]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/task_mmu.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
17
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 {
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
22
23 /*
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
29 */
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
36
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
62 }
63
64 unsigned long task_vsize(struct mm_struct *mm)
65 {
66 return PAGE_SIZE * mm->total_vm;
67 }
68
69 int task_statm(struct mm_struct *mm, int *shared, int *text,
70 int *data, int *resident)
71 {
72 *shared = get_mm_counter(mm, MM_FILEPAGES);
73 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
74 >> PAGE_SHIFT;
75 *data = mm->total_vm - mm->shared_vm;
76 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
77 return mm->total_vm;
78 }
79
80 static void pad_len_spaces(struct seq_file *m, int len)
81 {
82 len = 25 + sizeof(void*) * 6 - len;
83 if (len < 1)
84 len = 1;
85 seq_printf(m, "%*c", len, ' ');
86 }
87
88 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
89 {
90 if (vma && vma != priv->tail_vma) {
91 struct mm_struct *mm = vma->vm_mm;
92 up_read(&mm->mmap_sem);
93 mmput(mm);
94 }
95 }
96
97 static void *m_start(struct seq_file *m, loff_t *pos)
98 {
99 struct proc_maps_private *priv = m->private;
100 unsigned long last_addr = m->version;
101 struct mm_struct *mm;
102 struct vm_area_struct *vma, *tail_vma = NULL;
103 loff_t l = *pos;
104
105 /* Clear the per syscall fields in priv */
106 priv->task = NULL;
107 priv->tail_vma = NULL;
108
109 /*
110 * We remember last_addr rather than next_addr to hit with
111 * mmap_cache most of the time. We have zero last_addr at
112 * the beginning and also after lseek. We will have -1 last_addr
113 * after the end of the vmas.
114 */
115
116 if (last_addr == -1UL)
117 return NULL;
118
119 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
120 if (!priv->task)
121 return NULL;
122
123 mm = mm_for_maps(priv->task);
124 if (!mm)
125 return NULL;
126 down_read(&mm->mmap_sem);
127
128 tail_vma = get_gate_vma(priv->task);
129 priv->tail_vma = tail_vma;
130
131 /* Start with last addr hint */
132 vma = find_vma(mm, last_addr);
133 if (last_addr && vma) {
134 vma = vma->vm_next;
135 goto out;
136 }
137
138 /*
139 * Check the vma index is within the range and do
140 * sequential scan until m_index.
141 */
142 vma = NULL;
143 if ((unsigned long)l < mm->map_count) {
144 vma = mm->mmap;
145 while (l-- && vma)
146 vma = vma->vm_next;
147 goto out;
148 }
149
150 if (l != mm->map_count)
151 tail_vma = NULL; /* After gate vma */
152
153 out:
154 if (vma)
155 return vma;
156
157 /* End of vmas has been reached */
158 m->version = (tail_vma != NULL)? 0: -1UL;
159 up_read(&mm->mmap_sem);
160 mmput(mm);
161 return tail_vma;
162 }
163
164 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
165 {
166 struct proc_maps_private *priv = m->private;
167 struct vm_area_struct *vma = v;
168 struct vm_area_struct *tail_vma = priv->tail_vma;
169
170 (*pos)++;
171 if (vma && (vma != tail_vma) && vma->vm_next)
172 return vma->vm_next;
173 vma_stop(priv, vma);
174 return (vma != tail_vma)? tail_vma: NULL;
175 }
176
177 static void m_stop(struct seq_file *m, void *v)
178 {
179 struct proc_maps_private *priv = m->private;
180 struct vm_area_struct *vma = v;
181
182 vma_stop(priv, vma);
183 if (priv->task)
184 put_task_struct(priv->task);
185 }
186
187 static int do_maps_open(struct inode *inode, struct file *file,
188 const struct seq_operations *ops)
189 {
190 struct proc_maps_private *priv;
191 int ret = -ENOMEM;
192 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
193 if (priv) {
194 priv->pid = proc_pid(inode);
195 ret = seq_open(file, ops);
196 if (!ret) {
197 struct seq_file *m = file->private_data;
198 m->private = priv;
199 } else {
200 kfree(priv);
201 }
202 }
203 return ret;
204 }
205
206 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
207 {
208 struct mm_struct *mm = vma->vm_mm;
209 struct file *file = vma->vm_file;
210 int flags = vma->vm_flags;
211 unsigned long ino = 0;
212 unsigned long long pgoff = 0;
213 dev_t dev = 0;
214 int len;
215
216 if (file) {
217 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
218 dev = inode->i_sb->s_dev;
219 ino = inode->i_ino;
220 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
221 }
222
223 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
224 vma->vm_start,
225 vma->vm_end,
226 flags & VM_READ ? 'r' : '-',
227 flags & VM_WRITE ? 'w' : '-',
228 flags & VM_EXEC ? 'x' : '-',
229 flags & VM_MAYSHARE ? 's' : 'p',
230 pgoff,
231 MAJOR(dev), MINOR(dev), ino, &len);
232
233 /*
234 * Print the dentry name for named mappings, and a
235 * special [heap] marker for the heap:
236 */
237 if (file) {
238 pad_len_spaces(m, len);
239 seq_path(m, &file->f_path, "\n");
240 } else {
241 const char *name = arch_vma_name(vma);
242 if (!name) {
243 if (mm) {
244 if (vma->vm_start <= mm->start_brk &&
245 vma->vm_end >= mm->brk) {
246 name = "[heap]";
247 } else if (vma->vm_start <= mm->start_stack &&
248 vma->vm_end >= mm->start_stack) {
249 name = "[stack]";
250 } else {
251 unsigned long stack_start;
252 struct proc_maps_private *pmp;
253
254 pmp = m->private;
255 stack_start = pmp->task->stack_start;
256
257 if (vma->vm_start <= stack_start &&
258 vma->vm_end >= stack_start) {
259 pad_len_spaces(m, len);
260 seq_printf(m,
261 "[threadstack:%08lx]",
262 #ifdef CONFIG_STACK_GROWSUP
263 vma->vm_end - stack_start
264 #else
265 stack_start - vma->vm_start
266 #endif
267 );
268 }
269 }
270 } else {
271 name = "[vdso]";
272 }
273 }
274 if (name) {
275 pad_len_spaces(m, len);
276 seq_puts(m, name);
277 }
278 }
279 seq_putc(m, '\n');
280 }
281
282 static int show_map(struct seq_file *m, void *v)
283 {
284 struct vm_area_struct *vma = v;
285 struct proc_maps_private *priv = m->private;
286 struct task_struct *task = priv->task;
287
288 show_map_vma(m, vma);
289
290 if (m->count < m->size) /* vma is copied successfully */
291 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
292 return 0;
293 }
294
295 static const struct seq_operations proc_pid_maps_op = {
296 .start = m_start,
297 .next = m_next,
298 .stop = m_stop,
299 .show = show_map
300 };
301
302 static int maps_open(struct inode *inode, struct file *file)
303 {
304 return do_maps_open(inode, file, &proc_pid_maps_op);
305 }
306
307 const struct file_operations proc_maps_operations = {
308 .open = maps_open,
309 .read = seq_read,
310 .llseek = seq_lseek,
311 .release = seq_release_private,
312 };
313
314 /*
315 * Proportional Set Size(PSS): my share of RSS.
316 *
317 * PSS of a process is the count of pages it has in memory, where each
318 * page is divided by the number of processes sharing it. So if a
319 * process has 1000 pages all to itself, and 1000 shared with one other
320 * process, its PSS will be 1500.
321 *
322 * To keep (accumulated) division errors low, we adopt a 64bit
323 * fixed-point pss counter to minimize division errors. So (pss >>
324 * PSS_SHIFT) would be the real byte count.
325 *
326 * A shift of 12 before division means (assuming 4K page size):
327 * - 1M 3-user-pages add up to 8KB errors;
328 * - supports mapcount up to 2^24, or 16M;
329 * - supports PSS up to 2^52 bytes, or 4PB.
330 */
331 #define PSS_SHIFT 12
332
333 #ifdef CONFIG_PROC_PAGE_MONITOR
334 struct mem_size_stats {
335 struct vm_area_struct *vma;
336 unsigned long resident;
337 unsigned long shared_clean;
338 unsigned long shared_dirty;
339 unsigned long private_clean;
340 unsigned long private_dirty;
341 unsigned long referenced;
342 unsigned long swap;
343 u64 pss;
344 };
345
346 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
347 struct mm_walk *walk)
348 {
349 struct mem_size_stats *mss = walk->private;
350 struct vm_area_struct *vma = mss->vma;
351 pte_t *pte, ptent;
352 spinlock_t *ptl;
353 struct page *page;
354 int mapcount;
355
356 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
357 for (; addr != end; pte++, addr += PAGE_SIZE) {
358 ptent = *pte;
359
360 if (is_swap_pte(ptent)) {
361 mss->swap += PAGE_SIZE;
362 continue;
363 }
364
365 if (!pte_present(ptent))
366 continue;
367
368 page = vm_normal_page(vma, addr, ptent);
369 if (!page)
370 continue;
371
372 mss->resident += PAGE_SIZE;
373 /* Accumulate the size in pages that have been accessed. */
374 if (pte_young(ptent) || PageReferenced(page))
375 mss->referenced += PAGE_SIZE;
376 mapcount = page_mapcount(page);
377 if (mapcount >= 2) {
378 if (pte_dirty(ptent))
379 mss->shared_dirty += PAGE_SIZE;
380 else
381 mss->shared_clean += PAGE_SIZE;
382 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
383 } else {
384 if (pte_dirty(ptent))
385 mss->private_dirty += PAGE_SIZE;
386 else
387 mss->private_clean += PAGE_SIZE;
388 mss->pss += (PAGE_SIZE << PSS_SHIFT);
389 }
390 }
391 pte_unmap_unlock(pte - 1, ptl);
392 cond_resched();
393 return 0;
394 }
395
396 static int show_smap(struct seq_file *m, void *v)
397 {
398 struct proc_maps_private *priv = m->private;
399 struct task_struct *task = priv->task;
400 struct vm_area_struct *vma = v;
401 struct mem_size_stats mss;
402 struct mm_walk smaps_walk = {
403 .pmd_entry = smaps_pte_range,
404 .mm = vma->vm_mm,
405 .private = &mss,
406 };
407
408 memset(&mss, 0, sizeof mss);
409 mss.vma = vma;
410 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
411 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
412
413 show_map_vma(m, vma);
414
415 seq_printf(m,
416 "Size: %8lu kB\n"
417 "Rss: %8lu kB\n"
418 "Pss: %8lu kB\n"
419 "Shared_Clean: %8lu kB\n"
420 "Shared_Dirty: %8lu kB\n"
421 "Private_Clean: %8lu kB\n"
422 "Private_Dirty: %8lu kB\n"
423 "Referenced: %8lu kB\n"
424 "Swap: %8lu kB\n"
425 "KernelPageSize: %8lu kB\n"
426 "MMUPageSize: %8lu kB\n",
427 (vma->vm_end - vma->vm_start) >> 10,
428 mss.resident >> 10,
429 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
430 mss.shared_clean >> 10,
431 mss.shared_dirty >> 10,
432 mss.private_clean >> 10,
433 mss.private_dirty >> 10,
434 mss.referenced >> 10,
435 mss.swap >> 10,
436 vma_kernel_pagesize(vma) >> 10,
437 vma_mmu_pagesize(vma) >> 10);
438
439 if (m->count < m->size) /* vma is copied successfully */
440 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
441 return 0;
442 }
443
444 static const struct seq_operations proc_pid_smaps_op = {
445 .start = m_start,
446 .next = m_next,
447 .stop = m_stop,
448 .show = show_smap
449 };
450
451 static int smaps_open(struct inode *inode, struct file *file)
452 {
453 return do_maps_open(inode, file, &proc_pid_smaps_op);
454 }
455
456 const struct file_operations proc_smaps_operations = {
457 .open = smaps_open,
458 .read = seq_read,
459 .llseek = seq_lseek,
460 .release = seq_release_private,
461 };
462
463 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
464 unsigned long end, struct mm_walk *walk)
465 {
466 struct vm_area_struct *vma = walk->private;
467 pte_t *pte, ptent;
468 spinlock_t *ptl;
469 struct page *page;
470
471 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
472 for (; addr != end; pte++, addr += PAGE_SIZE) {
473 ptent = *pte;
474 if (!pte_present(ptent))
475 continue;
476
477 page = vm_normal_page(vma, addr, ptent);
478 if (!page)
479 continue;
480
481 /* Clear accessed and referenced bits. */
482 ptep_test_and_clear_young(vma, addr, pte);
483 ClearPageReferenced(page);
484 }
485 pte_unmap_unlock(pte - 1, ptl);
486 cond_resched();
487 return 0;
488 }
489
490 #define CLEAR_REFS_ALL 1
491 #define CLEAR_REFS_ANON 2
492 #define CLEAR_REFS_MAPPED 3
493
494 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
495 size_t count, loff_t *ppos)
496 {
497 struct task_struct *task;
498 char buffer[PROC_NUMBUF];
499 struct mm_struct *mm;
500 struct vm_area_struct *vma;
501 long type;
502
503 memset(buffer, 0, sizeof(buffer));
504 if (count > sizeof(buffer) - 1)
505 count = sizeof(buffer) - 1;
506 if (copy_from_user(buffer, buf, count))
507 return -EFAULT;
508 if (strict_strtol(strstrip(buffer), 10, &type))
509 return -EINVAL;
510 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
511 return -EINVAL;
512 task = get_proc_task(file->f_path.dentry->d_inode);
513 if (!task)
514 return -ESRCH;
515 mm = get_task_mm(task);
516 if (mm) {
517 struct mm_walk clear_refs_walk = {
518 .pmd_entry = clear_refs_pte_range,
519 .mm = mm,
520 };
521 down_read(&mm->mmap_sem);
522 for (vma = mm->mmap; vma; vma = vma->vm_next) {
523 clear_refs_walk.private = vma;
524 if (is_vm_hugetlb_page(vma))
525 continue;
526 /*
527 * Writing 1 to /proc/pid/clear_refs affects all pages.
528 *
529 * Writing 2 to /proc/pid/clear_refs only affects
530 * Anonymous pages.
531 *
532 * Writing 3 to /proc/pid/clear_refs only affects file
533 * mapped pages.
534 */
535 if (type == CLEAR_REFS_ANON && vma->vm_file)
536 continue;
537 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
538 continue;
539 walk_page_range(vma->vm_start, vma->vm_end,
540 &clear_refs_walk);
541 }
542 flush_tlb_mm(mm);
543 up_read(&mm->mmap_sem);
544 mmput(mm);
545 }
546 put_task_struct(task);
547
548 return count;
549 }
550
551 const struct file_operations proc_clear_refs_operations = {
552 .write = clear_refs_write,
553 };
554
555 struct pagemapread {
556 u64 __user *out, *end;
557 };
558
559 #define PM_ENTRY_BYTES sizeof(u64)
560 #define PM_STATUS_BITS 3
561 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
562 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
563 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
564 #define PM_PSHIFT_BITS 6
565 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
566 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
567 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
568 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
569 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
570
571 #define PM_PRESENT PM_STATUS(4LL)
572 #define PM_SWAP PM_STATUS(2LL)
573 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
574 #define PM_END_OF_BUFFER 1
575
576 static int add_to_pagemap(unsigned long addr, u64 pfn,
577 struct pagemapread *pm)
578 {
579 if (put_user(pfn, pm->out))
580 return -EFAULT;
581 pm->out++;
582 if (pm->out >= pm->end)
583 return PM_END_OF_BUFFER;
584 return 0;
585 }
586
587 static int pagemap_pte_hole(unsigned long start, unsigned long end,
588 struct mm_walk *walk)
589 {
590 struct pagemapread *pm = walk->private;
591 unsigned long addr;
592 int err = 0;
593 for (addr = start; addr < end; addr += PAGE_SIZE) {
594 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
595 if (err)
596 break;
597 }
598 return err;
599 }
600
601 static u64 swap_pte_to_pagemap_entry(pte_t pte)
602 {
603 swp_entry_t e = pte_to_swp_entry(pte);
604 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
605 }
606
607 static u64 pte_to_pagemap_entry(pte_t pte)
608 {
609 u64 pme = 0;
610 if (is_swap_pte(pte))
611 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
612 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
613 else if (pte_present(pte))
614 pme = PM_PFRAME(pte_pfn(pte))
615 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
616 return pme;
617 }
618
619 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
620 struct mm_walk *walk)
621 {
622 struct vm_area_struct *vma;
623 struct pagemapread *pm = walk->private;
624 pte_t *pte;
625 int err = 0;
626
627 /* find the first VMA at or above 'addr' */
628 vma = find_vma(walk->mm, addr);
629 for (; addr != end; addr += PAGE_SIZE) {
630 u64 pfn = PM_NOT_PRESENT;
631
632 /* check to see if we've left 'vma' behind
633 * and need a new, higher one */
634 if (vma && (addr >= vma->vm_end))
635 vma = find_vma(walk->mm, addr);
636
637 /* check that 'vma' actually covers this address,
638 * and that it isn't a huge page vma */
639 if (vma && (vma->vm_start <= addr) &&
640 !is_vm_hugetlb_page(vma)) {
641 pte = pte_offset_map(pmd, addr);
642 pfn = pte_to_pagemap_entry(*pte);
643 /* unmap before userspace copy */
644 pte_unmap(pte);
645 }
646 err = add_to_pagemap(addr, pfn, pm);
647 if (err)
648 return err;
649 }
650
651 cond_resched();
652
653 return err;
654 }
655
656 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
657 {
658 u64 pme = 0;
659 if (pte_present(pte))
660 pme = PM_PFRAME(pte_pfn(pte) + offset)
661 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
662 return pme;
663 }
664
665 static int pagemap_hugetlb_range(pte_t *pte, unsigned long addr,
666 unsigned long end, struct mm_walk *walk)
667 {
668 struct vm_area_struct *vma;
669 struct pagemapread *pm = walk->private;
670 struct hstate *hs = NULL;
671 int err = 0;
672
673 vma = find_vma(walk->mm, addr);
674 if (vma)
675 hs = hstate_vma(vma);
676 for (; addr != end; addr += PAGE_SIZE) {
677 u64 pfn = PM_NOT_PRESENT;
678
679 if (vma && (addr >= vma->vm_end)) {
680 vma = find_vma(walk->mm, addr);
681 if (vma)
682 hs = hstate_vma(vma);
683 }
684
685 if (vma && (vma->vm_start <= addr) && is_vm_hugetlb_page(vma)) {
686 /* calculate pfn of the "raw" page in the hugepage. */
687 int offset = (addr & ~huge_page_mask(hs)) >> PAGE_SHIFT;
688 pfn = huge_pte_to_pagemap_entry(*pte, offset);
689 }
690 err = add_to_pagemap(addr, pfn, pm);
691 if (err)
692 return err;
693 }
694
695 cond_resched();
696
697 return err;
698 }
699
700 /*
701 * /proc/pid/pagemap - an array mapping virtual pages to pfns
702 *
703 * For each page in the address space, this file contains one 64-bit entry
704 * consisting of the following:
705 *
706 * Bits 0-55 page frame number (PFN) if present
707 * Bits 0-4 swap type if swapped
708 * Bits 5-55 swap offset if swapped
709 * Bits 55-60 page shift (page size = 1<<page shift)
710 * Bit 61 reserved for future use
711 * Bit 62 page swapped
712 * Bit 63 page present
713 *
714 * If the page is not present but in swap, then the PFN contains an
715 * encoding of the swap file number and the page's offset into the
716 * swap. Unmapped pages return a null PFN. This allows determining
717 * precisely which pages are mapped (or in swap) and comparing mapped
718 * pages between processes.
719 *
720 * Efficient users of this interface will use /proc/pid/maps to
721 * determine which areas of memory are actually mapped and llseek to
722 * skip over unmapped regions.
723 */
724 static ssize_t pagemap_read(struct file *file, char __user *buf,
725 size_t count, loff_t *ppos)
726 {
727 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
728 struct page **pages, *page;
729 unsigned long uaddr, uend;
730 struct mm_struct *mm;
731 struct pagemapread pm;
732 int pagecount;
733 int ret = -ESRCH;
734 struct mm_walk pagemap_walk = {};
735 unsigned long src;
736 unsigned long svpfn;
737 unsigned long start_vaddr;
738 unsigned long end_vaddr;
739
740 if (!task)
741 goto out;
742
743 ret = -EACCES;
744 if (!ptrace_may_access(task, PTRACE_MODE_READ))
745 goto out_task;
746
747 ret = -EINVAL;
748 /* file position must be aligned */
749 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
750 goto out_task;
751
752 ret = 0;
753
754 if (!count)
755 goto out_task;
756
757 mm = get_task_mm(task);
758 if (!mm)
759 goto out_task;
760
761
762 uaddr = (unsigned long)buf & PAGE_MASK;
763 uend = (unsigned long)(buf + count);
764 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
765 ret = 0;
766 if (pagecount == 0)
767 goto out_mm;
768 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
769 ret = -ENOMEM;
770 if (!pages)
771 goto out_mm;
772
773 down_read(&current->mm->mmap_sem);
774 ret = get_user_pages(current, current->mm, uaddr, pagecount,
775 1, 0, pages, NULL);
776 up_read(&current->mm->mmap_sem);
777
778 if (ret < 0)
779 goto out_free;
780
781 if (ret != pagecount) {
782 pagecount = ret;
783 ret = -EFAULT;
784 goto out_pages;
785 }
786
787 pm.out = (u64 __user *)buf;
788 pm.end = (u64 __user *)(buf + count);
789
790 pagemap_walk.pmd_entry = pagemap_pte_range;
791 pagemap_walk.pte_hole = pagemap_pte_hole;
792 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
793 pagemap_walk.mm = mm;
794 pagemap_walk.private = &pm;
795
796 src = *ppos;
797 svpfn = src / PM_ENTRY_BYTES;
798 start_vaddr = svpfn << PAGE_SHIFT;
799 end_vaddr = TASK_SIZE_OF(task);
800
801 /* watch out for wraparound */
802 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
803 start_vaddr = end_vaddr;
804
805 /*
806 * The odds are that this will stop walking way
807 * before end_vaddr, because the length of the
808 * user buffer is tracked in "pm", and the walk
809 * will stop when we hit the end of the buffer.
810 */
811 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
812 if (ret == PM_END_OF_BUFFER)
813 ret = 0;
814 /* don't need mmap_sem for these, but this looks cleaner */
815 *ppos += (char __user *)pm.out - buf;
816 if (!ret)
817 ret = (char __user *)pm.out - buf;
818
819 out_pages:
820 for (; pagecount; pagecount--) {
821 page = pages[pagecount-1];
822 if (!PageReserved(page))
823 SetPageDirty(page);
824 page_cache_release(page);
825 }
826 out_free:
827 kfree(pages);
828 out_mm:
829 mmput(mm);
830 out_task:
831 put_task_struct(task);
832 out:
833 return ret;
834 }
835
836 const struct file_operations proc_pagemap_operations = {
837 .llseek = mem_lseek, /* borrow this */
838 .read = pagemap_read,
839 };
840 #endif /* CONFIG_PROC_PAGE_MONITOR */
841
842 #ifdef CONFIG_NUMA
843 extern int show_numa_map(struct seq_file *m, void *v);
844
845 static const struct seq_operations proc_pid_numa_maps_op = {
846 .start = m_start,
847 .next = m_next,
848 .stop = m_stop,
849 .show = show_numa_map,
850 };
851
852 static int numa_maps_open(struct inode *inode, struct file *file)
853 {
854 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
855 }
856
857 const struct file_operations proc_numa_maps_operations = {
858 .open = numa_maps_open,
859 .read = seq_read,
860 .llseek = seq_lseek,
861 .release = seq_release_private,
862 };
863 #endif