]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/base.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[mirror_ubuntu-zesty-kernel.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87
88 /* NOTE:
89 * Implementing inode permission operations in /proc is almost
90 * certainly an error. Permission checks need to happen during
91 * each system call not at open time. The reason is that most of
92 * what we wish to check for permissions in /proc varies at runtime.
93 *
94 * The classic example of a problem is opening file descriptors
95 * in /proc for a task before it execs a suid executable.
96 */
97
98 struct pid_entry {
99 char *name;
100 int len;
101 mode_t mode;
102 const struct inode_operations *iop;
103 const struct file_operations *fop;
104 union proc_op op;
105 };
106
107 #define NOD(NAME, MODE, IOP, FOP, OP) { \
108 .name = (NAME), \
109 .len = sizeof(NAME) - 1, \
110 .mode = MODE, \
111 .iop = IOP, \
112 .fop = FOP, \
113 .op = OP, \
114 }
115
116 #define DIR(NAME, MODE, iops, fops) \
117 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link) \
119 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
120 &proc_pid_link_inode_operations, NULL, \
121 { .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops) \
123 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_info_file_operations, \
127 { .proc_read = read } )
128 #define ONE(NAME, MODE, show) \
129 NOD(NAME, (S_IFREG|(MODE)), \
130 NULL, &proc_single_file_operations, \
131 { .proc_show = show } )
132
133 /*
134 * Count the number of hardlinks for the pid_entry table, excluding the .
135 * and .. links.
136 */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 unsigned int n)
139 {
140 unsigned int i;
141 unsigned int count;
142
143 count = 0;
144 for (i = 0; i < n; ++i) {
145 if (S_ISDIR(entries[i].mode))
146 ++count;
147 }
148
149 return count;
150 }
151
152 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
153 {
154 struct fs_struct *fs;
155 int result = -ENOENT;
156
157 task_lock(task);
158 fs = task->fs;
159 if (fs) {
160 read_lock(&fs->lock);
161 *path = root ? fs->root : fs->pwd;
162 path_get(path);
163 read_unlock(&fs->lock);
164 result = 0;
165 }
166 task_unlock(task);
167 return result;
168 }
169
170 static int proc_cwd_link(struct inode *inode, struct path *path)
171 {
172 struct task_struct *task = get_proc_task(inode);
173 int result = -ENOENT;
174
175 if (task) {
176 result = get_fs_path(task, path, 0);
177 put_task_struct(task);
178 }
179 return result;
180 }
181
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 struct task_struct *task = get_proc_task(inode);
185 int result = -ENOENT;
186
187 if (task) {
188 result = get_fs_path(task, path, 1);
189 put_task_struct(task);
190 }
191 return result;
192 }
193
194 /*
195 * Return zero if current may access user memory in @task, -error if not.
196 */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 /*
200 * A task can always look at itself, in case it chooses
201 * to use system calls instead of load instructions.
202 */
203 if (task == current)
204 return 0;
205
206 /*
207 * If current is actively ptrace'ing, and would also be
208 * permitted to freshly attach with ptrace now, permit it.
209 */
210 if (task_is_stopped_or_traced(task)) {
211 int match;
212 rcu_read_lock();
213 match = (tracehook_tracer_task(task) == current);
214 rcu_read_unlock();
215 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 return 0;
217 }
218
219 /*
220 * Noone else is allowed.
221 */
222 return -EPERM;
223 }
224
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 struct mm_struct *mm;
228
229 if (mutex_lock_killable(&task->cred_guard_mutex))
230 return NULL;
231
232 mm = get_task_mm(task);
233 if (mm && mm != current->mm &&
234 !ptrace_may_access(task, PTRACE_MODE_READ)) {
235 mmput(mm);
236 mm = NULL;
237 }
238 mutex_unlock(&task->cred_guard_mutex);
239
240 return mm;
241 }
242
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 int res = 0;
246 unsigned int len;
247 struct mm_struct *mm = get_task_mm(task);
248 if (!mm)
249 goto out;
250 if (!mm->arg_end)
251 goto out_mm; /* Shh! No looking before we're done */
252
253 len = mm->arg_end - mm->arg_start;
254
255 if (len > PAGE_SIZE)
256 len = PAGE_SIZE;
257
258 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259
260 // If the nul at the end of args has been overwritten, then
261 // assume application is using setproctitle(3).
262 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 len = strnlen(buffer, res);
264 if (len < res) {
265 res = len;
266 } else {
267 len = mm->env_end - mm->env_start;
268 if (len > PAGE_SIZE - res)
269 len = PAGE_SIZE - res;
270 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 res = strnlen(buffer, res);
272 }
273 }
274 out_mm:
275 mmput(mm);
276 out:
277 return res;
278 }
279
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 int res = 0;
283 struct mm_struct *mm = get_task_mm(task);
284 if (mm) {
285 unsigned int nwords = 0;
286 do {
287 nwords += 2;
288 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 res = nwords * sizeof(mm->saved_auxv[0]);
290 if (res > PAGE_SIZE)
291 res = PAGE_SIZE;
292 memcpy(buffer, mm->saved_auxv, res);
293 mmput(mm);
294 }
295 return res;
296 }
297
298
299 #ifdef CONFIG_KALLSYMS
300 /*
301 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302 * Returns the resolved symbol. If that fails, simply return the address.
303 */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 unsigned long wchan;
307 char symname[KSYM_NAME_LEN];
308
309 wchan = get_wchan(task);
310
311 if (lookup_symbol_name(wchan, symname) < 0)
312 if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 return 0;
314 else
315 return sprintf(buffer, "%lu", wchan);
316 else
317 return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320
321 #ifdef CONFIG_STACKTRACE
322
323 #define MAX_STACK_TRACE_DEPTH 64
324
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 struct pid *pid, struct task_struct *task)
327 {
328 struct stack_trace trace;
329 unsigned long *entries;
330 int i;
331
332 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 if (!entries)
334 return -ENOMEM;
335
336 trace.nr_entries = 0;
337 trace.max_entries = MAX_STACK_TRACE_DEPTH;
338 trace.entries = entries;
339 trace.skip = 0;
340 save_stack_trace_tsk(task, &trace);
341
342 for (i = 0; i < trace.nr_entries; i++) {
343 seq_printf(m, "[<%p>] %pS\n",
344 (void *)entries[i], (void *)entries[i]);
345 }
346 kfree(entries);
347
348 return 0;
349 }
350 #endif
351
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354 * Provides /proc/PID/schedstat
355 */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 return sprintf(buffer, "%llu %llu %lu\n",
359 (unsigned long long)task->se.sum_exec_runtime,
360 (unsigned long long)task->sched_info.run_delay,
361 task->sched_info.pcount);
362 }
363 #endif
364
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 int i;
369 struct inode *inode = m->private;
370 struct task_struct *task = get_proc_task(inode);
371
372 if (!task)
373 return -ESRCH;
374 seq_puts(m, "Latency Top version : v0.1\n");
375 for (i = 0; i < 32; i++) {
376 if (task->latency_record[i].backtrace[0]) {
377 int q;
378 seq_printf(m, "%i %li %li ",
379 task->latency_record[i].count,
380 task->latency_record[i].time,
381 task->latency_record[i].max);
382 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 char sym[KSYM_SYMBOL_LEN];
384 char *c;
385 if (!task->latency_record[i].backtrace[q])
386 break;
387 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 break;
389 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 c = strchr(sym, '+');
391 if (c)
392 *c = 0;
393 seq_printf(m, "%s ", sym);
394 }
395 seq_printf(m, "\n");
396 }
397
398 }
399 put_task_struct(task);
400 return 0;
401 }
402
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 return single_open(file, lstats_show_proc, inode);
406 }
407
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 size_t count, loff_t *offs)
410 {
411 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412
413 if (!task)
414 return -ESRCH;
415 clear_all_latency_tracing(task);
416 put_task_struct(task);
417
418 return count;
419 }
420
421 static const struct file_operations proc_lstats_operations = {
422 .open = lstats_open,
423 .read = seq_read,
424 .write = lstats_write,
425 .llseek = seq_lseek,
426 .release = single_release,
427 };
428
429 #endif
430
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 unsigned long points = 0;
434
435 read_lock(&tasklist_lock);
436 if (pid_alive(task))
437 points = oom_badness(task, NULL, NULL,
438 totalram_pages + total_swap_pages);
439 read_unlock(&tasklist_lock);
440 return sprintf(buffer, "%lu\n", points);
441 }
442
443 struct limit_names {
444 char *name;
445 char *unit;
446 };
447
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 [RLIMIT_DATA] = {"Max data size", "bytes"},
452 [RLIMIT_STACK] = {"Max stack size", "bytes"},
453 [RLIMIT_CORE] = {"Max core file size", "bytes"},
454 [RLIMIT_RSS] = {"Max resident set", "bytes"},
455 [RLIMIT_NPROC] = {"Max processes", "processes"},
456 [RLIMIT_NOFILE] = {"Max open files", "files"},
457 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 [RLIMIT_AS] = {"Max address space", "bytes"},
459 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 [RLIMIT_NICE] = {"Max nice priority", NULL},
463 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 unsigned int i;
471 int count = 0;
472 unsigned long flags;
473 char *bufptr = buffer;
474
475 struct rlimit rlim[RLIM_NLIMITS];
476
477 if (!lock_task_sighand(task, &flags))
478 return 0;
479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 unlock_task_sighand(task, &flags);
481
482 /*
483 * print the file header
484 */
485 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 "Limit", "Soft Limit", "Hard Limit", "Units");
487
488 for (i = 0; i < RLIM_NLIMITS; i++) {
489 if (rlim[i].rlim_cur == RLIM_INFINITY)
490 count += sprintf(&bufptr[count], "%-25s %-20s ",
491 lnames[i].name, "unlimited");
492 else
493 count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 lnames[i].name, rlim[i].rlim_cur);
495
496 if (rlim[i].rlim_max == RLIM_INFINITY)
497 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 else
499 count += sprintf(&bufptr[count], "%-20lu ",
500 rlim[i].rlim_max);
501
502 if (lnames[i].unit)
503 count += sprintf(&bufptr[count], "%-10s\n",
504 lnames[i].unit);
505 else
506 count += sprintf(&bufptr[count], "\n");
507 }
508
509 return count;
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 long nr;
516 unsigned long args[6], sp, pc;
517
518 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 return sprintf(buffer, "running\n");
520
521 if (nr < 0)
522 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523
524 return sprintf(buffer,
525 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 nr,
527 args[0], args[1], args[2], args[3], args[4], args[5],
528 sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531
532 /************************************************************************/
533 /* Here the fs part begins */
534 /************************************************************************/
535
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 struct task_struct *task;
540 int allowed = 0;
541 /* Allow access to a task's file descriptors if it is us or we
542 * may use ptrace attach to the process and find out that
543 * information.
544 */
545 task = get_proc_task(inode);
546 if (task) {
547 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 put_task_struct(task);
549 }
550 return allowed;
551 }
552
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 int error;
556 struct inode *inode = dentry->d_inode;
557
558 if (attr->ia_valid & ATTR_MODE)
559 return -EPERM;
560
561 error = inode_change_ok(inode, attr);
562 if (error)
563 return error;
564
565 if ((attr->ia_valid & ATTR_SIZE) &&
566 attr->ia_size != i_size_read(inode)) {
567 error = vmtruncate(inode, attr->ia_size);
568 if (error)
569 return error;
570 }
571
572 setattr_copy(inode, attr);
573 mark_inode_dirty(inode);
574 return 0;
575 }
576
577 static const struct inode_operations proc_def_inode_operations = {
578 .setattr = proc_setattr,
579 };
580
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 const struct seq_operations *op)
583 {
584 struct task_struct *task = get_proc_task(inode);
585 struct nsproxy *nsp;
586 struct mnt_namespace *ns = NULL;
587 struct path root;
588 struct proc_mounts *p;
589 int ret = -EINVAL;
590
591 if (task) {
592 rcu_read_lock();
593 nsp = task_nsproxy(task);
594 if (nsp) {
595 ns = nsp->mnt_ns;
596 if (ns)
597 get_mnt_ns(ns);
598 }
599 rcu_read_unlock();
600 if (ns && get_fs_path(task, &root, 1) == 0)
601 ret = 0;
602 put_task_struct(task);
603 }
604
605 if (!ns)
606 goto err;
607 if (ret)
608 goto err_put_ns;
609
610 ret = -ENOMEM;
611 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 if (!p)
613 goto err_put_path;
614
615 file->private_data = &p->m;
616 ret = seq_open(file, op);
617 if (ret)
618 goto err_free;
619
620 p->m.private = p;
621 p->ns = ns;
622 p->root = root;
623 p->event = ns->event;
624
625 return 0;
626
627 err_free:
628 kfree(p);
629 err_put_path:
630 path_put(&root);
631 err_put_ns:
632 put_mnt_ns(ns);
633 err:
634 return ret;
635 }
636
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 struct proc_mounts *p = file->private_data;
640 path_put(&p->root);
641 put_mnt_ns(p->ns);
642 return seq_release(inode, file);
643 }
644
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 struct proc_mounts *p = file->private_data;
648 unsigned res = POLLIN | POLLRDNORM;
649
650 poll_wait(file, &p->ns->poll, wait);
651 if (mnt_had_events(p))
652 res |= POLLERR | POLLPRI;
653
654 return res;
655 }
656
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 return mounts_open_common(inode, file, &mounts_op);
660 }
661
662 static const struct file_operations proc_mounts_operations = {
663 .open = mounts_open,
664 .read = seq_read,
665 .llseek = seq_lseek,
666 .release = mounts_release,
667 .poll = mounts_poll,
668 };
669
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 return mounts_open_common(inode, file, &mountinfo_op);
673 }
674
675 static const struct file_operations proc_mountinfo_operations = {
676 .open = mountinfo_open,
677 .read = seq_read,
678 .llseek = seq_lseek,
679 .release = mounts_release,
680 .poll = mounts_poll,
681 };
682
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 return mounts_open_common(inode, file, &mountstats_op);
686 }
687
688 static const struct file_operations proc_mountstats_operations = {
689 .open = mountstats_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = mounts_release,
693 };
694
695 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
696
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 size_t count, loff_t *ppos)
699 {
700 struct inode * inode = file->f_path.dentry->d_inode;
701 unsigned long page;
702 ssize_t length;
703 struct task_struct *task = get_proc_task(inode);
704
705 length = -ESRCH;
706 if (!task)
707 goto out_no_task;
708
709 if (count > PROC_BLOCK_SIZE)
710 count = PROC_BLOCK_SIZE;
711
712 length = -ENOMEM;
713 if (!(page = __get_free_page(GFP_TEMPORARY)))
714 goto out;
715
716 length = PROC_I(inode)->op.proc_read(task, (char*)page);
717
718 if (length >= 0)
719 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 free_page(page);
721 out:
722 put_task_struct(task);
723 out_no_task:
724 return length;
725 }
726
727 static const struct file_operations proc_info_file_operations = {
728 .read = proc_info_read,
729 .llseek = generic_file_llseek,
730 };
731
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 struct inode *inode = m->private;
735 struct pid_namespace *ns;
736 struct pid *pid;
737 struct task_struct *task;
738 int ret;
739
740 ns = inode->i_sb->s_fs_info;
741 pid = proc_pid(inode);
742 task = get_pid_task(pid, PIDTYPE_PID);
743 if (!task)
744 return -ESRCH;
745
746 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747
748 put_task_struct(task);
749 return ret;
750 }
751
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 int ret;
755 ret = single_open(filp, proc_single_show, NULL);
756 if (!ret) {
757 struct seq_file *m = filp->private_data;
758
759 m->private = inode;
760 }
761 return ret;
762 }
763
764 static const struct file_operations proc_single_file_operations = {
765 .open = proc_single_open,
766 .read = seq_read,
767 .llseek = seq_lseek,
768 .release = single_release,
769 };
770
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 file->private_data = (void*)((long)current->self_exec_id);
774 return 0;
775 }
776
777 static ssize_t mem_read(struct file * file, char __user * buf,
778 size_t count, loff_t *ppos)
779 {
780 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
781 char *page;
782 unsigned long src = *ppos;
783 int ret = -ESRCH;
784 struct mm_struct *mm;
785
786 if (!task)
787 goto out_no_task;
788
789 if (check_mem_permission(task))
790 goto out;
791
792 ret = -ENOMEM;
793 page = (char *)__get_free_page(GFP_TEMPORARY);
794 if (!page)
795 goto out;
796
797 ret = 0;
798
799 mm = get_task_mm(task);
800 if (!mm)
801 goto out_free;
802
803 ret = -EIO;
804
805 if (file->private_data != (void*)((long)current->self_exec_id))
806 goto out_put;
807
808 ret = 0;
809
810 while (count > 0) {
811 int this_len, retval;
812
813 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
814 retval = access_process_vm(task, src, page, this_len, 0);
815 if (!retval || check_mem_permission(task)) {
816 if (!ret)
817 ret = -EIO;
818 break;
819 }
820
821 if (copy_to_user(buf, page, retval)) {
822 ret = -EFAULT;
823 break;
824 }
825
826 ret += retval;
827 src += retval;
828 buf += retval;
829 count -= retval;
830 }
831 *ppos = src;
832
833 out_put:
834 mmput(mm);
835 out_free:
836 free_page((unsigned long) page);
837 out:
838 put_task_struct(task);
839 out_no_task:
840 return ret;
841 }
842
843 #define mem_write NULL
844
845 #ifndef mem_write
846 /* This is a security hazard */
847 static ssize_t mem_write(struct file * file, const char __user *buf,
848 size_t count, loff_t *ppos)
849 {
850 int copied;
851 char *page;
852 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
853 unsigned long dst = *ppos;
854
855 copied = -ESRCH;
856 if (!task)
857 goto out_no_task;
858
859 if (check_mem_permission(task))
860 goto out;
861
862 copied = -ENOMEM;
863 page = (char *)__get_free_page(GFP_TEMPORARY);
864 if (!page)
865 goto out;
866
867 copied = 0;
868 while (count > 0) {
869 int this_len, retval;
870
871 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
872 if (copy_from_user(page, buf, this_len)) {
873 copied = -EFAULT;
874 break;
875 }
876 retval = access_process_vm(task, dst, page, this_len, 1);
877 if (!retval) {
878 if (!copied)
879 copied = -EIO;
880 break;
881 }
882 copied += retval;
883 buf += retval;
884 dst += retval;
885 count -= retval;
886 }
887 *ppos = dst;
888 free_page((unsigned long) page);
889 out:
890 put_task_struct(task);
891 out_no_task:
892 return copied;
893 }
894 #endif
895
896 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
897 {
898 switch (orig) {
899 case 0:
900 file->f_pos = offset;
901 break;
902 case 1:
903 file->f_pos += offset;
904 break;
905 default:
906 return -EINVAL;
907 }
908 force_successful_syscall_return();
909 return file->f_pos;
910 }
911
912 static const struct file_operations proc_mem_operations = {
913 .llseek = mem_lseek,
914 .read = mem_read,
915 .write = mem_write,
916 .open = mem_open,
917 };
918
919 static ssize_t environ_read(struct file *file, char __user *buf,
920 size_t count, loff_t *ppos)
921 {
922 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
923 char *page;
924 unsigned long src = *ppos;
925 int ret = -ESRCH;
926 struct mm_struct *mm;
927
928 if (!task)
929 goto out_no_task;
930
931 if (!ptrace_may_access(task, PTRACE_MODE_READ))
932 goto out;
933
934 ret = -ENOMEM;
935 page = (char *)__get_free_page(GFP_TEMPORARY);
936 if (!page)
937 goto out;
938
939 ret = 0;
940
941 mm = get_task_mm(task);
942 if (!mm)
943 goto out_free;
944
945 while (count > 0) {
946 int this_len, retval, max_len;
947
948 this_len = mm->env_end - (mm->env_start + src);
949
950 if (this_len <= 0)
951 break;
952
953 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
954 this_len = (this_len > max_len) ? max_len : this_len;
955
956 retval = access_process_vm(task, (mm->env_start + src),
957 page, this_len, 0);
958
959 if (retval <= 0) {
960 ret = retval;
961 break;
962 }
963
964 if (copy_to_user(buf, page, retval)) {
965 ret = -EFAULT;
966 break;
967 }
968
969 ret += retval;
970 src += retval;
971 buf += retval;
972 count -= retval;
973 }
974 *ppos = src;
975
976 mmput(mm);
977 out_free:
978 free_page((unsigned long) page);
979 out:
980 put_task_struct(task);
981 out_no_task:
982 return ret;
983 }
984
985 static const struct file_operations proc_environ_operations = {
986 .read = environ_read,
987 .llseek = generic_file_llseek,
988 };
989
990 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
991 size_t count, loff_t *ppos)
992 {
993 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
994 char buffer[PROC_NUMBUF];
995 size_t len;
996 int oom_adjust = OOM_DISABLE;
997 unsigned long flags;
998
999 if (!task)
1000 return -ESRCH;
1001
1002 if (lock_task_sighand(task, &flags)) {
1003 oom_adjust = task->signal->oom_adj;
1004 unlock_task_sighand(task, &flags);
1005 }
1006
1007 put_task_struct(task);
1008
1009 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010
1011 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 size_t count, loff_t *ppos)
1016 {
1017 struct task_struct *task;
1018 char buffer[PROC_NUMBUF];
1019 long oom_adjust;
1020 unsigned long flags;
1021 int err;
1022
1023 memset(buffer, 0, sizeof(buffer));
1024 if (count > sizeof(buffer) - 1)
1025 count = sizeof(buffer) - 1;
1026 if (copy_from_user(buffer, buf, count))
1027 return -EFAULT;
1028
1029 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1030 if (err)
1031 return -EINVAL;
1032 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1033 oom_adjust != OOM_DISABLE)
1034 return -EINVAL;
1035
1036 task = get_proc_task(file->f_path.dentry->d_inode);
1037 if (!task)
1038 return -ESRCH;
1039 if (!lock_task_sighand(task, &flags)) {
1040 put_task_struct(task);
1041 return -ESRCH;
1042 }
1043
1044 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1045 unlock_task_sighand(task, &flags);
1046 put_task_struct(task);
1047 return -EACCES;
1048 }
1049
1050 /*
1051 * Warn that /proc/pid/oom_adj is deprecated, see
1052 * Documentation/feature-removal-schedule.txt.
1053 */
1054 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1055 "please use /proc/%d/oom_score_adj instead.\n",
1056 current->comm, task_pid_nr(current),
1057 task_pid_nr(task), task_pid_nr(task));
1058 task->signal->oom_adj = oom_adjust;
1059 /*
1060 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1061 * value is always attainable.
1062 */
1063 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1064 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1065 else
1066 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1067 -OOM_DISABLE;
1068 unlock_task_sighand(task, &flags);
1069 put_task_struct(task);
1070
1071 return count;
1072 }
1073
1074 static const struct file_operations proc_oom_adjust_operations = {
1075 .read = oom_adjust_read,
1076 .write = oom_adjust_write,
1077 .llseek = generic_file_llseek,
1078 };
1079
1080 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1081 size_t count, loff_t *ppos)
1082 {
1083 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1084 char buffer[PROC_NUMBUF];
1085 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1086 unsigned long flags;
1087 size_t len;
1088
1089 if (!task)
1090 return -ESRCH;
1091 if (lock_task_sighand(task, &flags)) {
1092 oom_score_adj = task->signal->oom_score_adj;
1093 unlock_task_sighand(task, &flags);
1094 }
1095 put_task_struct(task);
1096 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1097 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1098 }
1099
1100 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1101 size_t count, loff_t *ppos)
1102 {
1103 struct task_struct *task;
1104 char buffer[PROC_NUMBUF];
1105 unsigned long flags;
1106 long oom_score_adj;
1107 int err;
1108
1109 memset(buffer, 0, sizeof(buffer));
1110 if (count > sizeof(buffer) - 1)
1111 count = sizeof(buffer) - 1;
1112 if (copy_from_user(buffer, buf, count))
1113 return -EFAULT;
1114
1115 err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1116 if (err)
1117 return -EINVAL;
1118 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1119 oom_score_adj > OOM_SCORE_ADJ_MAX)
1120 return -EINVAL;
1121
1122 task = get_proc_task(file->f_path.dentry->d_inode);
1123 if (!task)
1124 return -ESRCH;
1125 if (!lock_task_sighand(task, &flags)) {
1126 put_task_struct(task);
1127 return -ESRCH;
1128 }
1129 if (oom_score_adj < task->signal->oom_score_adj &&
1130 !capable(CAP_SYS_RESOURCE)) {
1131 unlock_task_sighand(task, &flags);
1132 put_task_struct(task);
1133 return -EACCES;
1134 }
1135
1136 task->signal->oom_score_adj = oom_score_adj;
1137 /*
1138 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1139 * always attainable.
1140 */
1141 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1142 task->signal->oom_adj = OOM_DISABLE;
1143 else
1144 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1145 OOM_SCORE_ADJ_MAX;
1146 unlock_task_sighand(task, &flags);
1147 put_task_struct(task);
1148 return count;
1149 }
1150
1151 static const struct file_operations proc_oom_score_adj_operations = {
1152 .read = oom_score_adj_read,
1153 .write = oom_score_adj_write,
1154 };
1155
1156 #ifdef CONFIG_AUDITSYSCALL
1157 #define TMPBUFLEN 21
1158 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1159 size_t count, loff_t *ppos)
1160 {
1161 struct inode * inode = file->f_path.dentry->d_inode;
1162 struct task_struct *task = get_proc_task(inode);
1163 ssize_t length;
1164 char tmpbuf[TMPBUFLEN];
1165
1166 if (!task)
1167 return -ESRCH;
1168 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1169 audit_get_loginuid(task));
1170 put_task_struct(task);
1171 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1172 }
1173
1174 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1175 size_t count, loff_t *ppos)
1176 {
1177 struct inode * inode = file->f_path.dentry->d_inode;
1178 char *page, *tmp;
1179 ssize_t length;
1180 uid_t loginuid;
1181
1182 if (!capable(CAP_AUDIT_CONTROL))
1183 return -EPERM;
1184
1185 rcu_read_lock();
1186 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1187 rcu_read_unlock();
1188 return -EPERM;
1189 }
1190 rcu_read_unlock();
1191
1192 if (count >= PAGE_SIZE)
1193 count = PAGE_SIZE - 1;
1194
1195 if (*ppos != 0) {
1196 /* No partial writes. */
1197 return -EINVAL;
1198 }
1199 page = (char*)__get_free_page(GFP_TEMPORARY);
1200 if (!page)
1201 return -ENOMEM;
1202 length = -EFAULT;
1203 if (copy_from_user(page, buf, count))
1204 goto out_free_page;
1205
1206 page[count] = '\0';
1207 loginuid = simple_strtoul(page, &tmp, 10);
1208 if (tmp == page) {
1209 length = -EINVAL;
1210 goto out_free_page;
1211
1212 }
1213 length = audit_set_loginuid(current, loginuid);
1214 if (likely(length == 0))
1215 length = count;
1216
1217 out_free_page:
1218 free_page((unsigned long) page);
1219 return length;
1220 }
1221
1222 static const struct file_operations proc_loginuid_operations = {
1223 .read = proc_loginuid_read,
1224 .write = proc_loginuid_write,
1225 .llseek = generic_file_llseek,
1226 };
1227
1228 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1229 size_t count, loff_t *ppos)
1230 {
1231 struct inode * inode = file->f_path.dentry->d_inode;
1232 struct task_struct *task = get_proc_task(inode);
1233 ssize_t length;
1234 char tmpbuf[TMPBUFLEN];
1235
1236 if (!task)
1237 return -ESRCH;
1238 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239 audit_get_sessionid(task));
1240 put_task_struct(task);
1241 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1242 }
1243
1244 static const struct file_operations proc_sessionid_operations = {
1245 .read = proc_sessionid_read,
1246 .llseek = generic_file_llseek,
1247 };
1248 #endif
1249
1250 #ifdef CONFIG_FAULT_INJECTION
1251 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1252 size_t count, loff_t *ppos)
1253 {
1254 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1255 char buffer[PROC_NUMBUF];
1256 size_t len;
1257 int make_it_fail;
1258
1259 if (!task)
1260 return -ESRCH;
1261 make_it_fail = task->make_it_fail;
1262 put_task_struct(task);
1263
1264 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1265
1266 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1267 }
1268
1269 static ssize_t proc_fault_inject_write(struct file * file,
1270 const char __user * buf, size_t count, loff_t *ppos)
1271 {
1272 struct task_struct *task;
1273 char buffer[PROC_NUMBUF], *end;
1274 int make_it_fail;
1275
1276 if (!capable(CAP_SYS_RESOURCE))
1277 return -EPERM;
1278 memset(buffer, 0, sizeof(buffer));
1279 if (count > sizeof(buffer) - 1)
1280 count = sizeof(buffer) - 1;
1281 if (copy_from_user(buffer, buf, count))
1282 return -EFAULT;
1283 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1284 if (*end)
1285 return -EINVAL;
1286 task = get_proc_task(file->f_dentry->d_inode);
1287 if (!task)
1288 return -ESRCH;
1289 task->make_it_fail = make_it_fail;
1290 put_task_struct(task);
1291
1292 return count;
1293 }
1294
1295 static const struct file_operations proc_fault_inject_operations = {
1296 .read = proc_fault_inject_read,
1297 .write = proc_fault_inject_write,
1298 .llseek = generic_file_llseek,
1299 };
1300 #endif
1301
1302
1303 #ifdef CONFIG_SCHED_DEBUG
1304 /*
1305 * Print out various scheduling related per-task fields:
1306 */
1307 static int sched_show(struct seq_file *m, void *v)
1308 {
1309 struct inode *inode = m->private;
1310 struct task_struct *p;
1311
1312 p = get_proc_task(inode);
1313 if (!p)
1314 return -ESRCH;
1315 proc_sched_show_task(p, m);
1316
1317 put_task_struct(p);
1318
1319 return 0;
1320 }
1321
1322 static ssize_t
1323 sched_write(struct file *file, const char __user *buf,
1324 size_t count, loff_t *offset)
1325 {
1326 struct inode *inode = file->f_path.dentry->d_inode;
1327 struct task_struct *p;
1328
1329 p = get_proc_task(inode);
1330 if (!p)
1331 return -ESRCH;
1332 proc_sched_set_task(p);
1333
1334 put_task_struct(p);
1335
1336 return count;
1337 }
1338
1339 static int sched_open(struct inode *inode, struct file *filp)
1340 {
1341 int ret;
1342
1343 ret = single_open(filp, sched_show, NULL);
1344 if (!ret) {
1345 struct seq_file *m = filp->private_data;
1346
1347 m->private = inode;
1348 }
1349 return ret;
1350 }
1351
1352 static const struct file_operations proc_pid_sched_operations = {
1353 .open = sched_open,
1354 .read = seq_read,
1355 .write = sched_write,
1356 .llseek = seq_lseek,
1357 .release = single_release,
1358 };
1359
1360 #endif
1361
1362 static ssize_t comm_write(struct file *file, const char __user *buf,
1363 size_t count, loff_t *offset)
1364 {
1365 struct inode *inode = file->f_path.dentry->d_inode;
1366 struct task_struct *p;
1367 char buffer[TASK_COMM_LEN];
1368
1369 memset(buffer, 0, sizeof(buffer));
1370 if (count > sizeof(buffer) - 1)
1371 count = sizeof(buffer) - 1;
1372 if (copy_from_user(buffer, buf, count))
1373 return -EFAULT;
1374
1375 p = get_proc_task(inode);
1376 if (!p)
1377 return -ESRCH;
1378
1379 if (same_thread_group(current, p))
1380 set_task_comm(p, buffer);
1381 else
1382 count = -EINVAL;
1383
1384 put_task_struct(p);
1385
1386 return count;
1387 }
1388
1389 static int comm_show(struct seq_file *m, void *v)
1390 {
1391 struct inode *inode = m->private;
1392 struct task_struct *p;
1393
1394 p = get_proc_task(inode);
1395 if (!p)
1396 return -ESRCH;
1397
1398 task_lock(p);
1399 seq_printf(m, "%s\n", p->comm);
1400 task_unlock(p);
1401
1402 put_task_struct(p);
1403
1404 return 0;
1405 }
1406
1407 static int comm_open(struct inode *inode, struct file *filp)
1408 {
1409 int ret;
1410
1411 ret = single_open(filp, comm_show, NULL);
1412 if (!ret) {
1413 struct seq_file *m = filp->private_data;
1414
1415 m->private = inode;
1416 }
1417 return ret;
1418 }
1419
1420 static const struct file_operations proc_pid_set_comm_operations = {
1421 .open = comm_open,
1422 .read = seq_read,
1423 .write = comm_write,
1424 .llseek = seq_lseek,
1425 .release = single_release,
1426 };
1427
1428 /*
1429 * We added or removed a vma mapping the executable. The vmas are only mapped
1430 * during exec and are not mapped with the mmap system call.
1431 * Callers must hold down_write() on the mm's mmap_sem for these
1432 */
1433 void added_exe_file_vma(struct mm_struct *mm)
1434 {
1435 mm->num_exe_file_vmas++;
1436 }
1437
1438 void removed_exe_file_vma(struct mm_struct *mm)
1439 {
1440 mm->num_exe_file_vmas--;
1441 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1442 fput(mm->exe_file);
1443 mm->exe_file = NULL;
1444 }
1445
1446 }
1447
1448 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1449 {
1450 if (new_exe_file)
1451 get_file(new_exe_file);
1452 if (mm->exe_file)
1453 fput(mm->exe_file);
1454 mm->exe_file = new_exe_file;
1455 mm->num_exe_file_vmas = 0;
1456 }
1457
1458 struct file *get_mm_exe_file(struct mm_struct *mm)
1459 {
1460 struct file *exe_file;
1461
1462 /* We need mmap_sem to protect against races with removal of
1463 * VM_EXECUTABLE vmas */
1464 down_read(&mm->mmap_sem);
1465 exe_file = mm->exe_file;
1466 if (exe_file)
1467 get_file(exe_file);
1468 up_read(&mm->mmap_sem);
1469 return exe_file;
1470 }
1471
1472 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1473 {
1474 /* It's safe to write the exe_file pointer without exe_file_lock because
1475 * this is called during fork when the task is not yet in /proc */
1476 newmm->exe_file = get_mm_exe_file(oldmm);
1477 }
1478
1479 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1480 {
1481 struct task_struct *task;
1482 struct mm_struct *mm;
1483 struct file *exe_file;
1484
1485 task = get_proc_task(inode);
1486 if (!task)
1487 return -ENOENT;
1488 mm = get_task_mm(task);
1489 put_task_struct(task);
1490 if (!mm)
1491 return -ENOENT;
1492 exe_file = get_mm_exe_file(mm);
1493 mmput(mm);
1494 if (exe_file) {
1495 *exe_path = exe_file->f_path;
1496 path_get(&exe_file->f_path);
1497 fput(exe_file);
1498 return 0;
1499 } else
1500 return -ENOENT;
1501 }
1502
1503 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1504 {
1505 struct inode *inode = dentry->d_inode;
1506 int error = -EACCES;
1507
1508 /* We don't need a base pointer in the /proc filesystem */
1509 path_put(&nd->path);
1510
1511 /* Are we allowed to snoop on the tasks file descriptors? */
1512 if (!proc_fd_access_allowed(inode))
1513 goto out;
1514
1515 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1516 out:
1517 return ERR_PTR(error);
1518 }
1519
1520 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1521 {
1522 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1523 char *pathname;
1524 int len;
1525
1526 if (!tmp)
1527 return -ENOMEM;
1528
1529 pathname = d_path(path, tmp, PAGE_SIZE);
1530 len = PTR_ERR(pathname);
1531 if (IS_ERR(pathname))
1532 goto out;
1533 len = tmp + PAGE_SIZE - 1 - pathname;
1534
1535 if (len > buflen)
1536 len = buflen;
1537 if (copy_to_user(buffer, pathname, len))
1538 len = -EFAULT;
1539 out:
1540 free_page((unsigned long)tmp);
1541 return len;
1542 }
1543
1544 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1545 {
1546 int error = -EACCES;
1547 struct inode *inode = dentry->d_inode;
1548 struct path path;
1549
1550 /* Are we allowed to snoop on the tasks file descriptors? */
1551 if (!proc_fd_access_allowed(inode))
1552 goto out;
1553
1554 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1555 if (error)
1556 goto out;
1557
1558 error = do_proc_readlink(&path, buffer, buflen);
1559 path_put(&path);
1560 out:
1561 return error;
1562 }
1563
1564 static const struct inode_operations proc_pid_link_inode_operations = {
1565 .readlink = proc_pid_readlink,
1566 .follow_link = proc_pid_follow_link,
1567 .setattr = proc_setattr,
1568 };
1569
1570
1571 /* building an inode */
1572
1573 static int task_dumpable(struct task_struct *task)
1574 {
1575 int dumpable = 0;
1576 struct mm_struct *mm;
1577
1578 task_lock(task);
1579 mm = task->mm;
1580 if (mm)
1581 dumpable = get_dumpable(mm);
1582 task_unlock(task);
1583 if(dumpable == 1)
1584 return 1;
1585 return 0;
1586 }
1587
1588
1589 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1590 {
1591 struct inode * inode;
1592 struct proc_inode *ei;
1593 const struct cred *cred;
1594
1595 /* We need a new inode */
1596
1597 inode = new_inode(sb);
1598 if (!inode)
1599 goto out;
1600
1601 /* Common stuff */
1602 ei = PROC_I(inode);
1603 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1604 inode->i_op = &proc_def_inode_operations;
1605
1606 /*
1607 * grab the reference to task.
1608 */
1609 ei->pid = get_task_pid(task, PIDTYPE_PID);
1610 if (!ei->pid)
1611 goto out_unlock;
1612
1613 if (task_dumpable(task)) {
1614 rcu_read_lock();
1615 cred = __task_cred(task);
1616 inode->i_uid = cred->euid;
1617 inode->i_gid = cred->egid;
1618 rcu_read_unlock();
1619 }
1620 security_task_to_inode(task, inode);
1621
1622 out:
1623 return inode;
1624
1625 out_unlock:
1626 iput(inode);
1627 return NULL;
1628 }
1629
1630 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1631 {
1632 struct inode *inode = dentry->d_inode;
1633 struct task_struct *task;
1634 const struct cred *cred;
1635
1636 generic_fillattr(inode, stat);
1637
1638 rcu_read_lock();
1639 stat->uid = 0;
1640 stat->gid = 0;
1641 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1642 if (task) {
1643 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1644 task_dumpable(task)) {
1645 cred = __task_cred(task);
1646 stat->uid = cred->euid;
1647 stat->gid = cred->egid;
1648 }
1649 }
1650 rcu_read_unlock();
1651 return 0;
1652 }
1653
1654 /* dentry stuff */
1655
1656 /*
1657 * Exceptional case: normally we are not allowed to unhash a busy
1658 * directory. In this case, however, we can do it - no aliasing problems
1659 * due to the way we treat inodes.
1660 *
1661 * Rewrite the inode's ownerships here because the owning task may have
1662 * performed a setuid(), etc.
1663 *
1664 * Before the /proc/pid/status file was created the only way to read
1665 * the effective uid of a /process was to stat /proc/pid. Reading
1666 * /proc/pid/status is slow enough that procps and other packages
1667 * kept stating /proc/pid. To keep the rules in /proc simple I have
1668 * made this apply to all per process world readable and executable
1669 * directories.
1670 */
1671 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1672 {
1673 struct inode *inode = dentry->d_inode;
1674 struct task_struct *task = get_proc_task(inode);
1675 const struct cred *cred;
1676
1677 if (task) {
1678 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1679 task_dumpable(task)) {
1680 rcu_read_lock();
1681 cred = __task_cred(task);
1682 inode->i_uid = cred->euid;
1683 inode->i_gid = cred->egid;
1684 rcu_read_unlock();
1685 } else {
1686 inode->i_uid = 0;
1687 inode->i_gid = 0;
1688 }
1689 inode->i_mode &= ~(S_ISUID | S_ISGID);
1690 security_task_to_inode(task, inode);
1691 put_task_struct(task);
1692 return 1;
1693 }
1694 d_drop(dentry);
1695 return 0;
1696 }
1697
1698 static int pid_delete_dentry(struct dentry * dentry)
1699 {
1700 /* Is the task we represent dead?
1701 * If so, then don't put the dentry on the lru list,
1702 * kill it immediately.
1703 */
1704 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1705 }
1706
1707 static const struct dentry_operations pid_dentry_operations =
1708 {
1709 .d_revalidate = pid_revalidate,
1710 .d_delete = pid_delete_dentry,
1711 };
1712
1713 /* Lookups */
1714
1715 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1716 struct task_struct *, const void *);
1717
1718 /*
1719 * Fill a directory entry.
1720 *
1721 * If possible create the dcache entry and derive our inode number and
1722 * file type from dcache entry.
1723 *
1724 * Since all of the proc inode numbers are dynamically generated, the inode
1725 * numbers do not exist until the inode is cache. This means creating the
1726 * the dcache entry in readdir is necessary to keep the inode numbers
1727 * reported by readdir in sync with the inode numbers reported
1728 * by stat.
1729 */
1730 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1731 char *name, int len,
1732 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1733 {
1734 struct dentry *child, *dir = filp->f_path.dentry;
1735 struct inode *inode;
1736 struct qstr qname;
1737 ino_t ino = 0;
1738 unsigned type = DT_UNKNOWN;
1739
1740 qname.name = name;
1741 qname.len = len;
1742 qname.hash = full_name_hash(name, len);
1743
1744 child = d_lookup(dir, &qname);
1745 if (!child) {
1746 struct dentry *new;
1747 new = d_alloc(dir, &qname);
1748 if (new) {
1749 child = instantiate(dir->d_inode, new, task, ptr);
1750 if (child)
1751 dput(new);
1752 else
1753 child = new;
1754 }
1755 }
1756 if (!child || IS_ERR(child) || !child->d_inode)
1757 goto end_instantiate;
1758 inode = child->d_inode;
1759 if (inode) {
1760 ino = inode->i_ino;
1761 type = inode->i_mode >> 12;
1762 }
1763 dput(child);
1764 end_instantiate:
1765 if (!ino)
1766 ino = find_inode_number(dir, &qname);
1767 if (!ino)
1768 ino = 1;
1769 return filldir(dirent, name, len, filp->f_pos, ino, type);
1770 }
1771
1772 static unsigned name_to_int(struct dentry *dentry)
1773 {
1774 const char *name = dentry->d_name.name;
1775 int len = dentry->d_name.len;
1776 unsigned n = 0;
1777
1778 if (len > 1 && *name == '0')
1779 goto out;
1780 while (len-- > 0) {
1781 unsigned c = *name++ - '0';
1782 if (c > 9)
1783 goto out;
1784 if (n >= (~0U-9)/10)
1785 goto out;
1786 n *= 10;
1787 n += c;
1788 }
1789 return n;
1790 out:
1791 return ~0U;
1792 }
1793
1794 #define PROC_FDINFO_MAX 64
1795
1796 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1797 {
1798 struct task_struct *task = get_proc_task(inode);
1799 struct files_struct *files = NULL;
1800 struct file *file;
1801 int fd = proc_fd(inode);
1802
1803 if (task) {
1804 files = get_files_struct(task);
1805 put_task_struct(task);
1806 }
1807 if (files) {
1808 /*
1809 * We are not taking a ref to the file structure, so we must
1810 * hold ->file_lock.
1811 */
1812 spin_lock(&files->file_lock);
1813 file = fcheck_files(files, fd);
1814 if (file) {
1815 if (path) {
1816 *path = file->f_path;
1817 path_get(&file->f_path);
1818 }
1819 if (info)
1820 snprintf(info, PROC_FDINFO_MAX,
1821 "pos:\t%lli\n"
1822 "flags:\t0%o\n",
1823 (long long) file->f_pos,
1824 file->f_flags);
1825 spin_unlock(&files->file_lock);
1826 put_files_struct(files);
1827 return 0;
1828 }
1829 spin_unlock(&files->file_lock);
1830 put_files_struct(files);
1831 }
1832 return -ENOENT;
1833 }
1834
1835 static int proc_fd_link(struct inode *inode, struct path *path)
1836 {
1837 return proc_fd_info(inode, path, NULL);
1838 }
1839
1840 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1841 {
1842 struct inode *inode = dentry->d_inode;
1843 struct task_struct *task = get_proc_task(inode);
1844 int fd = proc_fd(inode);
1845 struct files_struct *files;
1846 const struct cred *cred;
1847
1848 if (task) {
1849 files = get_files_struct(task);
1850 if (files) {
1851 rcu_read_lock();
1852 if (fcheck_files(files, fd)) {
1853 rcu_read_unlock();
1854 put_files_struct(files);
1855 if (task_dumpable(task)) {
1856 rcu_read_lock();
1857 cred = __task_cred(task);
1858 inode->i_uid = cred->euid;
1859 inode->i_gid = cred->egid;
1860 rcu_read_unlock();
1861 } else {
1862 inode->i_uid = 0;
1863 inode->i_gid = 0;
1864 }
1865 inode->i_mode &= ~(S_ISUID | S_ISGID);
1866 security_task_to_inode(task, inode);
1867 put_task_struct(task);
1868 return 1;
1869 }
1870 rcu_read_unlock();
1871 put_files_struct(files);
1872 }
1873 put_task_struct(task);
1874 }
1875 d_drop(dentry);
1876 return 0;
1877 }
1878
1879 static const struct dentry_operations tid_fd_dentry_operations =
1880 {
1881 .d_revalidate = tid_fd_revalidate,
1882 .d_delete = pid_delete_dentry,
1883 };
1884
1885 static struct dentry *proc_fd_instantiate(struct inode *dir,
1886 struct dentry *dentry, struct task_struct *task, const void *ptr)
1887 {
1888 unsigned fd = *(const unsigned *)ptr;
1889 struct file *file;
1890 struct files_struct *files;
1891 struct inode *inode;
1892 struct proc_inode *ei;
1893 struct dentry *error = ERR_PTR(-ENOENT);
1894
1895 inode = proc_pid_make_inode(dir->i_sb, task);
1896 if (!inode)
1897 goto out;
1898 ei = PROC_I(inode);
1899 ei->fd = fd;
1900 files = get_files_struct(task);
1901 if (!files)
1902 goto out_iput;
1903 inode->i_mode = S_IFLNK;
1904
1905 /*
1906 * We are not taking a ref to the file structure, so we must
1907 * hold ->file_lock.
1908 */
1909 spin_lock(&files->file_lock);
1910 file = fcheck_files(files, fd);
1911 if (!file)
1912 goto out_unlock;
1913 if (file->f_mode & FMODE_READ)
1914 inode->i_mode |= S_IRUSR | S_IXUSR;
1915 if (file->f_mode & FMODE_WRITE)
1916 inode->i_mode |= S_IWUSR | S_IXUSR;
1917 spin_unlock(&files->file_lock);
1918 put_files_struct(files);
1919
1920 inode->i_op = &proc_pid_link_inode_operations;
1921 inode->i_size = 64;
1922 ei->op.proc_get_link = proc_fd_link;
1923 dentry->d_op = &tid_fd_dentry_operations;
1924 d_add(dentry, inode);
1925 /* Close the race of the process dying before we return the dentry */
1926 if (tid_fd_revalidate(dentry, NULL))
1927 error = NULL;
1928
1929 out:
1930 return error;
1931 out_unlock:
1932 spin_unlock(&files->file_lock);
1933 put_files_struct(files);
1934 out_iput:
1935 iput(inode);
1936 goto out;
1937 }
1938
1939 static struct dentry *proc_lookupfd_common(struct inode *dir,
1940 struct dentry *dentry,
1941 instantiate_t instantiate)
1942 {
1943 struct task_struct *task = get_proc_task(dir);
1944 unsigned fd = name_to_int(dentry);
1945 struct dentry *result = ERR_PTR(-ENOENT);
1946
1947 if (!task)
1948 goto out_no_task;
1949 if (fd == ~0U)
1950 goto out;
1951
1952 result = instantiate(dir, dentry, task, &fd);
1953 out:
1954 put_task_struct(task);
1955 out_no_task:
1956 return result;
1957 }
1958
1959 static int proc_readfd_common(struct file * filp, void * dirent,
1960 filldir_t filldir, instantiate_t instantiate)
1961 {
1962 struct dentry *dentry = filp->f_path.dentry;
1963 struct inode *inode = dentry->d_inode;
1964 struct task_struct *p = get_proc_task(inode);
1965 unsigned int fd, ino;
1966 int retval;
1967 struct files_struct * files;
1968
1969 retval = -ENOENT;
1970 if (!p)
1971 goto out_no_task;
1972 retval = 0;
1973
1974 fd = filp->f_pos;
1975 switch (fd) {
1976 case 0:
1977 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1978 goto out;
1979 filp->f_pos++;
1980 case 1:
1981 ino = parent_ino(dentry);
1982 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1983 goto out;
1984 filp->f_pos++;
1985 default:
1986 files = get_files_struct(p);
1987 if (!files)
1988 goto out;
1989 rcu_read_lock();
1990 for (fd = filp->f_pos-2;
1991 fd < files_fdtable(files)->max_fds;
1992 fd++, filp->f_pos++) {
1993 char name[PROC_NUMBUF];
1994 int len;
1995
1996 if (!fcheck_files(files, fd))
1997 continue;
1998 rcu_read_unlock();
1999
2000 len = snprintf(name, sizeof(name), "%d", fd);
2001 if (proc_fill_cache(filp, dirent, filldir,
2002 name, len, instantiate,
2003 p, &fd) < 0) {
2004 rcu_read_lock();
2005 break;
2006 }
2007 rcu_read_lock();
2008 }
2009 rcu_read_unlock();
2010 put_files_struct(files);
2011 }
2012 out:
2013 put_task_struct(p);
2014 out_no_task:
2015 return retval;
2016 }
2017
2018 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2019 struct nameidata *nd)
2020 {
2021 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2022 }
2023
2024 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2025 {
2026 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2027 }
2028
2029 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2030 size_t len, loff_t *ppos)
2031 {
2032 char tmp[PROC_FDINFO_MAX];
2033 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2034 if (!err)
2035 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2036 return err;
2037 }
2038
2039 static const struct file_operations proc_fdinfo_file_operations = {
2040 .open = nonseekable_open,
2041 .read = proc_fdinfo_read,
2042 };
2043
2044 static const struct file_operations proc_fd_operations = {
2045 .read = generic_read_dir,
2046 .readdir = proc_readfd,
2047 };
2048
2049 /*
2050 * /proc/pid/fd needs a special permission handler so that a process can still
2051 * access /proc/self/fd after it has executed a setuid().
2052 */
2053 static int proc_fd_permission(struct inode *inode, int mask)
2054 {
2055 int rv;
2056
2057 rv = generic_permission(inode, mask, NULL);
2058 if (rv == 0)
2059 return 0;
2060 if (task_pid(current) == proc_pid(inode))
2061 rv = 0;
2062 return rv;
2063 }
2064
2065 /*
2066 * proc directories can do almost nothing..
2067 */
2068 static const struct inode_operations proc_fd_inode_operations = {
2069 .lookup = proc_lookupfd,
2070 .permission = proc_fd_permission,
2071 .setattr = proc_setattr,
2072 };
2073
2074 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2075 struct dentry *dentry, struct task_struct *task, const void *ptr)
2076 {
2077 unsigned fd = *(unsigned *)ptr;
2078 struct inode *inode;
2079 struct proc_inode *ei;
2080 struct dentry *error = ERR_PTR(-ENOENT);
2081
2082 inode = proc_pid_make_inode(dir->i_sb, task);
2083 if (!inode)
2084 goto out;
2085 ei = PROC_I(inode);
2086 ei->fd = fd;
2087 inode->i_mode = S_IFREG | S_IRUSR;
2088 inode->i_fop = &proc_fdinfo_file_operations;
2089 dentry->d_op = &tid_fd_dentry_operations;
2090 d_add(dentry, inode);
2091 /* Close the race of the process dying before we return the dentry */
2092 if (tid_fd_revalidate(dentry, NULL))
2093 error = NULL;
2094
2095 out:
2096 return error;
2097 }
2098
2099 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2100 struct dentry *dentry,
2101 struct nameidata *nd)
2102 {
2103 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2104 }
2105
2106 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2107 {
2108 return proc_readfd_common(filp, dirent, filldir,
2109 proc_fdinfo_instantiate);
2110 }
2111
2112 static const struct file_operations proc_fdinfo_operations = {
2113 .read = generic_read_dir,
2114 .readdir = proc_readfdinfo,
2115 };
2116
2117 /*
2118 * proc directories can do almost nothing..
2119 */
2120 static const struct inode_operations proc_fdinfo_inode_operations = {
2121 .lookup = proc_lookupfdinfo,
2122 .setattr = proc_setattr,
2123 };
2124
2125
2126 static struct dentry *proc_pident_instantiate(struct inode *dir,
2127 struct dentry *dentry, struct task_struct *task, const void *ptr)
2128 {
2129 const struct pid_entry *p = ptr;
2130 struct inode *inode;
2131 struct proc_inode *ei;
2132 struct dentry *error = ERR_PTR(-ENOENT);
2133
2134 inode = proc_pid_make_inode(dir->i_sb, task);
2135 if (!inode)
2136 goto out;
2137
2138 ei = PROC_I(inode);
2139 inode->i_mode = p->mode;
2140 if (S_ISDIR(inode->i_mode))
2141 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2142 if (p->iop)
2143 inode->i_op = p->iop;
2144 if (p->fop)
2145 inode->i_fop = p->fop;
2146 ei->op = p->op;
2147 dentry->d_op = &pid_dentry_operations;
2148 d_add(dentry, inode);
2149 /* Close the race of the process dying before we return the dentry */
2150 if (pid_revalidate(dentry, NULL))
2151 error = NULL;
2152 out:
2153 return error;
2154 }
2155
2156 static struct dentry *proc_pident_lookup(struct inode *dir,
2157 struct dentry *dentry,
2158 const struct pid_entry *ents,
2159 unsigned int nents)
2160 {
2161 struct dentry *error;
2162 struct task_struct *task = get_proc_task(dir);
2163 const struct pid_entry *p, *last;
2164
2165 error = ERR_PTR(-ENOENT);
2166
2167 if (!task)
2168 goto out_no_task;
2169
2170 /*
2171 * Yes, it does not scale. And it should not. Don't add
2172 * new entries into /proc/<tgid>/ without very good reasons.
2173 */
2174 last = &ents[nents - 1];
2175 for (p = ents; p <= last; p++) {
2176 if (p->len != dentry->d_name.len)
2177 continue;
2178 if (!memcmp(dentry->d_name.name, p->name, p->len))
2179 break;
2180 }
2181 if (p > last)
2182 goto out;
2183
2184 error = proc_pident_instantiate(dir, dentry, task, p);
2185 out:
2186 put_task_struct(task);
2187 out_no_task:
2188 return error;
2189 }
2190
2191 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2192 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2193 {
2194 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2195 proc_pident_instantiate, task, p);
2196 }
2197
2198 static int proc_pident_readdir(struct file *filp,
2199 void *dirent, filldir_t filldir,
2200 const struct pid_entry *ents, unsigned int nents)
2201 {
2202 int i;
2203 struct dentry *dentry = filp->f_path.dentry;
2204 struct inode *inode = dentry->d_inode;
2205 struct task_struct *task = get_proc_task(inode);
2206 const struct pid_entry *p, *last;
2207 ino_t ino;
2208 int ret;
2209
2210 ret = -ENOENT;
2211 if (!task)
2212 goto out_no_task;
2213
2214 ret = 0;
2215 i = filp->f_pos;
2216 switch (i) {
2217 case 0:
2218 ino = inode->i_ino;
2219 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2220 goto out;
2221 i++;
2222 filp->f_pos++;
2223 /* fall through */
2224 case 1:
2225 ino = parent_ino(dentry);
2226 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2227 goto out;
2228 i++;
2229 filp->f_pos++;
2230 /* fall through */
2231 default:
2232 i -= 2;
2233 if (i >= nents) {
2234 ret = 1;
2235 goto out;
2236 }
2237 p = ents + i;
2238 last = &ents[nents - 1];
2239 while (p <= last) {
2240 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2241 goto out;
2242 filp->f_pos++;
2243 p++;
2244 }
2245 }
2246
2247 ret = 1;
2248 out:
2249 put_task_struct(task);
2250 out_no_task:
2251 return ret;
2252 }
2253
2254 #ifdef CONFIG_SECURITY
2255 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2256 size_t count, loff_t *ppos)
2257 {
2258 struct inode * inode = file->f_path.dentry->d_inode;
2259 char *p = NULL;
2260 ssize_t length;
2261 struct task_struct *task = get_proc_task(inode);
2262
2263 if (!task)
2264 return -ESRCH;
2265
2266 length = security_getprocattr(task,
2267 (char*)file->f_path.dentry->d_name.name,
2268 &p);
2269 put_task_struct(task);
2270 if (length > 0)
2271 length = simple_read_from_buffer(buf, count, ppos, p, length);
2272 kfree(p);
2273 return length;
2274 }
2275
2276 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2277 size_t count, loff_t *ppos)
2278 {
2279 struct inode * inode = file->f_path.dentry->d_inode;
2280 char *page;
2281 ssize_t length;
2282 struct task_struct *task = get_proc_task(inode);
2283
2284 length = -ESRCH;
2285 if (!task)
2286 goto out_no_task;
2287 if (count > PAGE_SIZE)
2288 count = PAGE_SIZE;
2289
2290 /* No partial writes. */
2291 length = -EINVAL;
2292 if (*ppos != 0)
2293 goto out;
2294
2295 length = -ENOMEM;
2296 page = (char*)__get_free_page(GFP_TEMPORARY);
2297 if (!page)
2298 goto out;
2299
2300 length = -EFAULT;
2301 if (copy_from_user(page, buf, count))
2302 goto out_free;
2303
2304 /* Guard against adverse ptrace interaction */
2305 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2306 if (length < 0)
2307 goto out_free;
2308
2309 length = security_setprocattr(task,
2310 (char*)file->f_path.dentry->d_name.name,
2311 (void*)page, count);
2312 mutex_unlock(&task->cred_guard_mutex);
2313 out_free:
2314 free_page((unsigned long) page);
2315 out:
2316 put_task_struct(task);
2317 out_no_task:
2318 return length;
2319 }
2320
2321 static const struct file_operations proc_pid_attr_operations = {
2322 .read = proc_pid_attr_read,
2323 .write = proc_pid_attr_write,
2324 .llseek = generic_file_llseek,
2325 };
2326
2327 static const struct pid_entry attr_dir_stuff[] = {
2328 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2329 REG("prev", S_IRUGO, proc_pid_attr_operations),
2330 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2331 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2332 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2333 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2334 };
2335
2336 static int proc_attr_dir_readdir(struct file * filp,
2337 void * dirent, filldir_t filldir)
2338 {
2339 return proc_pident_readdir(filp,dirent,filldir,
2340 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2341 }
2342
2343 static const struct file_operations proc_attr_dir_operations = {
2344 .read = generic_read_dir,
2345 .readdir = proc_attr_dir_readdir,
2346 };
2347
2348 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2349 struct dentry *dentry, struct nameidata *nd)
2350 {
2351 return proc_pident_lookup(dir, dentry,
2352 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2353 }
2354
2355 static const struct inode_operations proc_attr_dir_inode_operations = {
2356 .lookup = proc_attr_dir_lookup,
2357 .getattr = pid_getattr,
2358 .setattr = proc_setattr,
2359 };
2360
2361 #endif
2362
2363 #ifdef CONFIG_ELF_CORE
2364 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2365 size_t count, loff_t *ppos)
2366 {
2367 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2368 struct mm_struct *mm;
2369 char buffer[PROC_NUMBUF];
2370 size_t len;
2371 int ret;
2372
2373 if (!task)
2374 return -ESRCH;
2375
2376 ret = 0;
2377 mm = get_task_mm(task);
2378 if (mm) {
2379 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2380 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2381 MMF_DUMP_FILTER_SHIFT));
2382 mmput(mm);
2383 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2384 }
2385
2386 put_task_struct(task);
2387
2388 return ret;
2389 }
2390
2391 static ssize_t proc_coredump_filter_write(struct file *file,
2392 const char __user *buf,
2393 size_t count,
2394 loff_t *ppos)
2395 {
2396 struct task_struct *task;
2397 struct mm_struct *mm;
2398 char buffer[PROC_NUMBUF], *end;
2399 unsigned int val;
2400 int ret;
2401 int i;
2402 unsigned long mask;
2403
2404 ret = -EFAULT;
2405 memset(buffer, 0, sizeof(buffer));
2406 if (count > sizeof(buffer) - 1)
2407 count = sizeof(buffer) - 1;
2408 if (copy_from_user(buffer, buf, count))
2409 goto out_no_task;
2410
2411 ret = -EINVAL;
2412 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2413 if (*end == '\n')
2414 end++;
2415 if (end - buffer == 0)
2416 goto out_no_task;
2417
2418 ret = -ESRCH;
2419 task = get_proc_task(file->f_dentry->d_inode);
2420 if (!task)
2421 goto out_no_task;
2422
2423 ret = end - buffer;
2424 mm = get_task_mm(task);
2425 if (!mm)
2426 goto out_no_mm;
2427
2428 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2429 if (val & mask)
2430 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2431 else
2432 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2433 }
2434
2435 mmput(mm);
2436 out_no_mm:
2437 put_task_struct(task);
2438 out_no_task:
2439 return ret;
2440 }
2441
2442 static const struct file_operations proc_coredump_filter_operations = {
2443 .read = proc_coredump_filter_read,
2444 .write = proc_coredump_filter_write,
2445 .llseek = generic_file_llseek,
2446 };
2447 #endif
2448
2449 /*
2450 * /proc/self:
2451 */
2452 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2453 int buflen)
2454 {
2455 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2456 pid_t tgid = task_tgid_nr_ns(current, ns);
2457 char tmp[PROC_NUMBUF];
2458 if (!tgid)
2459 return -ENOENT;
2460 sprintf(tmp, "%d", tgid);
2461 return vfs_readlink(dentry,buffer,buflen,tmp);
2462 }
2463
2464 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2465 {
2466 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2467 pid_t tgid = task_tgid_nr_ns(current, ns);
2468 char *name = ERR_PTR(-ENOENT);
2469 if (tgid) {
2470 name = __getname();
2471 if (!name)
2472 name = ERR_PTR(-ENOMEM);
2473 else
2474 sprintf(name, "%d", tgid);
2475 }
2476 nd_set_link(nd, name);
2477 return NULL;
2478 }
2479
2480 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2481 void *cookie)
2482 {
2483 char *s = nd_get_link(nd);
2484 if (!IS_ERR(s))
2485 __putname(s);
2486 }
2487
2488 static const struct inode_operations proc_self_inode_operations = {
2489 .readlink = proc_self_readlink,
2490 .follow_link = proc_self_follow_link,
2491 .put_link = proc_self_put_link,
2492 };
2493
2494 /*
2495 * proc base
2496 *
2497 * These are the directory entries in the root directory of /proc
2498 * that properly belong to the /proc filesystem, as they describe
2499 * describe something that is process related.
2500 */
2501 static const struct pid_entry proc_base_stuff[] = {
2502 NOD("self", S_IFLNK|S_IRWXUGO,
2503 &proc_self_inode_operations, NULL, {}),
2504 };
2505
2506 /*
2507 * Exceptional case: normally we are not allowed to unhash a busy
2508 * directory. In this case, however, we can do it - no aliasing problems
2509 * due to the way we treat inodes.
2510 */
2511 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2512 {
2513 struct inode *inode = dentry->d_inode;
2514 struct task_struct *task = get_proc_task(inode);
2515 if (task) {
2516 put_task_struct(task);
2517 return 1;
2518 }
2519 d_drop(dentry);
2520 return 0;
2521 }
2522
2523 static const struct dentry_operations proc_base_dentry_operations =
2524 {
2525 .d_revalidate = proc_base_revalidate,
2526 .d_delete = pid_delete_dentry,
2527 };
2528
2529 static struct dentry *proc_base_instantiate(struct inode *dir,
2530 struct dentry *dentry, struct task_struct *task, const void *ptr)
2531 {
2532 const struct pid_entry *p = ptr;
2533 struct inode *inode;
2534 struct proc_inode *ei;
2535 struct dentry *error;
2536
2537 /* Allocate the inode */
2538 error = ERR_PTR(-ENOMEM);
2539 inode = new_inode(dir->i_sb);
2540 if (!inode)
2541 goto out;
2542
2543 /* Initialize the inode */
2544 ei = PROC_I(inode);
2545 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2546
2547 /*
2548 * grab the reference to the task.
2549 */
2550 ei->pid = get_task_pid(task, PIDTYPE_PID);
2551 if (!ei->pid)
2552 goto out_iput;
2553
2554 inode->i_mode = p->mode;
2555 if (S_ISDIR(inode->i_mode))
2556 inode->i_nlink = 2;
2557 if (S_ISLNK(inode->i_mode))
2558 inode->i_size = 64;
2559 if (p->iop)
2560 inode->i_op = p->iop;
2561 if (p->fop)
2562 inode->i_fop = p->fop;
2563 ei->op = p->op;
2564 dentry->d_op = &proc_base_dentry_operations;
2565 d_add(dentry, inode);
2566 error = NULL;
2567 out:
2568 return error;
2569 out_iput:
2570 iput(inode);
2571 goto out;
2572 }
2573
2574 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2575 {
2576 struct dentry *error;
2577 struct task_struct *task = get_proc_task(dir);
2578 const struct pid_entry *p, *last;
2579
2580 error = ERR_PTR(-ENOENT);
2581
2582 if (!task)
2583 goto out_no_task;
2584
2585 /* Lookup the directory entry */
2586 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2587 for (p = proc_base_stuff; p <= last; p++) {
2588 if (p->len != dentry->d_name.len)
2589 continue;
2590 if (!memcmp(dentry->d_name.name, p->name, p->len))
2591 break;
2592 }
2593 if (p > last)
2594 goto out;
2595
2596 error = proc_base_instantiate(dir, dentry, task, p);
2597
2598 out:
2599 put_task_struct(task);
2600 out_no_task:
2601 return error;
2602 }
2603
2604 static int proc_base_fill_cache(struct file *filp, void *dirent,
2605 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2606 {
2607 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2608 proc_base_instantiate, task, p);
2609 }
2610
2611 #ifdef CONFIG_TASK_IO_ACCOUNTING
2612 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2613 {
2614 struct task_io_accounting acct = task->ioac;
2615 unsigned long flags;
2616
2617 if (whole && lock_task_sighand(task, &flags)) {
2618 struct task_struct *t = task;
2619
2620 task_io_accounting_add(&acct, &task->signal->ioac);
2621 while_each_thread(task, t)
2622 task_io_accounting_add(&acct, &t->ioac);
2623
2624 unlock_task_sighand(task, &flags);
2625 }
2626 return sprintf(buffer,
2627 "rchar: %llu\n"
2628 "wchar: %llu\n"
2629 "syscr: %llu\n"
2630 "syscw: %llu\n"
2631 "read_bytes: %llu\n"
2632 "write_bytes: %llu\n"
2633 "cancelled_write_bytes: %llu\n",
2634 (unsigned long long)acct.rchar,
2635 (unsigned long long)acct.wchar,
2636 (unsigned long long)acct.syscr,
2637 (unsigned long long)acct.syscw,
2638 (unsigned long long)acct.read_bytes,
2639 (unsigned long long)acct.write_bytes,
2640 (unsigned long long)acct.cancelled_write_bytes);
2641 }
2642
2643 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2644 {
2645 return do_io_accounting(task, buffer, 0);
2646 }
2647
2648 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2649 {
2650 return do_io_accounting(task, buffer, 1);
2651 }
2652 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2653
2654 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2655 struct pid *pid, struct task_struct *task)
2656 {
2657 seq_printf(m, "%08x\n", task->personality);
2658 return 0;
2659 }
2660
2661 /*
2662 * Thread groups
2663 */
2664 static const struct file_operations proc_task_operations;
2665 static const struct inode_operations proc_task_inode_operations;
2666
2667 static const struct pid_entry tgid_base_stuff[] = {
2668 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2669 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2670 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2671 #ifdef CONFIG_NET
2672 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2673 #endif
2674 REG("environ", S_IRUSR, proc_environ_operations),
2675 INF("auxv", S_IRUSR, proc_pid_auxv),
2676 ONE("status", S_IRUGO, proc_pid_status),
2677 ONE("personality", S_IRUSR, proc_pid_personality),
2678 INF("limits", S_IRUSR, proc_pid_limits),
2679 #ifdef CONFIG_SCHED_DEBUG
2680 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2681 #endif
2682 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2683 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2684 INF("syscall", S_IRUSR, proc_pid_syscall),
2685 #endif
2686 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2687 ONE("stat", S_IRUGO, proc_tgid_stat),
2688 ONE("statm", S_IRUGO, proc_pid_statm),
2689 REG("maps", S_IRUGO, proc_maps_operations),
2690 #ifdef CONFIG_NUMA
2691 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2692 #endif
2693 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2694 LNK("cwd", proc_cwd_link),
2695 LNK("root", proc_root_link),
2696 LNK("exe", proc_exe_link),
2697 REG("mounts", S_IRUGO, proc_mounts_operations),
2698 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2699 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2700 #ifdef CONFIG_PROC_PAGE_MONITOR
2701 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2702 REG("smaps", S_IRUGO, proc_smaps_operations),
2703 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2704 #endif
2705 #ifdef CONFIG_SECURITY
2706 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2707 #endif
2708 #ifdef CONFIG_KALLSYMS
2709 INF("wchan", S_IRUGO, proc_pid_wchan),
2710 #endif
2711 #ifdef CONFIG_STACKTRACE
2712 ONE("stack", S_IRUSR, proc_pid_stack),
2713 #endif
2714 #ifdef CONFIG_SCHEDSTATS
2715 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2716 #endif
2717 #ifdef CONFIG_LATENCYTOP
2718 REG("latency", S_IRUGO, proc_lstats_operations),
2719 #endif
2720 #ifdef CONFIG_PROC_PID_CPUSET
2721 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2722 #endif
2723 #ifdef CONFIG_CGROUPS
2724 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2725 #endif
2726 INF("oom_score", S_IRUGO, proc_oom_score),
2727 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2728 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2729 #ifdef CONFIG_AUDITSYSCALL
2730 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2731 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2732 #endif
2733 #ifdef CONFIG_FAULT_INJECTION
2734 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2735 #endif
2736 #ifdef CONFIG_ELF_CORE
2737 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2738 #endif
2739 #ifdef CONFIG_TASK_IO_ACCOUNTING
2740 INF("io", S_IRUGO, proc_tgid_io_accounting),
2741 #endif
2742 };
2743
2744 static int proc_tgid_base_readdir(struct file * filp,
2745 void * dirent, filldir_t filldir)
2746 {
2747 return proc_pident_readdir(filp,dirent,filldir,
2748 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2749 }
2750
2751 static const struct file_operations proc_tgid_base_operations = {
2752 .read = generic_read_dir,
2753 .readdir = proc_tgid_base_readdir,
2754 };
2755
2756 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2757 return proc_pident_lookup(dir, dentry,
2758 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2759 }
2760
2761 static const struct inode_operations proc_tgid_base_inode_operations = {
2762 .lookup = proc_tgid_base_lookup,
2763 .getattr = pid_getattr,
2764 .setattr = proc_setattr,
2765 };
2766
2767 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2768 {
2769 struct dentry *dentry, *leader, *dir;
2770 char buf[PROC_NUMBUF];
2771 struct qstr name;
2772
2773 name.name = buf;
2774 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2775 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2776 if (dentry) {
2777 shrink_dcache_parent(dentry);
2778 d_drop(dentry);
2779 dput(dentry);
2780 }
2781
2782 name.name = buf;
2783 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2784 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2785 if (!leader)
2786 goto out;
2787
2788 name.name = "task";
2789 name.len = strlen(name.name);
2790 dir = d_hash_and_lookup(leader, &name);
2791 if (!dir)
2792 goto out_put_leader;
2793
2794 name.name = buf;
2795 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2796 dentry = d_hash_and_lookup(dir, &name);
2797 if (dentry) {
2798 shrink_dcache_parent(dentry);
2799 d_drop(dentry);
2800 dput(dentry);
2801 }
2802
2803 dput(dir);
2804 out_put_leader:
2805 dput(leader);
2806 out:
2807 return;
2808 }
2809
2810 /**
2811 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2812 * @task: task that should be flushed.
2813 *
2814 * When flushing dentries from proc, one needs to flush them from global
2815 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2816 * in. This call is supposed to do all of this job.
2817 *
2818 * Looks in the dcache for
2819 * /proc/@pid
2820 * /proc/@tgid/task/@pid
2821 * if either directory is present flushes it and all of it'ts children
2822 * from the dcache.
2823 *
2824 * It is safe and reasonable to cache /proc entries for a task until
2825 * that task exits. After that they just clog up the dcache with
2826 * useless entries, possibly causing useful dcache entries to be
2827 * flushed instead. This routine is proved to flush those useless
2828 * dcache entries at process exit time.
2829 *
2830 * NOTE: This routine is just an optimization so it does not guarantee
2831 * that no dcache entries will exist at process exit time it
2832 * just makes it very unlikely that any will persist.
2833 */
2834
2835 void proc_flush_task(struct task_struct *task)
2836 {
2837 int i;
2838 struct pid *pid, *tgid;
2839 struct upid *upid;
2840
2841 pid = task_pid(task);
2842 tgid = task_tgid(task);
2843
2844 for (i = 0; i <= pid->level; i++) {
2845 upid = &pid->numbers[i];
2846 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2847 tgid->numbers[i].nr);
2848 }
2849
2850 upid = &pid->numbers[pid->level];
2851 if (upid->nr == 1)
2852 pid_ns_release_proc(upid->ns);
2853 }
2854
2855 static struct dentry *proc_pid_instantiate(struct inode *dir,
2856 struct dentry * dentry,
2857 struct task_struct *task, const void *ptr)
2858 {
2859 struct dentry *error = ERR_PTR(-ENOENT);
2860 struct inode *inode;
2861
2862 inode = proc_pid_make_inode(dir->i_sb, task);
2863 if (!inode)
2864 goto out;
2865
2866 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2867 inode->i_op = &proc_tgid_base_inode_operations;
2868 inode->i_fop = &proc_tgid_base_operations;
2869 inode->i_flags|=S_IMMUTABLE;
2870
2871 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2872 ARRAY_SIZE(tgid_base_stuff));
2873
2874 dentry->d_op = &pid_dentry_operations;
2875
2876 d_add(dentry, inode);
2877 /* Close the race of the process dying before we return the dentry */
2878 if (pid_revalidate(dentry, NULL))
2879 error = NULL;
2880 out:
2881 return error;
2882 }
2883
2884 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2885 {
2886 struct dentry *result;
2887 struct task_struct *task;
2888 unsigned tgid;
2889 struct pid_namespace *ns;
2890
2891 result = proc_base_lookup(dir, dentry);
2892 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2893 goto out;
2894
2895 tgid = name_to_int(dentry);
2896 if (tgid == ~0U)
2897 goto out;
2898
2899 ns = dentry->d_sb->s_fs_info;
2900 rcu_read_lock();
2901 task = find_task_by_pid_ns(tgid, ns);
2902 if (task)
2903 get_task_struct(task);
2904 rcu_read_unlock();
2905 if (!task)
2906 goto out;
2907
2908 result = proc_pid_instantiate(dir, dentry, task, NULL);
2909 put_task_struct(task);
2910 out:
2911 return result;
2912 }
2913
2914 /*
2915 * Find the first task with tgid >= tgid
2916 *
2917 */
2918 struct tgid_iter {
2919 unsigned int tgid;
2920 struct task_struct *task;
2921 };
2922 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2923 {
2924 struct pid *pid;
2925
2926 if (iter.task)
2927 put_task_struct(iter.task);
2928 rcu_read_lock();
2929 retry:
2930 iter.task = NULL;
2931 pid = find_ge_pid(iter.tgid, ns);
2932 if (pid) {
2933 iter.tgid = pid_nr_ns(pid, ns);
2934 iter.task = pid_task(pid, PIDTYPE_PID);
2935 /* What we to know is if the pid we have find is the
2936 * pid of a thread_group_leader. Testing for task
2937 * being a thread_group_leader is the obvious thing
2938 * todo but there is a window when it fails, due to
2939 * the pid transfer logic in de_thread.
2940 *
2941 * So we perform the straight forward test of seeing
2942 * if the pid we have found is the pid of a thread
2943 * group leader, and don't worry if the task we have
2944 * found doesn't happen to be a thread group leader.
2945 * As we don't care in the case of readdir.
2946 */
2947 if (!iter.task || !has_group_leader_pid(iter.task)) {
2948 iter.tgid += 1;
2949 goto retry;
2950 }
2951 get_task_struct(iter.task);
2952 }
2953 rcu_read_unlock();
2954 return iter;
2955 }
2956
2957 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2958
2959 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2960 struct tgid_iter iter)
2961 {
2962 char name[PROC_NUMBUF];
2963 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2964 return proc_fill_cache(filp, dirent, filldir, name, len,
2965 proc_pid_instantiate, iter.task, NULL);
2966 }
2967
2968 /* for the /proc/ directory itself, after non-process stuff has been done */
2969 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2970 {
2971 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2972 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2973 struct tgid_iter iter;
2974 struct pid_namespace *ns;
2975
2976 if (!reaper)
2977 goto out_no_task;
2978
2979 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2980 const struct pid_entry *p = &proc_base_stuff[nr];
2981 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2982 goto out;
2983 }
2984
2985 ns = filp->f_dentry->d_sb->s_fs_info;
2986 iter.task = NULL;
2987 iter.tgid = filp->f_pos - TGID_OFFSET;
2988 for (iter = next_tgid(ns, iter);
2989 iter.task;
2990 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2991 filp->f_pos = iter.tgid + TGID_OFFSET;
2992 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2993 put_task_struct(iter.task);
2994 goto out;
2995 }
2996 }
2997 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2998 out:
2999 put_task_struct(reaper);
3000 out_no_task:
3001 return 0;
3002 }
3003
3004 /*
3005 * Tasks
3006 */
3007 static const struct pid_entry tid_base_stuff[] = {
3008 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3009 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3010 REG("environ", S_IRUSR, proc_environ_operations),
3011 INF("auxv", S_IRUSR, proc_pid_auxv),
3012 ONE("status", S_IRUGO, proc_pid_status),
3013 ONE("personality", S_IRUSR, proc_pid_personality),
3014 INF("limits", S_IRUSR, proc_pid_limits),
3015 #ifdef CONFIG_SCHED_DEBUG
3016 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3017 #endif
3018 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3019 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3020 INF("syscall", S_IRUSR, proc_pid_syscall),
3021 #endif
3022 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3023 ONE("stat", S_IRUGO, proc_tid_stat),
3024 ONE("statm", S_IRUGO, proc_pid_statm),
3025 REG("maps", S_IRUGO, proc_maps_operations),
3026 #ifdef CONFIG_NUMA
3027 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3028 #endif
3029 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3030 LNK("cwd", proc_cwd_link),
3031 LNK("root", proc_root_link),
3032 LNK("exe", proc_exe_link),
3033 REG("mounts", S_IRUGO, proc_mounts_operations),
3034 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3035 #ifdef CONFIG_PROC_PAGE_MONITOR
3036 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3037 REG("smaps", S_IRUGO, proc_smaps_operations),
3038 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3039 #endif
3040 #ifdef CONFIG_SECURITY
3041 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3042 #endif
3043 #ifdef CONFIG_KALLSYMS
3044 INF("wchan", S_IRUGO, proc_pid_wchan),
3045 #endif
3046 #ifdef CONFIG_STACKTRACE
3047 ONE("stack", S_IRUSR, proc_pid_stack),
3048 #endif
3049 #ifdef CONFIG_SCHEDSTATS
3050 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3051 #endif
3052 #ifdef CONFIG_LATENCYTOP
3053 REG("latency", S_IRUGO, proc_lstats_operations),
3054 #endif
3055 #ifdef CONFIG_PROC_PID_CPUSET
3056 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3057 #endif
3058 #ifdef CONFIG_CGROUPS
3059 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3060 #endif
3061 INF("oom_score", S_IRUGO, proc_oom_score),
3062 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3063 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3064 #ifdef CONFIG_AUDITSYSCALL
3065 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3066 REG("sessionid", S_IRUSR, proc_sessionid_operations),
3067 #endif
3068 #ifdef CONFIG_FAULT_INJECTION
3069 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3070 #endif
3071 #ifdef CONFIG_TASK_IO_ACCOUNTING
3072 INF("io", S_IRUGO, proc_tid_io_accounting),
3073 #endif
3074 };
3075
3076 static int proc_tid_base_readdir(struct file * filp,
3077 void * dirent, filldir_t filldir)
3078 {
3079 return proc_pident_readdir(filp,dirent,filldir,
3080 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3081 }
3082
3083 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3084 return proc_pident_lookup(dir, dentry,
3085 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3086 }
3087
3088 static const struct file_operations proc_tid_base_operations = {
3089 .read = generic_read_dir,
3090 .readdir = proc_tid_base_readdir,
3091 };
3092
3093 static const struct inode_operations proc_tid_base_inode_operations = {
3094 .lookup = proc_tid_base_lookup,
3095 .getattr = pid_getattr,
3096 .setattr = proc_setattr,
3097 };
3098
3099 static struct dentry *proc_task_instantiate(struct inode *dir,
3100 struct dentry *dentry, struct task_struct *task, const void *ptr)
3101 {
3102 struct dentry *error = ERR_PTR(-ENOENT);
3103 struct inode *inode;
3104 inode = proc_pid_make_inode(dir->i_sb, task);
3105
3106 if (!inode)
3107 goto out;
3108 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3109 inode->i_op = &proc_tid_base_inode_operations;
3110 inode->i_fop = &proc_tid_base_operations;
3111 inode->i_flags|=S_IMMUTABLE;
3112
3113 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3114 ARRAY_SIZE(tid_base_stuff));
3115
3116 dentry->d_op = &pid_dentry_operations;
3117
3118 d_add(dentry, inode);
3119 /* Close the race of the process dying before we return the dentry */
3120 if (pid_revalidate(dentry, NULL))
3121 error = NULL;
3122 out:
3123 return error;
3124 }
3125
3126 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3127 {
3128 struct dentry *result = ERR_PTR(-ENOENT);
3129 struct task_struct *task;
3130 struct task_struct *leader = get_proc_task(dir);
3131 unsigned tid;
3132 struct pid_namespace *ns;
3133
3134 if (!leader)
3135 goto out_no_task;
3136
3137 tid = name_to_int(dentry);
3138 if (tid == ~0U)
3139 goto out;
3140
3141 ns = dentry->d_sb->s_fs_info;
3142 rcu_read_lock();
3143 task = find_task_by_pid_ns(tid, ns);
3144 if (task)
3145 get_task_struct(task);
3146 rcu_read_unlock();
3147 if (!task)
3148 goto out;
3149 if (!same_thread_group(leader, task))
3150 goto out_drop_task;
3151
3152 result = proc_task_instantiate(dir, dentry, task, NULL);
3153 out_drop_task:
3154 put_task_struct(task);
3155 out:
3156 put_task_struct(leader);
3157 out_no_task:
3158 return result;
3159 }
3160
3161 /*
3162 * Find the first tid of a thread group to return to user space.
3163 *
3164 * Usually this is just the thread group leader, but if the users
3165 * buffer was too small or there was a seek into the middle of the
3166 * directory we have more work todo.
3167 *
3168 * In the case of a short read we start with find_task_by_pid.
3169 *
3170 * In the case of a seek we start with the leader and walk nr
3171 * threads past it.
3172 */
3173 static struct task_struct *first_tid(struct task_struct *leader,
3174 int tid, int nr, struct pid_namespace *ns)
3175 {
3176 struct task_struct *pos;
3177
3178 rcu_read_lock();
3179 /* Attempt to start with the pid of a thread */
3180 if (tid && (nr > 0)) {
3181 pos = find_task_by_pid_ns(tid, ns);
3182 if (pos && (pos->group_leader == leader))
3183 goto found;
3184 }
3185
3186 /* If nr exceeds the number of threads there is nothing todo */
3187 pos = NULL;
3188 if (nr && nr >= get_nr_threads(leader))
3189 goto out;
3190
3191 /* If we haven't found our starting place yet start
3192 * with the leader and walk nr threads forward.
3193 */
3194 for (pos = leader; nr > 0; --nr) {
3195 pos = next_thread(pos);
3196 if (pos == leader) {
3197 pos = NULL;
3198 goto out;
3199 }
3200 }
3201 found:
3202 get_task_struct(pos);
3203 out:
3204 rcu_read_unlock();
3205 return pos;
3206 }
3207
3208 /*
3209 * Find the next thread in the thread list.
3210 * Return NULL if there is an error or no next thread.
3211 *
3212 * The reference to the input task_struct is released.
3213 */
3214 static struct task_struct *next_tid(struct task_struct *start)
3215 {
3216 struct task_struct *pos = NULL;
3217 rcu_read_lock();
3218 if (pid_alive(start)) {
3219 pos = next_thread(start);
3220 if (thread_group_leader(pos))
3221 pos = NULL;
3222 else
3223 get_task_struct(pos);
3224 }
3225 rcu_read_unlock();
3226 put_task_struct(start);
3227 return pos;
3228 }
3229
3230 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3231 struct task_struct *task, int tid)
3232 {
3233 char name[PROC_NUMBUF];
3234 int len = snprintf(name, sizeof(name), "%d", tid);
3235 return proc_fill_cache(filp, dirent, filldir, name, len,
3236 proc_task_instantiate, task, NULL);
3237 }
3238
3239 /* for the /proc/TGID/task/ directories */
3240 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3241 {
3242 struct dentry *dentry = filp->f_path.dentry;
3243 struct inode *inode = dentry->d_inode;
3244 struct task_struct *leader = NULL;
3245 struct task_struct *task;
3246 int retval = -ENOENT;
3247 ino_t ino;
3248 int tid;
3249 struct pid_namespace *ns;
3250
3251 task = get_proc_task(inode);
3252 if (!task)
3253 goto out_no_task;
3254 rcu_read_lock();
3255 if (pid_alive(task)) {
3256 leader = task->group_leader;
3257 get_task_struct(leader);
3258 }
3259 rcu_read_unlock();
3260 put_task_struct(task);
3261 if (!leader)
3262 goto out_no_task;
3263 retval = 0;
3264
3265 switch ((unsigned long)filp->f_pos) {
3266 case 0:
3267 ino = inode->i_ino;
3268 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3269 goto out;
3270 filp->f_pos++;
3271 /* fall through */
3272 case 1:
3273 ino = parent_ino(dentry);
3274 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3275 goto out;
3276 filp->f_pos++;
3277 /* fall through */
3278 }
3279
3280 /* f_version caches the tgid value that the last readdir call couldn't
3281 * return. lseek aka telldir automagically resets f_version to 0.
3282 */
3283 ns = filp->f_dentry->d_sb->s_fs_info;
3284 tid = (int)filp->f_version;
3285 filp->f_version = 0;
3286 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3287 task;
3288 task = next_tid(task), filp->f_pos++) {
3289 tid = task_pid_nr_ns(task, ns);
3290 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3291 /* returning this tgid failed, save it as the first
3292 * pid for the next readir call */
3293 filp->f_version = (u64)tid;
3294 put_task_struct(task);
3295 break;
3296 }
3297 }
3298 out:
3299 put_task_struct(leader);
3300 out_no_task:
3301 return retval;
3302 }
3303
3304 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3305 {
3306 struct inode *inode = dentry->d_inode;
3307 struct task_struct *p = get_proc_task(inode);
3308 generic_fillattr(inode, stat);
3309
3310 if (p) {
3311 stat->nlink += get_nr_threads(p);
3312 put_task_struct(p);
3313 }
3314
3315 return 0;
3316 }
3317
3318 static const struct inode_operations proc_task_inode_operations = {
3319 .lookup = proc_task_lookup,
3320 .getattr = proc_task_getattr,
3321 .setattr = proc_setattr,
3322 };
3323
3324 static const struct file_operations proc_task_operations = {
3325 .read = generic_read_dir,
3326 .readdir = proc_task_readdir,
3327 };