]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/proc/base.c
Merge tag 'chrome-platform-for-linus-4.18' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132 }
133
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147 /*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153 {
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164 }
165
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177 }
178
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194 }
195
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206 }
207
208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
209 size_t _count, loff_t *pos)
210 {
211 struct task_struct *tsk;
212 struct mm_struct *mm;
213 char *page;
214 unsigned long count = _count;
215 unsigned long arg_start, arg_end, env_start, env_end;
216 unsigned long len1, len2, len;
217 unsigned long p;
218 char c;
219 ssize_t rv;
220
221 BUG_ON(*pos < 0);
222
223 tsk = get_proc_task(file_inode(file));
224 if (!tsk)
225 return -ESRCH;
226 mm = get_task_mm(tsk);
227 put_task_struct(tsk);
228 if (!mm)
229 return 0;
230 /* Check if process spawned far enough to have cmdline. */
231 if (!mm->env_end) {
232 rv = 0;
233 goto out_mmput;
234 }
235
236 page = (char *)__get_free_page(GFP_KERNEL);
237 if (!page) {
238 rv = -ENOMEM;
239 goto out_mmput;
240 }
241
242 down_read(&mm->mmap_sem);
243 arg_start = mm->arg_start;
244 arg_end = mm->arg_end;
245 env_start = mm->env_start;
246 env_end = mm->env_end;
247 up_read(&mm->mmap_sem);
248
249 BUG_ON(arg_start > arg_end);
250 BUG_ON(env_start > env_end);
251
252 len1 = arg_end - arg_start;
253 len2 = env_end - env_start;
254
255 /* Empty ARGV. */
256 if (len1 == 0) {
257 rv = 0;
258 goto out_free_page;
259 }
260 /*
261 * Inherently racy -- command line shares address space
262 * with code and data.
263 */
264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON);
265 if (rv <= 0)
266 goto out_free_page;
267
268 rv = 0;
269
270 if (c == '\0') {
271 /* Command line (set of strings) occupies whole ARGV. */
272 if (len1 <= *pos)
273 goto out_free_page;
274
275 p = arg_start + *pos;
276 len = len1 - *pos;
277 while (count > 0 && len > 0) {
278 unsigned int _count;
279 int nr_read;
280
281 _count = min3(count, len, PAGE_SIZE);
282 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
283 if (nr_read < 0)
284 rv = nr_read;
285 if (nr_read <= 0)
286 goto out_free_page;
287
288 if (copy_to_user(buf, page, nr_read)) {
289 rv = -EFAULT;
290 goto out_free_page;
291 }
292
293 p += nr_read;
294 len -= nr_read;
295 buf += nr_read;
296 count -= nr_read;
297 rv += nr_read;
298 }
299 } else {
300 /*
301 * Command line (1 string) occupies ARGV and
302 * extends into ENVP.
303 */
304 struct {
305 unsigned long p;
306 unsigned long len;
307 } cmdline[2] = {
308 { .p = arg_start, .len = len1 },
309 { .p = env_start, .len = len2 },
310 };
311 loff_t pos1 = *pos;
312 unsigned int i;
313
314 i = 0;
315 while (i < 2 && pos1 >= cmdline[i].len) {
316 pos1 -= cmdline[i].len;
317 i++;
318 }
319 while (i < 2) {
320 p = cmdline[i].p + pos1;
321 len = cmdline[i].len - pos1;
322 while (count > 0 && len > 0) {
323 unsigned int _count, l;
324 int nr_read;
325 bool final;
326
327 _count = min3(count, len, PAGE_SIZE);
328 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
329 if (nr_read < 0)
330 rv = nr_read;
331 if (nr_read <= 0)
332 goto out_free_page;
333
334 /*
335 * Command line can be shorter than whole ARGV
336 * even if last "marker" byte says it is not.
337 */
338 final = false;
339 l = strnlen(page, nr_read);
340 if (l < nr_read) {
341 nr_read = l;
342 final = true;
343 }
344
345 if (copy_to_user(buf, page, nr_read)) {
346 rv = -EFAULT;
347 goto out_free_page;
348 }
349
350 p += nr_read;
351 len -= nr_read;
352 buf += nr_read;
353 count -= nr_read;
354 rv += nr_read;
355
356 if (final)
357 goto out_free_page;
358 }
359
360 /* Only first chunk can be read partially. */
361 pos1 = 0;
362 i++;
363 }
364 }
365
366 out_free_page:
367 free_page((unsigned long)page);
368 out_mmput:
369 mmput(mm);
370 if (rv > 0)
371 *pos += rv;
372 return rv;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
384 */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
387 {
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
390
391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 goto print0;
393
394 wchan = get_wchan(task);
395 if (wchan && !lookup_symbol_name(wchan, symname)) {
396 seq_puts(m, symname);
397 return 0;
398 }
399
400 print0:
401 seq_putc(m, '0');
402 return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405
406 static int lock_trace(struct task_struct *task)
407 {
408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
409 if (err)
410 return err;
411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 mutex_unlock(&task->signal->cred_guard_mutex);
413 return -EPERM;
414 }
415 return 0;
416 }
417
418 static void unlock_trace(struct task_struct *task)
419 {
420 mutex_unlock(&task->signal->cred_guard_mutex);
421 }
422
423 #ifdef CONFIG_STACKTRACE
424
425 #define MAX_STACK_TRACE_DEPTH 64
426
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 struct pid *pid, struct task_struct *task)
429 {
430 struct stack_trace trace;
431 unsigned long *entries;
432 int err;
433 int i;
434
435 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
436 if (!entries)
437 return -ENOMEM;
438
439 trace.nr_entries = 0;
440 trace.max_entries = MAX_STACK_TRACE_DEPTH;
441 trace.entries = entries;
442 trace.skip = 0;
443
444 err = lock_trace(task);
445 if (!err) {
446 save_stack_trace_tsk(task, &trace);
447
448 for (i = 0; i < trace.nr_entries; i++) {
449 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
450 }
451 unlock_trace(task);
452 }
453 kfree(entries);
454
455 return err;
456 }
457 #endif
458
459 #ifdef CONFIG_SCHED_INFO
460 /*
461 * Provides /proc/PID/schedstat
462 */
463 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
464 struct pid *pid, struct task_struct *task)
465 {
466 if (unlikely(!sched_info_on()))
467 seq_printf(m, "0 0 0\n");
468 else
469 seq_printf(m, "%llu %llu %lu\n",
470 (unsigned long long)task->se.sum_exec_runtime,
471 (unsigned long long)task->sched_info.run_delay,
472 task->sched_info.pcount);
473
474 return 0;
475 }
476 #endif
477
478 #ifdef CONFIG_LATENCYTOP
479 static int lstats_show_proc(struct seq_file *m, void *v)
480 {
481 int i;
482 struct inode *inode = m->private;
483 struct task_struct *task = get_proc_task(inode);
484
485 if (!task)
486 return -ESRCH;
487 seq_puts(m, "Latency Top version : v0.1\n");
488 for (i = 0; i < 32; i++) {
489 struct latency_record *lr = &task->latency_record[i];
490 if (lr->backtrace[0]) {
491 int q;
492 seq_printf(m, "%i %li %li",
493 lr->count, lr->time, lr->max);
494 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
495 unsigned long bt = lr->backtrace[q];
496 if (!bt)
497 break;
498 if (bt == ULONG_MAX)
499 break;
500 seq_printf(m, " %ps", (void *)bt);
501 }
502 seq_putc(m, '\n');
503 }
504
505 }
506 put_task_struct(task);
507 return 0;
508 }
509
510 static int lstats_open(struct inode *inode, struct file *file)
511 {
512 return single_open(file, lstats_show_proc, inode);
513 }
514
515 static ssize_t lstats_write(struct file *file, const char __user *buf,
516 size_t count, loff_t *offs)
517 {
518 struct task_struct *task = get_proc_task(file_inode(file));
519
520 if (!task)
521 return -ESRCH;
522 clear_all_latency_tracing(task);
523 put_task_struct(task);
524
525 return count;
526 }
527
528 static const struct file_operations proc_lstats_operations = {
529 .open = lstats_open,
530 .read = seq_read,
531 .write = lstats_write,
532 .llseek = seq_lseek,
533 .release = single_release,
534 };
535
536 #endif
537
538 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
539 struct pid *pid, struct task_struct *task)
540 {
541 unsigned long totalpages = totalram_pages + total_swap_pages;
542 unsigned long points = 0;
543
544 points = oom_badness(task, NULL, NULL, totalpages) *
545 1000 / totalpages;
546 seq_printf(m, "%lu\n", points);
547
548 return 0;
549 }
550
551 struct limit_names {
552 const char *name;
553 const char *unit;
554 };
555
556 static const struct limit_names lnames[RLIM_NLIMITS] = {
557 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
558 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
559 [RLIMIT_DATA] = {"Max data size", "bytes"},
560 [RLIMIT_STACK] = {"Max stack size", "bytes"},
561 [RLIMIT_CORE] = {"Max core file size", "bytes"},
562 [RLIMIT_RSS] = {"Max resident set", "bytes"},
563 [RLIMIT_NPROC] = {"Max processes", "processes"},
564 [RLIMIT_NOFILE] = {"Max open files", "files"},
565 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
566 [RLIMIT_AS] = {"Max address space", "bytes"},
567 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
568 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
569 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
570 [RLIMIT_NICE] = {"Max nice priority", NULL},
571 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
572 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
573 };
574
575 /* Display limits for a process */
576 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
577 struct pid *pid, struct task_struct *task)
578 {
579 unsigned int i;
580 unsigned long flags;
581
582 struct rlimit rlim[RLIM_NLIMITS];
583
584 if (!lock_task_sighand(task, &flags))
585 return 0;
586 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
587 unlock_task_sighand(task, &flags);
588
589 /*
590 * print the file header
591 */
592 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
593 "Limit", "Soft Limit", "Hard Limit", "Units");
594
595 for (i = 0; i < RLIM_NLIMITS; i++) {
596 if (rlim[i].rlim_cur == RLIM_INFINITY)
597 seq_printf(m, "%-25s %-20s ",
598 lnames[i].name, "unlimited");
599 else
600 seq_printf(m, "%-25s %-20lu ",
601 lnames[i].name, rlim[i].rlim_cur);
602
603 if (rlim[i].rlim_max == RLIM_INFINITY)
604 seq_printf(m, "%-20s ", "unlimited");
605 else
606 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
607
608 if (lnames[i].unit)
609 seq_printf(m, "%-10s\n", lnames[i].unit);
610 else
611 seq_putc(m, '\n');
612 }
613
614 return 0;
615 }
616
617 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
618 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
619 struct pid *pid, struct task_struct *task)
620 {
621 long nr;
622 unsigned long args[6], sp, pc;
623 int res;
624
625 res = lock_trace(task);
626 if (res)
627 return res;
628
629 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
630 seq_puts(m, "running\n");
631 else if (nr < 0)
632 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
633 else
634 seq_printf(m,
635 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
636 nr,
637 args[0], args[1], args[2], args[3], args[4], args[5],
638 sp, pc);
639 unlock_trace(task);
640
641 return 0;
642 }
643 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
644
645 /************************************************************************/
646 /* Here the fs part begins */
647 /************************************************************************/
648
649 /* permission checks */
650 static int proc_fd_access_allowed(struct inode *inode)
651 {
652 struct task_struct *task;
653 int allowed = 0;
654 /* Allow access to a task's file descriptors if it is us or we
655 * may use ptrace attach to the process and find out that
656 * information.
657 */
658 task = get_proc_task(inode);
659 if (task) {
660 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
661 put_task_struct(task);
662 }
663 return allowed;
664 }
665
666 int proc_setattr(struct dentry *dentry, struct iattr *attr)
667 {
668 int error;
669 struct inode *inode = d_inode(dentry);
670
671 if (attr->ia_valid & ATTR_MODE)
672 return -EPERM;
673
674 error = setattr_prepare(dentry, attr);
675 if (error)
676 return error;
677
678 setattr_copy(inode, attr);
679 mark_inode_dirty(inode);
680 return 0;
681 }
682
683 /*
684 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
685 * or euid/egid (for hide_pid_min=2)?
686 */
687 static bool has_pid_permissions(struct pid_namespace *pid,
688 struct task_struct *task,
689 int hide_pid_min)
690 {
691 if (pid->hide_pid < hide_pid_min)
692 return true;
693 if (in_group_p(pid->pid_gid))
694 return true;
695 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
696 }
697
698
699 static int proc_pid_permission(struct inode *inode, int mask)
700 {
701 struct pid_namespace *pid = proc_pid_ns(inode);
702 struct task_struct *task;
703 bool has_perms;
704
705 task = get_proc_task(inode);
706 if (!task)
707 return -ESRCH;
708 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
709 put_task_struct(task);
710
711 if (!has_perms) {
712 if (pid->hide_pid == HIDEPID_INVISIBLE) {
713 /*
714 * Let's make getdents(), stat(), and open()
715 * consistent with each other. If a process
716 * may not stat() a file, it shouldn't be seen
717 * in procfs at all.
718 */
719 return -ENOENT;
720 }
721
722 return -EPERM;
723 }
724 return generic_permission(inode, mask);
725 }
726
727
728
729 static const struct inode_operations proc_def_inode_operations = {
730 .setattr = proc_setattr,
731 };
732
733 static int proc_single_show(struct seq_file *m, void *v)
734 {
735 struct inode *inode = m->private;
736 struct pid_namespace *ns = proc_pid_ns(inode);
737 struct pid *pid = proc_pid(inode);
738 struct task_struct *task;
739 int ret;
740
741 task = get_pid_task(pid, PIDTYPE_PID);
742 if (!task)
743 return -ESRCH;
744
745 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
746
747 put_task_struct(task);
748 return ret;
749 }
750
751 static int proc_single_open(struct inode *inode, struct file *filp)
752 {
753 return single_open(filp, proc_single_show, inode);
754 }
755
756 static const struct file_operations proc_single_file_operations = {
757 .open = proc_single_open,
758 .read = seq_read,
759 .llseek = seq_lseek,
760 .release = single_release,
761 };
762
763
764 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
765 {
766 struct task_struct *task = get_proc_task(inode);
767 struct mm_struct *mm = ERR_PTR(-ESRCH);
768
769 if (task) {
770 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
771 put_task_struct(task);
772
773 if (!IS_ERR_OR_NULL(mm)) {
774 /* ensure this mm_struct can't be freed */
775 mmgrab(mm);
776 /* but do not pin its memory */
777 mmput(mm);
778 }
779 }
780
781 return mm;
782 }
783
784 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
785 {
786 struct mm_struct *mm = proc_mem_open(inode, mode);
787
788 if (IS_ERR(mm))
789 return PTR_ERR(mm);
790
791 file->private_data = mm;
792 return 0;
793 }
794
795 static int mem_open(struct inode *inode, struct file *file)
796 {
797 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
798
799 /* OK to pass negative loff_t, we can catch out-of-range */
800 file->f_mode |= FMODE_UNSIGNED_OFFSET;
801
802 return ret;
803 }
804
805 static ssize_t mem_rw(struct file *file, char __user *buf,
806 size_t count, loff_t *ppos, int write)
807 {
808 struct mm_struct *mm = file->private_data;
809 unsigned long addr = *ppos;
810 ssize_t copied;
811 char *page;
812 unsigned int flags;
813
814 if (!mm)
815 return 0;
816
817 page = (char *)__get_free_page(GFP_KERNEL);
818 if (!page)
819 return -ENOMEM;
820
821 copied = 0;
822 if (!mmget_not_zero(mm))
823 goto free;
824
825 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
826
827 while (count > 0) {
828 int this_len = min_t(int, count, PAGE_SIZE);
829
830 if (write && copy_from_user(page, buf, this_len)) {
831 copied = -EFAULT;
832 break;
833 }
834
835 this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 if (!this_len) {
837 if (!copied)
838 copied = -EIO;
839 break;
840 }
841
842 if (!write && copy_to_user(buf, page, this_len)) {
843 copied = -EFAULT;
844 break;
845 }
846
847 buf += this_len;
848 addr += this_len;
849 copied += this_len;
850 count -= this_len;
851 }
852 *ppos = addr;
853
854 mmput(mm);
855 free:
856 free_page((unsigned long) page);
857 return copied;
858 }
859
860 static ssize_t mem_read(struct file *file, char __user *buf,
861 size_t count, loff_t *ppos)
862 {
863 return mem_rw(file, buf, count, ppos, 0);
864 }
865
866 static ssize_t mem_write(struct file *file, const char __user *buf,
867 size_t count, loff_t *ppos)
868 {
869 return mem_rw(file, (char __user*)buf, count, ppos, 1);
870 }
871
872 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 {
874 switch (orig) {
875 case 0:
876 file->f_pos = offset;
877 break;
878 case 1:
879 file->f_pos += offset;
880 break;
881 default:
882 return -EINVAL;
883 }
884 force_successful_syscall_return();
885 return file->f_pos;
886 }
887
888 static int mem_release(struct inode *inode, struct file *file)
889 {
890 struct mm_struct *mm = file->private_data;
891 if (mm)
892 mmdrop(mm);
893 return 0;
894 }
895
896 static const struct file_operations proc_mem_operations = {
897 .llseek = mem_lseek,
898 .read = mem_read,
899 .write = mem_write,
900 .open = mem_open,
901 .release = mem_release,
902 };
903
904 static int environ_open(struct inode *inode, struct file *file)
905 {
906 return __mem_open(inode, file, PTRACE_MODE_READ);
907 }
908
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 size_t count, loff_t *ppos)
911 {
912 char *page;
913 unsigned long src = *ppos;
914 int ret = 0;
915 struct mm_struct *mm = file->private_data;
916 unsigned long env_start, env_end;
917
918 /* Ensure the process spawned far enough to have an environment. */
919 if (!mm || !mm->env_end)
920 return 0;
921
922 page = (char *)__get_free_page(GFP_KERNEL);
923 if (!page)
924 return -ENOMEM;
925
926 ret = 0;
927 if (!mmget_not_zero(mm))
928 goto free;
929
930 down_read(&mm->mmap_sem);
931 env_start = mm->env_start;
932 env_end = mm->env_end;
933 up_read(&mm->mmap_sem);
934
935 while (count > 0) {
936 size_t this_len, max_len;
937 int retval;
938
939 if (src >= (env_end - env_start))
940 break;
941
942 this_len = env_end - (env_start + src);
943
944 max_len = min_t(size_t, PAGE_SIZE, count);
945 this_len = min(max_len, this_len);
946
947 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
948
949 if (retval <= 0) {
950 ret = retval;
951 break;
952 }
953
954 if (copy_to_user(buf, page, retval)) {
955 ret = -EFAULT;
956 break;
957 }
958
959 ret += retval;
960 src += retval;
961 buf += retval;
962 count -= retval;
963 }
964 *ppos = src;
965 mmput(mm);
966
967 free:
968 free_page((unsigned long) page);
969 return ret;
970 }
971
972 static const struct file_operations proc_environ_operations = {
973 .open = environ_open,
974 .read = environ_read,
975 .llseek = generic_file_llseek,
976 .release = mem_release,
977 };
978
979 static int auxv_open(struct inode *inode, struct file *file)
980 {
981 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
982 }
983
984 static ssize_t auxv_read(struct file *file, char __user *buf,
985 size_t count, loff_t *ppos)
986 {
987 struct mm_struct *mm = file->private_data;
988 unsigned int nwords = 0;
989
990 if (!mm)
991 return 0;
992 do {
993 nwords += 2;
994 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
995 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
996 nwords * sizeof(mm->saved_auxv[0]));
997 }
998
999 static const struct file_operations proc_auxv_operations = {
1000 .open = auxv_open,
1001 .read = auxv_read,
1002 .llseek = generic_file_llseek,
1003 .release = mem_release,
1004 };
1005
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 loff_t *ppos)
1008 {
1009 struct task_struct *task = get_proc_task(file_inode(file));
1010 char buffer[PROC_NUMBUF];
1011 int oom_adj = OOM_ADJUST_MIN;
1012 size_t len;
1013
1014 if (!task)
1015 return -ESRCH;
1016 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1017 oom_adj = OOM_ADJUST_MAX;
1018 else
1019 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1020 OOM_SCORE_ADJ_MAX;
1021 put_task_struct(task);
1022 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1023 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1024 }
1025
1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 {
1028 static DEFINE_MUTEX(oom_adj_mutex);
1029 struct mm_struct *mm = NULL;
1030 struct task_struct *task;
1031 int err = 0;
1032
1033 task = get_proc_task(file_inode(file));
1034 if (!task)
1035 return -ESRCH;
1036
1037 mutex_lock(&oom_adj_mutex);
1038 if (legacy) {
1039 if (oom_adj < task->signal->oom_score_adj &&
1040 !capable(CAP_SYS_RESOURCE)) {
1041 err = -EACCES;
1042 goto err_unlock;
1043 }
1044 /*
1045 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1046 * /proc/pid/oom_score_adj instead.
1047 */
1048 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 current->comm, task_pid_nr(current), task_pid_nr(task),
1050 task_pid_nr(task));
1051 } else {
1052 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1053 !capable(CAP_SYS_RESOURCE)) {
1054 err = -EACCES;
1055 goto err_unlock;
1056 }
1057 }
1058
1059 /*
1060 * Make sure we will check other processes sharing the mm if this is
1061 * not vfrok which wants its own oom_score_adj.
1062 * pin the mm so it doesn't go away and get reused after task_unlock
1063 */
1064 if (!task->vfork_done) {
1065 struct task_struct *p = find_lock_task_mm(task);
1066
1067 if (p) {
1068 if (atomic_read(&p->mm->mm_users) > 1) {
1069 mm = p->mm;
1070 mmgrab(mm);
1071 }
1072 task_unlock(p);
1073 }
1074 }
1075
1076 task->signal->oom_score_adj = oom_adj;
1077 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1078 task->signal->oom_score_adj_min = (short)oom_adj;
1079 trace_oom_score_adj_update(task);
1080
1081 if (mm) {
1082 struct task_struct *p;
1083
1084 rcu_read_lock();
1085 for_each_process(p) {
1086 if (same_thread_group(task, p))
1087 continue;
1088
1089 /* do not touch kernel threads or the global init */
1090 if (p->flags & PF_KTHREAD || is_global_init(p))
1091 continue;
1092
1093 task_lock(p);
1094 if (!p->vfork_done && process_shares_mm(p, mm)) {
1095 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1096 task_pid_nr(p), p->comm,
1097 p->signal->oom_score_adj, oom_adj,
1098 task_pid_nr(task), task->comm);
1099 p->signal->oom_score_adj = oom_adj;
1100 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1101 p->signal->oom_score_adj_min = (short)oom_adj;
1102 }
1103 task_unlock(p);
1104 }
1105 rcu_read_unlock();
1106 mmdrop(mm);
1107 }
1108 err_unlock:
1109 mutex_unlock(&oom_adj_mutex);
1110 put_task_struct(task);
1111 return err;
1112 }
1113
1114 /*
1115 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1116 * kernels. The effective policy is defined by oom_score_adj, which has a
1117 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1118 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1119 * Processes that become oom disabled via oom_adj will still be oom disabled
1120 * with this implementation.
1121 *
1122 * oom_adj cannot be removed since existing userspace binaries use it.
1123 */
1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1125 size_t count, loff_t *ppos)
1126 {
1127 char buffer[PROC_NUMBUF];
1128 int oom_adj;
1129 int err;
1130
1131 memset(buffer, 0, sizeof(buffer));
1132 if (count > sizeof(buffer) - 1)
1133 count = sizeof(buffer) - 1;
1134 if (copy_from_user(buffer, buf, count)) {
1135 err = -EFAULT;
1136 goto out;
1137 }
1138
1139 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1140 if (err)
1141 goto out;
1142 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1143 oom_adj != OOM_DISABLE) {
1144 err = -EINVAL;
1145 goto out;
1146 }
1147
1148 /*
1149 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1150 * value is always attainable.
1151 */
1152 if (oom_adj == OOM_ADJUST_MAX)
1153 oom_adj = OOM_SCORE_ADJ_MAX;
1154 else
1155 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156
1157 err = __set_oom_adj(file, oom_adj, true);
1158 out:
1159 return err < 0 ? err : count;
1160 }
1161
1162 static const struct file_operations proc_oom_adj_operations = {
1163 .read = oom_adj_read,
1164 .write = oom_adj_write,
1165 .llseek = generic_file_llseek,
1166 };
1167
1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1169 size_t count, loff_t *ppos)
1170 {
1171 struct task_struct *task = get_proc_task(file_inode(file));
1172 char buffer[PROC_NUMBUF];
1173 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1174 size_t len;
1175
1176 if (!task)
1177 return -ESRCH;
1178 oom_score_adj = task->signal->oom_score_adj;
1179 put_task_struct(task);
1180 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1181 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183
1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1185 size_t count, loff_t *ppos)
1186 {
1187 char buffer[PROC_NUMBUF];
1188 int oom_score_adj;
1189 int err;
1190
1191 memset(buffer, 0, sizeof(buffer));
1192 if (count > sizeof(buffer) - 1)
1193 count = sizeof(buffer) - 1;
1194 if (copy_from_user(buffer, buf, count)) {
1195 err = -EFAULT;
1196 goto out;
1197 }
1198
1199 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1200 if (err)
1201 goto out;
1202 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1203 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207
1208 err = __set_oom_adj(file, oom_score_adj, false);
1209 out:
1210 return err < 0 ? err : count;
1211 }
1212
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214 .read = oom_score_adj_read,
1215 .write = oom_score_adj_write,
1216 .llseek = default_llseek,
1217 };
1218
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 11
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222 size_t count, loff_t *ppos)
1223 {
1224 struct inode * inode = file_inode(file);
1225 struct task_struct *task = get_proc_task(inode);
1226 ssize_t length;
1227 char tmpbuf[TMPBUFLEN];
1228
1229 if (!task)
1230 return -ESRCH;
1231 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232 from_kuid(file->f_cred->user_ns,
1233 audit_get_loginuid(task)));
1234 put_task_struct(task);
1235 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239 size_t count, loff_t *ppos)
1240 {
1241 struct inode * inode = file_inode(file);
1242 uid_t loginuid;
1243 kuid_t kloginuid;
1244 int rv;
1245
1246 rcu_read_lock();
1247 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248 rcu_read_unlock();
1249 return -EPERM;
1250 }
1251 rcu_read_unlock();
1252
1253 if (*ppos != 0) {
1254 /* No partial writes. */
1255 return -EINVAL;
1256 }
1257
1258 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259 if (rv < 0)
1260 return rv;
1261
1262 /* is userspace tring to explicitly UNSET the loginuid? */
1263 if (loginuid == AUDIT_UID_UNSET) {
1264 kloginuid = INVALID_UID;
1265 } else {
1266 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 if (!uid_valid(kloginuid))
1268 return -EINVAL;
1269 }
1270
1271 rv = audit_set_loginuid(kloginuid);
1272 if (rv < 0)
1273 return rv;
1274 return count;
1275 }
1276
1277 static const struct file_operations proc_loginuid_operations = {
1278 .read = proc_loginuid_read,
1279 .write = proc_loginuid_write,
1280 .llseek = generic_file_llseek,
1281 };
1282
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284 size_t count, loff_t *ppos)
1285 {
1286 struct inode * inode = file_inode(file);
1287 struct task_struct *task = get_proc_task(inode);
1288 ssize_t length;
1289 char tmpbuf[TMPBUFLEN];
1290
1291 if (!task)
1292 return -ESRCH;
1293 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294 audit_get_sessionid(task));
1295 put_task_struct(task);
1296 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298
1299 static const struct file_operations proc_sessionid_operations = {
1300 .read = proc_sessionid_read,
1301 .llseek = generic_file_llseek,
1302 };
1303 #endif
1304
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307 size_t count, loff_t *ppos)
1308 {
1309 struct task_struct *task = get_proc_task(file_inode(file));
1310 char buffer[PROC_NUMBUF];
1311 size_t len;
1312 int make_it_fail;
1313
1314 if (!task)
1315 return -ESRCH;
1316 make_it_fail = task->make_it_fail;
1317 put_task_struct(task);
1318
1319 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320
1321 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325 const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327 struct task_struct *task;
1328 char buffer[PROC_NUMBUF];
1329 int make_it_fail;
1330 int rv;
1331
1332 if (!capable(CAP_SYS_RESOURCE))
1333 return -EPERM;
1334 memset(buffer, 0, sizeof(buffer));
1335 if (count > sizeof(buffer) - 1)
1336 count = sizeof(buffer) - 1;
1337 if (copy_from_user(buffer, buf, count))
1338 return -EFAULT;
1339 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340 if (rv < 0)
1341 return rv;
1342 if (make_it_fail < 0 || make_it_fail > 1)
1343 return -EINVAL;
1344
1345 task = get_proc_task(file_inode(file));
1346 if (!task)
1347 return -ESRCH;
1348 task->make_it_fail = make_it_fail;
1349 put_task_struct(task);
1350
1351 return count;
1352 }
1353
1354 static const struct file_operations proc_fault_inject_operations = {
1355 .read = proc_fault_inject_read,
1356 .write = proc_fault_inject_write,
1357 .llseek = generic_file_llseek,
1358 };
1359
1360 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1361 size_t count, loff_t *ppos)
1362 {
1363 struct task_struct *task;
1364 int err;
1365 unsigned int n;
1366
1367 err = kstrtouint_from_user(buf, count, 0, &n);
1368 if (err)
1369 return err;
1370
1371 task = get_proc_task(file_inode(file));
1372 if (!task)
1373 return -ESRCH;
1374 task->fail_nth = n;
1375 put_task_struct(task);
1376
1377 return count;
1378 }
1379
1380 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1381 size_t count, loff_t *ppos)
1382 {
1383 struct task_struct *task;
1384 char numbuf[PROC_NUMBUF];
1385 ssize_t len;
1386
1387 task = get_proc_task(file_inode(file));
1388 if (!task)
1389 return -ESRCH;
1390 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1391 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1392 put_task_struct(task);
1393
1394 return len;
1395 }
1396
1397 static const struct file_operations proc_fail_nth_operations = {
1398 .read = proc_fail_nth_read,
1399 .write = proc_fail_nth_write,
1400 };
1401 #endif
1402
1403
1404 #ifdef CONFIG_SCHED_DEBUG
1405 /*
1406 * Print out various scheduling related per-task fields:
1407 */
1408 static int sched_show(struct seq_file *m, void *v)
1409 {
1410 struct inode *inode = m->private;
1411 struct pid_namespace *ns = proc_pid_ns(inode);
1412 struct task_struct *p;
1413
1414 p = get_proc_task(inode);
1415 if (!p)
1416 return -ESRCH;
1417 proc_sched_show_task(p, ns, m);
1418
1419 put_task_struct(p);
1420
1421 return 0;
1422 }
1423
1424 static ssize_t
1425 sched_write(struct file *file, const char __user *buf,
1426 size_t count, loff_t *offset)
1427 {
1428 struct inode *inode = file_inode(file);
1429 struct task_struct *p;
1430
1431 p = get_proc_task(inode);
1432 if (!p)
1433 return -ESRCH;
1434 proc_sched_set_task(p);
1435
1436 put_task_struct(p);
1437
1438 return count;
1439 }
1440
1441 static int sched_open(struct inode *inode, struct file *filp)
1442 {
1443 return single_open(filp, sched_show, inode);
1444 }
1445
1446 static const struct file_operations proc_pid_sched_operations = {
1447 .open = sched_open,
1448 .read = seq_read,
1449 .write = sched_write,
1450 .llseek = seq_lseek,
1451 .release = single_release,
1452 };
1453
1454 #endif
1455
1456 #ifdef CONFIG_SCHED_AUTOGROUP
1457 /*
1458 * Print out autogroup related information:
1459 */
1460 static int sched_autogroup_show(struct seq_file *m, void *v)
1461 {
1462 struct inode *inode = m->private;
1463 struct task_struct *p;
1464
1465 p = get_proc_task(inode);
1466 if (!p)
1467 return -ESRCH;
1468 proc_sched_autogroup_show_task(p, m);
1469
1470 put_task_struct(p);
1471
1472 return 0;
1473 }
1474
1475 static ssize_t
1476 sched_autogroup_write(struct file *file, const char __user *buf,
1477 size_t count, loff_t *offset)
1478 {
1479 struct inode *inode = file_inode(file);
1480 struct task_struct *p;
1481 char buffer[PROC_NUMBUF];
1482 int nice;
1483 int err;
1484
1485 memset(buffer, 0, sizeof(buffer));
1486 if (count > sizeof(buffer) - 1)
1487 count = sizeof(buffer) - 1;
1488 if (copy_from_user(buffer, buf, count))
1489 return -EFAULT;
1490
1491 err = kstrtoint(strstrip(buffer), 0, &nice);
1492 if (err < 0)
1493 return err;
1494
1495 p = get_proc_task(inode);
1496 if (!p)
1497 return -ESRCH;
1498
1499 err = proc_sched_autogroup_set_nice(p, nice);
1500 if (err)
1501 count = err;
1502
1503 put_task_struct(p);
1504
1505 return count;
1506 }
1507
1508 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1509 {
1510 int ret;
1511
1512 ret = single_open(filp, sched_autogroup_show, NULL);
1513 if (!ret) {
1514 struct seq_file *m = filp->private_data;
1515
1516 m->private = inode;
1517 }
1518 return ret;
1519 }
1520
1521 static const struct file_operations proc_pid_sched_autogroup_operations = {
1522 .open = sched_autogroup_open,
1523 .read = seq_read,
1524 .write = sched_autogroup_write,
1525 .llseek = seq_lseek,
1526 .release = single_release,
1527 };
1528
1529 #endif /* CONFIG_SCHED_AUTOGROUP */
1530
1531 static ssize_t comm_write(struct file *file, const char __user *buf,
1532 size_t count, loff_t *offset)
1533 {
1534 struct inode *inode = file_inode(file);
1535 struct task_struct *p;
1536 char buffer[TASK_COMM_LEN];
1537 const size_t maxlen = sizeof(buffer) - 1;
1538
1539 memset(buffer, 0, sizeof(buffer));
1540 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1541 return -EFAULT;
1542
1543 p = get_proc_task(inode);
1544 if (!p)
1545 return -ESRCH;
1546
1547 if (same_thread_group(current, p))
1548 set_task_comm(p, buffer);
1549 else
1550 count = -EINVAL;
1551
1552 put_task_struct(p);
1553
1554 return count;
1555 }
1556
1557 static int comm_show(struct seq_file *m, void *v)
1558 {
1559 struct inode *inode = m->private;
1560 struct task_struct *p;
1561
1562 p = get_proc_task(inode);
1563 if (!p)
1564 return -ESRCH;
1565
1566 task_lock(p);
1567 seq_printf(m, "%s\n", p->comm);
1568 task_unlock(p);
1569
1570 put_task_struct(p);
1571
1572 return 0;
1573 }
1574
1575 static int comm_open(struct inode *inode, struct file *filp)
1576 {
1577 return single_open(filp, comm_show, inode);
1578 }
1579
1580 static const struct file_operations proc_pid_set_comm_operations = {
1581 .open = comm_open,
1582 .read = seq_read,
1583 .write = comm_write,
1584 .llseek = seq_lseek,
1585 .release = single_release,
1586 };
1587
1588 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1589 {
1590 struct task_struct *task;
1591 struct file *exe_file;
1592
1593 task = get_proc_task(d_inode(dentry));
1594 if (!task)
1595 return -ENOENT;
1596 exe_file = get_task_exe_file(task);
1597 put_task_struct(task);
1598 if (exe_file) {
1599 *exe_path = exe_file->f_path;
1600 path_get(&exe_file->f_path);
1601 fput(exe_file);
1602 return 0;
1603 } else
1604 return -ENOENT;
1605 }
1606
1607 static const char *proc_pid_get_link(struct dentry *dentry,
1608 struct inode *inode,
1609 struct delayed_call *done)
1610 {
1611 struct path path;
1612 int error = -EACCES;
1613
1614 if (!dentry)
1615 return ERR_PTR(-ECHILD);
1616
1617 /* Are we allowed to snoop on the tasks file descriptors? */
1618 if (!proc_fd_access_allowed(inode))
1619 goto out;
1620
1621 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1622 if (error)
1623 goto out;
1624
1625 nd_jump_link(&path);
1626 return NULL;
1627 out:
1628 return ERR_PTR(error);
1629 }
1630
1631 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1632 {
1633 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1634 char *pathname;
1635 int len;
1636
1637 if (!tmp)
1638 return -ENOMEM;
1639
1640 pathname = d_path(path, tmp, PAGE_SIZE);
1641 len = PTR_ERR(pathname);
1642 if (IS_ERR(pathname))
1643 goto out;
1644 len = tmp + PAGE_SIZE - 1 - pathname;
1645
1646 if (len > buflen)
1647 len = buflen;
1648 if (copy_to_user(buffer, pathname, len))
1649 len = -EFAULT;
1650 out:
1651 free_page((unsigned long)tmp);
1652 return len;
1653 }
1654
1655 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1656 {
1657 int error = -EACCES;
1658 struct inode *inode = d_inode(dentry);
1659 struct path path;
1660
1661 /* Are we allowed to snoop on the tasks file descriptors? */
1662 if (!proc_fd_access_allowed(inode))
1663 goto out;
1664
1665 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1666 if (error)
1667 goto out;
1668
1669 error = do_proc_readlink(&path, buffer, buflen);
1670 path_put(&path);
1671 out:
1672 return error;
1673 }
1674
1675 const struct inode_operations proc_pid_link_inode_operations = {
1676 .readlink = proc_pid_readlink,
1677 .get_link = proc_pid_get_link,
1678 .setattr = proc_setattr,
1679 };
1680
1681
1682 /* building an inode */
1683
1684 void task_dump_owner(struct task_struct *task, umode_t mode,
1685 kuid_t *ruid, kgid_t *rgid)
1686 {
1687 /* Depending on the state of dumpable compute who should own a
1688 * proc file for a task.
1689 */
1690 const struct cred *cred;
1691 kuid_t uid;
1692 kgid_t gid;
1693
1694 if (unlikely(task->flags & PF_KTHREAD)) {
1695 *ruid = GLOBAL_ROOT_UID;
1696 *rgid = GLOBAL_ROOT_GID;
1697 return;
1698 }
1699
1700 /* Default to the tasks effective ownership */
1701 rcu_read_lock();
1702 cred = __task_cred(task);
1703 uid = cred->euid;
1704 gid = cred->egid;
1705 rcu_read_unlock();
1706
1707 /*
1708 * Before the /proc/pid/status file was created the only way to read
1709 * the effective uid of a /process was to stat /proc/pid. Reading
1710 * /proc/pid/status is slow enough that procps and other packages
1711 * kept stating /proc/pid. To keep the rules in /proc simple I have
1712 * made this apply to all per process world readable and executable
1713 * directories.
1714 */
1715 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1716 struct mm_struct *mm;
1717 task_lock(task);
1718 mm = task->mm;
1719 /* Make non-dumpable tasks owned by some root */
1720 if (mm) {
1721 if (get_dumpable(mm) != SUID_DUMP_USER) {
1722 struct user_namespace *user_ns = mm->user_ns;
1723
1724 uid = make_kuid(user_ns, 0);
1725 if (!uid_valid(uid))
1726 uid = GLOBAL_ROOT_UID;
1727
1728 gid = make_kgid(user_ns, 0);
1729 if (!gid_valid(gid))
1730 gid = GLOBAL_ROOT_GID;
1731 }
1732 } else {
1733 uid = GLOBAL_ROOT_UID;
1734 gid = GLOBAL_ROOT_GID;
1735 }
1736 task_unlock(task);
1737 }
1738 *ruid = uid;
1739 *rgid = gid;
1740 }
1741
1742 struct inode *proc_pid_make_inode(struct super_block * sb,
1743 struct task_struct *task, umode_t mode)
1744 {
1745 struct inode * inode;
1746 struct proc_inode *ei;
1747
1748 /* We need a new inode */
1749
1750 inode = new_inode(sb);
1751 if (!inode)
1752 goto out;
1753
1754 /* Common stuff */
1755 ei = PROC_I(inode);
1756 inode->i_mode = mode;
1757 inode->i_ino = get_next_ino();
1758 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1759 inode->i_op = &proc_def_inode_operations;
1760
1761 /*
1762 * grab the reference to task.
1763 */
1764 ei->pid = get_task_pid(task, PIDTYPE_PID);
1765 if (!ei->pid)
1766 goto out_unlock;
1767
1768 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1769 security_task_to_inode(task, inode);
1770
1771 out:
1772 return inode;
1773
1774 out_unlock:
1775 iput(inode);
1776 return NULL;
1777 }
1778
1779 int pid_getattr(const struct path *path, struct kstat *stat,
1780 u32 request_mask, unsigned int query_flags)
1781 {
1782 struct inode *inode = d_inode(path->dentry);
1783 struct pid_namespace *pid = proc_pid_ns(inode);
1784 struct task_struct *task;
1785
1786 generic_fillattr(inode, stat);
1787
1788 rcu_read_lock();
1789 stat->uid = GLOBAL_ROOT_UID;
1790 stat->gid = GLOBAL_ROOT_GID;
1791 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1792 if (task) {
1793 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1794 rcu_read_unlock();
1795 /*
1796 * This doesn't prevent learning whether PID exists,
1797 * it only makes getattr() consistent with readdir().
1798 */
1799 return -ENOENT;
1800 }
1801 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1802 }
1803 rcu_read_unlock();
1804 return 0;
1805 }
1806
1807 /* dentry stuff */
1808
1809 /*
1810 * Exceptional case: normally we are not allowed to unhash a busy
1811 * directory. In this case, however, we can do it - no aliasing problems
1812 * due to the way we treat inodes.
1813 *
1814 * Rewrite the inode's ownerships here because the owning task may have
1815 * performed a setuid(), etc.
1816 *
1817 */
1818 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1819 {
1820 struct inode *inode;
1821 struct task_struct *task;
1822
1823 if (flags & LOOKUP_RCU)
1824 return -ECHILD;
1825
1826 inode = d_inode(dentry);
1827 task = get_proc_task(inode);
1828
1829 if (task) {
1830 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1831
1832 inode->i_mode &= ~(S_ISUID | S_ISGID);
1833 security_task_to_inode(task, inode);
1834 put_task_struct(task);
1835 return 1;
1836 }
1837 return 0;
1838 }
1839
1840 static inline bool proc_inode_is_dead(struct inode *inode)
1841 {
1842 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1843 }
1844
1845 int pid_delete_dentry(const struct dentry *dentry)
1846 {
1847 /* Is the task we represent dead?
1848 * If so, then don't put the dentry on the lru list,
1849 * kill it immediately.
1850 */
1851 return proc_inode_is_dead(d_inode(dentry));
1852 }
1853
1854 const struct dentry_operations pid_dentry_operations =
1855 {
1856 .d_revalidate = pid_revalidate,
1857 .d_delete = pid_delete_dentry,
1858 };
1859
1860 /* Lookups */
1861
1862 /*
1863 * Fill a directory entry.
1864 *
1865 * If possible create the dcache entry and derive our inode number and
1866 * file type from dcache entry.
1867 *
1868 * Since all of the proc inode numbers are dynamically generated, the inode
1869 * numbers do not exist until the inode is cache. This means creating the
1870 * the dcache entry in readdir is necessary to keep the inode numbers
1871 * reported by readdir in sync with the inode numbers reported
1872 * by stat.
1873 */
1874 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1875 const char *name, int len,
1876 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1877 {
1878 struct dentry *child, *dir = file->f_path.dentry;
1879 struct qstr qname = QSTR_INIT(name, len);
1880 struct inode *inode;
1881 unsigned type;
1882 ino_t ino;
1883
1884 child = d_hash_and_lookup(dir, &qname);
1885 if (!child) {
1886 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1887 child = d_alloc_parallel(dir, &qname, &wq);
1888 if (IS_ERR(child))
1889 goto end_instantiate;
1890 if (d_in_lookup(child)) {
1891 int err = instantiate(d_inode(dir), child, task, ptr);
1892 d_lookup_done(child);
1893 if (err < 0) {
1894 dput(child);
1895 goto end_instantiate;
1896 }
1897 }
1898 }
1899 inode = d_inode(child);
1900 ino = inode->i_ino;
1901 type = inode->i_mode >> 12;
1902 dput(child);
1903 return dir_emit(ctx, name, len, ino, type);
1904
1905 end_instantiate:
1906 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1907 }
1908
1909 /*
1910 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1911 * which represent vma start and end addresses.
1912 */
1913 static int dname_to_vma_addr(struct dentry *dentry,
1914 unsigned long *start, unsigned long *end)
1915 {
1916 const char *str = dentry->d_name.name;
1917 unsigned long long sval, eval;
1918 unsigned int len;
1919
1920 if (str[0] == '0' && str[1] != '-')
1921 return -EINVAL;
1922 len = _parse_integer(str, 16, &sval);
1923 if (len & KSTRTOX_OVERFLOW)
1924 return -EINVAL;
1925 if (sval != (unsigned long)sval)
1926 return -EINVAL;
1927 str += len;
1928
1929 if (*str != '-')
1930 return -EINVAL;
1931 str++;
1932
1933 if (str[0] == '0' && str[1])
1934 return -EINVAL;
1935 len = _parse_integer(str, 16, &eval);
1936 if (len & KSTRTOX_OVERFLOW)
1937 return -EINVAL;
1938 if (eval != (unsigned long)eval)
1939 return -EINVAL;
1940 str += len;
1941
1942 if (*str != '\0')
1943 return -EINVAL;
1944
1945 *start = sval;
1946 *end = eval;
1947
1948 return 0;
1949 }
1950
1951 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1952 {
1953 unsigned long vm_start, vm_end;
1954 bool exact_vma_exists = false;
1955 struct mm_struct *mm = NULL;
1956 struct task_struct *task;
1957 struct inode *inode;
1958 int status = 0;
1959
1960 if (flags & LOOKUP_RCU)
1961 return -ECHILD;
1962
1963 inode = d_inode(dentry);
1964 task = get_proc_task(inode);
1965 if (!task)
1966 goto out_notask;
1967
1968 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1969 if (IS_ERR_OR_NULL(mm))
1970 goto out;
1971
1972 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1973 down_read(&mm->mmap_sem);
1974 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1975 up_read(&mm->mmap_sem);
1976 }
1977
1978 mmput(mm);
1979
1980 if (exact_vma_exists) {
1981 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1982
1983 security_task_to_inode(task, inode);
1984 status = 1;
1985 }
1986
1987 out:
1988 put_task_struct(task);
1989
1990 out_notask:
1991 return status;
1992 }
1993
1994 static const struct dentry_operations tid_map_files_dentry_operations = {
1995 .d_revalidate = map_files_d_revalidate,
1996 .d_delete = pid_delete_dentry,
1997 };
1998
1999 static int map_files_get_link(struct dentry *dentry, struct path *path)
2000 {
2001 unsigned long vm_start, vm_end;
2002 struct vm_area_struct *vma;
2003 struct task_struct *task;
2004 struct mm_struct *mm;
2005 int rc;
2006
2007 rc = -ENOENT;
2008 task = get_proc_task(d_inode(dentry));
2009 if (!task)
2010 goto out;
2011
2012 mm = get_task_mm(task);
2013 put_task_struct(task);
2014 if (!mm)
2015 goto out;
2016
2017 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2018 if (rc)
2019 goto out_mmput;
2020
2021 rc = -ENOENT;
2022 down_read(&mm->mmap_sem);
2023 vma = find_exact_vma(mm, vm_start, vm_end);
2024 if (vma && vma->vm_file) {
2025 *path = vma->vm_file->f_path;
2026 path_get(path);
2027 rc = 0;
2028 }
2029 up_read(&mm->mmap_sem);
2030
2031 out_mmput:
2032 mmput(mm);
2033 out:
2034 return rc;
2035 }
2036
2037 struct map_files_info {
2038 unsigned long start;
2039 unsigned long end;
2040 fmode_t mode;
2041 };
2042
2043 /*
2044 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2045 * symlinks may be used to bypass permissions on ancestor directories in the
2046 * path to the file in question.
2047 */
2048 static const char *
2049 proc_map_files_get_link(struct dentry *dentry,
2050 struct inode *inode,
2051 struct delayed_call *done)
2052 {
2053 if (!capable(CAP_SYS_ADMIN))
2054 return ERR_PTR(-EPERM);
2055
2056 return proc_pid_get_link(dentry, inode, done);
2057 }
2058
2059 /*
2060 * Identical to proc_pid_link_inode_operations except for get_link()
2061 */
2062 static const struct inode_operations proc_map_files_link_inode_operations = {
2063 .readlink = proc_pid_readlink,
2064 .get_link = proc_map_files_get_link,
2065 .setattr = proc_setattr,
2066 };
2067
2068 static int
2069 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2070 struct task_struct *task, const void *ptr)
2071 {
2072 fmode_t mode = (fmode_t)(unsigned long)ptr;
2073 struct proc_inode *ei;
2074 struct inode *inode;
2075
2076 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2077 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2078 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2079 if (!inode)
2080 return -ENOENT;
2081
2082 ei = PROC_I(inode);
2083 ei->op.proc_get_link = map_files_get_link;
2084
2085 inode->i_op = &proc_map_files_link_inode_operations;
2086 inode->i_size = 64;
2087
2088 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2089 d_add(dentry, inode);
2090
2091 return 0;
2092 }
2093
2094 static struct dentry *proc_map_files_lookup(struct inode *dir,
2095 struct dentry *dentry, unsigned int flags)
2096 {
2097 unsigned long vm_start, vm_end;
2098 struct vm_area_struct *vma;
2099 struct task_struct *task;
2100 int result;
2101 struct mm_struct *mm;
2102
2103 result = -ENOENT;
2104 task = get_proc_task(dir);
2105 if (!task)
2106 goto out;
2107
2108 result = -EACCES;
2109 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2110 goto out_put_task;
2111
2112 result = -ENOENT;
2113 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2114 goto out_put_task;
2115
2116 mm = get_task_mm(task);
2117 if (!mm)
2118 goto out_put_task;
2119
2120 down_read(&mm->mmap_sem);
2121 vma = find_exact_vma(mm, vm_start, vm_end);
2122 if (!vma)
2123 goto out_no_vma;
2124
2125 if (vma->vm_file)
2126 result = proc_map_files_instantiate(dir, dentry, task,
2127 (void *)(unsigned long)vma->vm_file->f_mode);
2128
2129 out_no_vma:
2130 up_read(&mm->mmap_sem);
2131 mmput(mm);
2132 out_put_task:
2133 put_task_struct(task);
2134 out:
2135 return ERR_PTR(result);
2136 }
2137
2138 static const struct inode_operations proc_map_files_inode_operations = {
2139 .lookup = proc_map_files_lookup,
2140 .permission = proc_fd_permission,
2141 .setattr = proc_setattr,
2142 };
2143
2144 static int
2145 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2146 {
2147 struct vm_area_struct *vma;
2148 struct task_struct *task;
2149 struct mm_struct *mm;
2150 unsigned long nr_files, pos, i;
2151 struct flex_array *fa = NULL;
2152 struct map_files_info info;
2153 struct map_files_info *p;
2154 int ret;
2155
2156 ret = -ENOENT;
2157 task = get_proc_task(file_inode(file));
2158 if (!task)
2159 goto out;
2160
2161 ret = -EACCES;
2162 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2163 goto out_put_task;
2164
2165 ret = 0;
2166 if (!dir_emit_dots(file, ctx))
2167 goto out_put_task;
2168
2169 mm = get_task_mm(task);
2170 if (!mm)
2171 goto out_put_task;
2172 down_read(&mm->mmap_sem);
2173
2174 nr_files = 0;
2175
2176 /*
2177 * We need two passes here:
2178 *
2179 * 1) Collect vmas of mapped files with mmap_sem taken
2180 * 2) Release mmap_sem and instantiate entries
2181 *
2182 * otherwise we get lockdep complained, since filldir()
2183 * routine might require mmap_sem taken in might_fault().
2184 */
2185
2186 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2187 if (vma->vm_file && ++pos > ctx->pos)
2188 nr_files++;
2189 }
2190
2191 if (nr_files) {
2192 fa = flex_array_alloc(sizeof(info), nr_files,
2193 GFP_KERNEL);
2194 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2195 GFP_KERNEL)) {
2196 ret = -ENOMEM;
2197 if (fa)
2198 flex_array_free(fa);
2199 up_read(&mm->mmap_sem);
2200 mmput(mm);
2201 goto out_put_task;
2202 }
2203 for (i = 0, vma = mm->mmap, pos = 2; vma;
2204 vma = vma->vm_next) {
2205 if (!vma->vm_file)
2206 continue;
2207 if (++pos <= ctx->pos)
2208 continue;
2209
2210 info.start = vma->vm_start;
2211 info.end = vma->vm_end;
2212 info.mode = vma->vm_file->f_mode;
2213 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2214 BUG();
2215 }
2216 }
2217 up_read(&mm->mmap_sem);
2218 mmput(mm);
2219
2220 for (i = 0; i < nr_files; i++) {
2221 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2222 unsigned int len;
2223
2224 p = flex_array_get(fa, i);
2225 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2226 if (!proc_fill_cache(file, ctx,
2227 buf, len,
2228 proc_map_files_instantiate,
2229 task,
2230 (void *)(unsigned long)p->mode))
2231 break;
2232 ctx->pos++;
2233 }
2234 if (fa)
2235 flex_array_free(fa);
2236
2237 out_put_task:
2238 put_task_struct(task);
2239 out:
2240 return ret;
2241 }
2242
2243 static const struct file_operations proc_map_files_operations = {
2244 .read = generic_read_dir,
2245 .iterate_shared = proc_map_files_readdir,
2246 .llseek = generic_file_llseek,
2247 };
2248
2249 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2250 struct timers_private {
2251 struct pid *pid;
2252 struct task_struct *task;
2253 struct sighand_struct *sighand;
2254 struct pid_namespace *ns;
2255 unsigned long flags;
2256 };
2257
2258 static void *timers_start(struct seq_file *m, loff_t *pos)
2259 {
2260 struct timers_private *tp = m->private;
2261
2262 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2263 if (!tp->task)
2264 return ERR_PTR(-ESRCH);
2265
2266 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2267 if (!tp->sighand)
2268 return ERR_PTR(-ESRCH);
2269
2270 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2271 }
2272
2273 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2274 {
2275 struct timers_private *tp = m->private;
2276 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2277 }
2278
2279 static void timers_stop(struct seq_file *m, void *v)
2280 {
2281 struct timers_private *tp = m->private;
2282
2283 if (tp->sighand) {
2284 unlock_task_sighand(tp->task, &tp->flags);
2285 tp->sighand = NULL;
2286 }
2287
2288 if (tp->task) {
2289 put_task_struct(tp->task);
2290 tp->task = NULL;
2291 }
2292 }
2293
2294 static int show_timer(struct seq_file *m, void *v)
2295 {
2296 struct k_itimer *timer;
2297 struct timers_private *tp = m->private;
2298 int notify;
2299 static const char * const nstr[] = {
2300 [SIGEV_SIGNAL] = "signal",
2301 [SIGEV_NONE] = "none",
2302 [SIGEV_THREAD] = "thread",
2303 };
2304
2305 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2306 notify = timer->it_sigev_notify;
2307
2308 seq_printf(m, "ID: %d\n", timer->it_id);
2309 seq_printf(m, "signal: %d/%px\n",
2310 timer->sigq->info.si_signo,
2311 timer->sigq->info.si_value.sival_ptr);
2312 seq_printf(m, "notify: %s/%s.%d\n",
2313 nstr[notify & ~SIGEV_THREAD_ID],
2314 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2315 pid_nr_ns(timer->it_pid, tp->ns));
2316 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2317
2318 return 0;
2319 }
2320
2321 static const struct seq_operations proc_timers_seq_ops = {
2322 .start = timers_start,
2323 .next = timers_next,
2324 .stop = timers_stop,
2325 .show = show_timer,
2326 };
2327
2328 static int proc_timers_open(struct inode *inode, struct file *file)
2329 {
2330 struct timers_private *tp;
2331
2332 tp = __seq_open_private(file, &proc_timers_seq_ops,
2333 sizeof(struct timers_private));
2334 if (!tp)
2335 return -ENOMEM;
2336
2337 tp->pid = proc_pid(inode);
2338 tp->ns = proc_pid_ns(inode);
2339 return 0;
2340 }
2341
2342 static const struct file_operations proc_timers_operations = {
2343 .open = proc_timers_open,
2344 .read = seq_read,
2345 .llseek = seq_lseek,
2346 .release = seq_release_private,
2347 };
2348 #endif
2349
2350 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2351 size_t count, loff_t *offset)
2352 {
2353 struct inode *inode = file_inode(file);
2354 struct task_struct *p;
2355 u64 slack_ns;
2356 int err;
2357
2358 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2359 if (err < 0)
2360 return err;
2361
2362 p = get_proc_task(inode);
2363 if (!p)
2364 return -ESRCH;
2365
2366 if (p != current) {
2367 if (!capable(CAP_SYS_NICE)) {
2368 count = -EPERM;
2369 goto out;
2370 }
2371
2372 err = security_task_setscheduler(p);
2373 if (err) {
2374 count = err;
2375 goto out;
2376 }
2377 }
2378
2379 task_lock(p);
2380 if (slack_ns == 0)
2381 p->timer_slack_ns = p->default_timer_slack_ns;
2382 else
2383 p->timer_slack_ns = slack_ns;
2384 task_unlock(p);
2385
2386 out:
2387 put_task_struct(p);
2388
2389 return count;
2390 }
2391
2392 static int timerslack_ns_show(struct seq_file *m, void *v)
2393 {
2394 struct inode *inode = m->private;
2395 struct task_struct *p;
2396 int err = 0;
2397
2398 p = get_proc_task(inode);
2399 if (!p)
2400 return -ESRCH;
2401
2402 if (p != current) {
2403
2404 if (!capable(CAP_SYS_NICE)) {
2405 err = -EPERM;
2406 goto out;
2407 }
2408 err = security_task_getscheduler(p);
2409 if (err)
2410 goto out;
2411 }
2412
2413 task_lock(p);
2414 seq_printf(m, "%llu\n", p->timer_slack_ns);
2415 task_unlock(p);
2416
2417 out:
2418 put_task_struct(p);
2419
2420 return err;
2421 }
2422
2423 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2424 {
2425 return single_open(filp, timerslack_ns_show, inode);
2426 }
2427
2428 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2429 .open = timerslack_ns_open,
2430 .read = seq_read,
2431 .write = timerslack_ns_write,
2432 .llseek = seq_lseek,
2433 .release = single_release,
2434 };
2435
2436 static int proc_pident_instantiate(struct inode *dir,
2437 struct dentry *dentry, struct task_struct *task, const void *ptr)
2438 {
2439 const struct pid_entry *p = ptr;
2440 struct inode *inode;
2441 struct proc_inode *ei;
2442
2443 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2444 if (!inode)
2445 goto out;
2446
2447 ei = PROC_I(inode);
2448 if (S_ISDIR(inode->i_mode))
2449 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2450 if (p->iop)
2451 inode->i_op = p->iop;
2452 if (p->fop)
2453 inode->i_fop = p->fop;
2454 ei->op = p->op;
2455 d_set_d_op(dentry, &pid_dentry_operations);
2456 d_add(dentry, inode);
2457 /* Close the race of the process dying before we return the dentry */
2458 if (pid_revalidate(dentry, 0))
2459 return 0;
2460 out:
2461 return -ENOENT;
2462 }
2463
2464 static struct dentry *proc_pident_lookup(struct inode *dir,
2465 struct dentry *dentry,
2466 const struct pid_entry *ents,
2467 unsigned int nents)
2468 {
2469 int error;
2470 struct task_struct *task = get_proc_task(dir);
2471 const struct pid_entry *p, *last;
2472
2473 error = -ENOENT;
2474
2475 if (!task)
2476 goto out_no_task;
2477
2478 /*
2479 * Yes, it does not scale. And it should not. Don't add
2480 * new entries into /proc/<tgid>/ without very good reasons.
2481 */
2482 last = &ents[nents];
2483 for (p = ents; p < last; p++) {
2484 if (p->len != dentry->d_name.len)
2485 continue;
2486 if (!memcmp(dentry->d_name.name, p->name, p->len))
2487 break;
2488 }
2489 if (p >= last)
2490 goto out;
2491
2492 error = proc_pident_instantiate(dir, dentry, task, p);
2493 out:
2494 put_task_struct(task);
2495 out_no_task:
2496 return ERR_PTR(error);
2497 }
2498
2499 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2500 const struct pid_entry *ents, unsigned int nents)
2501 {
2502 struct task_struct *task = get_proc_task(file_inode(file));
2503 const struct pid_entry *p;
2504
2505 if (!task)
2506 return -ENOENT;
2507
2508 if (!dir_emit_dots(file, ctx))
2509 goto out;
2510
2511 if (ctx->pos >= nents + 2)
2512 goto out;
2513
2514 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2515 if (!proc_fill_cache(file, ctx, p->name, p->len,
2516 proc_pident_instantiate, task, p))
2517 break;
2518 ctx->pos++;
2519 }
2520 out:
2521 put_task_struct(task);
2522 return 0;
2523 }
2524
2525 #ifdef CONFIG_SECURITY
2526 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2527 size_t count, loff_t *ppos)
2528 {
2529 struct inode * inode = file_inode(file);
2530 char *p = NULL;
2531 ssize_t length;
2532 struct task_struct *task = get_proc_task(inode);
2533
2534 if (!task)
2535 return -ESRCH;
2536
2537 length = security_getprocattr(task,
2538 (char*)file->f_path.dentry->d_name.name,
2539 &p);
2540 put_task_struct(task);
2541 if (length > 0)
2542 length = simple_read_from_buffer(buf, count, ppos, p, length);
2543 kfree(p);
2544 return length;
2545 }
2546
2547 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2548 size_t count, loff_t *ppos)
2549 {
2550 struct inode * inode = file_inode(file);
2551 void *page;
2552 ssize_t length;
2553 struct task_struct *task = get_proc_task(inode);
2554
2555 length = -ESRCH;
2556 if (!task)
2557 goto out_no_task;
2558
2559 /* A task may only write its own attributes. */
2560 length = -EACCES;
2561 if (current != task)
2562 goto out;
2563
2564 if (count > PAGE_SIZE)
2565 count = PAGE_SIZE;
2566
2567 /* No partial writes. */
2568 length = -EINVAL;
2569 if (*ppos != 0)
2570 goto out;
2571
2572 page = memdup_user(buf, count);
2573 if (IS_ERR(page)) {
2574 length = PTR_ERR(page);
2575 goto out;
2576 }
2577
2578 /* Guard against adverse ptrace interaction */
2579 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2580 if (length < 0)
2581 goto out_free;
2582
2583 length = security_setprocattr(file->f_path.dentry->d_name.name,
2584 page, count);
2585 mutex_unlock(&current->signal->cred_guard_mutex);
2586 out_free:
2587 kfree(page);
2588 out:
2589 put_task_struct(task);
2590 out_no_task:
2591 return length;
2592 }
2593
2594 static const struct file_operations proc_pid_attr_operations = {
2595 .read = proc_pid_attr_read,
2596 .write = proc_pid_attr_write,
2597 .llseek = generic_file_llseek,
2598 };
2599
2600 static const struct pid_entry attr_dir_stuff[] = {
2601 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2602 REG("prev", S_IRUGO, proc_pid_attr_operations),
2603 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2604 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2605 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2606 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2607 };
2608
2609 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2610 {
2611 return proc_pident_readdir(file, ctx,
2612 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2613 }
2614
2615 static const struct file_operations proc_attr_dir_operations = {
2616 .read = generic_read_dir,
2617 .iterate_shared = proc_attr_dir_readdir,
2618 .llseek = generic_file_llseek,
2619 };
2620
2621 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2622 struct dentry *dentry, unsigned int flags)
2623 {
2624 return proc_pident_lookup(dir, dentry,
2625 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2626 }
2627
2628 static const struct inode_operations proc_attr_dir_inode_operations = {
2629 .lookup = proc_attr_dir_lookup,
2630 .getattr = pid_getattr,
2631 .setattr = proc_setattr,
2632 };
2633
2634 #endif
2635
2636 #ifdef CONFIG_ELF_CORE
2637 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2638 size_t count, loff_t *ppos)
2639 {
2640 struct task_struct *task = get_proc_task(file_inode(file));
2641 struct mm_struct *mm;
2642 char buffer[PROC_NUMBUF];
2643 size_t len;
2644 int ret;
2645
2646 if (!task)
2647 return -ESRCH;
2648
2649 ret = 0;
2650 mm = get_task_mm(task);
2651 if (mm) {
2652 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2653 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2654 MMF_DUMP_FILTER_SHIFT));
2655 mmput(mm);
2656 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2657 }
2658
2659 put_task_struct(task);
2660
2661 return ret;
2662 }
2663
2664 static ssize_t proc_coredump_filter_write(struct file *file,
2665 const char __user *buf,
2666 size_t count,
2667 loff_t *ppos)
2668 {
2669 struct task_struct *task;
2670 struct mm_struct *mm;
2671 unsigned int val;
2672 int ret;
2673 int i;
2674 unsigned long mask;
2675
2676 ret = kstrtouint_from_user(buf, count, 0, &val);
2677 if (ret < 0)
2678 return ret;
2679
2680 ret = -ESRCH;
2681 task = get_proc_task(file_inode(file));
2682 if (!task)
2683 goto out_no_task;
2684
2685 mm = get_task_mm(task);
2686 if (!mm)
2687 goto out_no_mm;
2688 ret = 0;
2689
2690 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2691 if (val & mask)
2692 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2693 else
2694 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2695 }
2696
2697 mmput(mm);
2698 out_no_mm:
2699 put_task_struct(task);
2700 out_no_task:
2701 if (ret < 0)
2702 return ret;
2703 return count;
2704 }
2705
2706 static const struct file_operations proc_coredump_filter_operations = {
2707 .read = proc_coredump_filter_read,
2708 .write = proc_coredump_filter_write,
2709 .llseek = generic_file_llseek,
2710 };
2711 #endif
2712
2713 #ifdef CONFIG_TASK_IO_ACCOUNTING
2714 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2715 {
2716 struct task_io_accounting acct = task->ioac;
2717 unsigned long flags;
2718 int result;
2719
2720 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2721 if (result)
2722 return result;
2723
2724 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2725 result = -EACCES;
2726 goto out_unlock;
2727 }
2728
2729 if (whole && lock_task_sighand(task, &flags)) {
2730 struct task_struct *t = task;
2731
2732 task_io_accounting_add(&acct, &task->signal->ioac);
2733 while_each_thread(task, t)
2734 task_io_accounting_add(&acct, &t->ioac);
2735
2736 unlock_task_sighand(task, &flags);
2737 }
2738 seq_printf(m,
2739 "rchar: %llu\n"
2740 "wchar: %llu\n"
2741 "syscr: %llu\n"
2742 "syscw: %llu\n"
2743 "read_bytes: %llu\n"
2744 "write_bytes: %llu\n"
2745 "cancelled_write_bytes: %llu\n",
2746 (unsigned long long)acct.rchar,
2747 (unsigned long long)acct.wchar,
2748 (unsigned long long)acct.syscr,
2749 (unsigned long long)acct.syscw,
2750 (unsigned long long)acct.read_bytes,
2751 (unsigned long long)acct.write_bytes,
2752 (unsigned long long)acct.cancelled_write_bytes);
2753 result = 0;
2754
2755 out_unlock:
2756 mutex_unlock(&task->signal->cred_guard_mutex);
2757 return result;
2758 }
2759
2760 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2761 struct pid *pid, struct task_struct *task)
2762 {
2763 return do_io_accounting(task, m, 0);
2764 }
2765
2766 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2767 struct pid *pid, struct task_struct *task)
2768 {
2769 return do_io_accounting(task, m, 1);
2770 }
2771 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2772
2773 #ifdef CONFIG_USER_NS
2774 static int proc_id_map_open(struct inode *inode, struct file *file,
2775 const struct seq_operations *seq_ops)
2776 {
2777 struct user_namespace *ns = NULL;
2778 struct task_struct *task;
2779 struct seq_file *seq;
2780 int ret = -EINVAL;
2781
2782 task = get_proc_task(inode);
2783 if (task) {
2784 rcu_read_lock();
2785 ns = get_user_ns(task_cred_xxx(task, user_ns));
2786 rcu_read_unlock();
2787 put_task_struct(task);
2788 }
2789 if (!ns)
2790 goto err;
2791
2792 ret = seq_open(file, seq_ops);
2793 if (ret)
2794 goto err_put_ns;
2795
2796 seq = file->private_data;
2797 seq->private = ns;
2798
2799 return 0;
2800 err_put_ns:
2801 put_user_ns(ns);
2802 err:
2803 return ret;
2804 }
2805
2806 static int proc_id_map_release(struct inode *inode, struct file *file)
2807 {
2808 struct seq_file *seq = file->private_data;
2809 struct user_namespace *ns = seq->private;
2810 put_user_ns(ns);
2811 return seq_release(inode, file);
2812 }
2813
2814 static int proc_uid_map_open(struct inode *inode, struct file *file)
2815 {
2816 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2817 }
2818
2819 static int proc_gid_map_open(struct inode *inode, struct file *file)
2820 {
2821 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2822 }
2823
2824 static int proc_projid_map_open(struct inode *inode, struct file *file)
2825 {
2826 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2827 }
2828
2829 static const struct file_operations proc_uid_map_operations = {
2830 .open = proc_uid_map_open,
2831 .write = proc_uid_map_write,
2832 .read = seq_read,
2833 .llseek = seq_lseek,
2834 .release = proc_id_map_release,
2835 };
2836
2837 static const struct file_operations proc_gid_map_operations = {
2838 .open = proc_gid_map_open,
2839 .write = proc_gid_map_write,
2840 .read = seq_read,
2841 .llseek = seq_lseek,
2842 .release = proc_id_map_release,
2843 };
2844
2845 static const struct file_operations proc_projid_map_operations = {
2846 .open = proc_projid_map_open,
2847 .write = proc_projid_map_write,
2848 .read = seq_read,
2849 .llseek = seq_lseek,
2850 .release = proc_id_map_release,
2851 };
2852
2853 static int proc_setgroups_open(struct inode *inode, struct file *file)
2854 {
2855 struct user_namespace *ns = NULL;
2856 struct task_struct *task;
2857 int ret;
2858
2859 ret = -ESRCH;
2860 task = get_proc_task(inode);
2861 if (task) {
2862 rcu_read_lock();
2863 ns = get_user_ns(task_cred_xxx(task, user_ns));
2864 rcu_read_unlock();
2865 put_task_struct(task);
2866 }
2867 if (!ns)
2868 goto err;
2869
2870 if (file->f_mode & FMODE_WRITE) {
2871 ret = -EACCES;
2872 if (!ns_capable(ns, CAP_SYS_ADMIN))
2873 goto err_put_ns;
2874 }
2875
2876 ret = single_open(file, &proc_setgroups_show, ns);
2877 if (ret)
2878 goto err_put_ns;
2879
2880 return 0;
2881 err_put_ns:
2882 put_user_ns(ns);
2883 err:
2884 return ret;
2885 }
2886
2887 static int proc_setgroups_release(struct inode *inode, struct file *file)
2888 {
2889 struct seq_file *seq = file->private_data;
2890 struct user_namespace *ns = seq->private;
2891 int ret = single_release(inode, file);
2892 put_user_ns(ns);
2893 return ret;
2894 }
2895
2896 static const struct file_operations proc_setgroups_operations = {
2897 .open = proc_setgroups_open,
2898 .write = proc_setgroups_write,
2899 .read = seq_read,
2900 .llseek = seq_lseek,
2901 .release = proc_setgroups_release,
2902 };
2903 #endif /* CONFIG_USER_NS */
2904
2905 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2906 struct pid *pid, struct task_struct *task)
2907 {
2908 int err = lock_trace(task);
2909 if (!err) {
2910 seq_printf(m, "%08x\n", task->personality);
2911 unlock_trace(task);
2912 }
2913 return err;
2914 }
2915
2916 #ifdef CONFIG_LIVEPATCH
2917 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2918 struct pid *pid, struct task_struct *task)
2919 {
2920 seq_printf(m, "%d\n", task->patch_state);
2921 return 0;
2922 }
2923 #endif /* CONFIG_LIVEPATCH */
2924
2925 /*
2926 * Thread groups
2927 */
2928 static const struct file_operations proc_task_operations;
2929 static const struct inode_operations proc_task_inode_operations;
2930
2931 static const struct pid_entry tgid_base_stuff[] = {
2932 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2933 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2934 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2935 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2936 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2937 #ifdef CONFIG_NET
2938 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2939 #endif
2940 REG("environ", S_IRUSR, proc_environ_operations),
2941 REG("auxv", S_IRUSR, proc_auxv_operations),
2942 ONE("status", S_IRUGO, proc_pid_status),
2943 ONE("personality", S_IRUSR, proc_pid_personality),
2944 ONE("limits", S_IRUGO, proc_pid_limits),
2945 #ifdef CONFIG_SCHED_DEBUG
2946 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2947 #endif
2948 #ifdef CONFIG_SCHED_AUTOGROUP
2949 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2950 #endif
2951 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2952 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2953 ONE("syscall", S_IRUSR, proc_pid_syscall),
2954 #endif
2955 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2956 ONE("stat", S_IRUGO, proc_tgid_stat),
2957 ONE("statm", S_IRUGO, proc_pid_statm),
2958 REG("maps", S_IRUGO, proc_pid_maps_operations),
2959 #ifdef CONFIG_NUMA
2960 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2961 #endif
2962 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2963 LNK("cwd", proc_cwd_link),
2964 LNK("root", proc_root_link),
2965 LNK("exe", proc_exe_link),
2966 REG("mounts", S_IRUGO, proc_mounts_operations),
2967 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2968 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2969 #ifdef CONFIG_PROC_PAGE_MONITOR
2970 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2971 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2972 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2973 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2974 #endif
2975 #ifdef CONFIG_SECURITY
2976 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2977 #endif
2978 #ifdef CONFIG_KALLSYMS
2979 ONE("wchan", S_IRUGO, proc_pid_wchan),
2980 #endif
2981 #ifdef CONFIG_STACKTRACE
2982 ONE("stack", S_IRUSR, proc_pid_stack),
2983 #endif
2984 #ifdef CONFIG_SCHED_INFO
2985 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2986 #endif
2987 #ifdef CONFIG_LATENCYTOP
2988 REG("latency", S_IRUGO, proc_lstats_operations),
2989 #endif
2990 #ifdef CONFIG_PROC_PID_CPUSET
2991 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2992 #endif
2993 #ifdef CONFIG_CGROUPS
2994 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2995 #endif
2996 ONE("oom_score", S_IRUGO, proc_oom_score),
2997 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2998 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2999 #ifdef CONFIG_AUDITSYSCALL
3000 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3001 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3002 #endif
3003 #ifdef CONFIG_FAULT_INJECTION
3004 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3005 REG("fail-nth", 0644, proc_fail_nth_operations),
3006 #endif
3007 #ifdef CONFIG_ELF_CORE
3008 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3009 #endif
3010 #ifdef CONFIG_TASK_IO_ACCOUNTING
3011 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3012 #endif
3013 #ifdef CONFIG_USER_NS
3014 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3015 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3016 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3017 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3018 #endif
3019 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3020 REG("timers", S_IRUGO, proc_timers_operations),
3021 #endif
3022 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3023 #ifdef CONFIG_LIVEPATCH
3024 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3025 #endif
3026 };
3027
3028 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3029 {
3030 return proc_pident_readdir(file, ctx,
3031 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3032 }
3033
3034 static const struct file_operations proc_tgid_base_operations = {
3035 .read = generic_read_dir,
3036 .iterate_shared = proc_tgid_base_readdir,
3037 .llseek = generic_file_llseek,
3038 };
3039
3040 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3041 {
3042 return proc_pident_lookup(dir, dentry,
3043 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3044 }
3045
3046 static const struct inode_operations proc_tgid_base_inode_operations = {
3047 .lookup = proc_tgid_base_lookup,
3048 .getattr = pid_getattr,
3049 .setattr = proc_setattr,
3050 .permission = proc_pid_permission,
3051 };
3052
3053 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3054 {
3055 struct dentry *dentry, *leader, *dir;
3056 char buf[10 + 1];
3057 struct qstr name;
3058
3059 name.name = buf;
3060 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3061 /* no ->d_hash() rejects on procfs */
3062 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3063 if (dentry) {
3064 d_invalidate(dentry);
3065 dput(dentry);
3066 }
3067
3068 if (pid == tgid)
3069 return;
3070
3071 name.name = buf;
3072 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3073 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3074 if (!leader)
3075 goto out;
3076
3077 name.name = "task";
3078 name.len = strlen(name.name);
3079 dir = d_hash_and_lookup(leader, &name);
3080 if (!dir)
3081 goto out_put_leader;
3082
3083 name.name = buf;
3084 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3085 dentry = d_hash_and_lookup(dir, &name);
3086 if (dentry) {
3087 d_invalidate(dentry);
3088 dput(dentry);
3089 }
3090
3091 dput(dir);
3092 out_put_leader:
3093 dput(leader);
3094 out:
3095 return;
3096 }
3097
3098 /**
3099 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3100 * @task: task that should be flushed.
3101 *
3102 * When flushing dentries from proc, one needs to flush them from global
3103 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3104 * in. This call is supposed to do all of this job.
3105 *
3106 * Looks in the dcache for
3107 * /proc/@pid
3108 * /proc/@tgid/task/@pid
3109 * if either directory is present flushes it and all of it'ts children
3110 * from the dcache.
3111 *
3112 * It is safe and reasonable to cache /proc entries for a task until
3113 * that task exits. After that they just clog up the dcache with
3114 * useless entries, possibly causing useful dcache entries to be
3115 * flushed instead. This routine is proved to flush those useless
3116 * dcache entries at process exit time.
3117 *
3118 * NOTE: This routine is just an optimization so it does not guarantee
3119 * that no dcache entries will exist at process exit time it
3120 * just makes it very unlikely that any will persist.
3121 */
3122
3123 void proc_flush_task(struct task_struct *task)
3124 {
3125 int i;
3126 struct pid *pid, *tgid;
3127 struct upid *upid;
3128
3129 pid = task_pid(task);
3130 tgid = task_tgid(task);
3131
3132 for (i = 0; i <= pid->level; i++) {
3133 upid = &pid->numbers[i];
3134 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3135 tgid->numbers[i].nr);
3136 }
3137 }
3138
3139 static int proc_pid_instantiate(struct inode *dir,
3140 struct dentry * dentry,
3141 struct task_struct *task, const void *ptr)
3142 {
3143 struct inode *inode;
3144
3145 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3146 if (!inode)
3147 goto out;
3148
3149 inode->i_op = &proc_tgid_base_inode_operations;
3150 inode->i_fop = &proc_tgid_base_operations;
3151 inode->i_flags|=S_IMMUTABLE;
3152
3153 set_nlink(inode, nlink_tgid);
3154
3155 d_set_d_op(dentry, &pid_dentry_operations);
3156
3157 d_add(dentry, inode);
3158 /* Close the race of the process dying before we return the dentry */
3159 if (pid_revalidate(dentry, 0))
3160 return 0;
3161 out:
3162 return -ENOENT;
3163 }
3164
3165 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3166 {
3167 int result = -ENOENT;
3168 struct task_struct *task;
3169 unsigned tgid;
3170 struct pid_namespace *ns;
3171
3172 tgid = name_to_int(&dentry->d_name);
3173 if (tgid == ~0U)
3174 goto out;
3175
3176 ns = dentry->d_sb->s_fs_info;
3177 rcu_read_lock();
3178 task = find_task_by_pid_ns(tgid, ns);
3179 if (task)
3180 get_task_struct(task);
3181 rcu_read_unlock();
3182 if (!task)
3183 goto out;
3184
3185 result = proc_pid_instantiate(dir, dentry, task, NULL);
3186 put_task_struct(task);
3187 out:
3188 return ERR_PTR(result);
3189 }
3190
3191 /*
3192 * Find the first task with tgid >= tgid
3193 *
3194 */
3195 struct tgid_iter {
3196 unsigned int tgid;
3197 struct task_struct *task;
3198 };
3199 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3200 {
3201 struct pid *pid;
3202
3203 if (iter.task)
3204 put_task_struct(iter.task);
3205 rcu_read_lock();
3206 retry:
3207 iter.task = NULL;
3208 pid = find_ge_pid(iter.tgid, ns);
3209 if (pid) {
3210 iter.tgid = pid_nr_ns(pid, ns);
3211 iter.task = pid_task(pid, PIDTYPE_PID);
3212 /* What we to know is if the pid we have find is the
3213 * pid of a thread_group_leader. Testing for task
3214 * being a thread_group_leader is the obvious thing
3215 * todo but there is a window when it fails, due to
3216 * the pid transfer logic in de_thread.
3217 *
3218 * So we perform the straight forward test of seeing
3219 * if the pid we have found is the pid of a thread
3220 * group leader, and don't worry if the task we have
3221 * found doesn't happen to be a thread group leader.
3222 * As we don't care in the case of readdir.
3223 */
3224 if (!iter.task || !has_group_leader_pid(iter.task)) {
3225 iter.tgid += 1;
3226 goto retry;
3227 }
3228 get_task_struct(iter.task);
3229 }
3230 rcu_read_unlock();
3231 return iter;
3232 }
3233
3234 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3235
3236 /* for the /proc/ directory itself, after non-process stuff has been done */
3237 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3238 {
3239 struct tgid_iter iter;
3240 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3241 loff_t pos = ctx->pos;
3242
3243 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3244 return 0;
3245
3246 if (pos == TGID_OFFSET - 2) {
3247 struct inode *inode = d_inode(ns->proc_self);
3248 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3249 return 0;
3250 ctx->pos = pos = pos + 1;
3251 }
3252 if (pos == TGID_OFFSET - 1) {
3253 struct inode *inode = d_inode(ns->proc_thread_self);
3254 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3255 return 0;
3256 ctx->pos = pos = pos + 1;
3257 }
3258 iter.tgid = pos - TGID_OFFSET;
3259 iter.task = NULL;
3260 for (iter = next_tgid(ns, iter);
3261 iter.task;
3262 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3263 char name[10 + 1];
3264 int len;
3265
3266 cond_resched();
3267 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3268 continue;
3269
3270 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3271 ctx->pos = iter.tgid + TGID_OFFSET;
3272 if (!proc_fill_cache(file, ctx, name, len,
3273 proc_pid_instantiate, iter.task, NULL)) {
3274 put_task_struct(iter.task);
3275 return 0;
3276 }
3277 }
3278 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3279 return 0;
3280 }
3281
3282 /*
3283 * proc_tid_comm_permission is a special permission function exclusively
3284 * used for the node /proc/<pid>/task/<tid>/comm.
3285 * It bypasses generic permission checks in the case where a task of the same
3286 * task group attempts to access the node.
3287 * The rationale behind this is that glibc and bionic access this node for
3288 * cross thread naming (pthread_set/getname_np(!self)). However, if
3289 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3290 * which locks out the cross thread naming implementation.
3291 * This function makes sure that the node is always accessible for members of
3292 * same thread group.
3293 */
3294 static int proc_tid_comm_permission(struct inode *inode, int mask)
3295 {
3296 bool is_same_tgroup;
3297 struct task_struct *task;
3298
3299 task = get_proc_task(inode);
3300 if (!task)
3301 return -ESRCH;
3302 is_same_tgroup = same_thread_group(current, task);
3303 put_task_struct(task);
3304
3305 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3306 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3307 * read or written by the members of the corresponding
3308 * thread group.
3309 */
3310 return 0;
3311 }
3312
3313 return generic_permission(inode, mask);
3314 }
3315
3316 static const struct inode_operations proc_tid_comm_inode_operations = {
3317 .permission = proc_tid_comm_permission,
3318 };
3319
3320 /*
3321 * Tasks
3322 */
3323 static const struct pid_entry tid_base_stuff[] = {
3324 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3325 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3326 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3327 #ifdef CONFIG_NET
3328 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3329 #endif
3330 REG("environ", S_IRUSR, proc_environ_operations),
3331 REG("auxv", S_IRUSR, proc_auxv_operations),
3332 ONE("status", S_IRUGO, proc_pid_status),
3333 ONE("personality", S_IRUSR, proc_pid_personality),
3334 ONE("limits", S_IRUGO, proc_pid_limits),
3335 #ifdef CONFIG_SCHED_DEBUG
3336 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3337 #endif
3338 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3339 &proc_tid_comm_inode_operations,
3340 &proc_pid_set_comm_operations, {}),
3341 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3342 ONE("syscall", S_IRUSR, proc_pid_syscall),
3343 #endif
3344 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3345 ONE("stat", S_IRUGO, proc_tid_stat),
3346 ONE("statm", S_IRUGO, proc_pid_statm),
3347 REG("maps", S_IRUGO, proc_tid_maps_operations),
3348 #ifdef CONFIG_PROC_CHILDREN
3349 REG("children", S_IRUGO, proc_tid_children_operations),
3350 #endif
3351 #ifdef CONFIG_NUMA
3352 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3353 #endif
3354 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3355 LNK("cwd", proc_cwd_link),
3356 LNK("root", proc_root_link),
3357 LNK("exe", proc_exe_link),
3358 REG("mounts", S_IRUGO, proc_mounts_operations),
3359 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3360 #ifdef CONFIG_PROC_PAGE_MONITOR
3361 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3362 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3363 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3364 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3365 #endif
3366 #ifdef CONFIG_SECURITY
3367 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3368 #endif
3369 #ifdef CONFIG_KALLSYMS
3370 ONE("wchan", S_IRUGO, proc_pid_wchan),
3371 #endif
3372 #ifdef CONFIG_STACKTRACE
3373 ONE("stack", S_IRUSR, proc_pid_stack),
3374 #endif
3375 #ifdef CONFIG_SCHED_INFO
3376 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3377 #endif
3378 #ifdef CONFIG_LATENCYTOP
3379 REG("latency", S_IRUGO, proc_lstats_operations),
3380 #endif
3381 #ifdef CONFIG_PROC_PID_CPUSET
3382 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3383 #endif
3384 #ifdef CONFIG_CGROUPS
3385 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3386 #endif
3387 ONE("oom_score", S_IRUGO, proc_oom_score),
3388 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3389 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3390 #ifdef CONFIG_AUDITSYSCALL
3391 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3392 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3393 #endif
3394 #ifdef CONFIG_FAULT_INJECTION
3395 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3396 REG("fail-nth", 0644, proc_fail_nth_operations),
3397 #endif
3398 #ifdef CONFIG_TASK_IO_ACCOUNTING
3399 ONE("io", S_IRUSR, proc_tid_io_accounting),
3400 #endif
3401 #ifdef CONFIG_USER_NS
3402 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3403 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3404 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3405 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3406 #endif
3407 #ifdef CONFIG_LIVEPATCH
3408 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3409 #endif
3410 };
3411
3412 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3413 {
3414 return proc_pident_readdir(file, ctx,
3415 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3416 }
3417
3418 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3419 {
3420 return proc_pident_lookup(dir, dentry,
3421 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3422 }
3423
3424 static const struct file_operations proc_tid_base_operations = {
3425 .read = generic_read_dir,
3426 .iterate_shared = proc_tid_base_readdir,
3427 .llseek = generic_file_llseek,
3428 };
3429
3430 static const struct inode_operations proc_tid_base_inode_operations = {
3431 .lookup = proc_tid_base_lookup,
3432 .getattr = pid_getattr,
3433 .setattr = proc_setattr,
3434 };
3435
3436 static int proc_task_instantiate(struct inode *dir,
3437 struct dentry *dentry, struct task_struct *task, const void *ptr)
3438 {
3439 struct inode *inode;
3440 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3441
3442 if (!inode)
3443 goto out;
3444 inode->i_op = &proc_tid_base_inode_operations;
3445 inode->i_fop = &proc_tid_base_operations;
3446 inode->i_flags|=S_IMMUTABLE;
3447
3448 set_nlink(inode, nlink_tid);
3449
3450 d_set_d_op(dentry, &pid_dentry_operations);
3451
3452 d_add(dentry, inode);
3453 /* Close the race of the process dying before we return the dentry */
3454 if (pid_revalidate(dentry, 0))
3455 return 0;
3456 out:
3457 return -ENOENT;
3458 }
3459
3460 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3461 {
3462 int result = -ENOENT;
3463 struct task_struct *task;
3464 struct task_struct *leader = get_proc_task(dir);
3465 unsigned tid;
3466 struct pid_namespace *ns;
3467
3468 if (!leader)
3469 goto out_no_task;
3470
3471 tid = name_to_int(&dentry->d_name);
3472 if (tid == ~0U)
3473 goto out;
3474
3475 ns = dentry->d_sb->s_fs_info;
3476 rcu_read_lock();
3477 task = find_task_by_pid_ns(tid, ns);
3478 if (task)
3479 get_task_struct(task);
3480 rcu_read_unlock();
3481 if (!task)
3482 goto out;
3483 if (!same_thread_group(leader, task))
3484 goto out_drop_task;
3485
3486 result = proc_task_instantiate(dir, dentry, task, NULL);
3487 out_drop_task:
3488 put_task_struct(task);
3489 out:
3490 put_task_struct(leader);
3491 out_no_task:
3492 return ERR_PTR(result);
3493 }
3494
3495 /*
3496 * Find the first tid of a thread group to return to user space.
3497 *
3498 * Usually this is just the thread group leader, but if the users
3499 * buffer was too small or there was a seek into the middle of the
3500 * directory we have more work todo.
3501 *
3502 * In the case of a short read we start with find_task_by_pid.
3503 *
3504 * In the case of a seek we start with the leader and walk nr
3505 * threads past it.
3506 */
3507 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3508 struct pid_namespace *ns)
3509 {
3510 struct task_struct *pos, *task;
3511 unsigned long nr = f_pos;
3512
3513 if (nr != f_pos) /* 32bit overflow? */
3514 return NULL;
3515
3516 rcu_read_lock();
3517 task = pid_task(pid, PIDTYPE_PID);
3518 if (!task)
3519 goto fail;
3520
3521 /* Attempt to start with the tid of a thread */
3522 if (tid && nr) {
3523 pos = find_task_by_pid_ns(tid, ns);
3524 if (pos && same_thread_group(pos, task))
3525 goto found;
3526 }
3527
3528 /* If nr exceeds the number of threads there is nothing todo */
3529 if (nr >= get_nr_threads(task))
3530 goto fail;
3531
3532 /* If we haven't found our starting place yet start
3533 * with the leader and walk nr threads forward.
3534 */
3535 pos = task = task->group_leader;
3536 do {
3537 if (!nr--)
3538 goto found;
3539 } while_each_thread(task, pos);
3540 fail:
3541 pos = NULL;
3542 goto out;
3543 found:
3544 get_task_struct(pos);
3545 out:
3546 rcu_read_unlock();
3547 return pos;
3548 }
3549
3550 /*
3551 * Find the next thread in the thread list.
3552 * Return NULL if there is an error or no next thread.
3553 *
3554 * The reference to the input task_struct is released.
3555 */
3556 static struct task_struct *next_tid(struct task_struct *start)
3557 {
3558 struct task_struct *pos = NULL;
3559 rcu_read_lock();
3560 if (pid_alive(start)) {
3561 pos = next_thread(start);
3562 if (thread_group_leader(pos))
3563 pos = NULL;
3564 else
3565 get_task_struct(pos);
3566 }
3567 rcu_read_unlock();
3568 put_task_struct(start);
3569 return pos;
3570 }
3571
3572 /* for the /proc/TGID/task/ directories */
3573 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3574 {
3575 struct inode *inode = file_inode(file);
3576 struct task_struct *task;
3577 struct pid_namespace *ns;
3578 int tid;
3579
3580 if (proc_inode_is_dead(inode))
3581 return -ENOENT;
3582
3583 if (!dir_emit_dots(file, ctx))
3584 return 0;
3585
3586 /* f_version caches the tgid value that the last readdir call couldn't
3587 * return. lseek aka telldir automagically resets f_version to 0.
3588 */
3589 ns = proc_pid_ns(inode);
3590 tid = (int)file->f_version;
3591 file->f_version = 0;
3592 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3593 task;
3594 task = next_tid(task), ctx->pos++) {
3595 char name[10 + 1];
3596 int len;
3597 tid = task_pid_nr_ns(task, ns);
3598 len = snprintf(name, sizeof(name), "%u", tid);
3599 if (!proc_fill_cache(file, ctx, name, len,
3600 proc_task_instantiate, task, NULL)) {
3601 /* returning this tgid failed, save it as the first
3602 * pid for the next readir call */
3603 file->f_version = (u64)tid;
3604 put_task_struct(task);
3605 break;
3606 }
3607 }
3608
3609 return 0;
3610 }
3611
3612 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3613 u32 request_mask, unsigned int query_flags)
3614 {
3615 struct inode *inode = d_inode(path->dentry);
3616 struct task_struct *p = get_proc_task(inode);
3617 generic_fillattr(inode, stat);
3618
3619 if (p) {
3620 stat->nlink += get_nr_threads(p);
3621 put_task_struct(p);
3622 }
3623
3624 return 0;
3625 }
3626
3627 static const struct inode_operations proc_task_inode_operations = {
3628 .lookup = proc_task_lookup,
3629 .getattr = proc_task_getattr,
3630 .setattr = proc_setattr,
3631 .permission = proc_pid_permission,
3632 };
3633
3634 static const struct file_operations proc_task_operations = {
3635 .read = generic_read_dir,
3636 .iterate_shared = proc_task_readdir,
3637 .llseek = generic_file_llseek,
3638 };
3639
3640 void __init set_proc_pid_nlink(void)
3641 {
3642 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3643 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3644 }