]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/task_mmu.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-zesty-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <linux/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200 }
201
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212 }
213
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224 }
225
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228 {
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244 }
245
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255 }
256
257 static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259 {
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262 }
263
264 /*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
268 static int is_stack(struct proc_maps_private *priv,
269 struct vm_area_struct *vma)
270 {
271 /*
272 * We make no effort to guess what a given thread considers to be
273 * its "stack". It's not even well-defined for programs written
274 * languages like Go.
275 */
276 return vma->vm_start <= vma->vm_mm->start_stack &&
277 vma->vm_end >= vma->vm_mm->start_stack;
278 }
279
280 static void
281 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
282 {
283 struct mm_struct *mm = vma->vm_mm;
284 struct file *file = vma->vm_file;
285 struct proc_maps_private *priv = m->private;
286 vm_flags_t flags = vma->vm_flags;
287 unsigned long ino = 0;
288 unsigned long long pgoff = 0;
289 unsigned long start, end;
290 dev_t dev = 0;
291 const char *name = NULL;
292
293 if (file) {
294 struct inode *inode;
295
296 file = vma_pr_or_file(vma);
297 inode = file_inode(file);
298 dev = inode->i_sb->s_dev;
299 ino = inode->i_ino;
300 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
301 }
302
303 /* We don't show the stack guard page in /proc/maps */
304 start = vma->vm_start;
305 if (stack_guard_page_start(vma, start))
306 start += PAGE_SIZE;
307 end = vma->vm_end;
308 if (stack_guard_page_end(vma, end))
309 end -= PAGE_SIZE;
310
311 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
312 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
313 start,
314 end,
315 flags & VM_READ ? 'r' : '-',
316 flags & VM_WRITE ? 'w' : '-',
317 flags & VM_EXEC ? 'x' : '-',
318 flags & VM_MAYSHARE ? 's' : 'p',
319 pgoff,
320 MAJOR(dev), MINOR(dev), ino);
321
322 /*
323 * Print the dentry name for named mappings, and a
324 * special [heap] marker for the heap:
325 */
326 if (file) {
327 seq_pad(m, ' ');
328 seq_file_path(m, file, "\n");
329 goto done;
330 }
331
332 if (vma->vm_ops && vma->vm_ops->name) {
333 name = vma->vm_ops->name(vma);
334 if (name)
335 goto done;
336 }
337
338 name = arch_vma_name(vma);
339 if (!name) {
340 if (!mm) {
341 name = "[vdso]";
342 goto done;
343 }
344
345 if (vma->vm_start <= mm->brk &&
346 vma->vm_end >= mm->start_brk) {
347 name = "[heap]";
348 goto done;
349 }
350
351 if (is_stack(priv, vma))
352 name = "[stack]";
353 }
354
355 done:
356 if (name) {
357 seq_pad(m, ' ');
358 seq_puts(m, name);
359 }
360 seq_putc(m, '\n');
361 }
362
363 static int show_map(struct seq_file *m, void *v, int is_pid)
364 {
365 show_map_vma(m, v, is_pid);
366 m_cache_vma(m, v);
367 return 0;
368 }
369
370 static int show_pid_map(struct seq_file *m, void *v)
371 {
372 return show_map(m, v, 1);
373 }
374
375 static int show_tid_map(struct seq_file *m, void *v)
376 {
377 return show_map(m, v, 0);
378 }
379
380 static const struct seq_operations proc_pid_maps_op = {
381 .start = m_start,
382 .next = m_next,
383 .stop = m_stop,
384 .show = show_pid_map
385 };
386
387 static const struct seq_operations proc_tid_maps_op = {
388 .start = m_start,
389 .next = m_next,
390 .stop = m_stop,
391 .show = show_tid_map
392 };
393
394 static int pid_maps_open(struct inode *inode, struct file *file)
395 {
396 return do_maps_open(inode, file, &proc_pid_maps_op);
397 }
398
399 static int tid_maps_open(struct inode *inode, struct file *file)
400 {
401 return do_maps_open(inode, file, &proc_tid_maps_op);
402 }
403
404 const struct file_operations proc_pid_maps_operations = {
405 .open = pid_maps_open,
406 .read = seq_read,
407 .llseek = seq_lseek,
408 .release = proc_map_release,
409 };
410
411 const struct file_operations proc_tid_maps_operations = {
412 .open = tid_maps_open,
413 .read = seq_read,
414 .llseek = seq_lseek,
415 .release = proc_map_release,
416 };
417
418 /*
419 * Proportional Set Size(PSS): my share of RSS.
420 *
421 * PSS of a process is the count of pages it has in memory, where each
422 * page is divided by the number of processes sharing it. So if a
423 * process has 1000 pages all to itself, and 1000 shared with one other
424 * process, its PSS will be 1500.
425 *
426 * To keep (accumulated) division errors low, we adopt a 64bit
427 * fixed-point pss counter to minimize division errors. So (pss >>
428 * PSS_SHIFT) would be the real byte count.
429 *
430 * A shift of 12 before division means (assuming 4K page size):
431 * - 1M 3-user-pages add up to 8KB errors;
432 * - supports mapcount up to 2^24, or 16M;
433 * - supports PSS up to 2^52 bytes, or 4PB.
434 */
435 #define PSS_SHIFT 12
436
437 #ifdef CONFIG_PROC_PAGE_MONITOR
438 struct mem_size_stats {
439 unsigned long resident;
440 unsigned long shared_clean;
441 unsigned long shared_dirty;
442 unsigned long private_clean;
443 unsigned long private_dirty;
444 unsigned long referenced;
445 unsigned long anonymous;
446 unsigned long anonymous_thp;
447 unsigned long shmem_thp;
448 unsigned long swap;
449 unsigned long shared_hugetlb;
450 unsigned long private_hugetlb;
451 u64 pss;
452 u64 swap_pss;
453 bool check_shmem_swap;
454 };
455
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457 bool compound, bool young, bool dirty)
458 {
459 int i, nr = compound ? 1 << compound_order(page) : 1;
460 unsigned long size = nr * PAGE_SIZE;
461
462 if (PageAnon(page))
463 mss->anonymous += size;
464
465 mss->resident += size;
466 /* Accumulate the size in pages that have been accessed. */
467 if (young || page_is_young(page) || PageReferenced(page))
468 mss->referenced += size;
469
470 /*
471 * page_count(page) == 1 guarantees the page is mapped exactly once.
472 * If any subpage of the compound page mapped with PTE it would elevate
473 * page_count().
474 */
475 if (page_count(page) == 1) {
476 if (dirty || PageDirty(page))
477 mss->private_dirty += size;
478 else
479 mss->private_clean += size;
480 mss->pss += (u64)size << PSS_SHIFT;
481 return;
482 }
483
484 for (i = 0; i < nr; i++, page++) {
485 int mapcount = page_mapcount(page);
486
487 if (mapcount >= 2) {
488 if (dirty || PageDirty(page))
489 mss->shared_dirty += PAGE_SIZE;
490 else
491 mss->shared_clean += PAGE_SIZE;
492 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
493 } else {
494 if (dirty || PageDirty(page))
495 mss->private_dirty += PAGE_SIZE;
496 else
497 mss->private_clean += PAGE_SIZE;
498 mss->pss += PAGE_SIZE << PSS_SHIFT;
499 }
500 }
501 }
502
503 #ifdef CONFIG_SHMEM
504 static int smaps_pte_hole(unsigned long addr, unsigned long end,
505 struct mm_walk *walk)
506 {
507 struct mem_size_stats *mss = walk->private;
508
509 mss->swap += shmem_partial_swap_usage(
510 walk->vma->vm_file->f_mapping, addr, end);
511
512 return 0;
513 }
514 #endif
515
516 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
517 struct mm_walk *walk)
518 {
519 struct mem_size_stats *mss = walk->private;
520 struct vm_area_struct *vma = walk->vma;
521 struct page *page = NULL;
522
523 if (pte_present(*pte)) {
524 page = vm_normal_page(vma, addr, *pte);
525 } else if (is_swap_pte(*pte)) {
526 swp_entry_t swpent = pte_to_swp_entry(*pte);
527
528 if (!non_swap_entry(swpent)) {
529 int mapcount;
530
531 mss->swap += PAGE_SIZE;
532 mapcount = swp_swapcount(swpent);
533 if (mapcount >= 2) {
534 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
535
536 do_div(pss_delta, mapcount);
537 mss->swap_pss += pss_delta;
538 } else {
539 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
540 }
541 } else if (is_migration_entry(swpent))
542 page = migration_entry_to_page(swpent);
543 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
544 && pte_none(*pte))) {
545 page = find_get_entry(vma->vm_file->f_mapping,
546 linear_page_index(vma, addr));
547 if (!page)
548 return;
549
550 if (radix_tree_exceptional_entry(page))
551 mss->swap += PAGE_SIZE;
552 else
553 put_page(page);
554
555 return;
556 }
557
558 if (!page)
559 return;
560
561 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
562 }
563
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 struct mm_walk *walk)
567 {
568 struct mem_size_stats *mss = walk->private;
569 struct vm_area_struct *vma = walk->vma;
570 struct page *page;
571
572 /* FOLL_DUMP will return -EFAULT on huge zero page */
573 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
574 if (IS_ERR_OR_NULL(page))
575 return;
576 if (PageAnon(page))
577 mss->anonymous_thp += HPAGE_PMD_SIZE;
578 else if (PageSwapBacked(page))
579 mss->shmem_thp += HPAGE_PMD_SIZE;
580 else if (is_zone_device_page(page))
581 /* pass */;
582 else
583 VM_BUG_ON_PAGE(1, page);
584 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
585 }
586 #else
587 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
588 struct mm_walk *walk)
589 {
590 }
591 #endif
592
593 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
594 struct mm_walk *walk)
595 {
596 struct vm_area_struct *vma = walk->vma;
597 pte_t *pte;
598 spinlock_t *ptl;
599
600 ptl = pmd_trans_huge_lock(pmd, vma);
601 if (ptl) {
602 smaps_pmd_entry(pmd, addr, walk);
603 spin_unlock(ptl);
604 return 0;
605 }
606
607 if (pmd_trans_unstable(pmd))
608 return 0;
609 /*
610 * The mmap_sem held all the way back in m_start() is what
611 * keeps khugepaged out of here and from collapsing things
612 * in here.
613 */
614 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
615 for (; addr != end; pte++, addr += PAGE_SIZE)
616 smaps_pte_entry(pte, addr, walk);
617 pte_unmap_unlock(pte - 1, ptl);
618 cond_resched();
619 return 0;
620 }
621
622 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
623 {
624 /*
625 * Don't forget to update Documentation/ on changes.
626 */
627 static const char mnemonics[BITS_PER_LONG][2] = {
628 /*
629 * In case if we meet a flag we don't know about.
630 */
631 [0 ... (BITS_PER_LONG-1)] = "??",
632
633 [ilog2(VM_READ)] = "rd",
634 [ilog2(VM_WRITE)] = "wr",
635 [ilog2(VM_EXEC)] = "ex",
636 [ilog2(VM_SHARED)] = "sh",
637 [ilog2(VM_MAYREAD)] = "mr",
638 [ilog2(VM_MAYWRITE)] = "mw",
639 [ilog2(VM_MAYEXEC)] = "me",
640 [ilog2(VM_MAYSHARE)] = "ms",
641 [ilog2(VM_GROWSDOWN)] = "gd",
642 [ilog2(VM_PFNMAP)] = "pf",
643 [ilog2(VM_DENYWRITE)] = "dw",
644 #ifdef CONFIG_X86_INTEL_MPX
645 [ilog2(VM_MPX)] = "mp",
646 #endif
647 [ilog2(VM_LOCKED)] = "lo",
648 [ilog2(VM_IO)] = "io",
649 [ilog2(VM_SEQ_READ)] = "sr",
650 [ilog2(VM_RAND_READ)] = "rr",
651 [ilog2(VM_DONTCOPY)] = "dc",
652 [ilog2(VM_DONTEXPAND)] = "de",
653 [ilog2(VM_ACCOUNT)] = "ac",
654 [ilog2(VM_NORESERVE)] = "nr",
655 [ilog2(VM_HUGETLB)] = "ht",
656 [ilog2(VM_ARCH_1)] = "ar",
657 [ilog2(VM_DONTDUMP)] = "dd",
658 #ifdef CONFIG_MEM_SOFT_DIRTY
659 [ilog2(VM_SOFTDIRTY)] = "sd",
660 #endif
661 [ilog2(VM_MIXEDMAP)] = "mm",
662 [ilog2(VM_HUGEPAGE)] = "hg",
663 [ilog2(VM_NOHUGEPAGE)] = "nh",
664 [ilog2(VM_MERGEABLE)] = "mg",
665 [ilog2(VM_UFFD_MISSING)]= "um",
666 [ilog2(VM_UFFD_WP)] = "uw",
667 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
668 /* These come out via ProtectionKey: */
669 [ilog2(VM_PKEY_BIT0)] = "",
670 [ilog2(VM_PKEY_BIT1)] = "",
671 [ilog2(VM_PKEY_BIT2)] = "",
672 [ilog2(VM_PKEY_BIT3)] = "",
673 #endif
674 };
675 size_t i;
676
677 seq_puts(m, "VmFlags: ");
678 for (i = 0; i < BITS_PER_LONG; i++) {
679 if (!mnemonics[i][0])
680 continue;
681 if (vma->vm_flags & (1UL << i)) {
682 seq_printf(m, "%c%c ",
683 mnemonics[i][0], mnemonics[i][1]);
684 }
685 }
686 seq_putc(m, '\n');
687 }
688
689 #ifdef CONFIG_HUGETLB_PAGE
690 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
691 unsigned long addr, unsigned long end,
692 struct mm_walk *walk)
693 {
694 struct mem_size_stats *mss = walk->private;
695 struct vm_area_struct *vma = walk->vma;
696 struct page *page = NULL;
697
698 if (pte_present(*pte)) {
699 page = vm_normal_page(vma, addr, *pte);
700 } else if (is_swap_pte(*pte)) {
701 swp_entry_t swpent = pte_to_swp_entry(*pte);
702
703 if (is_migration_entry(swpent))
704 page = migration_entry_to_page(swpent);
705 }
706 if (page) {
707 int mapcount = page_mapcount(page);
708
709 if (mapcount >= 2)
710 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
711 else
712 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
713 }
714 return 0;
715 }
716 #endif /* HUGETLB_PAGE */
717
718 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
719 {
720 }
721
722 static int show_smap(struct seq_file *m, void *v, int is_pid)
723 {
724 struct vm_area_struct *vma = v;
725 struct mem_size_stats mss;
726 struct mm_walk smaps_walk = {
727 .pmd_entry = smaps_pte_range,
728 #ifdef CONFIG_HUGETLB_PAGE
729 .hugetlb_entry = smaps_hugetlb_range,
730 #endif
731 .mm = vma->vm_mm,
732 .private = &mss,
733 };
734
735 memset(&mss, 0, sizeof mss);
736
737 #ifdef CONFIG_SHMEM
738 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
739 /*
740 * For shared or readonly shmem mappings we know that all
741 * swapped out pages belong to the shmem object, and we can
742 * obtain the swap value much more efficiently. For private
743 * writable mappings, we might have COW pages that are
744 * not affected by the parent swapped out pages of the shmem
745 * object, so we have to distinguish them during the page walk.
746 * Unless we know that the shmem object (or the part mapped by
747 * our VMA) has no swapped out pages at all.
748 */
749 unsigned long shmem_swapped = shmem_swap_usage(vma);
750
751 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
752 !(vma->vm_flags & VM_WRITE)) {
753 mss.swap = shmem_swapped;
754 } else {
755 mss.check_shmem_swap = true;
756 smaps_walk.pte_hole = smaps_pte_hole;
757 }
758 }
759 #endif
760
761 /* mmap_sem is held in m_start */
762 walk_page_vma(vma, &smaps_walk);
763
764 show_map_vma(m, vma, is_pid);
765
766 seq_printf(m,
767 "Size: %8lu kB\n"
768 "Rss: %8lu kB\n"
769 "Pss: %8lu kB\n"
770 "Shared_Clean: %8lu kB\n"
771 "Shared_Dirty: %8lu kB\n"
772 "Private_Clean: %8lu kB\n"
773 "Private_Dirty: %8lu kB\n"
774 "Referenced: %8lu kB\n"
775 "Anonymous: %8lu kB\n"
776 "AnonHugePages: %8lu kB\n"
777 "ShmemPmdMapped: %8lu kB\n"
778 "Shared_Hugetlb: %8lu kB\n"
779 "Private_Hugetlb: %7lu kB\n"
780 "Swap: %8lu kB\n"
781 "SwapPss: %8lu kB\n"
782 "KernelPageSize: %8lu kB\n"
783 "MMUPageSize: %8lu kB\n"
784 "Locked: %8lu kB\n",
785 (vma->vm_end - vma->vm_start) >> 10,
786 mss.resident >> 10,
787 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
788 mss.shared_clean >> 10,
789 mss.shared_dirty >> 10,
790 mss.private_clean >> 10,
791 mss.private_dirty >> 10,
792 mss.referenced >> 10,
793 mss.anonymous >> 10,
794 mss.anonymous_thp >> 10,
795 mss.shmem_thp >> 10,
796 mss.shared_hugetlb >> 10,
797 mss.private_hugetlb >> 10,
798 mss.swap >> 10,
799 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
800 vma_kernel_pagesize(vma) >> 10,
801 vma_mmu_pagesize(vma) >> 10,
802 (vma->vm_flags & VM_LOCKED) ?
803 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
804
805 arch_show_smap(m, vma);
806 show_smap_vma_flags(m, vma);
807 m_cache_vma(m, vma);
808 return 0;
809 }
810
811 static int show_pid_smap(struct seq_file *m, void *v)
812 {
813 return show_smap(m, v, 1);
814 }
815
816 static int show_tid_smap(struct seq_file *m, void *v)
817 {
818 return show_smap(m, v, 0);
819 }
820
821 static const struct seq_operations proc_pid_smaps_op = {
822 .start = m_start,
823 .next = m_next,
824 .stop = m_stop,
825 .show = show_pid_smap
826 };
827
828 static const struct seq_operations proc_tid_smaps_op = {
829 .start = m_start,
830 .next = m_next,
831 .stop = m_stop,
832 .show = show_tid_smap
833 };
834
835 static int pid_smaps_open(struct inode *inode, struct file *file)
836 {
837 return do_maps_open(inode, file, &proc_pid_smaps_op);
838 }
839
840 static int tid_smaps_open(struct inode *inode, struct file *file)
841 {
842 return do_maps_open(inode, file, &proc_tid_smaps_op);
843 }
844
845 const struct file_operations proc_pid_smaps_operations = {
846 .open = pid_smaps_open,
847 .read = seq_read,
848 .llseek = seq_lseek,
849 .release = proc_map_release,
850 };
851
852 const struct file_operations proc_tid_smaps_operations = {
853 .open = tid_smaps_open,
854 .read = seq_read,
855 .llseek = seq_lseek,
856 .release = proc_map_release,
857 };
858
859 enum clear_refs_types {
860 CLEAR_REFS_ALL = 1,
861 CLEAR_REFS_ANON,
862 CLEAR_REFS_MAPPED,
863 CLEAR_REFS_SOFT_DIRTY,
864 CLEAR_REFS_MM_HIWATER_RSS,
865 CLEAR_REFS_LAST,
866 };
867
868 struct clear_refs_private {
869 enum clear_refs_types type;
870 };
871
872 #ifdef CONFIG_MEM_SOFT_DIRTY
873 static inline void clear_soft_dirty(struct vm_area_struct *vma,
874 unsigned long addr, pte_t *pte)
875 {
876 /*
877 * The soft-dirty tracker uses #PF-s to catch writes
878 * to pages, so write-protect the pte as well. See the
879 * Documentation/vm/soft-dirty.txt for full description
880 * of how soft-dirty works.
881 */
882 pte_t ptent = *pte;
883
884 if (pte_present(ptent)) {
885 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
886 ptent = pte_wrprotect(ptent);
887 ptent = pte_clear_soft_dirty(ptent);
888 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
889 } else if (is_swap_pte(ptent)) {
890 ptent = pte_swp_clear_soft_dirty(ptent);
891 set_pte_at(vma->vm_mm, addr, pte, ptent);
892 }
893 }
894 #else
895 static inline void clear_soft_dirty(struct vm_area_struct *vma,
896 unsigned long addr, pte_t *pte)
897 {
898 }
899 #endif
900
901 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
902 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
903 unsigned long addr, pmd_t *pmdp)
904 {
905 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
906
907 pmd = pmd_wrprotect(pmd);
908 pmd = pmd_clear_soft_dirty(pmd);
909
910 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
911 }
912 #else
913 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
914 unsigned long addr, pmd_t *pmdp)
915 {
916 }
917 #endif
918
919 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
920 unsigned long end, struct mm_walk *walk)
921 {
922 struct clear_refs_private *cp = walk->private;
923 struct vm_area_struct *vma = walk->vma;
924 pte_t *pte, ptent;
925 spinlock_t *ptl;
926 struct page *page;
927
928 ptl = pmd_trans_huge_lock(pmd, vma);
929 if (ptl) {
930 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
931 clear_soft_dirty_pmd(vma, addr, pmd);
932 goto out;
933 }
934
935 page = pmd_page(*pmd);
936
937 /* Clear accessed and referenced bits. */
938 pmdp_test_and_clear_young(vma, addr, pmd);
939 test_and_clear_page_young(page);
940 ClearPageReferenced(page);
941 out:
942 spin_unlock(ptl);
943 return 0;
944 }
945
946 if (pmd_trans_unstable(pmd))
947 return 0;
948
949 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
950 for (; addr != end; pte++, addr += PAGE_SIZE) {
951 ptent = *pte;
952
953 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
954 clear_soft_dirty(vma, addr, pte);
955 continue;
956 }
957
958 if (!pte_present(ptent))
959 continue;
960
961 page = vm_normal_page(vma, addr, ptent);
962 if (!page)
963 continue;
964
965 /* Clear accessed and referenced bits. */
966 ptep_test_and_clear_young(vma, addr, pte);
967 test_and_clear_page_young(page);
968 ClearPageReferenced(page);
969 }
970 pte_unmap_unlock(pte - 1, ptl);
971 cond_resched();
972 return 0;
973 }
974
975 static int clear_refs_test_walk(unsigned long start, unsigned long end,
976 struct mm_walk *walk)
977 {
978 struct clear_refs_private *cp = walk->private;
979 struct vm_area_struct *vma = walk->vma;
980
981 if (vma->vm_flags & VM_PFNMAP)
982 return 1;
983
984 /*
985 * Writing 1 to /proc/pid/clear_refs affects all pages.
986 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
987 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
988 * Writing 4 to /proc/pid/clear_refs affects all pages.
989 */
990 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
991 return 1;
992 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
993 return 1;
994 return 0;
995 }
996
997 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
998 size_t count, loff_t *ppos)
999 {
1000 struct task_struct *task;
1001 char buffer[PROC_NUMBUF];
1002 struct mm_struct *mm;
1003 struct vm_area_struct *vma;
1004 enum clear_refs_types type;
1005 int itype;
1006 int rv;
1007
1008 memset(buffer, 0, sizeof(buffer));
1009 if (count > sizeof(buffer) - 1)
1010 count = sizeof(buffer) - 1;
1011 if (copy_from_user(buffer, buf, count))
1012 return -EFAULT;
1013 rv = kstrtoint(strstrip(buffer), 10, &itype);
1014 if (rv < 0)
1015 return rv;
1016 type = (enum clear_refs_types)itype;
1017 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1018 return -EINVAL;
1019
1020 task = get_proc_task(file_inode(file));
1021 if (!task)
1022 return -ESRCH;
1023 mm = get_task_mm(task);
1024 if (mm) {
1025 struct clear_refs_private cp = {
1026 .type = type,
1027 };
1028 struct mm_walk clear_refs_walk = {
1029 .pmd_entry = clear_refs_pte_range,
1030 .test_walk = clear_refs_test_walk,
1031 .mm = mm,
1032 .private = &cp,
1033 };
1034
1035 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1036 if (down_write_killable(&mm->mmap_sem)) {
1037 count = -EINTR;
1038 goto out_mm;
1039 }
1040
1041 /*
1042 * Writing 5 to /proc/pid/clear_refs resets the peak
1043 * resident set size to this mm's current rss value.
1044 */
1045 reset_mm_hiwater_rss(mm);
1046 up_write(&mm->mmap_sem);
1047 goto out_mm;
1048 }
1049
1050 down_read(&mm->mmap_sem);
1051 if (type == CLEAR_REFS_SOFT_DIRTY) {
1052 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1053 if (!(vma->vm_flags & VM_SOFTDIRTY))
1054 continue;
1055 up_read(&mm->mmap_sem);
1056 if (down_write_killable(&mm->mmap_sem)) {
1057 count = -EINTR;
1058 goto out_mm;
1059 }
1060 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1061 vma->vm_flags &= ~VM_SOFTDIRTY;
1062 vma_set_page_prot(vma);
1063 }
1064 downgrade_write(&mm->mmap_sem);
1065 break;
1066 }
1067 mmu_notifier_invalidate_range_start(mm, 0, -1);
1068 }
1069 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1070 if (type == CLEAR_REFS_SOFT_DIRTY)
1071 mmu_notifier_invalidate_range_end(mm, 0, -1);
1072 flush_tlb_mm(mm);
1073 up_read(&mm->mmap_sem);
1074 out_mm:
1075 mmput(mm);
1076 }
1077 put_task_struct(task);
1078
1079 return count;
1080 }
1081
1082 const struct file_operations proc_clear_refs_operations = {
1083 .write = clear_refs_write,
1084 .llseek = noop_llseek,
1085 };
1086
1087 typedef struct {
1088 u64 pme;
1089 } pagemap_entry_t;
1090
1091 struct pagemapread {
1092 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1093 pagemap_entry_t *buffer;
1094 bool show_pfn;
1095 };
1096
1097 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1098 #define PAGEMAP_WALK_MASK (PMD_MASK)
1099
1100 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1101 #define PM_PFRAME_BITS 55
1102 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1103 #define PM_SOFT_DIRTY BIT_ULL(55)
1104 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1105 #define PM_FILE BIT_ULL(61)
1106 #define PM_SWAP BIT_ULL(62)
1107 #define PM_PRESENT BIT_ULL(63)
1108
1109 #define PM_END_OF_BUFFER 1
1110
1111 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1112 {
1113 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1114 }
1115
1116 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1117 struct pagemapread *pm)
1118 {
1119 pm->buffer[pm->pos++] = *pme;
1120 if (pm->pos >= pm->len)
1121 return PM_END_OF_BUFFER;
1122 return 0;
1123 }
1124
1125 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1126 struct mm_walk *walk)
1127 {
1128 struct pagemapread *pm = walk->private;
1129 unsigned long addr = start;
1130 int err = 0;
1131
1132 while (addr < end) {
1133 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1134 pagemap_entry_t pme = make_pme(0, 0);
1135 /* End of address space hole, which we mark as non-present. */
1136 unsigned long hole_end;
1137
1138 if (vma)
1139 hole_end = min(end, vma->vm_start);
1140 else
1141 hole_end = end;
1142
1143 for (; addr < hole_end; addr += PAGE_SIZE) {
1144 err = add_to_pagemap(addr, &pme, pm);
1145 if (err)
1146 goto out;
1147 }
1148
1149 if (!vma)
1150 break;
1151
1152 /* Addresses in the VMA. */
1153 if (vma->vm_flags & VM_SOFTDIRTY)
1154 pme = make_pme(0, PM_SOFT_DIRTY);
1155 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1156 err = add_to_pagemap(addr, &pme, pm);
1157 if (err)
1158 goto out;
1159 }
1160 }
1161 out:
1162 return err;
1163 }
1164
1165 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1166 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1167 {
1168 u64 frame = 0, flags = 0;
1169 struct page *page = NULL;
1170
1171 if (pte_present(pte)) {
1172 if (pm->show_pfn)
1173 frame = pte_pfn(pte);
1174 flags |= PM_PRESENT;
1175 page = vm_normal_page(vma, addr, pte);
1176 if (pte_soft_dirty(pte))
1177 flags |= PM_SOFT_DIRTY;
1178 } else if (is_swap_pte(pte)) {
1179 swp_entry_t entry;
1180 if (pte_swp_soft_dirty(pte))
1181 flags |= PM_SOFT_DIRTY;
1182 entry = pte_to_swp_entry(pte);
1183 frame = swp_type(entry) |
1184 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1185 flags |= PM_SWAP;
1186 if (is_migration_entry(entry))
1187 page = migration_entry_to_page(entry);
1188 }
1189
1190 if (page && !PageAnon(page))
1191 flags |= PM_FILE;
1192 if (page && page_mapcount(page) == 1)
1193 flags |= PM_MMAP_EXCLUSIVE;
1194 if (vma->vm_flags & VM_SOFTDIRTY)
1195 flags |= PM_SOFT_DIRTY;
1196
1197 return make_pme(frame, flags);
1198 }
1199
1200 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1201 struct mm_walk *walk)
1202 {
1203 struct vm_area_struct *vma = walk->vma;
1204 struct pagemapread *pm = walk->private;
1205 spinlock_t *ptl;
1206 pte_t *pte, *orig_pte;
1207 int err = 0;
1208
1209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1210 ptl = pmd_trans_huge_lock(pmdp, vma);
1211 if (ptl) {
1212 u64 flags = 0, frame = 0;
1213 pmd_t pmd = *pmdp;
1214
1215 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1216 flags |= PM_SOFT_DIRTY;
1217
1218 /*
1219 * Currently pmd for thp is always present because thp
1220 * can not be swapped-out, migrated, or HWPOISONed
1221 * (split in such cases instead.)
1222 * This if-check is just to prepare for future implementation.
1223 */
1224 if (pmd_present(pmd)) {
1225 struct page *page = pmd_page(pmd);
1226
1227 if (page_mapcount(page) == 1)
1228 flags |= PM_MMAP_EXCLUSIVE;
1229
1230 flags |= PM_PRESENT;
1231 if (pm->show_pfn)
1232 frame = pmd_pfn(pmd) +
1233 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1234 }
1235
1236 for (; addr != end; addr += PAGE_SIZE) {
1237 pagemap_entry_t pme = make_pme(frame, flags);
1238
1239 err = add_to_pagemap(addr, &pme, pm);
1240 if (err)
1241 break;
1242 if (pm->show_pfn && (flags & PM_PRESENT))
1243 frame++;
1244 }
1245 spin_unlock(ptl);
1246 return err;
1247 }
1248
1249 if (pmd_trans_unstable(pmdp))
1250 return 0;
1251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1252
1253 /*
1254 * We can assume that @vma always points to a valid one and @end never
1255 * goes beyond vma->vm_end.
1256 */
1257 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1258 for (; addr < end; pte++, addr += PAGE_SIZE) {
1259 pagemap_entry_t pme;
1260
1261 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1262 err = add_to_pagemap(addr, &pme, pm);
1263 if (err)
1264 break;
1265 }
1266 pte_unmap_unlock(orig_pte, ptl);
1267
1268 cond_resched();
1269
1270 return err;
1271 }
1272
1273 #ifdef CONFIG_HUGETLB_PAGE
1274 /* This function walks within one hugetlb entry in the single call */
1275 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1276 unsigned long addr, unsigned long end,
1277 struct mm_walk *walk)
1278 {
1279 struct pagemapread *pm = walk->private;
1280 struct vm_area_struct *vma = walk->vma;
1281 u64 flags = 0, frame = 0;
1282 int err = 0;
1283 pte_t pte;
1284
1285 if (vma->vm_flags & VM_SOFTDIRTY)
1286 flags |= PM_SOFT_DIRTY;
1287
1288 pte = huge_ptep_get(ptep);
1289 if (pte_present(pte)) {
1290 struct page *page = pte_page(pte);
1291
1292 if (!PageAnon(page))
1293 flags |= PM_FILE;
1294
1295 if (page_mapcount(page) == 1)
1296 flags |= PM_MMAP_EXCLUSIVE;
1297
1298 flags |= PM_PRESENT;
1299 if (pm->show_pfn)
1300 frame = pte_pfn(pte) +
1301 ((addr & ~hmask) >> PAGE_SHIFT);
1302 }
1303
1304 for (; addr != end; addr += PAGE_SIZE) {
1305 pagemap_entry_t pme = make_pme(frame, flags);
1306
1307 err = add_to_pagemap(addr, &pme, pm);
1308 if (err)
1309 return err;
1310 if (pm->show_pfn && (flags & PM_PRESENT))
1311 frame++;
1312 }
1313
1314 cond_resched();
1315
1316 return err;
1317 }
1318 #endif /* HUGETLB_PAGE */
1319
1320 /*
1321 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1322 *
1323 * For each page in the address space, this file contains one 64-bit entry
1324 * consisting of the following:
1325 *
1326 * Bits 0-54 page frame number (PFN) if present
1327 * Bits 0-4 swap type if swapped
1328 * Bits 5-54 swap offset if swapped
1329 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1330 * Bit 56 page exclusively mapped
1331 * Bits 57-60 zero
1332 * Bit 61 page is file-page or shared-anon
1333 * Bit 62 page swapped
1334 * Bit 63 page present
1335 *
1336 * If the page is not present but in swap, then the PFN contains an
1337 * encoding of the swap file number and the page's offset into the
1338 * swap. Unmapped pages return a null PFN. This allows determining
1339 * precisely which pages are mapped (or in swap) and comparing mapped
1340 * pages between processes.
1341 *
1342 * Efficient users of this interface will use /proc/pid/maps to
1343 * determine which areas of memory are actually mapped and llseek to
1344 * skip over unmapped regions.
1345 */
1346 static ssize_t pagemap_read(struct file *file, char __user *buf,
1347 size_t count, loff_t *ppos)
1348 {
1349 struct mm_struct *mm = file->private_data;
1350 struct pagemapread pm;
1351 struct mm_walk pagemap_walk = {};
1352 unsigned long src;
1353 unsigned long svpfn;
1354 unsigned long start_vaddr;
1355 unsigned long end_vaddr;
1356 int ret = 0, copied = 0;
1357
1358 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1359 goto out;
1360
1361 ret = -EINVAL;
1362 /* file position must be aligned */
1363 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1364 goto out_mm;
1365
1366 ret = 0;
1367 if (!count)
1368 goto out_mm;
1369
1370 /* do not disclose physical addresses: attack vector */
1371 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1372
1373 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1374 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1375 ret = -ENOMEM;
1376 if (!pm.buffer)
1377 goto out_mm;
1378
1379 pagemap_walk.pmd_entry = pagemap_pmd_range;
1380 pagemap_walk.pte_hole = pagemap_pte_hole;
1381 #ifdef CONFIG_HUGETLB_PAGE
1382 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1383 #endif
1384 pagemap_walk.mm = mm;
1385 pagemap_walk.private = &pm;
1386
1387 src = *ppos;
1388 svpfn = src / PM_ENTRY_BYTES;
1389 start_vaddr = svpfn << PAGE_SHIFT;
1390 end_vaddr = mm->task_size;
1391
1392 /* watch out for wraparound */
1393 if (svpfn > mm->task_size >> PAGE_SHIFT)
1394 start_vaddr = end_vaddr;
1395
1396 /*
1397 * The odds are that this will stop walking way
1398 * before end_vaddr, because the length of the
1399 * user buffer is tracked in "pm", and the walk
1400 * will stop when we hit the end of the buffer.
1401 */
1402 ret = 0;
1403 while (count && (start_vaddr < end_vaddr)) {
1404 int len;
1405 unsigned long end;
1406
1407 pm.pos = 0;
1408 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1409 /* overflow ? */
1410 if (end < start_vaddr || end > end_vaddr)
1411 end = end_vaddr;
1412 down_read(&mm->mmap_sem);
1413 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1414 up_read(&mm->mmap_sem);
1415 start_vaddr = end;
1416
1417 len = min(count, PM_ENTRY_BYTES * pm.pos);
1418 if (copy_to_user(buf, pm.buffer, len)) {
1419 ret = -EFAULT;
1420 goto out_free;
1421 }
1422 copied += len;
1423 buf += len;
1424 count -= len;
1425 }
1426 *ppos += copied;
1427 if (!ret || ret == PM_END_OF_BUFFER)
1428 ret = copied;
1429
1430 out_free:
1431 kfree(pm.buffer);
1432 out_mm:
1433 mmput(mm);
1434 out:
1435 return ret;
1436 }
1437
1438 static int pagemap_open(struct inode *inode, struct file *file)
1439 {
1440 struct mm_struct *mm;
1441
1442 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1443 if (IS_ERR(mm))
1444 return PTR_ERR(mm);
1445 file->private_data = mm;
1446 return 0;
1447 }
1448
1449 static int pagemap_release(struct inode *inode, struct file *file)
1450 {
1451 struct mm_struct *mm = file->private_data;
1452
1453 if (mm)
1454 mmdrop(mm);
1455 return 0;
1456 }
1457
1458 const struct file_operations proc_pagemap_operations = {
1459 .llseek = mem_lseek, /* borrow this */
1460 .read = pagemap_read,
1461 .open = pagemap_open,
1462 .release = pagemap_release,
1463 };
1464 #endif /* CONFIG_PROC_PAGE_MONITOR */
1465
1466 #ifdef CONFIG_NUMA
1467
1468 struct numa_maps {
1469 unsigned long pages;
1470 unsigned long anon;
1471 unsigned long active;
1472 unsigned long writeback;
1473 unsigned long mapcount_max;
1474 unsigned long dirty;
1475 unsigned long swapcache;
1476 unsigned long node[MAX_NUMNODES];
1477 };
1478
1479 struct numa_maps_private {
1480 struct proc_maps_private proc_maps;
1481 struct numa_maps md;
1482 };
1483
1484 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1485 unsigned long nr_pages)
1486 {
1487 int count = page_mapcount(page);
1488
1489 md->pages += nr_pages;
1490 if (pte_dirty || PageDirty(page))
1491 md->dirty += nr_pages;
1492
1493 if (PageSwapCache(page))
1494 md->swapcache += nr_pages;
1495
1496 if (PageActive(page) || PageUnevictable(page))
1497 md->active += nr_pages;
1498
1499 if (PageWriteback(page))
1500 md->writeback += nr_pages;
1501
1502 if (PageAnon(page))
1503 md->anon += nr_pages;
1504
1505 if (count > md->mapcount_max)
1506 md->mapcount_max = count;
1507
1508 md->node[page_to_nid(page)] += nr_pages;
1509 }
1510
1511 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1512 unsigned long addr)
1513 {
1514 struct page *page;
1515 int nid;
1516
1517 if (!pte_present(pte))
1518 return NULL;
1519
1520 page = vm_normal_page(vma, addr, pte);
1521 if (!page)
1522 return NULL;
1523
1524 if (PageReserved(page))
1525 return NULL;
1526
1527 nid = page_to_nid(page);
1528 if (!node_isset(nid, node_states[N_MEMORY]))
1529 return NULL;
1530
1531 return page;
1532 }
1533
1534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1535 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1536 struct vm_area_struct *vma,
1537 unsigned long addr)
1538 {
1539 struct page *page;
1540 int nid;
1541
1542 if (!pmd_present(pmd))
1543 return NULL;
1544
1545 page = vm_normal_page_pmd(vma, addr, pmd);
1546 if (!page)
1547 return NULL;
1548
1549 if (PageReserved(page))
1550 return NULL;
1551
1552 nid = page_to_nid(page);
1553 if (!node_isset(nid, node_states[N_MEMORY]))
1554 return NULL;
1555
1556 return page;
1557 }
1558 #endif
1559
1560 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1561 unsigned long end, struct mm_walk *walk)
1562 {
1563 struct numa_maps *md = walk->private;
1564 struct vm_area_struct *vma = walk->vma;
1565 spinlock_t *ptl;
1566 pte_t *orig_pte;
1567 pte_t *pte;
1568
1569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570 ptl = pmd_trans_huge_lock(pmd, vma);
1571 if (ptl) {
1572 struct page *page;
1573
1574 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1575 if (page)
1576 gather_stats(page, md, pmd_dirty(*pmd),
1577 HPAGE_PMD_SIZE/PAGE_SIZE);
1578 spin_unlock(ptl);
1579 return 0;
1580 }
1581
1582 if (pmd_trans_unstable(pmd))
1583 return 0;
1584 #endif
1585 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1586 do {
1587 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1588 if (!page)
1589 continue;
1590 gather_stats(page, md, pte_dirty(*pte), 1);
1591
1592 } while (pte++, addr += PAGE_SIZE, addr != end);
1593 pte_unmap_unlock(orig_pte, ptl);
1594 cond_resched();
1595 return 0;
1596 }
1597 #ifdef CONFIG_HUGETLB_PAGE
1598 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1599 unsigned long addr, unsigned long end, struct mm_walk *walk)
1600 {
1601 pte_t huge_pte = huge_ptep_get(pte);
1602 struct numa_maps *md;
1603 struct page *page;
1604
1605 if (!pte_present(huge_pte))
1606 return 0;
1607
1608 page = pte_page(huge_pte);
1609 if (!page)
1610 return 0;
1611
1612 md = walk->private;
1613 gather_stats(page, md, pte_dirty(huge_pte), 1);
1614 return 0;
1615 }
1616
1617 #else
1618 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1619 unsigned long addr, unsigned long end, struct mm_walk *walk)
1620 {
1621 return 0;
1622 }
1623 #endif
1624
1625 /*
1626 * Display pages allocated per node and memory policy via /proc.
1627 */
1628 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1629 {
1630 struct numa_maps_private *numa_priv = m->private;
1631 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1632 struct vm_area_struct *vma = v;
1633 struct numa_maps *md = &numa_priv->md;
1634 struct file *file = vma_pr_or_file(vma);
1635 struct mm_struct *mm = vma->vm_mm;
1636 struct mm_walk walk = {
1637 .hugetlb_entry = gather_hugetlb_stats,
1638 .pmd_entry = gather_pte_stats,
1639 .private = md,
1640 .mm = mm,
1641 };
1642 struct mempolicy *pol;
1643 char buffer[64];
1644 int nid;
1645
1646 if (!mm)
1647 return 0;
1648
1649 /* Ensure we start with an empty set of numa_maps statistics. */
1650 memset(md, 0, sizeof(*md));
1651
1652 pol = __get_vma_policy(vma, vma->vm_start);
1653 if (pol) {
1654 mpol_to_str(buffer, sizeof(buffer), pol);
1655 mpol_cond_put(pol);
1656 } else {
1657 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1658 }
1659
1660 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1661
1662 if (file) {
1663 seq_puts(m, " file=");
1664 seq_file_path(m, file, "\n\t= ");
1665 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1666 seq_puts(m, " heap");
1667 } else if (is_stack(proc_priv, vma)) {
1668 seq_puts(m, " stack");
1669 }
1670
1671 if (is_vm_hugetlb_page(vma))
1672 seq_puts(m, " huge");
1673
1674 /* mmap_sem is held by m_start */
1675 walk_page_vma(vma, &walk);
1676
1677 if (!md->pages)
1678 goto out;
1679
1680 if (md->anon)
1681 seq_printf(m, " anon=%lu", md->anon);
1682
1683 if (md->dirty)
1684 seq_printf(m, " dirty=%lu", md->dirty);
1685
1686 if (md->pages != md->anon && md->pages != md->dirty)
1687 seq_printf(m, " mapped=%lu", md->pages);
1688
1689 if (md->mapcount_max > 1)
1690 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1691
1692 if (md->swapcache)
1693 seq_printf(m, " swapcache=%lu", md->swapcache);
1694
1695 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1696 seq_printf(m, " active=%lu", md->active);
1697
1698 if (md->writeback)
1699 seq_printf(m, " writeback=%lu", md->writeback);
1700
1701 for_each_node_state(nid, N_MEMORY)
1702 if (md->node[nid])
1703 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1704
1705 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1706 out:
1707 seq_putc(m, '\n');
1708 m_cache_vma(m, vma);
1709 return 0;
1710 }
1711
1712 static int show_pid_numa_map(struct seq_file *m, void *v)
1713 {
1714 return show_numa_map(m, v, 1);
1715 }
1716
1717 static int show_tid_numa_map(struct seq_file *m, void *v)
1718 {
1719 return show_numa_map(m, v, 0);
1720 }
1721
1722 static const struct seq_operations proc_pid_numa_maps_op = {
1723 .start = m_start,
1724 .next = m_next,
1725 .stop = m_stop,
1726 .show = show_pid_numa_map,
1727 };
1728
1729 static const struct seq_operations proc_tid_numa_maps_op = {
1730 .start = m_start,
1731 .next = m_next,
1732 .stop = m_stop,
1733 .show = show_tid_numa_map,
1734 };
1735
1736 static int numa_maps_open(struct inode *inode, struct file *file,
1737 const struct seq_operations *ops)
1738 {
1739 return proc_maps_open(inode, file, ops,
1740 sizeof(struct numa_maps_private));
1741 }
1742
1743 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1744 {
1745 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1746 }
1747
1748 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1749 {
1750 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1751 }
1752
1753 const struct file_operations proc_pid_numa_maps_operations = {
1754 .open = pid_numa_maps_open,
1755 .read = seq_read,
1756 .llseek = seq_lseek,
1757 .release = proc_map_release,
1758 };
1759
1760 const struct file_operations proc_tid_numa_maps_operations = {
1761 .open = tid_numa_maps_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = proc_map_release,
1765 };
1766 #endif /* CONFIG_NUMA */