]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/proc/base.c
mm: introduce arg_lock to protect arg_start|end and env_start|end in mm_struct
[mirror_ubuntu-eoan-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
209 size_t _count, loff_t *pos)
210 {
211 struct task_struct *tsk;
212 struct mm_struct *mm;
213 char *page;
214 unsigned long count = _count;
215 unsigned long arg_start, arg_end, env_start, env_end;
216 unsigned long len1, len2, len;
217 unsigned long p;
218 char c;
219 ssize_t rv;
220
221 BUG_ON(*pos < 0);
222
223 tsk = get_proc_task(file_inode(file));
224 if (!tsk)
225 return -ESRCH;
226 mm = get_task_mm(tsk);
227 put_task_struct(tsk);
228 if (!mm)
229 return 0;
230 /* Check if process spawned far enough to have cmdline. */
231 if (!mm->env_end) {
232 rv = 0;
233 goto out_mmput;
234 }
235
236 page = (char *)__get_free_page(GFP_KERNEL);
237 if (!page) {
238 rv = -ENOMEM;
239 goto out_mmput;
240 }
241
242 spin_lock(&mm->arg_lock);
243 arg_start = mm->arg_start;
244 arg_end = mm->arg_end;
245 env_start = mm->env_start;
246 env_end = mm->env_end;
247 spin_unlock(&mm->arg_lock);
248
249 BUG_ON(arg_start > arg_end);
250 BUG_ON(env_start > env_end);
251
252 len1 = arg_end - arg_start;
253 len2 = env_end - env_start;
254
255 /* Empty ARGV. */
256 if (len1 == 0) {
257 rv = 0;
258 goto out_free_page;
259 }
260 /*
261 * Inherently racy -- command line shares address space
262 * with code and data.
263 */
264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON);
265 if (rv <= 0)
266 goto out_free_page;
267
268 rv = 0;
269
270 if (c == '\0') {
271 /* Command line (set of strings) occupies whole ARGV. */
272 if (len1 <= *pos)
273 goto out_free_page;
274
275 p = arg_start + *pos;
276 len = len1 - *pos;
277 while (count > 0 && len > 0) {
278 unsigned int _count;
279 int nr_read;
280
281 _count = min3(count, len, PAGE_SIZE);
282 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
283 if (nr_read < 0)
284 rv = nr_read;
285 if (nr_read <= 0)
286 goto out_free_page;
287
288 if (copy_to_user(buf, page, nr_read)) {
289 rv = -EFAULT;
290 goto out_free_page;
291 }
292
293 p += nr_read;
294 len -= nr_read;
295 buf += nr_read;
296 count -= nr_read;
297 rv += nr_read;
298 }
299 } else {
300 /*
301 * Command line (1 string) occupies ARGV and
302 * extends into ENVP.
303 */
304 struct {
305 unsigned long p;
306 unsigned long len;
307 } cmdline[2] = {
308 { .p = arg_start, .len = len1 },
309 { .p = env_start, .len = len2 },
310 };
311 loff_t pos1 = *pos;
312 unsigned int i;
313
314 i = 0;
315 while (i < 2 && pos1 >= cmdline[i].len) {
316 pos1 -= cmdline[i].len;
317 i++;
318 }
319 while (i < 2) {
320 p = cmdline[i].p + pos1;
321 len = cmdline[i].len - pos1;
322 while (count > 0 && len > 0) {
323 unsigned int _count, l;
324 int nr_read;
325 bool final;
326
327 _count = min3(count, len, PAGE_SIZE);
328 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
329 if (nr_read < 0)
330 rv = nr_read;
331 if (nr_read <= 0)
332 goto out_free_page;
333
334 /*
335 * Command line can be shorter than whole ARGV
336 * even if last "marker" byte says it is not.
337 */
338 final = false;
339 l = strnlen(page, nr_read);
340 if (l < nr_read) {
341 nr_read = l;
342 final = true;
343 }
344
345 if (copy_to_user(buf, page, nr_read)) {
346 rv = -EFAULT;
347 goto out_free_page;
348 }
349
350 p += nr_read;
351 len -= nr_read;
352 buf += nr_read;
353 count -= nr_read;
354 rv += nr_read;
355
356 if (final)
357 goto out_free_page;
358 }
359
360 /* Only first chunk can be read partially. */
361 pos1 = 0;
362 i++;
363 }
364 }
365
366 out_free_page:
367 free_page((unsigned long)page);
368 out_mmput:
369 mmput(mm);
370 if (rv > 0)
371 *pos += rv;
372 return rv;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400 print0:
401 seq_putc(m, '0');
402 return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405
406 static int lock_trace(struct task_struct *task)
407 {
408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 mutex_unlock(&task->signal->cred_guard_mutex);
413 return -EPERM;
414 }
415 return 0;
416 }
417
418 static void unlock_trace(struct task_struct *task)
419 {
420 mutex_unlock(&task->signal->cred_guard_mutex);
421 }
422
423 #ifdef CONFIG_STACKTRACE
424
425 #define MAX_STACK_TRACE_DEPTH 64
426
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429 {
430 struct stack_trace trace;
431 unsigned long *entries;
432 int err;
433 int i;
434
435 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
436 if (!entries)
437 return -ENOMEM;
438
439 trace.nr_entries = 0;
440 trace.max_entries = MAX_STACK_TRACE_DEPTH;
441 trace.entries = entries;
442 trace.skip = 0;
443
444 err = lock_trace(task);
445 if (!err) {
446 save_stack_trace_tsk(task, &trace);
447
448 for (i = 0; i < trace.nr_entries; i++) {
449 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
450 }
451 unlock_trace(task);
452 }
453 kfree(entries);
454
455 return err;
456 }
457 #endif
458
459 #ifdef CONFIG_SCHED_INFO
460 /*
461 * Provides /proc/PID/schedstat
462 */
463 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
464 struct pid *pid, struct task_struct *task)
465 {
466 if (unlikely(!sched_info_on()))
467 seq_printf(m, "0 0 0\n");
468 else
469 seq_printf(m, "%llu %llu %lu\n",
470 (unsigned long long)task->se.sum_exec_runtime,
471 (unsigned long long)task->sched_info.run_delay,
472 task->sched_info.pcount);
473
474 return 0;
475 }
476 #endif
477
478 #ifdef CONFIG_LATENCYTOP
479 static int lstats_show_proc(struct seq_file *m, void *v)
480 {
481 int i;
482 struct inode *inode = m->private;
483 struct task_struct *task = get_proc_task(inode);
484
485 if (!task)
486 return -ESRCH;
487 seq_puts(m, "Latency Top version : v0.1\n");
488 for (i = 0; i < 32; i++) {
489 struct latency_record *lr = &task->latency_record[i];
490 if (lr->backtrace[0]) {
491 int q;
492 seq_printf(m, "%i %li %li",
493 lr->count, lr->time, lr->max);
494 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
495 unsigned long bt = lr->backtrace[q];
496 if (!bt)
497 break;
498 if (bt == ULONG_MAX)
499 break;
500 seq_printf(m, " %ps", (void *)bt);
501 }
502 seq_putc(m, '\n');
503 }
504
505 }
506 put_task_struct(task);
507 return 0;
508 }
509
510 static int lstats_open(struct inode *inode, struct file *file)
511 {
512 return single_open(file, lstats_show_proc, inode);
513 }
514
515 static ssize_t lstats_write(struct file *file, const char __user *buf,
516 size_t count, loff_t *offs)
517 {
518 struct task_struct *task = get_proc_task(file_inode(file));
519
520 if (!task)
521 return -ESRCH;
522 clear_all_latency_tracing(task);
523 put_task_struct(task);
524
525 return count;
526 }
527
528 static const struct file_operations proc_lstats_operations = {
529 .open = lstats_open,
530 .read = seq_read,
531 .write = lstats_write,
532 .llseek = seq_lseek,
533 .release = single_release,
534 };
535
536 #endif
537
538 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
539 struct pid *pid, struct task_struct *task)
540 {
541 unsigned long totalpages = totalram_pages + total_swap_pages;
542 unsigned long points = 0;
543
544 points = oom_badness(task, NULL, NULL, totalpages) *
545 1000 / totalpages;
546 seq_printf(m, "%lu\n", points);
547
548 return 0;
549 }
550
551 struct limit_names {
552 const char *name;
553 const char *unit;
554 };
555
556 static const struct limit_names lnames[RLIM_NLIMITS] = {
557 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
558 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
559 [RLIMIT_DATA] = {"Max data size", "bytes"},
560 [RLIMIT_STACK] = {"Max stack size", "bytes"},
561 [RLIMIT_CORE] = {"Max core file size", "bytes"},
562 [RLIMIT_RSS] = {"Max resident set", "bytes"},
563 [RLIMIT_NPROC] = {"Max processes", "processes"},
564 [RLIMIT_NOFILE] = {"Max open files", "files"},
565 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
566 [RLIMIT_AS] = {"Max address space", "bytes"},
567 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
568 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
569 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
570 [RLIMIT_NICE] = {"Max nice priority", NULL},
571 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
572 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
573 };
574
575 /* Display limits for a process */
576 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
577 struct pid *pid, struct task_struct *task)
578 {
579 unsigned int i;
580 unsigned long flags;
581
582 struct rlimit rlim[RLIM_NLIMITS];
583
584 if (!lock_task_sighand(task, &flags))
585 return 0;
586 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
587 unlock_task_sighand(task, &flags);
588
589 /*
590 * print the file header
591 */
592 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
593 "Limit", "Soft Limit", "Hard Limit", "Units");
594
595 for (i = 0; i < RLIM_NLIMITS; i++) {
596 if (rlim[i].rlim_cur == RLIM_INFINITY)
597 seq_printf(m, "%-25s %-20s ",
598 lnames[i].name, "unlimited");
599 else
600 seq_printf(m, "%-25s %-20lu ",
601 lnames[i].name, rlim[i].rlim_cur);
602
603 if (rlim[i].rlim_max == RLIM_INFINITY)
604 seq_printf(m, "%-20s ", "unlimited");
605 else
606 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
607
608 if (lnames[i].unit)
609 seq_printf(m, "%-10s\n", lnames[i].unit);
610 else
611 seq_putc(m, '\n');
612 }
613
614 return 0;
615 }
616
617 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
618 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
619 struct pid *pid, struct task_struct *task)
620 {
621 long nr;
622 unsigned long args[6], sp, pc;
623 int res;
624
625 res = lock_trace(task);
626 if (res)
627 return res;
628
629 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
630 seq_puts(m, "running\n");
631 else if (nr < 0)
632 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
633 else
634 seq_printf(m,
635 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
636 nr,
637 args[0], args[1], args[2], args[3], args[4], args[5],
638 sp, pc);
639 unlock_trace(task);
640
641 return 0;
642 }
643 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
644
645 /************************************************************************/
646 /* Here the fs part begins */
647 /************************************************************************/
648
649 /* permission checks */
650 static int proc_fd_access_allowed(struct inode *inode)
651 {
652 struct task_struct *task;
653 int allowed = 0;
654 /* Allow access to a task's file descriptors if it is us or we
655 * may use ptrace attach to the process and find out that
656 * information.
657 */
658 task = get_proc_task(inode);
659 if (task) {
660 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
661 put_task_struct(task);
662 }
663 return allowed;
664 }
665
666 int proc_setattr(struct dentry *dentry, struct iattr *attr)
667 {
668 int error;
669 struct inode *inode = d_inode(dentry);
670
671 if (attr->ia_valid & ATTR_MODE)
672 return -EPERM;
673
674 error = setattr_prepare(dentry, attr);
675 if (error)
676 return error;
677
678 setattr_copy(inode, attr);
679 mark_inode_dirty(inode);
680 return 0;
681 }
682
683 /*
684 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
685 * or euid/egid (for hide_pid_min=2)?
686 */
687 static bool has_pid_permissions(struct pid_namespace *pid,
688 struct task_struct *task,
689 int hide_pid_min)
690 {
691 if (pid->hide_pid < hide_pid_min)
692 return true;
693 if (in_group_p(pid->pid_gid))
694 return true;
695 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
696 }
697
698
699 static int proc_pid_permission(struct inode *inode, int mask)
700 {
701 struct pid_namespace *pid = proc_pid_ns(inode);
702 struct task_struct *task;
703 bool has_perms;
704
705 task = get_proc_task(inode);
706 if (!task)
707 return -ESRCH;
708 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
709 put_task_struct(task);
710
711 if (!has_perms) {
712 if (pid->hide_pid == HIDEPID_INVISIBLE) {
713 /*
714 * Let's make getdents(), stat(), and open()
715 * consistent with each other. If a process
716 * may not stat() a file, it shouldn't be seen
717 * in procfs at all.
718 */
719 return -ENOENT;
720 }
721
722 return -EPERM;
723 }
724 return generic_permission(inode, mask);
725 }
726
727
728
729 static const struct inode_operations proc_def_inode_operations = {
730 .setattr = proc_setattr,
731 };
732
733 static int proc_single_show(struct seq_file *m, void *v)
734 {
735 struct inode *inode = m->private;
736 struct pid_namespace *ns = proc_pid_ns(inode);
737 struct pid *pid = proc_pid(inode);
738 struct task_struct *task;
739 int ret;
740
741 task = get_pid_task(pid, PIDTYPE_PID);
742 if (!task)
743 return -ESRCH;
744
745 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
746
747 put_task_struct(task);
748 return ret;
749 }
750
751 static int proc_single_open(struct inode *inode, struct file *filp)
752 {
753 return single_open(filp, proc_single_show, inode);
754 }
755
756 static const struct file_operations proc_single_file_operations = {
757 .open = proc_single_open,
758 .read = seq_read,
759 .llseek = seq_lseek,
760 .release = single_release,
761 };
762
763
764 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
765 {
766 struct task_struct *task = get_proc_task(inode);
767 struct mm_struct *mm = ERR_PTR(-ESRCH);
768
769 if (task) {
770 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
771 put_task_struct(task);
772
773 if (!IS_ERR_OR_NULL(mm)) {
774 /* ensure this mm_struct can't be freed */
775 mmgrab(mm);
776 /* but do not pin its memory */
777 mmput(mm);
778 }
779 }
780
781 return mm;
782 }
783
784 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
785 {
786 struct mm_struct *mm = proc_mem_open(inode, mode);
787
788 if (IS_ERR(mm))
789 return PTR_ERR(mm);
790
791 file->private_data = mm;
792 return 0;
793 }
794
795 static int mem_open(struct inode *inode, struct file *file)
796 {
797 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
798
799 /* OK to pass negative loff_t, we can catch out-of-range */
800 file->f_mode |= FMODE_UNSIGNED_OFFSET;
801
802 return ret;
803 }
804
805 static ssize_t mem_rw(struct file *file, char __user *buf,
806 size_t count, loff_t *ppos, int write)
807 {
808 struct mm_struct *mm = file->private_data;
809 unsigned long addr = *ppos;
810 ssize_t copied;
811 char *page;
812 unsigned int flags;
813
814 if (!mm)
815 return 0;
816
817 page = (char *)__get_free_page(GFP_KERNEL);
818 if (!page)
819 return -ENOMEM;
820
821 copied = 0;
822 if (!mmget_not_zero(mm))
823 goto free;
824
825 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
826
827 while (count > 0) {
828 int this_len = min_t(int, count, PAGE_SIZE);
829
830 if (write && copy_from_user(page, buf, this_len)) {
831 copied = -EFAULT;
832 break;
833 }
834
835 this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 if (!this_len) {
837 if (!copied)
838 copied = -EIO;
839 break;
840 }
841
842 if (!write && copy_to_user(buf, page, this_len)) {
843 copied = -EFAULT;
844 break;
845 }
846
847 buf += this_len;
848 addr += this_len;
849 copied += this_len;
850 count -= this_len;
851 }
852 *ppos = addr;
853
854 mmput(mm);
855 free:
856 free_page((unsigned long) page);
857 return copied;
858 }
859
860 static ssize_t mem_read(struct file *file, char __user *buf,
861 size_t count, loff_t *ppos)
862 {
863 return mem_rw(file, buf, count, ppos, 0);
864 }
865
866 static ssize_t mem_write(struct file *file, const char __user *buf,
867 size_t count, loff_t *ppos)
868 {
869 return mem_rw(file, (char __user*)buf, count, ppos, 1);
870 }
871
872 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 {
874 switch (orig) {
875 case 0:
876 file->f_pos = offset;
877 break;
878 case 1:
879 file->f_pos += offset;
880 break;
881 default:
882 return -EINVAL;
883 }
884 force_successful_syscall_return();
885 return file->f_pos;
886 }
887
888 static int mem_release(struct inode *inode, struct file *file)
889 {
890 struct mm_struct *mm = file->private_data;
891 if (mm)
892 mmdrop(mm);
893 return 0;
894 }
895
896 static const struct file_operations proc_mem_operations = {
897 .llseek = mem_lseek,
898 .read = mem_read,
899 .write = mem_write,
900 .open = mem_open,
901 .release = mem_release,
902 };
903
904 static int environ_open(struct inode *inode, struct file *file)
905 {
906 return __mem_open(inode, file, PTRACE_MODE_READ);
907 }
908
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 size_t count, loff_t *ppos)
911 {
912 char *page;
913 unsigned long src = *ppos;
914 int ret = 0;
915 struct mm_struct *mm = file->private_data;
916 unsigned long env_start, env_end;
917
918 /* Ensure the process spawned far enough to have an environment. */
919 if (!mm || !mm->env_end)
920 return 0;
921
922 page = (char *)__get_free_page(GFP_KERNEL);
923 if (!page)
924 return -ENOMEM;
925
926 ret = 0;
927 if (!mmget_not_zero(mm))
928 goto free;
929
930 spin_lock(&mm->arg_lock);
931 env_start = mm->env_start;
932 env_end = mm->env_end;
933 spin_unlock(&mm->arg_lock);
934
935 while (count > 0) {
936 size_t this_len, max_len;
937 int retval;
938
939 if (src >= (env_end - env_start))
940 break;
941
942 this_len = env_end - (env_start + src);
943
944 max_len = min_t(size_t, PAGE_SIZE, count);
945 this_len = min(max_len, this_len);
946
947 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
948
949 if (retval <= 0) {
950 ret = retval;
951 break;
952 }
953
954 if (copy_to_user(buf, page, retval)) {
955 ret = -EFAULT;
956 break;
957 }
958
959 ret += retval;
960 src += retval;
961 buf += retval;
962 count -= retval;
963 }
964 *ppos = src;
965 mmput(mm);
966
967 free:
968 free_page((unsigned long) page);
969 return ret;
970 }
971
972 static const struct file_operations proc_environ_operations = {
973 .open = environ_open,
974 .read = environ_read,
975 .llseek = generic_file_llseek,
976 .release = mem_release,
977 };
978
979 static int auxv_open(struct inode *inode, struct file *file)
980 {
981 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
982 }
983
984 static ssize_t auxv_read(struct file *file, char __user *buf,
985 size_t count, loff_t *ppos)
986 {
987 struct mm_struct *mm = file->private_data;
988 unsigned int nwords = 0;
989
990 if (!mm)
991 return 0;
992 do {
993 nwords += 2;
994 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
995 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
996 nwords * sizeof(mm->saved_auxv[0]));
997 }
998
999 static const struct file_operations proc_auxv_operations = {
1000 .open = auxv_open,
1001 .read = auxv_read,
1002 .llseek = generic_file_llseek,
1003 .release = mem_release,
1004 };
1005
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 loff_t *ppos)
1008 {
1009 struct task_struct *task = get_proc_task(file_inode(file));
1010 char buffer[PROC_NUMBUF];
1011 int oom_adj = OOM_ADJUST_MIN;
1012 size_t len;
1013
1014 if (!task)
1015 return -ESRCH;
1016 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1017 oom_adj = OOM_ADJUST_MAX;
1018 else
1019 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1020 OOM_SCORE_ADJ_MAX;
1021 put_task_struct(task);
1022 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1023 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1024 }
1025
1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 {
1028 static DEFINE_MUTEX(oom_adj_mutex);
1029 struct mm_struct *mm = NULL;
1030 struct task_struct *task;
1031 int err = 0;
1032
1033 task = get_proc_task(file_inode(file));
1034 if (!task)
1035 return -ESRCH;
1036
1037 mutex_lock(&oom_adj_mutex);
1038 if (legacy) {
1039 if (oom_adj < task->signal->oom_score_adj &&
1040 !capable(CAP_SYS_RESOURCE)) {
1041 err = -EACCES;
1042 goto err_unlock;
1043 }
1044 /*
1045 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1046 * /proc/pid/oom_score_adj instead.
1047 */
1048 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 current->comm, task_pid_nr(current), task_pid_nr(task),
1050 task_pid_nr(task));
1051 } else {
1052 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1053 !capable(CAP_SYS_RESOURCE)) {
1054 err = -EACCES;
1055 goto err_unlock;
1056 }
1057 }
1058
1059 /*
1060 * Make sure we will check other processes sharing the mm if this is
1061 * not vfrok which wants its own oom_score_adj.
1062 * pin the mm so it doesn't go away and get reused after task_unlock
1063 */
1064 if (!task->vfork_done) {
1065 struct task_struct *p = find_lock_task_mm(task);
1066
1067 if (p) {
1068 if (atomic_read(&p->mm->mm_users) > 1) {
1069 mm = p->mm;
1070 mmgrab(mm);
1071 }
1072 task_unlock(p);
1073 }
1074 }
1075
1076 task->signal->oom_score_adj = oom_adj;
1077 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1078 task->signal->oom_score_adj_min = (short)oom_adj;
1079 trace_oom_score_adj_update(task);
1080
1081 if (mm) {
1082 struct task_struct *p;
1083
1084 rcu_read_lock();
1085 for_each_process(p) {
1086 if (same_thread_group(task, p))
1087 continue;
1088
1089 /* do not touch kernel threads or the global init */
1090 if (p->flags & PF_KTHREAD || is_global_init(p))
1091 continue;
1092
1093 task_lock(p);
1094 if (!p->vfork_done && process_shares_mm(p, mm)) {
1095 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1096 task_pid_nr(p), p->comm,
1097 p->signal->oom_score_adj, oom_adj,
1098 task_pid_nr(task), task->comm);
1099 p->signal->oom_score_adj = oom_adj;
1100 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1101 p->signal->oom_score_adj_min = (short)oom_adj;
1102 }
1103 task_unlock(p);
1104 }
1105 rcu_read_unlock();
1106 mmdrop(mm);
1107 }
1108 err_unlock:
1109 mutex_unlock(&oom_adj_mutex);
1110 put_task_struct(task);
1111 return err;
1112 }
1113
1114 /*
1115 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1116 * kernels. The effective policy is defined by oom_score_adj, which has a
1117 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1118 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1119 * Processes that become oom disabled via oom_adj will still be oom disabled
1120 * with this implementation.
1121 *
1122 * oom_adj cannot be removed since existing userspace binaries use it.
1123 */
1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1125 size_t count, loff_t *ppos)
1126 {
1127 char buffer[PROC_NUMBUF];
1128 int oom_adj;
1129 int err;
1130
1131 memset(buffer, 0, sizeof(buffer));
1132 if (count > sizeof(buffer) - 1)
1133 count = sizeof(buffer) - 1;
1134 if (copy_from_user(buffer, buf, count)) {
1135 err = -EFAULT;
1136 goto out;
1137 }
1138
1139 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1140 if (err)
1141 goto out;
1142 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1143 oom_adj != OOM_DISABLE) {
1144 err = -EINVAL;
1145 goto out;
1146 }
1147
1148 /*
1149 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1150 * value is always attainable.
1151 */
1152 if (oom_adj == OOM_ADJUST_MAX)
1153 oom_adj = OOM_SCORE_ADJ_MAX;
1154 else
1155 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156
1157 err = __set_oom_adj(file, oom_adj, true);
1158 out:
1159 return err < 0 ? err : count;
1160 }
1161
1162 static const struct file_operations proc_oom_adj_operations = {
1163 .read = oom_adj_read,
1164 .write = oom_adj_write,
1165 .llseek = generic_file_llseek,
1166 };
1167
1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1169 size_t count, loff_t *ppos)
1170 {
1171 struct task_struct *task = get_proc_task(file_inode(file));
1172 char buffer[PROC_NUMBUF];
1173 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1174 size_t len;
1175
1176 if (!task)
1177 return -ESRCH;
1178 oom_score_adj = task->signal->oom_score_adj;
1179 put_task_struct(task);
1180 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1181 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183
1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1185 size_t count, loff_t *ppos)
1186 {
1187 char buffer[PROC_NUMBUF];
1188 int oom_score_adj;
1189 int err;
1190
1191 memset(buffer, 0, sizeof(buffer));
1192 if (count > sizeof(buffer) - 1)
1193 count = sizeof(buffer) - 1;
1194 if (copy_from_user(buffer, buf, count)) {
1195 err = -EFAULT;
1196 goto out;
1197 }
1198
1199 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1200 if (err)
1201 goto out;
1202 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1203 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207
1208 err = __set_oom_adj(file, oom_score_adj, false);
1209 out:
1210 return err < 0 ? err : count;
1211 }
1212
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214 .read = oom_score_adj_read,
1215 .write = oom_score_adj_write,
1216 .llseek = default_llseek,
1217 };
1218
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 11
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222 size_t count, loff_t *ppos)
1223 {
1224 struct inode * inode = file_inode(file);
1225 struct task_struct *task = get_proc_task(inode);
1226 ssize_t length;
1227 char tmpbuf[TMPBUFLEN];
1228
1229 if (!task)
1230 return -ESRCH;
1231 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232 from_kuid(file->f_cred->user_ns,
1233 audit_get_loginuid(task)));
1234 put_task_struct(task);
1235 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239 size_t count, loff_t *ppos)
1240 {
1241 struct inode * inode = file_inode(file);
1242 uid_t loginuid;
1243 kuid_t kloginuid;
1244 int rv;
1245
1246 rcu_read_lock();
1247 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248 rcu_read_unlock();
1249 return -EPERM;
1250 }
1251 rcu_read_unlock();
1252
1253 if (*ppos != 0) {
1254 /* No partial writes. */
1255 return -EINVAL;
1256 }
1257
1258 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259 if (rv < 0)
1260 return rv;
1261
1262 /* is userspace tring to explicitly UNSET the loginuid? */
1263 if (loginuid == AUDIT_UID_UNSET) {
1264 kloginuid = INVALID_UID;
1265 } else {
1266 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 if (!uid_valid(kloginuid))
1268 return -EINVAL;
1269 }
1270
1271 rv = audit_set_loginuid(kloginuid);
1272 if (rv < 0)
1273 return rv;
1274 return count;
1275 }
1276
1277 static const struct file_operations proc_loginuid_operations = {
1278 .read = proc_loginuid_read,
1279 .write = proc_loginuid_write,
1280 .llseek = generic_file_llseek,
1281 };
1282
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284 size_t count, loff_t *ppos)
1285 {
1286 struct inode * inode = file_inode(file);
1287 struct task_struct *task = get_proc_task(inode);
1288 ssize_t length;
1289 char tmpbuf[TMPBUFLEN];
1290
1291 if (!task)
1292 return -ESRCH;
1293 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294 audit_get_sessionid(task));
1295 put_task_struct(task);
1296 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298
1299 static const struct file_operations proc_sessionid_operations = {
1300 .read = proc_sessionid_read,
1301 .llseek = generic_file_llseek,
1302 };
1303 #endif
1304
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307 size_t count, loff_t *ppos)
1308 {
1309 struct task_struct *task = get_proc_task(file_inode(file));
1310 char buffer[PROC_NUMBUF];
1311 size_t len;
1312 int make_it_fail;
1313
1314 if (!task)
1315 return -ESRCH;
1316 make_it_fail = task->make_it_fail;
1317 put_task_struct(task);
1318
1319 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320
1321 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325 const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327 struct task_struct *task;
1328 char buffer[PROC_NUMBUF];
1329 int make_it_fail;
1330 int rv;
1331
1332 if (!capable(CAP_SYS_RESOURCE))
1333 return -EPERM;
1334 memset(buffer, 0, sizeof(buffer));
1335 if (count > sizeof(buffer) - 1)
1336 count = sizeof(buffer) - 1;
1337 if (copy_from_user(buffer, buf, count))
1338 return -EFAULT;
1339 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340 if (rv < 0)
1341 return rv;
1342 if (make_it_fail < 0 || make_it_fail > 1)
1343 return -EINVAL;
1344
1345 task = get_proc_task(file_inode(file));
1346 if (!task)
1347 return -ESRCH;
1348 task->make_it_fail = make_it_fail;
1349 put_task_struct(task);
1350
1351 return count;
1352 }
1353
1354 static const struct file_operations proc_fault_inject_operations = {
1355 .read = proc_fault_inject_read,
1356 .write = proc_fault_inject_write,
1357 .llseek = generic_file_llseek,
1358 };
1359
1360 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1361 size_t count, loff_t *ppos)
1362 {
1363 struct task_struct *task;
1364 int err;
1365 unsigned int n;
1366
1367 err = kstrtouint_from_user(buf, count, 0, &n);
1368 if (err)
1369 return err;
1370
1371 task = get_proc_task(file_inode(file));
1372 if (!task)
1373 return -ESRCH;
1374 task->fail_nth = n;
1375 put_task_struct(task);
1376
1377 return count;
1378 }
1379
1380 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1381 size_t count, loff_t *ppos)
1382 {
1383 struct task_struct *task;
1384 char numbuf[PROC_NUMBUF];
1385 ssize_t len;
1386
1387 task = get_proc_task(file_inode(file));
1388 if (!task)
1389 return -ESRCH;
1390 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1391 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1392 put_task_struct(task);
1393
1394 return len;
1395 }
1396
1397 static const struct file_operations proc_fail_nth_operations = {
1398 .read = proc_fail_nth_read,
1399 .write = proc_fail_nth_write,
1400 };
1401 #endif
1402
1403
1404 #ifdef CONFIG_SCHED_DEBUG
1405 /*
1406 * Print out various scheduling related per-task fields:
1407 */
1408 static int sched_show(struct seq_file *m, void *v)
1409 {
1410 struct inode *inode = m->private;
1411 struct pid_namespace *ns = proc_pid_ns(inode);
1412 struct task_struct *p;
1413
1414 p = get_proc_task(inode);
1415 if (!p)
1416 return -ESRCH;
1417 proc_sched_show_task(p, ns, m);
1418
1419 put_task_struct(p);
1420
1421 return 0;
1422 }
1423
1424 static ssize_t
1425 sched_write(struct file *file, const char __user *buf,
1426 size_t count, loff_t *offset)
1427 {
1428 struct inode *inode = file_inode(file);
1429 struct task_struct *p;
1430
1431 p = get_proc_task(inode);
1432 if (!p)
1433 return -ESRCH;
1434 proc_sched_set_task(p);
1435
1436 put_task_struct(p);
1437
1438 return count;
1439 }
1440
1441 static int sched_open(struct inode *inode, struct file *filp)
1442 {
1443 return single_open(filp, sched_show, inode);
1444 }
1445
1446 static const struct file_operations proc_pid_sched_operations = {
1447 .open = sched_open,
1448 .read = seq_read,
1449 .write = sched_write,
1450 .llseek = seq_lseek,
1451 .release = single_release,
1452 };
1453
1454 #endif
1455
1456 #ifdef CONFIG_SCHED_AUTOGROUP
1457 /*
1458 * Print out autogroup related information:
1459 */
1460 static int sched_autogroup_show(struct seq_file *m, void *v)
1461 {
1462 struct inode *inode = m->private;
1463 struct task_struct *p;
1464
1465 p = get_proc_task(inode);
1466 if (!p)
1467 return -ESRCH;
1468 proc_sched_autogroup_show_task(p, m);
1469
1470 put_task_struct(p);
1471
1472 return 0;
1473 }
1474
1475 static ssize_t
1476 sched_autogroup_write(struct file *file, const char __user *buf,
1477 size_t count, loff_t *offset)
1478 {
1479 struct inode *inode = file_inode(file);
1480 struct task_struct *p;
1481 char buffer[PROC_NUMBUF];
1482 int nice;
1483 int err;
1484
1485 memset(buffer, 0, sizeof(buffer));
1486 if (count > sizeof(buffer) - 1)
1487 count = sizeof(buffer) - 1;
1488 if (copy_from_user(buffer, buf, count))
1489 return -EFAULT;
1490
1491 err = kstrtoint(strstrip(buffer), 0, &nice);
1492 if (err < 0)
1493 return err;
1494
1495 p = get_proc_task(inode);
1496 if (!p)
1497 return -ESRCH;
1498
1499 err = proc_sched_autogroup_set_nice(p, nice);
1500 if (err)
1501 count = err;
1502
1503 put_task_struct(p);
1504
1505 return count;
1506 }
1507
1508 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1509 {
1510 int ret;
1511
1512 ret = single_open(filp, sched_autogroup_show, NULL);
1513 if (!ret) {
1514 struct seq_file *m = filp->private_data;
1515
1516 m->private = inode;
1517 }
1518 return ret;
1519 }
1520
1521 static const struct file_operations proc_pid_sched_autogroup_operations = {
1522 .open = sched_autogroup_open,
1523 .read = seq_read,
1524 .write = sched_autogroup_write,
1525 .llseek = seq_lseek,
1526 .release = single_release,
1527 };
1528
1529 #endif /* CONFIG_SCHED_AUTOGROUP */
1530
1531 static ssize_t comm_write(struct file *file, const char __user *buf,
1532 size_t count, loff_t *offset)
1533 {
1534 struct inode *inode = file_inode(file);
1535 struct task_struct *p;
1536 char buffer[TASK_COMM_LEN];
1537 const size_t maxlen = sizeof(buffer) - 1;
1538
1539 memset(buffer, 0, sizeof(buffer));
1540 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1541 return -EFAULT;
1542
1543 p = get_proc_task(inode);
1544 if (!p)
1545 return -ESRCH;
1546
1547 if (same_thread_group(current, p))
1548 set_task_comm(p, buffer);
1549 else
1550 count = -EINVAL;
1551
1552 put_task_struct(p);
1553
1554 return count;
1555 }
1556
1557 static int comm_show(struct seq_file *m, void *v)
1558 {
1559 struct inode *inode = m->private;
1560 struct task_struct *p;
1561
1562 p = get_proc_task(inode);
1563 if (!p)
1564 return -ESRCH;
1565
1566 proc_task_name(m, p, false);
1567 seq_putc(m, '\n');
1568
1569 put_task_struct(p);
1570
1571 return 0;
1572 }
1573
1574 static int comm_open(struct inode *inode, struct file *filp)
1575 {
1576 return single_open(filp, comm_show, inode);
1577 }
1578
1579 static const struct file_operations proc_pid_set_comm_operations = {
1580 .open = comm_open,
1581 .read = seq_read,
1582 .write = comm_write,
1583 .llseek = seq_lseek,
1584 .release = single_release,
1585 };
1586
1587 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1588 {
1589 struct task_struct *task;
1590 struct file *exe_file;
1591
1592 task = get_proc_task(d_inode(dentry));
1593 if (!task)
1594 return -ENOENT;
1595 exe_file = get_task_exe_file(task);
1596 put_task_struct(task);
1597 if (exe_file) {
1598 *exe_path = exe_file->f_path;
1599 path_get(&exe_file->f_path);
1600 fput(exe_file);
1601 return 0;
1602 } else
1603 return -ENOENT;
1604 }
1605
1606 static const char *proc_pid_get_link(struct dentry *dentry,
1607 struct inode *inode,
1608 struct delayed_call *done)
1609 {
1610 struct path path;
1611 int error = -EACCES;
1612
1613 if (!dentry)
1614 return ERR_PTR(-ECHILD);
1615
1616 /* Are we allowed to snoop on the tasks file descriptors? */
1617 if (!proc_fd_access_allowed(inode))
1618 goto out;
1619
1620 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1621 if (error)
1622 goto out;
1623
1624 nd_jump_link(&path);
1625 return NULL;
1626 out:
1627 return ERR_PTR(error);
1628 }
1629
1630 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1631 {
1632 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1633 char *pathname;
1634 int len;
1635
1636 if (!tmp)
1637 return -ENOMEM;
1638
1639 pathname = d_path(path, tmp, PAGE_SIZE);
1640 len = PTR_ERR(pathname);
1641 if (IS_ERR(pathname))
1642 goto out;
1643 len = tmp + PAGE_SIZE - 1 - pathname;
1644
1645 if (len > buflen)
1646 len = buflen;
1647 if (copy_to_user(buffer, pathname, len))
1648 len = -EFAULT;
1649 out:
1650 free_page((unsigned long)tmp);
1651 return len;
1652 }
1653
1654 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1655 {
1656 int error = -EACCES;
1657 struct inode *inode = d_inode(dentry);
1658 struct path path;
1659
1660 /* Are we allowed to snoop on the tasks file descriptors? */
1661 if (!proc_fd_access_allowed(inode))
1662 goto out;
1663
1664 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1665 if (error)
1666 goto out;
1667
1668 error = do_proc_readlink(&path, buffer, buflen);
1669 path_put(&path);
1670 out:
1671 return error;
1672 }
1673
1674 const struct inode_operations proc_pid_link_inode_operations = {
1675 .readlink = proc_pid_readlink,
1676 .get_link = proc_pid_get_link,
1677 .setattr = proc_setattr,
1678 };
1679
1680
1681 /* building an inode */
1682
1683 void task_dump_owner(struct task_struct *task, umode_t mode,
1684 kuid_t *ruid, kgid_t *rgid)
1685 {
1686 /* Depending on the state of dumpable compute who should own a
1687 * proc file for a task.
1688 */
1689 const struct cred *cred;
1690 kuid_t uid;
1691 kgid_t gid;
1692
1693 if (unlikely(task->flags & PF_KTHREAD)) {
1694 *ruid = GLOBAL_ROOT_UID;
1695 *rgid = GLOBAL_ROOT_GID;
1696 return;
1697 }
1698
1699 /* Default to the tasks effective ownership */
1700 rcu_read_lock();
1701 cred = __task_cred(task);
1702 uid = cred->euid;
1703 gid = cred->egid;
1704 rcu_read_unlock();
1705
1706 /*
1707 * Before the /proc/pid/status file was created the only way to read
1708 * the effective uid of a /process was to stat /proc/pid. Reading
1709 * /proc/pid/status is slow enough that procps and other packages
1710 * kept stating /proc/pid. To keep the rules in /proc simple I have
1711 * made this apply to all per process world readable and executable
1712 * directories.
1713 */
1714 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1715 struct mm_struct *mm;
1716 task_lock(task);
1717 mm = task->mm;
1718 /* Make non-dumpable tasks owned by some root */
1719 if (mm) {
1720 if (get_dumpable(mm) != SUID_DUMP_USER) {
1721 struct user_namespace *user_ns = mm->user_ns;
1722
1723 uid = make_kuid(user_ns, 0);
1724 if (!uid_valid(uid))
1725 uid = GLOBAL_ROOT_UID;
1726
1727 gid = make_kgid(user_ns, 0);
1728 if (!gid_valid(gid))
1729 gid = GLOBAL_ROOT_GID;
1730 }
1731 } else {
1732 uid = GLOBAL_ROOT_UID;
1733 gid = GLOBAL_ROOT_GID;
1734 }
1735 task_unlock(task);
1736 }
1737 *ruid = uid;
1738 *rgid = gid;
1739 }
1740
1741 struct inode *proc_pid_make_inode(struct super_block * sb,
1742 struct task_struct *task, umode_t mode)
1743 {
1744 struct inode * inode;
1745 struct proc_inode *ei;
1746
1747 /* We need a new inode */
1748
1749 inode = new_inode(sb);
1750 if (!inode)
1751 goto out;
1752
1753 /* Common stuff */
1754 ei = PROC_I(inode);
1755 inode->i_mode = mode;
1756 inode->i_ino = get_next_ino();
1757 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1758 inode->i_op = &proc_def_inode_operations;
1759
1760 /*
1761 * grab the reference to task.
1762 */
1763 ei->pid = get_task_pid(task, PIDTYPE_PID);
1764 if (!ei->pid)
1765 goto out_unlock;
1766
1767 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1768 security_task_to_inode(task, inode);
1769
1770 out:
1771 return inode;
1772
1773 out_unlock:
1774 iput(inode);
1775 return NULL;
1776 }
1777
1778 int pid_getattr(const struct path *path, struct kstat *stat,
1779 u32 request_mask, unsigned int query_flags)
1780 {
1781 struct inode *inode = d_inode(path->dentry);
1782 struct pid_namespace *pid = proc_pid_ns(inode);
1783 struct task_struct *task;
1784
1785 generic_fillattr(inode, stat);
1786
1787 rcu_read_lock();
1788 stat->uid = GLOBAL_ROOT_UID;
1789 stat->gid = GLOBAL_ROOT_GID;
1790 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1791 if (task) {
1792 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1793 rcu_read_unlock();
1794 /*
1795 * This doesn't prevent learning whether PID exists,
1796 * it only makes getattr() consistent with readdir().
1797 */
1798 return -ENOENT;
1799 }
1800 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1801 }
1802 rcu_read_unlock();
1803 return 0;
1804 }
1805
1806 /* dentry stuff */
1807
1808 /*
1809 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1810 */
1811 void pid_update_inode(struct task_struct *task, struct inode *inode)
1812 {
1813 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1814
1815 inode->i_mode &= ~(S_ISUID | S_ISGID);
1816 security_task_to_inode(task, inode);
1817 }
1818
1819 /*
1820 * Rewrite the inode's ownerships here because the owning task may have
1821 * performed a setuid(), etc.
1822 *
1823 */
1824 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1825 {
1826 struct inode *inode;
1827 struct task_struct *task;
1828
1829 if (flags & LOOKUP_RCU)
1830 return -ECHILD;
1831
1832 inode = d_inode(dentry);
1833 task = get_proc_task(inode);
1834
1835 if (task) {
1836 pid_update_inode(task, inode);
1837 put_task_struct(task);
1838 return 1;
1839 }
1840 return 0;
1841 }
1842
1843 static inline bool proc_inode_is_dead(struct inode *inode)
1844 {
1845 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1846 }
1847
1848 int pid_delete_dentry(const struct dentry *dentry)
1849 {
1850 /* Is the task we represent dead?
1851 * If so, then don't put the dentry on the lru list,
1852 * kill it immediately.
1853 */
1854 return proc_inode_is_dead(d_inode(dentry));
1855 }
1856
1857 const struct dentry_operations pid_dentry_operations =
1858 {
1859 .d_revalidate = pid_revalidate,
1860 .d_delete = pid_delete_dentry,
1861 };
1862
1863 /* Lookups */
1864
1865 /*
1866 * Fill a directory entry.
1867 *
1868 * If possible create the dcache entry and derive our inode number and
1869 * file type from dcache entry.
1870 *
1871 * Since all of the proc inode numbers are dynamically generated, the inode
1872 * numbers do not exist until the inode is cache. This means creating the
1873 * the dcache entry in readdir is necessary to keep the inode numbers
1874 * reported by readdir in sync with the inode numbers reported
1875 * by stat.
1876 */
1877 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1878 const char *name, int len,
1879 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1880 {
1881 struct dentry *child, *dir = file->f_path.dentry;
1882 struct qstr qname = QSTR_INIT(name, len);
1883 struct inode *inode;
1884 unsigned type = DT_UNKNOWN;
1885 ino_t ino = 1;
1886
1887 child = d_hash_and_lookup(dir, &qname);
1888 if (!child) {
1889 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1890 child = d_alloc_parallel(dir, &qname, &wq);
1891 if (IS_ERR(child))
1892 goto end_instantiate;
1893 if (d_in_lookup(child)) {
1894 struct dentry *res;
1895 res = instantiate(child, task, ptr);
1896 d_lookup_done(child);
1897 if (IS_ERR(res))
1898 goto end_instantiate;
1899 if (unlikely(res)) {
1900 dput(child);
1901 child = res;
1902 }
1903 }
1904 }
1905 inode = d_inode(child);
1906 ino = inode->i_ino;
1907 type = inode->i_mode >> 12;
1908 end_instantiate:
1909 dput(child);
1910 return dir_emit(ctx, name, len, ino, type);
1911 }
1912
1913 /*
1914 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1915 * which represent vma start and end addresses.
1916 */
1917 static int dname_to_vma_addr(struct dentry *dentry,
1918 unsigned long *start, unsigned long *end)
1919 {
1920 const char *str = dentry->d_name.name;
1921 unsigned long long sval, eval;
1922 unsigned int len;
1923
1924 if (str[0] == '0' && str[1] != '-')
1925 return -EINVAL;
1926 len = _parse_integer(str, 16, &sval);
1927 if (len & KSTRTOX_OVERFLOW)
1928 return -EINVAL;
1929 if (sval != (unsigned long)sval)
1930 return -EINVAL;
1931 str += len;
1932
1933 if (*str != '-')
1934 return -EINVAL;
1935 str++;
1936
1937 if (str[0] == '0' && str[1])
1938 return -EINVAL;
1939 len = _parse_integer(str, 16, &eval);
1940 if (len & KSTRTOX_OVERFLOW)
1941 return -EINVAL;
1942 if (eval != (unsigned long)eval)
1943 return -EINVAL;
1944 str += len;
1945
1946 if (*str != '\0')
1947 return -EINVAL;
1948
1949 *start = sval;
1950 *end = eval;
1951
1952 return 0;
1953 }
1954
1955 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1956 {
1957 unsigned long vm_start, vm_end;
1958 bool exact_vma_exists = false;
1959 struct mm_struct *mm = NULL;
1960 struct task_struct *task;
1961 struct inode *inode;
1962 int status = 0;
1963
1964 if (flags & LOOKUP_RCU)
1965 return -ECHILD;
1966
1967 inode = d_inode(dentry);
1968 task = get_proc_task(inode);
1969 if (!task)
1970 goto out_notask;
1971
1972 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1973 if (IS_ERR_OR_NULL(mm))
1974 goto out;
1975
1976 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1977 down_read(&mm->mmap_sem);
1978 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1979 up_read(&mm->mmap_sem);
1980 }
1981
1982 mmput(mm);
1983
1984 if (exact_vma_exists) {
1985 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1986
1987 security_task_to_inode(task, inode);
1988 status = 1;
1989 }
1990
1991 out:
1992 put_task_struct(task);
1993
1994 out_notask:
1995 return status;
1996 }
1997
1998 static const struct dentry_operations tid_map_files_dentry_operations = {
1999 .d_revalidate = map_files_d_revalidate,
2000 .d_delete = pid_delete_dentry,
2001 };
2002
2003 static int map_files_get_link(struct dentry *dentry, struct path *path)
2004 {
2005 unsigned long vm_start, vm_end;
2006 struct vm_area_struct *vma;
2007 struct task_struct *task;
2008 struct mm_struct *mm;
2009 int rc;
2010
2011 rc = -ENOENT;
2012 task = get_proc_task(d_inode(dentry));
2013 if (!task)
2014 goto out;
2015
2016 mm = get_task_mm(task);
2017 put_task_struct(task);
2018 if (!mm)
2019 goto out;
2020
2021 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2022 if (rc)
2023 goto out_mmput;
2024
2025 rc = -ENOENT;
2026 down_read(&mm->mmap_sem);
2027 vma = find_exact_vma(mm, vm_start, vm_end);
2028 if (vma && vma->vm_file) {
2029 *path = vma->vm_file->f_path;
2030 path_get(path);
2031 rc = 0;
2032 }
2033 up_read(&mm->mmap_sem);
2034
2035 out_mmput:
2036 mmput(mm);
2037 out:
2038 return rc;
2039 }
2040
2041 struct map_files_info {
2042 unsigned long start;
2043 unsigned long end;
2044 fmode_t mode;
2045 };
2046
2047 /*
2048 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2049 * symlinks may be used to bypass permissions on ancestor directories in the
2050 * path to the file in question.
2051 */
2052 static const char *
2053 proc_map_files_get_link(struct dentry *dentry,
2054 struct inode *inode,
2055 struct delayed_call *done)
2056 {
2057 if (!capable(CAP_SYS_ADMIN))
2058 return ERR_PTR(-EPERM);
2059
2060 return proc_pid_get_link(dentry, inode, done);
2061 }
2062
2063 /*
2064 * Identical to proc_pid_link_inode_operations except for get_link()
2065 */
2066 static const struct inode_operations proc_map_files_link_inode_operations = {
2067 .readlink = proc_pid_readlink,
2068 .get_link = proc_map_files_get_link,
2069 .setattr = proc_setattr,
2070 };
2071
2072 static struct dentry *
2073 proc_map_files_instantiate(struct dentry *dentry,
2074 struct task_struct *task, const void *ptr)
2075 {
2076 fmode_t mode = (fmode_t)(unsigned long)ptr;
2077 struct proc_inode *ei;
2078 struct inode *inode;
2079
2080 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2081 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2082 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2083 if (!inode)
2084 return ERR_PTR(-ENOENT);
2085
2086 ei = PROC_I(inode);
2087 ei->op.proc_get_link = map_files_get_link;
2088
2089 inode->i_op = &proc_map_files_link_inode_operations;
2090 inode->i_size = 64;
2091
2092 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2093 return d_splice_alias(inode, dentry);
2094 }
2095
2096 static struct dentry *proc_map_files_lookup(struct inode *dir,
2097 struct dentry *dentry, unsigned int flags)
2098 {
2099 unsigned long vm_start, vm_end;
2100 struct vm_area_struct *vma;
2101 struct task_struct *task;
2102 struct dentry *result;
2103 struct mm_struct *mm;
2104
2105 result = ERR_PTR(-ENOENT);
2106 task = get_proc_task(dir);
2107 if (!task)
2108 goto out;
2109
2110 result = ERR_PTR(-EACCES);
2111 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2112 goto out_put_task;
2113
2114 result = ERR_PTR(-ENOENT);
2115 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2116 goto out_put_task;
2117
2118 mm = get_task_mm(task);
2119 if (!mm)
2120 goto out_put_task;
2121
2122 down_read(&mm->mmap_sem);
2123 vma = find_exact_vma(mm, vm_start, vm_end);
2124 if (!vma)
2125 goto out_no_vma;
2126
2127 if (vma->vm_file)
2128 result = proc_map_files_instantiate(dentry, task,
2129 (void *)(unsigned long)vma->vm_file->f_mode);
2130
2131 out_no_vma:
2132 up_read(&mm->mmap_sem);
2133 mmput(mm);
2134 out_put_task:
2135 put_task_struct(task);
2136 out:
2137 return result;
2138 }
2139
2140 static const struct inode_operations proc_map_files_inode_operations = {
2141 .lookup = proc_map_files_lookup,
2142 .permission = proc_fd_permission,
2143 .setattr = proc_setattr,
2144 };
2145
2146 static int
2147 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2148 {
2149 struct vm_area_struct *vma;
2150 struct task_struct *task;
2151 struct mm_struct *mm;
2152 unsigned long nr_files, pos, i;
2153 struct flex_array *fa = NULL;
2154 struct map_files_info info;
2155 struct map_files_info *p;
2156 int ret;
2157
2158 ret = -ENOENT;
2159 task = get_proc_task(file_inode(file));
2160 if (!task)
2161 goto out;
2162
2163 ret = -EACCES;
2164 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2165 goto out_put_task;
2166
2167 ret = 0;
2168 if (!dir_emit_dots(file, ctx))
2169 goto out_put_task;
2170
2171 mm = get_task_mm(task);
2172 if (!mm)
2173 goto out_put_task;
2174 down_read(&mm->mmap_sem);
2175
2176 nr_files = 0;
2177
2178 /*
2179 * We need two passes here:
2180 *
2181 * 1) Collect vmas of mapped files with mmap_sem taken
2182 * 2) Release mmap_sem and instantiate entries
2183 *
2184 * otherwise we get lockdep complained, since filldir()
2185 * routine might require mmap_sem taken in might_fault().
2186 */
2187
2188 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2189 if (vma->vm_file && ++pos > ctx->pos)
2190 nr_files++;
2191 }
2192
2193 if (nr_files) {
2194 fa = flex_array_alloc(sizeof(info), nr_files,
2195 GFP_KERNEL);
2196 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2197 GFP_KERNEL)) {
2198 ret = -ENOMEM;
2199 if (fa)
2200 flex_array_free(fa);
2201 up_read(&mm->mmap_sem);
2202 mmput(mm);
2203 goto out_put_task;
2204 }
2205 for (i = 0, vma = mm->mmap, pos = 2; vma;
2206 vma = vma->vm_next) {
2207 if (!vma->vm_file)
2208 continue;
2209 if (++pos <= ctx->pos)
2210 continue;
2211
2212 info.start = vma->vm_start;
2213 info.end = vma->vm_end;
2214 info.mode = vma->vm_file->f_mode;
2215 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2216 BUG();
2217 }
2218 }
2219 up_read(&mm->mmap_sem);
2220 mmput(mm);
2221
2222 for (i = 0; i < nr_files; i++) {
2223 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2224 unsigned int len;
2225
2226 p = flex_array_get(fa, i);
2227 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2228 if (!proc_fill_cache(file, ctx,
2229 buf, len,
2230 proc_map_files_instantiate,
2231 task,
2232 (void *)(unsigned long)p->mode))
2233 break;
2234 ctx->pos++;
2235 }
2236 if (fa)
2237 flex_array_free(fa);
2238
2239 out_put_task:
2240 put_task_struct(task);
2241 out:
2242 return ret;
2243 }
2244
2245 static const struct file_operations proc_map_files_operations = {
2246 .read = generic_read_dir,
2247 .iterate_shared = proc_map_files_readdir,
2248 .llseek = generic_file_llseek,
2249 };
2250
2251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2252 struct timers_private {
2253 struct pid *pid;
2254 struct task_struct *task;
2255 struct sighand_struct *sighand;
2256 struct pid_namespace *ns;
2257 unsigned long flags;
2258 };
2259
2260 static void *timers_start(struct seq_file *m, loff_t *pos)
2261 {
2262 struct timers_private *tp = m->private;
2263
2264 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2265 if (!tp->task)
2266 return ERR_PTR(-ESRCH);
2267
2268 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2269 if (!tp->sighand)
2270 return ERR_PTR(-ESRCH);
2271
2272 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2273 }
2274
2275 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2276 {
2277 struct timers_private *tp = m->private;
2278 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2279 }
2280
2281 static void timers_stop(struct seq_file *m, void *v)
2282 {
2283 struct timers_private *tp = m->private;
2284
2285 if (tp->sighand) {
2286 unlock_task_sighand(tp->task, &tp->flags);
2287 tp->sighand = NULL;
2288 }
2289
2290 if (tp->task) {
2291 put_task_struct(tp->task);
2292 tp->task = NULL;
2293 }
2294 }
2295
2296 static int show_timer(struct seq_file *m, void *v)
2297 {
2298 struct k_itimer *timer;
2299 struct timers_private *tp = m->private;
2300 int notify;
2301 static const char * const nstr[] = {
2302 [SIGEV_SIGNAL] = "signal",
2303 [SIGEV_NONE] = "none",
2304 [SIGEV_THREAD] = "thread",
2305 };
2306
2307 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2308 notify = timer->it_sigev_notify;
2309
2310 seq_printf(m, "ID: %d\n", timer->it_id);
2311 seq_printf(m, "signal: %d/%px\n",
2312 timer->sigq->info.si_signo,
2313 timer->sigq->info.si_value.sival_ptr);
2314 seq_printf(m, "notify: %s/%s.%d\n",
2315 nstr[notify & ~SIGEV_THREAD_ID],
2316 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2317 pid_nr_ns(timer->it_pid, tp->ns));
2318 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2319
2320 return 0;
2321 }
2322
2323 static const struct seq_operations proc_timers_seq_ops = {
2324 .start = timers_start,
2325 .next = timers_next,
2326 .stop = timers_stop,
2327 .show = show_timer,
2328 };
2329
2330 static int proc_timers_open(struct inode *inode, struct file *file)
2331 {
2332 struct timers_private *tp;
2333
2334 tp = __seq_open_private(file, &proc_timers_seq_ops,
2335 sizeof(struct timers_private));
2336 if (!tp)
2337 return -ENOMEM;
2338
2339 tp->pid = proc_pid(inode);
2340 tp->ns = proc_pid_ns(inode);
2341 return 0;
2342 }
2343
2344 static const struct file_operations proc_timers_operations = {
2345 .open = proc_timers_open,
2346 .read = seq_read,
2347 .llseek = seq_lseek,
2348 .release = seq_release_private,
2349 };
2350 #endif
2351
2352 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2353 size_t count, loff_t *offset)
2354 {
2355 struct inode *inode = file_inode(file);
2356 struct task_struct *p;
2357 u64 slack_ns;
2358 int err;
2359
2360 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2361 if (err < 0)
2362 return err;
2363
2364 p = get_proc_task(inode);
2365 if (!p)
2366 return -ESRCH;
2367
2368 if (p != current) {
2369 if (!capable(CAP_SYS_NICE)) {
2370 count = -EPERM;
2371 goto out;
2372 }
2373
2374 err = security_task_setscheduler(p);
2375 if (err) {
2376 count = err;
2377 goto out;
2378 }
2379 }
2380
2381 task_lock(p);
2382 if (slack_ns == 0)
2383 p->timer_slack_ns = p->default_timer_slack_ns;
2384 else
2385 p->timer_slack_ns = slack_ns;
2386 task_unlock(p);
2387
2388 out:
2389 put_task_struct(p);
2390
2391 return count;
2392 }
2393
2394 static int timerslack_ns_show(struct seq_file *m, void *v)
2395 {
2396 struct inode *inode = m->private;
2397 struct task_struct *p;
2398 int err = 0;
2399
2400 p = get_proc_task(inode);
2401 if (!p)
2402 return -ESRCH;
2403
2404 if (p != current) {
2405
2406 if (!capable(CAP_SYS_NICE)) {
2407 err = -EPERM;
2408 goto out;
2409 }
2410 err = security_task_getscheduler(p);
2411 if (err)
2412 goto out;
2413 }
2414
2415 task_lock(p);
2416 seq_printf(m, "%llu\n", p->timer_slack_ns);
2417 task_unlock(p);
2418
2419 out:
2420 put_task_struct(p);
2421
2422 return err;
2423 }
2424
2425 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2426 {
2427 return single_open(filp, timerslack_ns_show, inode);
2428 }
2429
2430 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2431 .open = timerslack_ns_open,
2432 .read = seq_read,
2433 .write = timerslack_ns_write,
2434 .llseek = seq_lseek,
2435 .release = single_release,
2436 };
2437
2438 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2439 struct task_struct *task, const void *ptr)
2440 {
2441 const struct pid_entry *p = ptr;
2442 struct inode *inode;
2443 struct proc_inode *ei;
2444
2445 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2446 if (!inode)
2447 return ERR_PTR(-ENOENT);
2448
2449 ei = PROC_I(inode);
2450 if (S_ISDIR(inode->i_mode))
2451 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2452 if (p->iop)
2453 inode->i_op = p->iop;
2454 if (p->fop)
2455 inode->i_fop = p->fop;
2456 ei->op = p->op;
2457 pid_update_inode(task, inode);
2458 d_set_d_op(dentry, &pid_dentry_operations);
2459 return d_splice_alias(inode, dentry);
2460 }
2461
2462 static struct dentry *proc_pident_lookup(struct inode *dir,
2463 struct dentry *dentry,
2464 const struct pid_entry *ents,
2465 unsigned int nents)
2466 {
2467 struct task_struct *task = get_proc_task(dir);
2468 const struct pid_entry *p, *last;
2469 struct dentry *res = ERR_PTR(-ENOENT);
2470
2471 if (!task)
2472 goto out_no_task;
2473
2474 /*
2475 * Yes, it does not scale. And it should not. Don't add
2476 * new entries into /proc/<tgid>/ without very good reasons.
2477 */
2478 last = &ents[nents];
2479 for (p = ents; p < last; p++) {
2480 if (p->len != dentry->d_name.len)
2481 continue;
2482 if (!memcmp(dentry->d_name.name, p->name, p->len))
2483 break;
2484 }
2485 if (p >= last)
2486 goto out;
2487
2488 res = proc_pident_instantiate(dentry, task, p);
2489 out:
2490 put_task_struct(task);
2491 out_no_task:
2492 return res;
2493 }
2494
2495 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2496 const struct pid_entry *ents, unsigned int nents)
2497 {
2498 struct task_struct *task = get_proc_task(file_inode(file));
2499 const struct pid_entry *p;
2500
2501 if (!task)
2502 return -ENOENT;
2503
2504 if (!dir_emit_dots(file, ctx))
2505 goto out;
2506
2507 if (ctx->pos >= nents + 2)
2508 goto out;
2509
2510 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2511 if (!proc_fill_cache(file, ctx, p->name, p->len,
2512 proc_pident_instantiate, task, p))
2513 break;
2514 ctx->pos++;
2515 }
2516 out:
2517 put_task_struct(task);
2518 return 0;
2519 }
2520
2521 #ifdef CONFIG_SECURITY
2522 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2523 size_t count, loff_t *ppos)
2524 {
2525 struct inode * inode = file_inode(file);
2526 char *p = NULL;
2527 ssize_t length;
2528 struct task_struct *task = get_proc_task(inode);
2529
2530 if (!task)
2531 return -ESRCH;
2532
2533 length = security_getprocattr(task,
2534 (char*)file->f_path.dentry->d_name.name,
2535 &p);
2536 put_task_struct(task);
2537 if (length > 0)
2538 length = simple_read_from_buffer(buf, count, ppos, p, length);
2539 kfree(p);
2540 return length;
2541 }
2542
2543 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2544 size_t count, loff_t *ppos)
2545 {
2546 struct inode * inode = file_inode(file);
2547 void *page;
2548 ssize_t length;
2549 struct task_struct *task = get_proc_task(inode);
2550
2551 length = -ESRCH;
2552 if (!task)
2553 goto out_no_task;
2554
2555 /* A task may only write its own attributes. */
2556 length = -EACCES;
2557 if (current != task)
2558 goto out;
2559
2560 if (count > PAGE_SIZE)
2561 count = PAGE_SIZE;
2562
2563 /* No partial writes. */
2564 length = -EINVAL;
2565 if (*ppos != 0)
2566 goto out;
2567
2568 page = memdup_user(buf, count);
2569 if (IS_ERR(page)) {
2570 length = PTR_ERR(page);
2571 goto out;
2572 }
2573
2574 /* Guard against adverse ptrace interaction */
2575 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2576 if (length < 0)
2577 goto out_free;
2578
2579 length = security_setprocattr(file->f_path.dentry->d_name.name,
2580 page, count);
2581 mutex_unlock(&current->signal->cred_guard_mutex);
2582 out_free:
2583 kfree(page);
2584 out:
2585 put_task_struct(task);
2586 out_no_task:
2587 return length;
2588 }
2589
2590 static const struct file_operations proc_pid_attr_operations = {
2591 .read = proc_pid_attr_read,
2592 .write = proc_pid_attr_write,
2593 .llseek = generic_file_llseek,
2594 };
2595
2596 static const struct pid_entry attr_dir_stuff[] = {
2597 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598 REG("prev", S_IRUGO, proc_pid_attr_operations),
2599 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2600 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2601 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2602 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2603 };
2604
2605 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2606 {
2607 return proc_pident_readdir(file, ctx,
2608 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2609 }
2610
2611 static const struct file_operations proc_attr_dir_operations = {
2612 .read = generic_read_dir,
2613 .iterate_shared = proc_attr_dir_readdir,
2614 .llseek = generic_file_llseek,
2615 };
2616
2617 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2618 struct dentry *dentry, unsigned int flags)
2619 {
2620 return proc_pident_lookup(dir, dentry,
2621 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2622 }
2623
2624 static const struct inode_operations proc_attr_dir_inode_operations = {
2625 .lookup = proc_attr_dir_lookup,
2626 .getattr = pid_getattr,
2627 .setattr = proc_setattr,
2628 };
2629
2630 #endif
2631
2632 #ifdef CONFIG_ELF_CORE
2633 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2634 size_t count, loff_t *ppos)
2635 {
2636 struct task_struct *task = get_proc_task(file_inode(file));
2637 struct mm_struct *mm;
2638 char buffer[PROC_NUMBUF];
2639 size_t len;
2640 int ret;
2641
2642 if (!task)
2643 return -ESRCH;
2644
2645 ret = 0;
2646 mm = get_task_mm(task);
2647 if (mm) {
2648 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2649 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2650 MMF_DUMP_FILTER_SHIFT));
2651 mmput(mm);
2652 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2653 }
2654
2655 put_task_struct(task);
2656
2657 return ret;
2658 }
2659
2660 static ssize_t proc_coredump_filter_write(struct file *file,
2661 const char __user *buf,
2662 size_t count,
2663 loff_t *ppos)
2664 {
2665 struct task_struct *task;
2666 struct mm_struct *mm;
2667 unsigned int val;
2668 int ret;
2669 int i;
2670 unsigned long mask;
2671
2672 ret = kstrtouint_from_user(buf, count, 0, &val);
2673 if (ret < 0)
2674 return ret;
2675
2676 ret = -ESRCH;
2677 task = get_proc_task(file_inode(file));
2678 if (!task)
2679 goto out_no_task;
2680
2681 mm = get_task_mm(task);
2682 if (!mm)
2683 goto out_no_mm;
2684 ret = 0;
2685
2686 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2687 if (val & mask)
2688 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2689 else
2690 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2691 }
2692
2693 mmput(mm);
2694 out_no_mm:
2695 put_task_struct(task);
2696 out_no_task:
2697 if (ret < 0)
2698 return ret;
2699 return count;
2700 }
2701
2702 static const struct file_operations proc_coredump_filter_operations = {
2703 .read = proc_coredump_filter_read,
2704 .write = proc_coredump_filter_write,
2705 .llseek = generic_file_llseek,
2706 };
2707 #endif
2708
2709 #ifdef CONFIG_TASK_IO_ACCOUNTING
2710 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2711 {
2712 struct task_io_accounting acct = task->ioac;
2713 unsigned long flags;
2714 int result;
2715
2716 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2717 if (result)
2718 return result;
2719
2720 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2721 result = -EACCES;
2722 goto out_unlock;
2723 }
2724
2725 if (whole && lock_task_sighand(task, &flags)) {
2726 struct task_struct *t = task;
2727
2728 task_io_accounting_add(&acct, &task->signal->ioac);
2729 while_each_thread(task, t)
2730 task_io_accounting_add(&acct, &t->ioac);
2731
2732 unlock_task_sighand(task, &flags);
2733 }
2734 seq_printf(m,
2735 "rchar: %llu\n"
2736 "wchar: %llu\n"
2737 "syscr: %llu\n"
2738 "syscw: %llu\n"
2739 "read_bytes: %llu\n"
2740 "write_bytes: %llu\n"
2741 "cancelled_write_bytes: %llu\n",
2742 (unsigned long long)acct.rchar,
2743 (unsigned long long)acct.wchar,
2744 (unsigned long long)acct.syscr,
2745 (unsigned long long)acct.syscw,
2746 (unsigned long long)acct.read_bytes,
2747 (unsigned long long)acct.write_bytes,
2748 (unsigned long long)acct.cancelled_write_bytes);
2749 result = 0;
2750
2751 out_unlock:
2752 mutex_unlock(&task->signal->cred_guard_mutex);
2753 return result;
2754 }
2755
2756 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2757 struct pid *pid, struct task_struct *task)
2758 {
2759 return do_io_accounting(task, m, 0);
2760 }
2761
2762 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2763 struct pid *pid, struct task_struct *task)
2764 {
2765 return do_io_accounting(task, m, 1);
2766 }
2767 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2768
2769 #ifdef CONFIG_USER_NS
2770 static int proc_id_map_open(struct inode *inode, struct file *file,
2771 const struct seq_operations *seq_ops)
2772 {
2773 struct user_namespace *ns = NULL;
2774 struct task_struct *task;
2775 struct seq_file *seq;
2776 int ret = -EINVAL;
2777
2778 task = get_proc_task(inode);
2779 if (task) {
2780 rcu_read_lock();
2781 ns = get_user_ns(task_cred_xxx(task, user_ns));
2782 rcu_read_unlock();
2783 put_task_struct(task);
2784 }
2785 if (!ns)
2786 goto err;
2787
2788 ret = seq_open(file, seq_ops);
2789 if (ret)
2790 goto err_put_ns;
2791
2792 seq = file->private_data;
2793 seq->private = ns;
2794
2795 return 0;
2796 err_put_ns:
2797 put_user_ns(ns);
2798 err:
2799 return ret;
2800 }
2801
2802 static int proc_id_map_release(struct inode *inode, struct file *file)
2803 {
2804 struct seq_file *seq = file->private_data;
2805 struct user_namespace *ns = seq->private;
2806 put_user_ns(ns);
2807 return seq_release(inode, file);
2808 }
2809
2810 static int proc_uid_map_open(struct inode *inode, struct file *file)
2811 {
2812 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2813 }
2814
2815 static int proc_gid_map_open(struct inode *inode, struct file *file)
2816 {
2817 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2818 }
2819
2820 static int proc_projid_map_open(struct inode *inode, struct file *file)
2821 {
2822 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2823 }
2824
2825 static const struct file_operations proc_uid_map_operations = {
2826 .open = proc_uid_map_open,
2827 .write = proc_uid_map_write,
2828 .read = seq_read,
2829 .llseek = seq_lseek,
2830 .release = proc_id_map_release,
2831 };
2832
2833 static const struct file_operations proc_gid_map_operations = {
2834 .open = proc_gid_map_open,
2835 .write = proc_gid_map_write,
2836 .read = seq_read,
2837 .llseek = seq_lseek,
2838 .release = proc_id_map_release,
2839 };
2840
2841 static const struct file_operations proc_projid_map_operations = {
2842 .open = proc_projid_map_open,
2843 .write = proc_projid_map_write,
2844 .read = seq_read,
2845 .llseek = seq_lseek,
2846 .release = proc_id_map_release,
2847 };
2848
2849 static int proc_setgroups_open(struct inode *inode, struct file *file)
2850 {
2851 struct user_namespace *ns = NULL;
2852 struct task_struct *task;
2853 int ret;
2854
2855 ret = -ESRCH;
2856 task = get_proc_task(inode);
2857 if (task) {
2858 rcu_read_lock();
2859 ns = get_user_ns(task_cred_xxx(task, user_ns));
2860 rcu_read_unlock();
2861 put_task_struct(task);
2862 }
2863 if (!ns)
2864 goto err;
2865
2866 if (file->f_mode & FMODE_WRITE) {
2867 ret = -EACCES;
2868 if (!ns_capable(ns, CAP_SYS_ADMIN))
2869 goto err_put_ns;
2870 }
2871
2872 ret = single_open(file, &proc_setgroups_show, ns);
2873 if (ret)
2874 goto err_put_ns;
2875
2876 return 0;
2877 err_put_ns:
2878 put_user_ns(ns);
2879 err:
2880 return ret;
2881 }
2882
2883 static int proc_setgroups_release(struct inode *inode, struct file *file)
2884 {
2885 struct seq_file *seq = file->private_data;
2886 struct user_namespace *ns = seq->private;
2887 int ret = single_release(inode, file);
2888 put_user_ns(ns);
2889 return ret;
2890 }
2891
2892 static const struct file_operations proc_setgroups_operations = {
2893 .open = proc_setgroups_open,
2894 .write = proc_setgroups_write,
2895 .read = seq_read,
2896 .llseek = seq_lseek,
2897 .release = proc_setgroups_release,
2898 };
2899 #endif /* CONFIG_USER_NS */
2900
2901 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2902 struct pid *pid, struct task_struct *task)
2903 {
2904 int err = lock_trace(task);
2905 if (!err) {
2906 seq_printf(m, "%08x\n", task->personality);
2907 unlock_trace(task);
2908 }
2909 return err;
2910 }
2911
2912 #ifdef CONFIG_LIVEPATCH
2913 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2914 struct pid *pid, struct task_struct *task)
2915 {
2916 seq_printf(m, "%d\n", task->patch_state);
2917 return 0;
2918 }
2919 #endif /* CONFIG_LIVEPATCH */
2920
2921 /*
2922 * Thread groups
2923 */
2924 static const struct file_operations proc_task_operations;
2925 static const struct inode_operations proc_task_inode_operations;
2926
2927 static const struct pid_entry tgid_base_stuff[] = {
2928 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2929 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2930 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2931 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2932 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2933 #ifdef CONFIG_NET
2934 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2935 #endif
2936 REG("environ", S_IRUSR, proc_environ_operations),
2937 REG("auxv", S_IRUSR, proc_auxv_operations),
2938 ONE("status", S_IRUGO, proc_pid_status),
2939 ONE("personality", S_IRUSR, proc_pid_personality),
2940 ONE("limits", S_IRUGO, proc_pid_limits),
2941 #ifdef CONFIG_SCHED_DEBUG
2942 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2943 #endif
2944 #ifdef CONFIG_SCHED_AUTOGROUP
2945 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2946 #endif
2947 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2948 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2949 ONE("syscall", S_IRUSR, proc_pid_syscall),
2950 #endif
2951 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2952 ONE("stat", S_IRUGO, proc_tgid_stat),
2953 ONE("statm", S_IRUGO, proc_pid_statm),
2954 REG("maps", S_IRUGO, proc_pid_maps_operations),
2955 #ifdef CONFIG_NUMA
2956 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2957 #endif
2958 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2959 LNK("cwd", proc_cwd_link),
2960 LNK("root", proc_root_link),
2961 LNK("exe", proc_exe_link),
2962 REG("mounts", S_IRUGO, proc_mounts_operations),
2963 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2964 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2965 #ifdef CONFIG_PROC_PAGE_MONITOR
2966 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2967 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2968 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2969 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2970 #endif
2971 #ifdef CONFIG_SECURITY
2972 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2973 #endif
2974 #ifdef CONFIG_KALLSYMS
2975 ONE("wchan", S_IRUGO, proc_pid_wchan),
2976 #endif
2977 #ifdef CONFIG_STACKTRACE
2978 ONE("stack", S_IRUSR, proc_pid_stack),
2979 #endif
2980 #ifdef CONFIG_SCHED_INFO
2981 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2982 #endif
2983 #ifdef CONFIG_LATENCYTOP
2984 REG("latency", S_IRUGO, proc_lstats_operations),
2985 #endif
2986 #ifdef CONFIG_PROC_PID_CPUSET
2987 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2988 #endif
2989 #ifdef CONFIG_CGROUPS
2990 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2991 #endif
2992 ONE("oom_score", S_IRUGO, proc_oom_score),
2993 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2994 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2995 #ifdef CONFIG_AUDITSYSCALL
2996 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2997 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2998 #endif
2999 #ifdef CONFIG_FAULT_INJECTION
3000 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3001 REG("fail-nth", 0644, proc_fail_nth_operations),
3002 #endif
3003 #ifdef CONFIG_ELF_CORE
3004 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3005 #endif
3006 #ifdef CONFIG_TASK_IO_ACCOUNTING
3007 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3008 #endif
3009 #ifdef CONFIG_USER_NS
3010 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3011 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3012 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3013 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3014 #endif
3015 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3016 REG("timers", S_IRUGO, proc_timers_operations),
3017 #endif
3018 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3019 #ifdef CONFIG_LIVEPATCH
3020 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3021 #endif
3022 };
3023
3024 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3025 {
3026 return proc_pident_readdir(file, ctx,
3027 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3028 }
3029
3030 static const struct file_operations proc_tgid_base_operations = {
3031 .read = generic_read_dir,
3032 .iterate_shared = proc_tgid_base_readdir,
3033 .llseek = generic_file_llseek,
3034 };
3035
3036 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3037 {
3038 return proc_pident_lookup(dir, dentry,
3039 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3040 }
3041
3042 static const struct inode_operations proc_tgid_base_inode_operations = {
3043 .lookup = proc_tgid_base_lookup,
3044 .getattr = pid_getattr,
3045 .setattr = proc_setattr,
3046 .permission = proc_pid_permission,
3047 };
3048
3049 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3050 {
3051 struct dentry *dentry, *leader, *dir;
3052 char buf[10 + 1];
3053 struct qstr name;
3054
3055 name.name = buf;
3056 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3057 /* no ->d_hash() rejects on procfs */
3058 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3059 if (dentry) {
3060 d_invalidate(dentry);
3061 dput(dentry);
3062 }
3063
3064 if (pid == tgid)
3065 return;
3066
3067 name.name = buf;
3068 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3069 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3070 if (!leader)
3071 goto out;
3072
3073 name.name = "task";
3074 name.len = strlen(name.name);
3075 dir = d_hash_and_lookup(leader, &name);
3076 if (!dir)
3077 goto out_put_leader;
3078
3079 name.name = buf;
3080 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3081 dentry = d_hash_and_lookup(dir, &name);
3082 if (dentry) {
3083 d_invalidate(dentry);
3084 dput(dentry);
3085 }
3086
3087 dput(dir);
3088 out_put_leader:
3089 dput(leader);
3090 out:
3091 return;
3092 }
3093
3094 /**
3095 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3096 * @task: task that should be flushed.
3097 *
3098 * When flushing dentries from proc, one needs to flush them from global
3099 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3100 * in. This call is supposed to do all of this job.
3101 *
3102 * Looks in the dcache for
3103 * /proc/@pid
3104 * /proc/@tgid/task/@pid
3105 * if either directory is present flushes it and all of it'ts children
3106 * from the dcache.
3107 *
3108 * It is safe and reasonable to cache /proc entries for a task until
3109 * that task exits. After that they just clog up the dcache with
3110 * useless entries, possibly causing useful dcache entries to be
3111 * flushed instead. This routine is proved to flush those useless
3112 * dcache entries at process exit time.
3113 *
3114 * NOTE: This routine is just an optimization so it does not guarantee
3115 * that no dcache entries will exist at process exit time it
3116 * just makes it very unlikely that any will persist.
3117 */
3118
3119 void proc_flush_task(struct task_struct *task)
3120 {
3121 int i;
3122 struct pid *pid, *tgid;
3123 struct upid *upid;
3124
3125 pid = task_pid(task);
3126 tgid = task_tgid(task);
3127
3128 for (i = 0; i <= pid->level; i++) {
3129 upid = &pid->numbers[i];
3130 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3131 tgid->numbers[i].nr);
3132 }
3133 }
3134
3135 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3136 struct task_struct *task, const void *ptr)
3137 {
3138 struct inode *inode;
3139
3140 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3141 if (!inode)
3142 return ERR_PTR(-ENOENT);
3143
3144 inode->i_op = &proc_tgid_base_inode_operations;
3145 inode->i_fop = &proc_tgid_base_operations;
3146 inode->i_flags|=S_IMMUTABLE;
3147
3148 set_nlink(inode, nlink_tgid);
3149 pid_update_inode(task, inode);
3150
3151 d_set_d_op(dentry, &pid_dentry_operations);
3152 return d_splice_alias(inode, dentry);
3153 }
3154
3155 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3156 {
3157 struct task_struct *task;
3158 unsigned tgid;
3159 struct pid_namespace *ns;
3160 struct dentry *result = ERR_PTR(-ENOENT);
3161
3162 tgid = name_to_int(&dentry->d_name);
3163 if (tgid == ~0U)
3164 goto out;
3165
3166 ns = dentry->d_sb->s_fs_info;
3167 rcu_read_lock();
3168 task = find_task_by_pid_ns(tgid, ns);
3169 if (task)
3170 get_task_struct(task);
3171 rcu_read_unlock();
3172 if (!task)
3173 goto out;
3174
3175 result = proc_pid_instantiate(dentry, task, NULL);
3176 put_task_struct(task);
3177 out:
3178 return result;
3179 }
3180
3181 /*
3182 * Find the first task with tgid >= tgid
3183 *
3184 */
3185 struct tgid_iter {
3186 unsigned int tgid;
3187 struct task_struct *task;
3188 };
3189 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3190 {
3191 struct pid *pid;
3192
3193 if (iter.task)
3194 put_task_struct(iter.task);
3195 rcu_read_lock();
3196 retry:
3197 iter.task = NULL;
3198 pid = find_ge_pid(iter.tgid, ns);
3199 if (pid) {
3200 iter.tgid = pid_nr_ns(pid, ns);
3201 iter.task = pid_task(pid, PIDTYPE_PID);
3202 /* What we to know is if the pid we have find is the
3203 * pid of a thread_group_leader. Testing for task
3204 * being a thread_group_leader is the obvious thing
3205 * todo but there is a window when it fails, due to
3206 * the pid transfer logic in de_thread.
3207 *
3208 * So we perform the straight forward test of seeing
3209 * if the pid we have found is the pid of a thread
3210 * group leader, and don't worry if the task we have
3211 * found doesn't happen to be a thread group leader.
3212 * As we don't care in the case of readdir.
3213 */
3214 if (!iter.task || !has_group_leader_pid(iter.task)) {
3215 iter.tgid += 1;
3216 goto retry;
3217 }
3218 get_task_struct(iter.task);
3219 }
3220 rcu_read_unlock();
3221 return iter;
3222 }
3223
3224 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3225
3226 /* for the /proc/ directory itself, after non-process stuff has been done */
3227 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3228 {
3229 struct tgid_iter iter;
3230 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3231 loff_t pos = ctx->pos;
3232
3233 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3234 return 0;
3235
3236 if (pos == TGID_OFFSET - 2) {
3237 struct inode *inode = d_inode(ns->proc_self);
3238 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3239 return 0;
3240 ctx->pos = pos = pos + 1;
3241 }
3242 if (pos == TGID_OFFSET - 1) {
3243 struct inode *inode = d_inode(ns->proc_thread_self);
3244 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3245 return 0;
3246 ctx->pos = pos = pos + 1;
3247 }
3248 iter.tgid = pos - TGID_OFFSET;
3249 iter.task = NULL;
3250 for (iter = next_tgid(ns, iter);
3251 iter.task;
3252 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3253 char name[10 + 1];
3254 int len;
3255
3256 cond_resched();
3257 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3258 continue;
3259
3260 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3261 ctx->pos = iter.tgid + TGID_OFFSET;
3262 if (!proc_fill_cache(file, ctx, name, len,
3263 proc_pid_instantiate, iter.task, NULL)) {
3264 put_task_struct(iter.task);
3265 return 0;
3266 }
3267 }
3268 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3269 return 0;
3270 }
3271
3272 /*
3273 * proc_tid_comm_permission is a special permission function exclusively
3274 * used for the node /proc/<pid>/task/<tid>/comm.
3275 * It bypasses generic permission checks in the case where a task of the same
3276 * task group attempts to access the node.
3277 * The rationale behind this is that glibc and bionic access this node for
3278 * cross thread naming (pthread_set/getname_np(!self)). However, if
3279 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3280 * which locks out the cross thread naming implementation.
3281 * This function makes sure that the node is always accessible for members of
3282 * same thread group.
3283 */
3284 static int proc_tid_comm_permission(struct inode *inode, int mask)
3285 {
3286 bool is_same_tgroup;
3287 struct task_struct *task;
3288
3289 task = get_proc_task(inode);
3290 if (!task)
3291 return -ESRCH;
3292 is_same_tgroup = same_thread_group(current, task);
3293 put_task_struct(task);
3294
3295 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3296 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3297 * read or written by the members of the corresponding
3298 * thread group.
3299 */
3300 return 0;
3301 }
3302
3303 return generic_permission(inode, mask);
3304 }
3305
3306 static const struct inode_operations proc_tid_comm_inode_operations = {
3307 .permission = proc_tid_comm_permission,
3308 };
3309
3310 /*
3311 * Tasks
3312 */
3313 static const struct pid_entry tid_base_stuff[] = {
3314 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3315 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3316 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3317 #ifdef CONFIG_NET
3318 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3319 #endif
3320 REG("environ", S_IRUSR, proc_environ_operations),
3321 REG("auxv", S_IRUSR, proc_auxv_operations),
3322 ONE("status", S_IRUGO, proc_pid_status),
3323 ONE("personality", S_IRUSR, proc_pid_personality),
3324 ONE("limits", S_IRUGO, proc_pid_limits),
3325 #ifdef CONFIG_SCHED_DEBUG
3326 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3327 #endif
3328 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3329 &proc_tid_comm_inode_operations,
3330 &proc_pid_set_comm_operations, {}),
3331 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332 ONE("syscall", S_IRUSR, proc_pid_syscall),
3333 #endif
3334 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3335 ONE("stat", S_IRUGO, proc_tid_stat),
3336 ONE("statm", S_IRUGO, proc_pid_statm),
3337 REG("maps", S_IRUGO, proc_tid_maps_operations),
3338 #ifdef CONFIG_PROC_CHILDREN
3339 REG("children", S_IRUGO, proc_tid_children_operations),
3340 #endif
3341 #ifdef CONFIG_NUMA
3342 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3343 #endif
3344 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3345 LNK("cwd", proc_cwd_link),
3346 LNK("root", proc_root_link),
3347 LNK("exe", proc_exe_link),
3348 REG("mounts", S_IRUGO, proc_mounts_operations),
3349 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3350 #ifdef CONFIG_PROC_PAGE_MONITOR
3351 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3352 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3353 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3354 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3355 #endif
3356 #ifdef CONFIG_SECURITY
3357 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3358 #endif
3359 #ifdef CONFIG_KALLSYMS
3360 ONE("wchan", S_IRUGO, proc_pid_wchan),
3361 #endif
3362 #ifdef CONFIG_STACKTRACE
3363 ONE("stack", S_IRUSR, proc_pid_stack),
3364 #endif
3365 #ifdef CONFIG_SCHED_INFO
3366 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3367 #endif
3368 #ifdef CONFIG_LATENCYTOP
3369 REG("latency", S_IRUGO, proc_lstats_operations),
3370 #endif
3371 #ifdef CONFIG_PROC_PID_CPUSET
3372 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3373 #endif
3374 #ifdef CONFIG_CGROUPS
3375 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3376 #endif
3377 ONE("oom_score", S_IRUGO, proc_oom_score),
3378 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3379 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3380 #ifdef CONFIG_AUDITSYSCALL
3381 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3382 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3383 #endif
3384 #ifdef CONFIG_FAULT_INJECTION
3385 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3386 REG("fail-nth", 0644, proc_fail_nth_operations),
3387 #endif
3388 #ifdef CONFIG_TASK_IO_ACCOUNTING
3389 ONE("io", S_IRUSR, proc_tid_io_accounting),
3390 #endif
3391 #ifdef CONFIG_USER_NS
3392 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3393 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3394 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3395 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3396 #endif
3397 #ifdef CONFIG_LIVEPATCH
3398 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3399 #endif
3400 };
3401
3402 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3403 {
3404 return proc_pident_readdir(file, ctx,
3405 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3406 }
3407
3408 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3409 {
3410 return proc_pident_lookup(dir, dentry,
3411 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3412 }
3413
3414 static const struct file_operations proc_tid_base_operations = {
3415 .read = generic_read_dir,
3416 .iterate_shared = proc_tid_base_readdir,
3417 .llseek = generic_file_llseek,
3418 };
3419
3420 static const struct inode_operations proc_tid_base_inode_operations = {
3421 .lookup = proc_tid_base_lookup,
3422 .getattr = pid_getattr,
3423 .setattr = proc_setattr,
3424 };
3425
3426 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3427 struct task_struct *task, const void *ptr)
3428 {
3429 struct inode *inode;
3430 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3431 if (!inode)
3432 return ERR_PTR(-ENOENT);
3433
3434 inode->i_op = &proc_tid_base_inode_operations;
3435 inode->i_fop = &proc_tid_base_operations;
3436 inode->i_flags |= S_IMMUTABLE;
3437
3438 set_nlink(inode, nlink_tid);
3439 pid_update_inode(task, inode);
3440
3441 d_set_d_op(dentry, &pid_dentry_operations);
3442 return d_splice_alias(inode, dentry);
3443 }
3444
3445 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3446 {
3447 struct task_struct *task;
3448 struct task_struct *leader = get_proc_task(dir);
3449 unsigned tid;
3450 struct pid_namespace *ns;
3451 struct dentry *result = ERR_PTR(-ENOENT);
3452
3453 if (!leader)
3454 goto out_no_task;
3455
3456 tid = name_to_int(&dentry->d_name);
3457 if (tid == ~0U)
3458 goto out;
3459
3460 ns = dentry->d_sb->s_fs_info;
3461 rcu_read_lock();
3462 task = find_task_by_pid_ns(tid, ns);
3463 if (task)
3464 get_task_struct(task);
3465 rcu_read_unlock();
3466 if (!task)
3467 goto out;
3468 if (!same_thread_group(leader, task))
3469 goto out_drop_task;
3470
3471 result = proc_task_instantiate(dentry, task, NULL);
3472 out_drop_task:
3473 put_task_struct(task);
3474 out:
3475 put_task_struct(leader);
3476 out_no_task:
3477 return result;
3478 }
3479
3480 /*
3481 * Find the first tid of a thread group to return to user space.
3482 *
3483 * Usually this is just the thread group leader, but if the users
3484 * buffer was too small or there was a seek into the middle of the
3485 * directory we have more work todo.
3486 *
3487 * In the case of a short read we start with find_task_by_pid.
3488 *
3489 * In the case of a seek we start with the leader and walk nr
3490 * threads past it.
3491 */
3492 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3493 struct pid_namespace *ns)
3494 {
3495 struct task_struct *pos, *task;
3496 unsigned long nr = f_pos;
3497
3498 if (nr != f_pos) /* 32bit overflow? */
3499 return NULL;
3500
3501 rcu_read_lock();
3502 task = pid_task(pid, PIDTYPE_PID);
3503 if (!task)
3504 goto fail;
3505
3506 /* Attempt to start with the tid of a thread */
3507 if (tid && nr) {
3508 pos = find_task_by_pid_ns(tid, ns);
3509 if (pos && same_thread_group(pos, task))
3510 goto found;
3511 }
3512
3513 /* If nr exceeds the number of threads there is nothing todo */
3514 if (nr >= get_nr_threads(task))
3515 goto fail;
3516
3517 /* If we haven't found our starting place yet start
3518 * with the leader and walk nr threads forward.
3519 */
3520 pos = task = task->group_leader;
3521 do {
3522 if (!nr--)
3523 goto found;
3524 } while_each_thread(task, pos);
3525 fail:
3526 pos = NULL;
3527 goto out;
3528 found:
3529 get_task_struct(pos);
3530 out:
3531 rcu_read_unlock();
3532 return pos;
3533 }
3534
3535 /*
3536 * Find the next thread in the thread list.
3537 * Return NULL if there is an error or no next thread.
3538 *
3539 * The reference to the input task_struct is released.
3540 */
3541 static struct task_struct *next_tid(struct task_struct *start)
3542 {
3543 struct task_struct *pos = NULL;
3544 rcu_read_lock();
3545 if (pid_alive(start)) {
3546 pos = next_thread(start);
3547 if (thread_group_leader(pos))
3548 pos = NULL;
3549 else
3550 get_task_struct(pos);
3551 }
3552 rcu_read_unlock();
3553 put_task_struct(start);
3554 return pos;
3555 }
3556
3557 /* for the /proc/TGID/task/ directories */
3558 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3559 {
3560 struct inode *inode = file_inode(file);
3561 struct task_struct *task;
3562 struct pid_namespace *ns;
3563 int tid;
3564
3565 if (proc_inode_is_dead(inode))
3566 return -ENOENT;
3567
3568 if (!dir_emit_dots(file, ctx))
3569 return 0;
3570
3571 /* f_version caches the tgid value that the last readdir call couldn't
3572 * return. lseek aka telldir automagically resets f_version to 0.
3573 */
3574 ns = proc_pid_ns(inode);
3575 tid = (int)file->f_version;
3576 file->f_version = 0;
3577 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3578 task;
3579 task = next_tid(task), ctx->pos++) {
3580 char name[10 + 1];
3581 int len;
3582 tid = task_pid_nr_ns(task, ns);
3583 len = snprintf(name, sizeof(name), "%u", tid);
3584 if (!proc_fill_cache(file, ctx, name, len,
3585 proc_task_instantiate, task, NULL)) {
3586 /* returning this tgid failed, save it as the first
3587 * pid for the next readir call */
3588 file->f_version = (u64)tid;
3589 put_task_struct(task);
3590 break;
3591 }
3592 }
3593
3594 return 0;
3595 }
3596
3597 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3598 u32 request_mask, unsigned int query_flags)
3599 {
3600 struct inode *inode = d_inode(path->dentry);
3601 struct task_struct *p = get_proc_task(inode);
3602 generic_fillattr(inode, stat);
3603
3604 if (p) {
3605 stat->nlink += get_nr_threads(p);
3606 put_task_struct(p);
3607 }
3608
3609 return 0;
3610 }
3611
3612 static const struct inode_operations proc_task_inode_operations = {
3613 .lookup = proc_task_lookup,
3614 .getattr = proc_task_getattr,
3615 .setattr = proc_setattr,
3616 .permission = proc_pid_permission,
3617 };
3618
3619 static const struct file_operations proc_task_operations = {
3620 .read = generic_read_dir,
3621 .iterate_shared = proc_task_readdir,
3622 .llseek = generic_file_llseek,
3623 };
3624
3625 void __init set_proc_pid_nlink(void)
3626 {
3627 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3628 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3629 }