentry->d_inode;
1482 struct path path;
1483
1484 /* Are we allowed to snoop on the tasks file descriptors? */
1485 if (!proc_fd_access_allowed(inode))
1486 goto out;
1487
1488 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1489 if (error)
1490 goto out;
1491
1492 error = do_proc_readlink(&path, buffer, buflen);
1493 path_put(&path);
1494 out:
1495 return error;
1496 }
1497
1498 const struct inode_operations proc_pid_link_inode_operations = {
1499 .readlink = proc_pid_readlink,
1500 .follow_link = proc_pid_follow_link,
1501 .setattr = proc_setattr,
1502 };
1503
1504
1505 /* building an inode */
1506
1507 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1508 {
1509 struct inode * inode;
1510 struct proc_inode *ei;
1511 const struct cred *cred;
1512
1513 /* We need a new inode */
1514
1515 inode = new_inode(sb);
1516 if (!inode)
1517 goto out;
1518
1519 /* Common stuff */
1520 ei = PROC_I(inode);
1521 inode->i_ino = get_next_ino();
1522 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1523 inode->i_op = &proc_def_inode_operations;
1524
1525 /*
1526 * grab the reference to task.
1527 */
1528 ei->pid = get_task_pid(task, PIDTYPE_PID);
1529 if (!ei->pid)
1530 goto out_unlock;
1531
1532 if (task_dumpable(task)) {
1533 rcu_read_lock();
1534 cred = __task_cred(task);
1535 inode->i_uid = cred->euid;
1536 inode->i_gid = cred->egid;
1537 rcu_read_unlock();
1538 }
1539 security_task_to_inode(task, inode);
1540
1541 out:
1542 return inode;
1543
1544 out_unlock:
1545 iput(inode);
1546 return NULL;
1547 }
1548
1549 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1550 {
1551 struct inode *inode = dentry->d_inode;
1552 struct task_struct *task;
1553 const struct cred *cred;
1554 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1555
1556 generic_fillattr(inode, stat);
1557
1558 rcu_read_lock();
1559 stat->uid = GLOBAL_ROOT_UID;
1560 stat->gid = GLOBAL_ROOT_GID;
1561 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1562 if (task) {
1563 if (!has_pid_permissions(pid, task, 2)) {
1564 rcu_read_unlock();
1565 /*
1566 * This doesn't prevent learning whether PID exists,
1567 * it only makes getattr() consistent with readdir().
1568 */
1569 return -ENOENT;
1570 }
1571 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1572 task_dumpable(task)) {
1573 cred = __task_cred(task);
1574 stat->uid = cred->euid;
1575 stat->gid = cred->egid;
1576 }
1577 }
1578 rcu_read_unlock();
1579 return 0;
1580 }
1581
1582 /* dentry stuff */
1583
1584 /*
1585 * Exceptional case: normally we are not allowed to unhash a busy
1586 * directory. In this case, however, we can do it - no aliasing problems
1587 * due to the way we treat inodes.
1588 *
1589 * Rewrite the inode's ownerships here because the owning task may have
1590 * performed a setuid(), etc.
1591 *
1592 * Before the /proc/pid/status file was created the only way to read
1593 * the effective uid of a /process was to stat /proc/pid. Reading
1594 * /proc/pid/status is slow enough that procps and other packages
1595 * kept stating /proc/pid. To keep the rules in /proc simple I have
1596 * made this apply to all per process world readable and executable
1597 * directories.
1598 */
1599 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1600 {
1601 struct inode *inode;
1602 struct task_struct *task;
1603 const struct cred *cred;
1604
1605 if (flags & LOOKUP_RCU)
1606 return -ECHILD;
1607
1608 inode = dentry->d_inode;
1609 task = get_proc_task(inode);
1610
1611 if (task) {
1612 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1613 task_dumpable(task)) {
1614 rcu_read_lock();
1615 cred = __task_cred(task);
1616 inode->i_uid = cred->euid;
1617 inode->i_gid = cred->egid;
1618 rcu_read_unlock();
1619 } else {
1620 inode->i_uid = GLOBAL_ROOT_UID;
1621 inode->i_gid = GLOBAL_ROOT_GID;
1622 }
1623 inode->i_mode &= ~(S_ISUID | S_ISGID);
1624 security_task_to_inode(task, inode);
1625 put_task_struct(task);
1626 return 1;
1627 }
1628 d_drop(dentry);
1629 return 0;
1630 }
1631
1632 static inline bool proc_inode_is_dead(struct inode *inode)
1633 {
1634 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1635 }
1636
1637 int pid_delete_dentry(const struct dentry *dentry)
1638 {
1639 /* Is the task we represent dead?
1640 * If so, then don't put the dentry on the lru list,
1641 * kill it immediately.
1642 */
1643 return proc_inode_is_dead(dentry->d_inode);
1644 }
1645
1646 const struct dentry_operations pid_dentry_operations =
1647 {
1648 .d_revalidate = pid_revalidate,
1649 .d_delete = pid_delete_dentry,
1650 };
1651
1652 /* Lookups */
1653
1654 /*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache. This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1667 const char *name, int len,
1668 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669 {
1670 struct dentry *child, *dir = file->f_path.dentry;
1671 struct qstr qname = QSTR_INIT(name, len);
1672 struct inode *inode;
1673 unsigned type;
1674 ino_t ino;
1675
1676 child = d_hash_and_lookup(dir, &qname);
1677 if (!child) {
1678 child = d_alloc(dir, &qname);
1679 if (!child)
1680 goto end_instantiate;
1681 if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1682 dput(child);
1683 goto end_instantiate;
1684 }
1685 }
1686 inode = child->d_inode;
1687 ino = inode->i_ino;
1688 type = inode->i_mode >> 12;
1689 dput(child);
1690 return dir_emit(ctx, name, len, ino, type);
1691
1692 end_instantiate:
1693 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1694 }
1695
1696 #ifdef CONFIG_CHECKPOINT_RESTORE
1697
1698 /*
1699 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1700 * which represent vma start and end addresses.
1701 */
1702 static int dname_to_vma_addr(struct dentry *dentry,
1703 unsigned long *start, unsigned long *end)
1704 {
1705 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1706 return -EINVAL;
1707
1708 return 0;
1709 }
1710
1711 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1712 {
1713 unsigned long vm_start, vm_end;
1714 bool exact_vma_exists = false;
1715 struct mm_struct *mm = NULL;
1716 struct task_struct *task;
1717 const struct cred *cred;
1718 struct inode *inode;
1719 int status = 0;
1720
1721 if (flags & LOOKUP_RCU)
1722 return -ECHILD;
1723
1724 if (!capable(CAP_SYS_ADMIN)) {
1725 status = -EPERM;
1726 goto out_notask;
1727 }
1728
1729 inode = dentry->d_inode;
1730 task = get_proc_task(inode);
1731 if (!task)
1732 goto out_notask;
1733
1734 mm = mm_access(task, PTRACE_MODE_READ);
1735 if (IS_ERR_OR_NULL(mm))
1736 goto out;
1737
1738 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1739 down_read(&mm->mmap_sem);
1740 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1741 up_read(&mm->mmap_sem);
1742 }
1743
1744 mmput(mm);
1745
1746 if (exact_vma_exists) {
1747 if (task_dumpable(task)) {
1748 rcu_read_lock();
1749 cred = __task_cred(task);
1750 inode->i_uid = cred->euid;
1751 inode->i_gid = cred->egid;
1752 rcu_read_unlock();
1753 } else {
1754 inode->i_uid = GLOBAL_ROOT_UID;
1755 inode->i_gid = GLOBAL_ROOT_GID;
1756 }
1757 security_task_to_inode(task, inode);
1758 status = 1;
1759 }
1760
1761 out:
1762 put_task_struct(task);
1763
1764 out_notask:
1765 if (status <= 0)
1766 d_drop(dentry);
1767
1768 return status;
1769 }
1770
1771 static const struct dentry_operations tid_map_files_dentry_operations = {
1772 .d_revalidate = map_files_d_revalidate,
1773 .d_delete = pid_delete_dentry,
1774 };
1775
1776 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1777 {
1778 unsigned long vm_start, vm_end;
1779 struct vm_area_struct *vma;
1780 struct task_struct *task;
1781 struct mm_struct *mm;
1782 int rc;
1783
1784 rc = -ENOENT;
1785 task = get_proc_task(dentry->d_inode);
1786 if (!task)
1787 goto out;
1788
1789 mm = get_task_mm(task);
1790 put_task_struct(task);
1791 if (!mm)
1792 goto out;
1793
1794 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1795 if (rc)
1796 goto out_mmput;
1797
1798 rc = -ENOENT;
1799 down_read(&mm->mmap_sem);
1800 vma = find_exact_vma(mm, vm_start, vm_end);
1801 if (vma && vma->vm_file) {
1802 *path = vma->vm_file->f_path;
1803 path_get(path);
1804 rc = 0;
1805 }
1806 up_read(&mm->mmap_sem);
1807
1808 out_mmput:
1809 mmput(mm);
1810 out:
1811 return rc;
1812 }
1813
1814 struct map_files_info {
1815 fmode_t mode;
1816 unsigned long len;
1817 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1818 };
1819
1820 static int
1821 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1822 struct task_struct *task, const void *ptr)
1823 {
1824 fmode_t mode = (fmode_t)(unsigned long)ptr;
1825 struct proc_inode *ei;
1826 struct inode *inode;
1827
1828 inode = proc_pid_make_inode(dir->i_sb, task);
1829 if (!inode)
1830 return -ENOENT;
1831
1832 ei = PROC_I(inode);
1833 ei->op.proc_get_link = proc_map_files_get_link;
1834
1835 inode->i_op = &proc_pid_link_inode_operations;
1836 inode->i_size = 64;
1837 inode->i_mode = S_IFLNK;
1838
1839 if (mode & FMODE_READ)
1840 inode->i_mode |= S_IRUSR;
1841 if (mode & FMODE_WRITE)
1842 inode->i_mode |= S_IWUSR;
1843
1844 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1845 d_add(dentry, inode);
1846
1847 return 0;
1848 }
1849
1850 static struct dentry *proc_map_files_lookup(struct inode *dir,
1851 struct dentry *dentry, unsigned int flags)
1852 {
1853 unsigned long vm_start, vm_end;
1854 struct vm_area_struct *vma;
1855 struct task_struct *task;
1856 int result;
1857 struct mm_struct *mm;
1858
1859 result = -EPERM;
1860 if (!capable(CAP_SYS_ADMIN))
1861 goto out;
1862
1863 result = -ENOENT;
1864 task = get_proc_task(dir);
1865 if (!task)
1866 goto out;
1867
1868 result = -EACCES;
1869 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1870 goto out_put_task;
1871
1872 result = -ENOENT;
1873 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1874 goto out_put_task;
1875
1876 mm = get_task_mm(task);
1877 if (!mm)
1878 goto out_put_task;
1879
1880 down_read(&mm->mmap_sem);
1881 vma = find_exact_vma(mm, vm_start, vm_end);
1882 if (!vma)
1883 goto out_no_vma;
1884
1885 if (vma->vm_file)
1886 result = proc_map_files_instantiate(dir, dentry, task,
1887 (void *)(unsigned long)vma->vm_file->f_mode);
1888
1889 out_no_vma:
1890 up_read(&mm->mmap_sem);
1891 mmput(mm);
1892 out_put_task:
1893 put_task_struct(task);
1894 out:
1895 return ERR_PTR(result);
1896 }
1897
1898 static const struct inode_operations proc_map_files_inode_operations = {
1899 .lookup = proc_map_files_lookup,
1900 .permission = proc_fd_permission,
1901 .setattr = proc_setattr,
1902 };
1903
1904 static int
1905 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1906 {
1907 struct vm_area_struct *vma;
1908 struct task_struct *task;
1909 struct mm_struct *mm;
1910 unsigned long nr_files, pos, i;
1911 struct flex_array *fa = NULL;
1912 struct map_files_info info;
1913 struct map_files_info *p;
1914 int ret;
1915
1916 ret = -EPERM;
1917 if (!capable(CAP_SYS_ADMIN))
1918 goto out;
1919
1920 ret = -ENOENT;
1921 task = get_proc_task(file_inode(file));
1922 if (!task)
1923 goto out;
1924
1925 ret = -EACCES;
1926 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1927 goto out_put_task;
1928
1929 ret = 0;
1930 if (!dir_emit_dots(file, ctx))
1931 goto out_put_task;
1932
1933 mm = get_task_mm(task);
1934 if (!mm)
1935 goto out_put_task;
1936 down_read(&mm->mmap_sem);
1937
1938 nr_files = 0;
1939
1940 /*
1941 * We need two passes here:
1942 *
1943 * 1) Collect vmas of mapped files with mmap_sem taken
1944 * 2) Release mmap_sem and instantiate entries
1945 *
1946 * otherwise we get lockdep complained, since filldir()
1947 * routine might require mmap_sem taken in might_fault().
1948 */
1949
1950 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1951 if (vma->vm_file && ++pos > ctx->pos)
1952 nr_files++;
1953 }
1954
1955 if (nr_files) {
1956 fa = flex_array_alloc(sizeof(info), nr_files,
1957 GFP_KERNEL);
1958 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1959 GFP_KERNEL)) {
1960 ret = -ENOMEM;
1961 if (fa)
1962 flex_array_free(fa);
1963 up_read(&mm->mmap_sem);
1964 mmput(mm);
1965 goto out_put_task;
1966 }
1967 for (i = 0, vma = mm->mmap, pos = 2; vma;
1968 vma = vma->vm_next) {
1969 if (!vma->vm_file)
1970 continue;
1971 if (++pos <= ctx->pos)
1972 continue;
1973
1974 info.mode = vma->vm_file->f_mode;
1975 info.len = snprintf(info.name,
1976 sizeof(info.name), "%lx-%lx",
1977 vma->vm_start, vma->vm_end);
1978 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1979 BUG();
1980 }
1981 }
1982 up_read(&mm->mmap_sem);
1983
1984 for (i = 0; i < nr_files; i++) {
1985 p = flex_array_get(fa, i);
1986 if (!proc_fill_cache(file, ctx,
1987 p->name, p->len,
1988 proc_map_files_instantiate,
1989 task,
1990 (void *)(unsigned long)p->mode))
1991 break;
1992 ctx->pos++;
1993 }
1994 if (fa)
1995 flex_array_free(fa);
1996 mmput(mm);
1997
1998 out_put_task:
1999 put_task_struct(task);
2000 out:
2001 return ret;
2002 }
2003
2004 static const struct file_operations proc_map_files_operations = {
2005 .read = generic_read_dir,
2006 .iterate = proc_map_files_readdir,
2007 .llseek = default_llseek,
2008 };
2009
2010 struct timers_private {
2011 struct pid *pid;
2012 struct task_struct *task;
2013 struct sighand_struct *sighand;
2014 struct pid_namespace *ns;
2015 unsigned long flags;
2016 };
2017
2018 static void *timers_start(struct seq_file *m, loff_t *pos)
2019 {
2020 struct timers_private *tp = m->private;
2021
2022 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2023 if (!tp->task)
2024 return ERR_PTR(-ESRCH);
2025
2026 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2027 if (!tp->sighand)
2028 return ERR_PTR(-ESRCH);
2029
2030 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2031 }
2032
2033 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2034 {
2035 struct timers_private *tp = m->private;
2036 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2037 }
2038
2039 static void timers_stop(struct seq_file *m, void *v)
2040 {
2041 struct timers_private *tp = m->private;
2042
2043 if (tp->sighand) {
2044 unlock_task_sighand(tp->task, &tp->flags);
2045 tp->sighand = NULL;
2046 }
2047
2048 if (tp->task) {
2049 put_task_struct(tp->task);
2050 tp->task = NULL;
2051 }
2052 }
2053
2054 static int show_timer(struct seq_file *m, void *v)
2055 {
2056 struct k_itimer *timer;
2057 struct timers_private *tp = m->private;
2058 int notify;
2059 static char *nstr[] = {
2060 [SIGEV_SIGNAL] = "signal",
2061 [SIGEV_NONE] = "none",
2062 [SIGEV_THREAD] = "thread",
2063 };
2064
2065 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2066 notify = timer->it_sigev_notify;
2067
2068 seq_printf(m, "ID: %d\n", timer->it_id);
2069 seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2070 timer->sigq->info.si_value.sival_ptr);
2071 seq_printf(m, "notify: %s/%s.%d\n",
2072 nstr[notify & ~SIGEV_THREAD_ID],
2073 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2074 pid_nr_ns(timer->it_pid, tp->ns));
2075 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2076
2077 return 0;
2078 }
2079
2080 static const struct seq_operations proc_timers_seq_ops = {
2081 .start = timers_start,
2082 .next = timers_next,
2083 .stop = timers_stop,
2084 .show = show_timer,
2085 };
2086
2087 static int proc_timers_open(struct inode *inode, struct file *file)
2088 {
2089 struct timers_private *tp;
2090
2091 tp = __seq_open_private(file, &proc_timers_seq_ops,
2092 sizeof(struct timers_private));
2093 if (!tp)
2094 return -ENOMEM;
2095
2096 tp->pid = proc_pid(inode);
2097 tp->ns = inode->i_sb->s_fs_info;
2098 return 0;
2099 }
2100
2101 static const struct file_operations proc_timers_operations = {
2102 .open = proc_timers_open,
2103 .read = seq_read,
2104 .llseek = seq_lseek,
2105 .release = seq_release_private,
2106 };
2107 #endif /* CONFIG_CHECKPOINT_RESTORE */
2108
2109 static int proc_pident_instantiate(struct inode *dir,
2110 struct dentry *dentry, struct task_struct *task, const void *ptr)
2111 {
2112 const struct pid_entry *p = ptr;
2113 struct inode *inode;
2114 struct proc_inode *ei;
2115
2116 inode = proc_pid_make_inode(dir->i_sb, task);
2117 if (!inode)
2118 goto out;
2119
2120 ei = PROC_I(inode);
2121 inode->i_mode = p->mode;
2122 if (S_ISDIR(inode->i_mode))
2123 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2124 if (p->iop)
2125 inode->i_op = p->iop;
2126 if (p->fop)
2127 inode->i_fop = p->fop;
2128 ei->op = p->op;
2129 d_set_d_op(dentry, &pid_dentry_operations);
2130 d_add(dentry, inode);
2131 /* Close the race of the process dying before we return the dentry */
2132 if (pid_revalidate(dentry, 0))
2133 return 0;
2134 out:
2135 return -ENOENT;
2136 }
2137
2138 static struct dentry *proc_pident_lookup(struct inode *dir,
2139 struct dentry *dentry,
2140 const struct pid_entry *ents,
2141 unsigned int nents)
2142 {
2143 int error;
2144 struct task_struct *task = get_proc_task(dir);
2145 const struct pid_entry *p, *last;
2146
2147 error = -ENOENT;
2148
2149 if (!task)
2150 goto out_no_task;
2151
2152 /*
2153 * Yes, it does not scale. And it should not. Don't add
2154 * new entries into /proc/<tgid>/ without very good reasons.
2155 */
2156 last = &ents[nents - 1];
2157 for (p = ents; p <= last; p++) {
2158 if (p->len != dentry->d_name.len)
2159 continue;
2160 if (!memcmp(dentry->d_name.name, p->name, p->len))
2161 break;
2162 }
2163 if (p > last)
2164 goto out;
2165
2166 error = proc_pident_instantiate(dir, dentry, task, p);
2167 out:
2168 put_task_struct(task);
2169 out_no_task:
2170 return ERR_PTR(error);
2171 }
2172
2173 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2174 const struct pid_entry *ents, unsigned int nents)
2175 {
2176 struct task_struct *task = get_proc_task(file_inode(file));
2177 const struct pid_entry *p;
2178
2179 if (!task)
2180 return -ENOENT;
2181
2182 if (!dir_emit_dots(file, ctx))
2183 goto out;
2184
2185 if (ctx->pos >= nents + 2)
2186 goto out;
2187
2188 for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2189 if (!proc_fill_cache(file, ctx, p->name, p->len,
2190 proc_pident_instantiate, task, p))
2191 break;
2192 ctx->pos++;
2193 }
2194 out:
2195 put_task_struct(task);
2196 return 0;
2197 }
2198
2199 #ifdef CONFIG_SECURITY
2200 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2201 size_t count, loff_t *ppos)
2202 {
2203 struct inode * inode = file_inode(file);
2204 char *p = NULL;
2205 ssize_t length;
2206 struct task_struct *task = get_proc_task(inode);
2207
2208 if (!task)
2209 return -ESRCH;
2210
2211 length = security_getprocattr(task,
2212 (char*)file->f_path.dentry->d_name.name,
2213 &p);
2214 put_task_struct(task);
2215 if (length > 0)
2216 length = simple_read_from_buffer(buf, count, ppos, p, length);
2217 kfree(p);
2218 return length;
2219 }
2220
2221 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2222 size_t count, loff_t *ppos)
2223 {
2224 struct inode * inode = file_inode(file);
2225 char *page;
2226 ssize_t length;
2227 struct task_struct *task = get_proc_task(inode);
2228
2229 length = -ESRCH;
2230 if (!task)
2231 goto out_no_task;
2232 if (count > PAGE_SIZE)
2233 count = PAGE_SIZE;
2234
2235 /* No partial writes. */
2236 length = -EINVAL;
2237 if (*ppos != 0)
2238 goto out;
2239
2240 length = -ENOMEM;
2241 page = (char*)__get_free_page(GFP_TEMPORARY);
2242 if (!page)
2243 goto out;
2244
2245 length = -EFAULT;
2246 if (copy_from_user(page, buf, count))
2247 goto out_free;
2248
2249 /* Guard against adverse ptrace interaction */
2250 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2251 if (length < 0)
2252 goto out_free;
2253
2254 length = security_setprocattr(task,
2255 (char*)file->f_path.dentry->d_name.name,
2256 (void*)page, count);
2257 mutex_unlock(&task->signal->cred_guard_mutex);
2258 out_free:
2259 free_page((unsigned long) page);
2260 out:
2261 put_task_struct(task);
2262 out_no_task:
2263 return length;
2264 }
2265
2266 static const struct file_operations proc_pid_attr_operations = {
2267 .read = proc_pid_attr_read,
2268 .write = proc_pid_attr_write,
2269 .llseek = generic_file_llseek,
2270 };
2271
2272 static const struct pid_entry attr_dir_stuff[] = {
2273 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2274 REG("prev", S_IRUGO, proc_pid_attr_operations),
2275 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2276 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2277 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2278 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2279 };
2280
2281 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2282 {
2283 return proc_pident_readdir(file, ctx,
2284 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2285 }
2286
2287 static const struct file_operations proc_attr_dir_operations = {
2288 .read = generic_read_dir,
2289 .iterate = proc_attr_dir_readdir,
2290 .llseek = default_llseek,
2291 };
2292
2293 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2294 struct dentry *dentry, unsigned int flags)
2295 {
2296 return proc_pident_lookup(dir, dentry,
2297 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2298 }
2299
2300 static const struct inode_operations proc_attr_dir_inode_operations = {
2301 .lookup = proc_attr_dir_lookup,
2302 .getattr = pid_getattr,
2303 .setattr = proc_setattr,
2304 };
2305
2306 #endif
2307
2308 #ifdef CONFIG_ELF_CORE
2309 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2310 size_t count, loff_t *ppos)
2311 {
2312 struct task_struct *task = get_proc_task(file_inode(file));
2313 struct mm_struct *mm;
2314 char buffer[PROC_NUMBUF];
2315 size_t len;
2316 int ret;
2317
2318 if (!task)
2319 return -ESRCH;
2320
2321 ret = 0;
2322 mm = get_task_mm(task);
2323 if (mm) {
2324 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2325 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2326 MMF_DUMP_FILTER_SHIFT));
2327 mmput(mm);
2328 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2329 }
2330
2331 put_task_struct(task);
2332
2333 return ret;
2334 }
2335
2336 static ssize_t proc_coredump_filter_write(struct file *file,
2337 const char __user *buf,
2338 size_t count,
2339 loff_t *ppos)
2340 {
2341 struct task_struct *task;
2342 struct mm_struct *mm;
2343 char buffer[PROC_NUMBUF], *end;
2344 unsigned int val;
2345 int ret;
2346 int i;
2347 unsigned long mask;
2348
2349 ret = -EFAULT;
2350 memset(buffer, 0, sizeof(buffer));
2351 if (count > sizeof(buffer) - 1)
2352 count = sizeof(buffer) - 1;
2353 if (copy_from_user(buffer, buf, count))
2354 goto out_no_task;
2355
2356 ret = -EINVAL;
2357 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2358 if (*end == '\n')
2359 end++;
2360 if (end - buffer == 0)
2361 goto out_no_task;
2362
2363 ret = -ESRCH;
2364 task = get_proc_task(file_inode(file));
2365 if (!task)
2366 goto out_no_task;
2367
2368 ret = end - buffer;
2369 mm = get_task_mm(task);
2370 if (!mm)
2371 goto out_no_mm;
2372
2373 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2374 if (val & mask)
2375 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2376 else
2377 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2378 }
2379
2380 mmput(mm);
2381 out_no_mm:
2382 put_task_struct(task);
2383 out_no_task:
2384 return ret;
2385 }
2386
2387 static const struct file_operations proc_coredump_filter_operations = {
2388 .read = proc_coredump_filter_read,
2389 .write = proc_coredump_filter_write,
2390 .llseek = generic_file_llseek,
2391 };
2392 #endif
2393
2394 #ifdef CONFIG_TASK_IO_ACCOUNTING
2395 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2396 {
2397 struct task_io_accounting acct = task->ioac;
2398 unsigned long flags;
2399 int result;
2400
2401 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2402 if (result)
2403 return result;
2404
2405 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2406 result = -EACCES;
2407 goto out_unlock;
2408 }
2409
2410 if (whole && lock_task_sighand(task, &flags)) {
2411 struct task_struct *t = task;
2412
2413 task_io_accounting_add(&acct, &task->signal->ioac);
2414 while_each_thread(task, t)
2415 task_io_accounting_add(&acct, &t->ioac);
2416
2417 unlock_task_sighand(task, &flags);
2418 }
2419 result = sprintf(buffer,
2420 "rchar: %llu\n"
2421 "wchar: %llu\n"
2422 "syscr: %llu\n"
2423 "syscw: %llu\n"
2424 "read_bytes: %llu\n"
2425 "write_bytes: %llu\n"
2426 "cancelled_write_bytes: %llu\n",
2427 (unsigned long long)acct.rchar,
2428 (unsigned long long)acct.wchar,
2429 (unsigned long long)acct.syscr,
2430 (unsigned long long)acct.syscw,
2431 (unsigned long long)acct.read_bytes,
2432 (unsigned long long)acct.write_bytes,
2433 (unsigned long long)acct.cancelled_write_bytes);
2434 out_unlock:
2435 mutex_unlock(&task->signal->cred_guard_mutex);
2436 return result;
2437 }
2438
2439 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2440 {
2441 return do_io_accounting(task, buffer, 0);
2442 }
2443
2444 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2445 {
2446 return do_io_accounting(task, buffer, 1);
2447 }
2448 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2449
2450 #ifdef CONFIG_USER_NS
2451 static int proc_id_map_open(struct inode *inode, struct file *file,
2452 struct seq_operations *seq_ops)
2453 {
2454 struct user_namespace *ns = NULL;
2455 struct task_struct *task;
2456 struct seq_file *seq;
2457 int ret = -EINVAL;
2458
2459 task = get_proc_task(inode);
2460 if (task) {
2461 rcu_read_lock();
2462 ns = get_user_ns(task_cred_xxx(task, user_ns));
2463 rcu_read_unlock();
2464 put_task_struct(task);
2465 }
2466 if (!ns)
2467 goto err;
2468
2469 ret = seq_open(file, seq_ops);
2470 if (ret)
2471 goto err_put_ns;
2472
2473 seq = file->private_data;
2474 seq->private = ns;
2475
2476 return 0;
2477 err_put_ns:
2478 put_user_ns(ns);
2479 err:
2480 return ret;
2481 }
2482
2483 static int proc_id_map_release(struct inode *inode, struct file *file)
2484 {
2485 struct seq_file *seq = file->private_data;
2486 struct user_namespace *ns = seq->private;
2487 put_user_ns(ns);
2488 return seq_release(inode, file);
2489 }
2490
2491 static int proc_uid_map_open(struct inode *inode, struct file *file)
2492 {
2493 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2494 }
2495
2496 static int proc_gid_map_open(struct inode *inode, struct file *file)
2497 {
2498 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2499 }
2500
2501 static int proc_projid_map_open(struct inode *inode, struct file *file)
2502 {
2503 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2504 }
2505
2506 static const struct file_operations proc_uid_map_operations = {
2507 .open = proc_uid_map_open,
2508 .write = proc_uid_map_write,
2509 .read = seq_read,
2510 .llseek = seq_lseek,
2511 .release = proc_id_map_release,
2512 };
2513
2514 static const struct file_operations proc_gid_map_operations = {
2515 .open = proc_gid_map_open,
2516 .write = proc_gid_map_write,
2517 .read = seq_read,
2518 .llseek = seq_lseek,
2519 .release = proc_id_map_release,
2520 };
2521
2522 static const struct file_operations proc_projid_map_operations = {
2523 .open = proc_projid_map_open,
2524 .write = proc_projid_map_write,
2525 .read = seq_read,
2526 .llseek = seq_lseek,
2527 .release = proc_id_map_release,
2528 };
2529 #endif /* CONFIG_USER_NS */
2530
2531 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2532 struct pid *pid, struct task_struct *task)
2533 {
2534 int err = lock_trace(task);
2535 if (!err) {
2536 seq_printf(m, "%08x\n", task->personality);
2537 unlock_trace(task);
2538 }
2539 return err;
2540 }
2541
2542 /*
2543 * Thread groups
2544 */
2545 static const struct file_operations proc_task_operations;
2546 static const struct inode_operations proc_task_inode_operations;
2547
2548 static const struct pid_entry tgid_base_stuff[] = {
2549 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2550 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2551 #ifdef CONFIG_CHECKPOINT_RESTORE
2552 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2553 #endif
2554 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2555 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2556 #ifdef CONFIG_NET
2557 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2558 #endif
2559 REG("environ", S_IRUSR, proc_environ_operations),
2560 INF("auxv", S_IRUSR, proc_pid_auxv),
2561 ONE("status", S_IRUGO, proc_pid_status),
2562 ONE("personality", S_IRUSR, proc_pid_personality),
2563 INF("limits", S_IRUGO, proc_pid_limits),
2564 #ifdef CONFIG_SCHED_DEBUG
2565 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2566 #endif
2567 #ifdef CONFIG_SCHED_AUTOGROUP
2568 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2569 #endif
2570 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2571 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2572 INF("syscall", S_IRUSR, proc_pid_syscall),
2573 #endif
2574 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2575 ONE("stat", S_IRUGO, proc_tgid_stat),
2576 ONE("statm", S_IRUGO, proc_pid_statm),
2577 REG("maps", S_IRUGO, proc_pid_maps_operations),
2578 #ifdef CONFIG_NUMA
2579 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2580 #endif
2581 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2582 LNK("cwd", proc_cwd_link),
2583 LNK("root", proc_root_link),
2584 LNK("exe", proc_exe_link),
2585 REG("mounts", S_IRUGO, proc_mounts_operations),
2586 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2587 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2588 #ifdef CONFIG_PROC_PAGE_MONITOR
2589 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2590 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2591 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2592 #endif
2593 #ifdef CONFIG_SECURITY
2594 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2595 #endif
2596 #ifdef CONFIG_KALLSYMS
2597 INF("wchan", S_IRUGO, proc_pid_wchan),
2598 #endif
2599 #ifdef CONFIG_STACKTRACE
2600 ONE("stack", S_IRUSR, proc_pid_stack),
2601 #endif
2602 #ifdef CONFIG_SCHEDSTATS
2603 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2604 #endif
2605 #ifdef CONFIG_LATENCYTOP
2606 REG("latency", S_IRUGO, proc_lstats_operations),
2607 #endif
2608 #ifdef CONFIG_PROC_PID_CPUSET
2609 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2610 #endif
2611 #ifdef CONFIG_CGROUPS
2612 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2613 #endif
2614 INF("oom_score", S_IRUGO, proc_oom_score),
2615 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2616 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2617 #ifdef CONFIG_AUDITSYSCALL
2618 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2619 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2620 #endif
2621 #ifdef CONFIG_FAULT_INJECTION
2622 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2623 #endif
2624 #ifdef CONFIG_ELF_CORE
2625 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2626 #endif
2627 #ifdef CONFIG_TASK_IO_ACCOUNTING
2628 INF("io", S_IRUSR, proc_tgid_io_accounting),
2629 #endif
2630 #ifdef CONFIG_HARDWALL
2631 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2632 #endif
2633 #ifdef CONFIG_USER_NS
2634 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2635 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2636 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2637 #endif
2638 #ifdef CONFIG_CHECKPOINT_RESTORE
2639 REG("timers", S_IRUGO, proc_timers_operations),
2640 #endif
2641 };
2642
2643 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2644 {
2645 return proc_pident_readdir(file, ctx,
2646 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2647 }
2648
2649 static const struct file_operations proc_tgid_base_operations = {
2650 .read = generic_read_dir,
2651 .iterate = proc_tgid_base_readdir,
2652 .llseek = default_llseek,
2653 };
2654
2655 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2656 {
2657 return proc_pident_lookup(dir, dentry,
2658 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2659 }
2660
2661 static const struct inode_operations proc_tgid_base_inode_operations = {
2662 .lookup = proc_tgid_base_lookup,
2663 .getattr = pid_getattr,
2664 .setattr = proc_setattr,
2665 .permission = proc_pid_permission,
2666 };
2667
2668 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669 {
2670 struct dentry *dentry, *leader, *dir;
2671 char buf[PROC_NUMBUF];
2672 struct qstr name;
2673
2674 name.name = buf;
2675 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676 /* no ->d_hash() rejects on procfs */
2677 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678 if (dentry) {
2679 shrink_dcache_parent(dentry);
2680 d_drop(dentry);
2681 dput(dentry);
2682 }
2683
2684 name.name = buf;
2685 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2686 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2687 if (!leader)
2688 goto out;
2689
2690 name.name = "task";
2691 name.len = strlen(name.name);
2692 dir = d_hash_and_lookup(leader, &name);
2693 if (!dir)
2694 goto out_put_leader;
2695
2696 name.name = buf;
2697 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2698 dentry = d_hash_and_lookup(dir, &name);
2699 if (dentry) {
2700 shrink_dcache_parent(dentry);
2701 d_drop(dentry);
2702 dput(dentry);
2703 }
2704
2705 dput(dir);
2706 out_put_leader:
2707 dput(leader);
2708 out:
2709 return;
2710 }
2711
2712 /**
2713 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2714 * @task: task that should be flushed.
2715 *
2716 * When flushing dentries from proc, one needs to flush them from global
2717 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2718 * in. This call is supposed to do all of this job.
2719 *
2720 * Looks in the dcache for
2721 * /proc/@pid
2722 * /proc/@tgid/task/@pid
2723 * if either directory is present flushes it and all of it'ts children
2724 * from the dcache.
2725 *
2726 * It is safe and reasonable to cache /proc entries for a task until
2727 * that task exits. After that they just clog up the dcache with
2728 * useless entries, possibly causing useful dcache entries to be
2729 * flushed instead. This routine is proved to flush those useless
2730 * dcache entries at process exit time.
2731 *
2732 * NOTE: This routine is just an optimization so it does not guarantee
2733 * that no dcache entries will exist at process exit time it
2734 * just makes it very unlikely that any will persist.
2735 */
2736
2737 void proc_flush_task(struct task_struct *task)
2738 {
2739 int i;
2740 struct pid *pid, *tgid;
2741 struct upid *upid;
2742
2743 pid = task_pid(task);
2744 tgid = task_tgid(task);
2745
2746 for (i = 0; i <= pid->level; i++) {
2747 upid = &pid->numbers[i];
2748 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2749 tgid->numbers[i].nr);
2750 }
2751 }
2752
2753 static int proc_pid_instantiate(struct inode *dir,
2754 struct dentry * dentry,
2755 struct task_struct *task, const void *ptr)
2756 {
2757 struct inode *inode;
2758
2759 inode = proc_pid_make_inode(dir->i_sb, task);
2760 if (!inode)
2761 goto out;
2762
2763 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2764 inode->i_op = &proc_tgid_base_inode_operations;
2765 inode->i_fop = &proc_tgid_base_operations;
2766 inode->i_flags|=S_IMMUTABLE;
2767
2768 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2769 ARRAY_SIZE(tgid_base_stuff)));
2770
2771 d_set_d_op(dentry, &pid_dentry_operations);
2772
2773 d_add(dentry, inode);
2774 /* Close the race of the process dying before we return the dentry */
2775 if (pid_revalidate(dentry, 0))
2776 return 0;
2777 out:
2778 return -ENOENT;
2779 }
2780
2781 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2782 {
2783 int result = 0;
2784 struct task_struct *task;
2785 unsigned tgid;
2786 struct pid_namespace *ns;
2787
2788 tgid = name_to_int(dentry);
2789 if (tgid == ~0U)
2790 goto out;
2791
2792 ns = dentry->d_sb->s_fs_info;
2793 rcu_read_lock();
2794 task = find_task_by_pid_ns(tgid, ns);
2795 if (task)
2796 get_task_struct(task);
2797 rcu_read_unlock();
2798 if (!task)
2799 goto out;
2800
2801 result = proc_pid_instantiate(dir, dentry, task, NULL);
2802 put_task_struct(task);
2803 out:
2804 return ERR_PTR(result);
2805 }
2806
2807 /*
2808 * Find the first task with tgid >= tgid
2809 *
2810 */
2811 struct tgid_iter {
2812 unsigned int tgid;
2813 struct task_struct *task;
2814 };
2815 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2816 {
2817 struct pid *pid;
2818
2819 if (iter.task)
2820 put_task_struct(iter.task);
2821 rcu_read_lock();
2822 retry:
2823 iter.task = NULL;
2824 pid = find_ge_pid(iter.tgid, ns);
2825 if (pid) {
2826 iter.tgid = pid_nr_ns(pid, ns);
2827 iter.task = pid_task(pid, PIDTYPE_PID);
2828 /* What we to know is if the pid we have find is the
2829 * pid of a thread_group_leader. Testing for task
2830 * being a thread_group_leader is the obvious thing
2831 * todo but there is a window when it fails, due to
2832 * the pid transfer logic in de_thread.
2833 *
2834 * So we perform the straight forward test of seeing
2835 * if the pid we have found is the pid of a thread
2836 * group leader, and don't worry if the task we have
2837 * found doesn't happen to be a thread group leader.
2838 * As we don't care in the case of readdir.
2839 */
2840 if (!iter.task || !has_group_leader_pid(iter.task)) {
2841 iter.tgid += 1;
2842 goto retry;
2843 }
2844 get_task_struct(iter.task);
2845 }
2846 rcu_read_unlock();
2847 return iter;
2848 }
2849
2850 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2851
2852 /* for the /proc/ directory itself, after non-process stuff has been done */
2853 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2854 {
2855 struct tgid_iter iter;
2856 struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2857 loff_t pos = ctx->pos;
2858
2859 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2860 return 0;
2861
2862 if (pos == TGID_OFFSET - 1) {
2863 struct inode *inode = ns->proc_self->d_inode;
2864 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2865 return 0;
2866 iter.tgid = 0;
2867 } else {
2868 iter.tgid = pos - TGID_OFFSET;
2869 }
2870 iter.task = NULL;
2871 for (iter = next_tgid(ns, iter);
2872 iter.task;
2873 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2874 char name[PROC_NUMBUF];
2875 int len;
2876 if (!has_pid_permissions(ns, iter.task, 2))
2877 continue;
2878
2879 len = snprintf(name, sizeof(name), "%d", iter.tgid);
2880 ctx->pos = iter.tgid + TGID_OFFSET;
2881 if (!proc_fill_cache(file, ctx, name, len,
2882 proc_pid_instantiate, iter.task, NULL)) {
2883 put_task_struct(iter.task);
2884 return 0;
2885 }
2886 }
2887 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2888 return 0;
2889 }
2890
2891 /*
2892 * Tasks
2893 */
2894 static const struct pid_entry tid_base_stuff[] = {
2895 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2896 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2898 REG("environ", S_IRUSR, proc_environ_operations),
2899 INF("auxv", S_IRUSR, proc_pid_auxv),
2900 ONE("status", S_IRUGO, proc_pid_status),
2901 ONE("personality", S_IRUSR, proc_pid_personality),
2902 INF("limits", S_IRUGO, proc_pid_limits),
2903 #ifdef CONFIG_SCHED_DEBUG
2904 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2905 #endif
2906 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2907 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2908 INF("syscall", S_IRUSR, proc_pid_syscall),
2909 #endif
2910 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2911 ONE("stat", S_IRUGO, proc_tid_stat),
2912 ONE("statm", S_IRUGO, proc_pid_statm),
2913 REG("maps", S_IRUGO, proc_tid_maps_operations),
2914 #ifdef CONFIG_CHECKPOINT_RESTORE
2915 REG("children", S_IRUGO, proc_tid_children_operations),
2916 #endif
2917 #ifdef CONFIG_NUMA
2918 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2919 #endif
2920 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2921 LNK("cwd", proc_cwd_link),
2922 LNK("root", proc_root_link),
2923 LNK("exe", proc_exe_link),
2924 REG("mounts", S_IRUGO, proc_mounts_operations),
2925 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2926 #ifdef CONFIG_PROC_PAGE_MONITOR
2927 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2928 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
2929 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2930 #endif
2931 #ifdef CONFIG_SECURITY
2932 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2933 #endif
2934 #ifdef CONFIG_KALLSYMS
2935 INF("wchan", S_IRUGO, proc_pid_wchan),
2936 #endif
2937 #ifdef CONFIG_STACKTRACE
2938 ONE("stack", S_IRUSR, proc_pid_stack),
2939 #endif
2940 #ifdef CONFIG_SCHEDSTATS
2941 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2942 #endif
2943 #ifdef CONFIG_LATENCYTOP
2944 REG("latency", S_IRUGO, proc_lstats_operations),
2945 #endif
2946 #ifdef CONFIG_PROC_PID_CPUSET
2947 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2948 #endif
2949 #ifdef CONFIG_CGROUPS
2950 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2951 #endif
2952 INF("oom_score", S_IRUGO, proc_oom_score),
2953 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2954 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2955 #ifdef CONFIG_AUDITSYSCALL
2956 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2957 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2958 #endif
2959 #ifdef CONFIG_FAULT_INJECTION
2960 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2961 #endif
2962 #ifdef CONFIG_TASK_IO_ACCOUNTING
2963 INF("io", S_IRUSR, proc_tid_io_accounting),
2964 #endif
2965 #ifdef CONFIG_HARDWALL
2966 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2967 #endif
2968 #ifdef CONFIG_USER_NS
2969 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2970 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2971 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2972 #endif
2973 };
2974
2975 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2976 {
2977 return proc_pident_readdir(file, ctx,
2978 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2979 }
2980
2981 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2982 {
2983 return proc_pident_lookup(dir, dentry,
2984 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2985 }
2986
2987 static const struct file_operations proc_tid_base_operations = {
2988 .read = generic_read_dir,
2989 .iterate = proc_tid_base_readdir,
2990 .llseek = default_llseek,
2991 };
2992
2993 static const struct inode_operations proc_tid_base_inode_operations = {
2994 .lookup = proc_tid_base_lookup,
2995 .getattr = pid_getattr,
2996 .setattr = proc_setattr,
2997 };
2998
2999 static int proc_task_instantiate(struct inode *dir,
3000 struct dentry *dentry, struct task_struct *task, const void *ptr)
3001 {
3002 struct inode *inode;
3003 inode = proc_pid_make_inode(dir->i_sb, task);
3004
3005 if (!inode)
3006 goto out;
3007 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3008 inode->i_op = &proc_tid_base_inode_operations;
3009 inode->i_fop = &proc_tid_base_operations;
3010 inode->i_flags|=S_IMMUTABLE;
3011
3012 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3013 ARRAY_SIZE(tid_base_stuff)));
3014
3015 d_set_d_op(dentry, &pid_dentry_operations);
3016
3017 d_add(dentry, inode);
3018 /* Close the race of the process dying before we return the dentry */
3019 if (pid_revalidate(dentry, 0))
3020 return 0;
3021 out:
3022 return -ENOENT;
3023 }
3024
3025 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3026 {
3027 int result = -ENOENT;
3028 struct task_struct *task;
3029 struct task_struct *leader = get_proc_task(dir);
3030 unsigned tid;
3031 struct pid_namespace *ns;
3032
3033 if (!leader)
3034 goto out_no_task;
3035
3036 tid = name_to_int(dentry);
3037 if (tid == ~0U)
3038 goto out;
3039
3040 ns = dentry->d_sb->s_fs_info;
3041 rcu_read_lock();
3042 task = find_task_by_pid_ns(tid, ns);
3043 if (task)
3044 get_task_struct(task);
3045 rcu_read_unlock();
3046 if (!task)
3047 goto out;
3048 if (!same_thread_group(leader, task))
3049 goto out_drop_task;
3050
3051 result = proc_task_instantiate(dir, dentry, task, NULL);
3052 out_drop_task:
3053 put_task_struct(task);
3054 out:
3055 put_task_struct(leader);
3056 out_no_task:
3057 return ERR_PTR(result);
3058 }
3059
3060 /*
3061 * Find the first tid of a thread group to return to user space.
3062 *
3063 * Usually this is just the thread group leader, but if the users
3064 * buffer was too small or there was a seek into the middle of the
3065 * directory we have more work todo.
3066 *
3067 * In the case of a short read we start with find_task_by_pid.
3068 *
3069 * In the case of a seek we start with the leader and walk nr
3070 * threads past it.
3071 */
3072 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3073 struct pid_namespace *ns)
3074 {
3075 struct task_struct *pos, *task;
3076 unsigned long nr = f_pos;
3077
3078 if (nr != f_pos) /* 32bit overflow? */
3079 return NULL;
3080
3081 rcu_read_lock();
3082 task = pid_task(pid, PIDTYPE_PID);
3083 if (!task)
3084 goto fail;
3085
3086 /* Attempt to start with the tid of a thread */
3087 if (tid && nr) {
3088 pos = find_task_by_pid_ns(tid, ns);
3089 if (pos && same_thread_group(pos, task))
3090 goto found;
3091 }
3092
3093 /* If nr exceeds the number of threads there is nothing todo */
3094 if (nr >= get_nr_threads(task))
3095 goto fail;
3096
3097 /* If we haven't found our starting place yet start
3098 * with the leader and walk nr threads forward.
3099 */
3100 pos = task = task->group_leader;
3101 do {
3102 if (!nr--)
3103 goto found;
3104 } while_each_thread(task, pos);
3105 fail:
3106 pos = NULL;
3107 goto out;
3108 found:
3109 get_task_struct(pos);
3110 out:
3111 rcu_read_unlock();
3112 return pos;
3113 }
3114
3115 /*
3116 * Find the next thread in the thread list.
3117 * Return NULL if there is an error or no next thread.
3118 *
3119 * The reference to the input task_struct is released.
3120 */
3121 static struct task_struct *next_tid(struct task_struct *start)
3122 {
3123 struct task_struct *pos = NULL;
3124 rcu_read_lock();
3125 if (pid_alive(start)) {
3126 pos = next_thread(start);
3127 if (thread_group_leader(pos))
3128 pos = NULL;
3129 else
3130 get_task_struct(pos);
3131 }
3132 rcu_read_unlock();
3133 put_task_struct(start);
3134 return pos;
3135 }
3136
3137 /* for the /proc/TGID/task/ directories */
3138 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3139 {
3140 struct inode *inode = file_inode(file);
3141 struct task_struct *task;
3142 struct pid_namespace *ns;
3143 int tid;
3144
3145 if (proc_inode_is_dead(inode))
3146 return -ENOENT;
3147
3148 if (!dir_emit_dots(file, ctx))
3149 return 0;
3150
3151 /* f_version caches the tgid value that the last readdir call couldn't
3152 * return. lseek aka telldir automagically resets f_version to 0.
3153 */
3154 ns = file->f_dentry->d_sb->s_fs_info;
3155 tid = (int)file->f_version;
3156 file->f_version = 0;
3157 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3158 task;
3159 task = next_tid(task), ctx->pos++) {
3160 char name[PROC_NUMBUF];
3161 int len;
3162 tid = task_pid_nr_ns(task, ns);
3163 len = snprintf(name, sizeof(name), "%d", tid);
3164 if (!proc_fill_cache(file, ctx, name, len,
3165 proc_task_instantiate, task, NULL)) {
3166 /* returning this tgid failed, save it as the first
3167 * pid for the next readir call */
3168 file->f_version = (u64)tid;
3169 put_task_struct(task);
3170 break;
3171 }
3172 }
3173
3174 return 0;
3175 }
3176
3177 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3178 {
3179 struct inode *inode = dentry->d_inode;
3180 struct task_struct *p = get_proc_task(inode);
3181 generic_fillattr(inode, stat);
3182
3183 if (p) {
3184 stat->nlink += get_nr_threads(p);
3185 put_task_struct(p);
3186 }
3187
3188 return 0;
3189 }
3190
3191 static const struct inode_operations proc_task_inode_operations = {
3192 .lookup = proc_task_lookup,
3193 .getattr = proc_task_getattr,
3194 .setattr = proc_setattr,
3195 .permission = proc_pid_permission,
3196 };
3197
3198 static const struct file_operations proc_task_operations = {
3199 .read = generic_read_dir,
3200 .iterate = proc_task_readdir,
3201 .llseek = default_llseek,
3202 };