]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/task_mmu.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19
20 #include <asm/elf.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
23 #include "internal.h"
24
25 void task_mem(struct seq_file *m, struct mm_struct *mm)
26 {
27 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
28 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
29
30 anon = get_mm_counter(mm, MM_ANONPAGES);
31 file = get_mm_counter(mm, MM_FILEPAGES);
32 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
33
34 /*
35 * Note: to minimize their overhead, mm maintains hiwater_vm and
36 * hiwater_rss only when about to *lower* total_vm or rss. Any
37 * collector of these hiwater stats must therefore get total_vm
38 * and rss too, which will usually be the higher. Barriers? not
39 * worth the effort, such snapshots can always be inconsistent.
40 */
41 hiwater_vm = total_vm = mm->total_vm;
42 if (hiwater_vm < mm->hiwater_vm)
43 hiwater_vm = mm->hiwater_vm;
44 hiwater_rss = total_rss = anon + file + shmem;
45 if (hiwater_rss < mm->hiwater_rss)
46 hiwater_rss = mm->hiwater_rss;
47
48 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
49 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
50 swap = get_mm_counter(mm, MM_SWAPENTS);
51 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
52 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
53 seq_printf(m,
54 "VmPeak:\t%8lu kB\n"
55 "VmSize:\t%8lu kB\n"
56 "VmLck:\t%8lu kB\n"
57 "VmPin:\t%8lu kB\n"
58 "VmHWM:\t%8lu kB\n"
59 "VmRSS:\t%8lu kB\n"
60 "RssAnon:\t%8lu kB\n"
61 "RssFile:\t%8lu kB\n"
62 "RssShmem:\t%8lu kB\n"
63 "VmData:\t%8lu kB\n"
64 "VmStk:\t%8lu kB\n"
65 "VmExe:\t%8lu kB\n"
66 "VmLib:\t%8lu kB\n"
67 "VmPTE:\t%8lu kB\n"
68 "VmPMD:\t%8lu kB\n"
69 "VmSwap:\t%8lu kB\n",
70 hiwater_vm << (PAGE_SHIFT-10),
71 total_vm << (PAGE_SHIFT-10),
72 mm->locked_vm << (PAGE_SHIFT-10),
73 mm->pinned_vm << (PAGE_SHIFT-10),
74 hiwater_rss << (PAGE_SHIFT-10),
75 total_rss << (PAGE_SHIFT-10),
76 anon << (PAGE_SHIFT-10),
77 file << (PAGE_SHIFT-10),
78 shmem << (PAGE_SHIFT-10),
79 mm->data_vm << (PAGE_SHIFT-10),
80 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
81 ptes >> 10,
82 pmds >> 10,
83 swap << (PAGE_SHIFT-10));
84 hugetlb_report_usage(m, mm);
85 }
86
87 unsigned long task_vsize(struct mm_struct *mm)
88 {
89 return PAGE_SIZE * mm->total_vm;
90 }
91
92 unsigned long task_statm(struct mm_struct *mm,
93 unsigned long *shared, unsigned long *text,
94 unsigned long *data, unsigned long *resident)
95 {
96 *shared = get_mm_counter(mm, MM_FILEPAGES) +
97 get_mm_counter(mm, MM_SHMEMPAGES);
98 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
99 >> PAGE_SHIFT;
100 *data = mm->data_vm + mm->stack_vm;
101 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102 return mm->total_vm;
103 }
104
105 #ifdef CONFIG_NUMA
106 /*
107 * Save get_task_policy() for show_numa_map().
108 */
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111 struct task_struct *task = priv->task;
112
113 task_lock(task);
114 priv->task_mempolicy = get_task_policy(task);
115 mpol_get(priv->task_mempolicy);
116 task_unlock(task);
117 }
118 static void release_task_mempolicy(struct proc_maps_private *priv)
119 {
120 mpol_put(priv->task_mempolicy);
121 }
122 #else
123 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 }
129 #endif
130
131 static void vma_stop(struct proc_maps_private *priv)
132 {
133 struct mm_struct *mm = priv->mm;
134
135 release_task_mempolicy(priv);
136 up_read(&mm->mmap_sem);
137 mmput(mm);
138 }
139
140 static struct vm_area_struct *
141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
142 {
143 if (vma == priv->tail_vma)
144 return NULL;
145 return vma->vm_next ?: priv->tail_vma;
146 }
147
148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
149 {
150 if (m->count < m->size) /* vma is copied successfully */
151 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
152 }
153
154 static void *m_start(struct seq_file *m, loff_t *ppos)
155 {
156 struct proc_maps_private *priv = m->private;
157 unsigned long last_addr = m->version;
158 struct mm_struct *mm;
159 struct vm_area_struct *vma;
160 unsigned int pos = *ppos;
161
162 /* See m_cache_vma(). Zero at the start or after lseek. */
163 if (last_addr == -1UL)
164 return NULL;
165
166 priv->task = get_proc_task(priv->inode);
167 if (!priv->task)
168 return ERR_PTR(-ESRCH);
169
170 mm = priv->mm;
171 if (!mm || !mmget_not_zero(mm))
172 return NULL;
173
174 down_read(&mm->mmap_sem);
175 hold_task_mempolicy(priv);
176 priv->tail_vma = get_gate_vma(mm);
177
178 if (last_addr) {
179 vma = find_vma(mm, last_addr - 1);
180 if (vma && vma->vm_start <= last_addr)
181 vma = m_next_vma(priv, vma);
182 if (vma)
183 return vma;
184 }
185
186 m->version = 0;
187 if (pos < mm->map_count) {
188 for (vma = mm->mmap; pos; pos--) {
189 m->version = vma->vm_start;
190 vma = vma->vm_next;
191 }
192 return vma;
193 }
194
195 /* we do not bother to update m->version in this case */
196 if (pos == mm->map_count && priv->tail_vma)
197 return priv->tail_vma;
198
199 vma_stop(priv);
200 return NULL;
201 }
202
203 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 {
205 struct proc_maps_private *priv = m->private;
206 struct vm_area_struct *next;
207
208 (*pos)++;
209 next = m_next_vma(priv, v);
210 if (!next)
211 vma_stop(priv);
212 return next;
213 }
214
215 static void m_stop(struct seq_file *m, void *v)
216 {
217 struct proc_maps_private *priv = m->private;
218
219 if (!IS_ERR_OR_NULL(v))
220 vma_stop(priv);
221 if (priv->task) {
222 put_task_struct(priv->task);
223 priv->task = NULL;
224 }
225 }
226
227 static int proc_maps_open(struct inode *inode, struct file *file,
228 const struct seq_operations *ops, int psize)
229 {
230 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231
232 if (!priv)
233 return -ENOMEM;
234
235 priv->inode = inode;
236 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
237 if (IS_ERR(priv->mm)) {
238 int err = PTR_ERR(priv->mm);
239
240 seq_release_private(inode, file);
241 return err;
242 }
243
244 return 0;
245 }
246
247 static int proc_map_release(struct inode *inode, struct file *file)
248 {
249 struct seq_file *seq = file->private_data;
250 struct proc_maps_private *priv = seq->private;
251
252 if (priv->mm)
253 mmdrop(priv->mm);
254
255 return seq_release_private(inode, file);
256 }
257
258 static int do_maps_open(struct inode *inode, struct file *file,
259 const struct seq_operations *ops)
260 {
261 return proc_maps_open(inode, file, ops,
262 sizeof(struct proc_maps_private));
263 }
264
265 /*
266 * Indicate if the VMA is a stack for the given task; for
267 * /proc/PID/maps that is the stack of the main task.
268 */
269 static int is_stack(struct proc_maps_private *priv,
270 struct vm_area_struct *vma)
271 {
272 /*
273 * We make no effort to guess what a given thread considers to be
274 * its "stack". It's not even well-defined for programs written
275 * languages like Go.
276 */
277 return vma->vm_start <= vma->vm_mm->start_stack &&
278 vma->vm_end >= vma->vm_mm->start_stack;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284 struct mm_struct *mm = vma->vm_mm;
285 struct file *file = vma->vm_file;
286 struct proc_maps_private *priv = m->private;
287 vm_flags_t flags = vma->vm_flags;
288 unsigned long ino = 0;
289 unsigned long long pgoff = 0;
290 unsigned long start, end;
291 dev_t dev = 0;
292 const char *name = NULL;
293
294 if (file) {
295 struct inode *inode = file_inode(vma->vm_file);
296 dev = inode->i_sb->s_dev;
297 ino = inode->i_ino;
298 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299 }
300
301 /* We don't show the stack guard page in /proc/maps */
302 start = vma->vm_start;
303 end = vma->vm_end;
304
305 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
306 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
307 start,
308 end,
309 flags & VM_READ ? 'r' : '-',
310 flags & VM_WRITE ? 'w' : '-',
311 flags & VM_EXEC ? 'x' : '-',
312 flags & VM_MAYSHARE ? 's' : 'p',
313 pgoff,
314 MAJOR(dev), MINOR(dev), ino);
315
316 /*
317 * Print the dentry name for named mappings, and a
318 * special [heap] marker for the heap:
319 */
320 if (file) {
321 seq_pad(m, ' ');
322 seq_file_path(m, file, "\n");
323 goto done;
324 }
325
326 if (vma->vm_ops && vma->vm_ops->name) {
327 name = vma->vm_ops->name(vma);
328 if (name)
329 goto done;
330 }
331
332 name = arch_vma_name(vma);
333 if (!name) {
334 if (!mm) {
335 name = "[vdso]";
336 goto done;
337 }
338
339 if (vma->vm_start <= mm->brk &&
340 vma->vm_end >= mm->start_brk) {
341 name = "[heap]";
342 goto done;
343 }
344
345 if (is_stack(priv, vma))
346 name = "[stack]";
347 }
348
349 done:
350 if (name) {
351 seq_pad(m, ' ');
352 seq_puts(m, name);
353 }
354 seq_putc(m, '\n');
355 }
356
357 static int show_map(struct seq_file *m, void *v, int is_pid)
358 {
359 show_map_vma(m, v, is_pid);
360 m_cache_vma(m, v);
361 return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366 return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371 return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390 return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395 return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = proc_map_release,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = proc_map_release,
410 };
411
412 /*
413 * Proportional Set Size(PSS): my share of RSS.
414 *
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
419 *
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
423 *
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
428 */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 unsigned long resident;
434 unsigned long shared_clean;
435 unsigned long shared_dirty;
436 unsigned long private_clean;
437 unsigned long private_dirty;
438 unsigned long referenced;
439 unsigned long anonymous;
440 unsigned long lazyfree;
441 unsigned long anonymous_thp;
442 unsigned long shmem_thp;
443 unsigned long swap;
444 unsigned long shared_hugetlb;
445 unsigned long private_hugetlb;
446 u64 pss;
447 u64 swap_pss;
448 bool check_shmem_swap;
449 };
450
451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452 bool compound, bool young, bool dirty)
453 {
454 int i, nr = compound ? 1 << compound_order(page) : 1;
455 unsigned long size = nr * PAGE_SIZE;
456
457 if (PageAnon(page)) {
458 mss->anonymous += size;
459 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
460 mss->lazyfree += size;
461 }
462
463 mss->resident += size;
464 /* Accumulate the size in pages that have been accessed. */
465 if (young || page_is_young(page) || PageReferenced(page))
466 mss->referenced += size;
467
468 /*
469 * page_count(page) == 1 guarantees the page is mapped exactly once.
470 * If any subpage of the compound page mapped with PTE it would elevate
471 * page_count().
472 */
473 if (page_count(page) == 1) {
474 if (dirty || PageDirty(page))
475 mss->private_dirty += size;
476 else
477 mss->private_clean += size;
478 mss->pss += (u64)size << PSS_SHIFT;
479 return;
480 }
481
482 for (i = 0; i < nr; i++, page++) {
483 int mapcount = page_mapcount(page);
484
485 if (mapcount >= 2) {
486 if (dirty || PageDirty(page))
487 mss->shared_dirty += PAGE_SIZE;
488 else
489 mss->shared_clean += PAGE_SIZE;
490 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
491 } else {
492 if (dirty || PageDirty(page))
493 mss->private_dirty += PAGE_SIZE;
494 else
495 mss->private_clean += PAGE_SIZE;
496 mss->pss += PAGE_SIZE << PSS_SHIFT;
497 }
498 }
499 }
500
501 #ifdef CONFIG_SHMEM
502 static int smaps_pte_hole(unsigned long addr, unsigned long end,
503 struct mm_walk *walk)
504 {
505 struct mem_size_stats *mss = walk->private;
506
507 mss->swap += shmem_partial_swap_usage(
508 walk->vma->vm_file->f_mapping, addr, end);
509
510 return 0;
511 }
512 #endif
513
514 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
515 struct mm_walk *walk)
516 {
517 struct mem_size_stats *mss = walk->private;
518 struct vm_area_struct *vma = walk->vma;
519 struct page *page = NULL;
520
521 if (pte_present(*pte)) {
522 page = vm_normal_page(vma, addr, *pte);
523 } else if (is_swap_pte(*pte)) {
524 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526 if (!non_swap_entry(swpent)) {
527 int mapcount;
528
529 mss->swap += PAGE_SIZE;
530 mapcount = swp_swapcount(swpent);
531 if (mapcount >= 2) {
532 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534 do_div(pss_delta, mapcount);
535 mss->swap_pss += pss_delta;
536 } else {
537 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538 }
539 } else if (is_migration_entry(swpent))
540 page = migration_entry_to_page(swpent);
541 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
542 && pte_none(*pte))) {
543 page = find_get_entry(vma->vm_file->f_mapping,
544 linear_page_index(vma, addr));
545 if (!page)
546 return;
547
548 if (radix_tree_exceptional_entry(page))
549 mss->swap += PAGE_SIZE;
550 else
551 put_page(page);
552
553 return;
554 }
555
556 if (!page)
557 return;
558
559 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
560 }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
564 struct mm_walk *walk)
565 {
566 struct mem_size_stats *mss = walk->private;
567 struct vm_area_struct *vma = walk->vma;
568 struct page *page;
569
570 /* FOLL_DUMP will return -EFAULT on huge zero page */
571 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
572 if (IS_ERR_OR_NULL(page))
573 return;
574 if (PageAnon(page))
575 mss->anonymous_thp += HPAGE_PMD_SIZE;
576 else if (PageSwapBacked(page))
577 mss->shmem_thp += HPAGE_PMD_SIZE;
578 else if (is_zone_device_page(page))
579 /* pass */;
580 else
581 VM_BUG_ON_PAGE(1, page);
582 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
583 }
584 #else
585 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
586 struct mm_walk *walk)
587 {
588 }
589 #endif
590
591 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
592 struct mm_walk *walk)
593 {
594 struct vm_area_struct *vma = walk->vma;
595 pte_t *pte;
596 spinlock_t *ptl;
597
598 ptl = pmd_trans_huge_lock(pmd, vma);
599 if (ptl) {
600 smaps_pmd_entry(pmd, addr, walk);
601 spin_unlock(ptl);
602 return 0;
603 }
604
605 if (pmd_trans_unstable(pmd))
606 return 0;
607 /*
608 * The mmap_sem held all the way back in m_start() is what
609 * keeps khugepaged out of here and from collapsing things
610 * in here.
611 */
612 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
613 for (; addr != end; pte++, addr += PAGE_SIZE)
614 smaps_pte_entry(pte, addr, walk);
615 pte_unmap_unlock(pte - 1, ptl);
616 cond_resched();
617 return 0;
618 }
619
620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
621 {
622 /*
623 * Don't forget to update Documentation/ on changes.
624 */
625 static const char mnemonics[BITS_PER_LONG][2] = {
626 /*
627 * In case if we meet a flag we don't know about.
628 */
629 [0 ... (BITS_PER_LONG-1)] = "??",
630
631 [ilog2(VM_READ)] = "rd",
632 [ilog2(VM_WRITE)] = "wr",
633 [ilog2(VM_EXEC)] = "ex",
634 [ilog2(VM_SHARED)] = "sh",
635 [ilog2(VM_MAYREAD)] = "mr",
636 [ilog2(VM_MAYWRITE)] = "mw",
637 [ilog2(VM_MAYEXEC)] = "me",
638 [ilog2(VM_MAYSHARE)] = "ms",
639 [ilog2(VM_GROWSDOWN)] = "gd",
640 [ilog2(VM_PFNMAP)] = "pf",
641 [ilog2(VM_DENYWRITE)] = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643 [ilog2(VM_MPX)] = "mp",
644 #endif
645 [ilog2(VM_LOCKED)] = "lo",
646 [ilog2(VM_IO)] = "io",
647 [ilog2(VM_SEQ_READ)] = "sr",
648 [ilog2(VM_RAND_READ)] = "rr",
649 [ilog2(VM_DONTCOPY)] = "dc",
650 [ilog2(VM_DONTEXPAND)] = "de",
651 [ilog2(VM_ACCOUNT)] = "ac",
652 [ilog2(VM_NORESERVE)] = "nr",
653 [ilog2(VM_HUGETLB)] = "ht",
654 [ilog2(VM_ARCH_1)] = "ar",
655 [ilog2(VM_DONTDUMP)] = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657 [ilog2(VM_SOFTDIRTY)] = "sd",
658 #endif
659 [ilog2(VM_MIXEDMAP)] = "mm",
660 [ilog2(VM_HUGEPAGE)] = "hg",
661 [ilog2(VM_NOHUGEPAGE)] = "nh",
662 [ilog2(VM_MERGEABLE)] = "mg",
663 [ilog2(VM_UFFD_MISSING)]= "um",
664 [ilog2(VM_UFFD_WP)] = "uw",
665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
666 /* These come out via ProtectionKey: */
667 [ilog2(VM_PKEY_BIT0)] = "",
668 [ilog2(VM_PKEY_BIT1)] = "",
669 [ilog2(VM_PKEY_BIT2)] = "",
670 [ilog2(VM_PKEY_BIT3)] = "",
671 #endif
672 };
673 size_t i;
674
675 seq_puts(m, "VmFlags: ");
676 for (i = 0; i < BITS_PER_LONG; i++) {
677 if (!mnemonics[i][0])
678 continue;
679 if (vma->vm_flags & (1UL << i)) {
680 seq_printf(m, "%c%c ",
681 mnemonics[i][0], mnemonics[i][1]);
682 }
683 }
684 seq_putc(m, '\n');
685 }
686
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
689 unsigned long addr, unsigned long end,
690 struct mm_walk *walk)
691 {
692 struct mem_size_stats *mss = walk->private;
693 struct vm_area_struct *vma = walk->vma;
694 struct page *page = NULL;
695
696 if (pte_present(*pte)) {
697 page = vm_normal_page(vma, addr, *pte);
698 } else if (is_swap_pte(*pte)) {
699 swp_entry_t swpent = pte_to_swp_entry(*pte);
700
701 if (is_migration_entry(swpent))
702 page = migration_entry_to_page(swpent);
703 }
704 if (page) {
705 int mapcount = page_mapcount(page);
706
707 if (mapcount >= 2)
708 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709 else
710 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
711 }
712 return 0;
713 }
714 #endif /* HUGETLB_PAGE */
715
716 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
717 {
718 }
719
720 static int show_smap(struct seq_file *m, void *v, int is_pid)
721 {
722 struct vm_area_struct *vma = v;
723 struct mem_size_stats mss;
724 struct mm_walk smaps_walk = {
725 .pmd_entry = smaps_pte_range,
726 #ifdef CONFIG_HUGETLB_PAGE
727 .hugetlb_entry = smaps_hugetlb_range,
728 #endif
729 .mm = vma->vm_mm,
730 .private = &mss,
731 };
732
733 memset(&mss, 0, sizeof mss);
734
735 #ifdef CONFIG_SHMEM
736 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737 /*
738 * For shared or readonly shmem mappings we know that all
739 * swapped out pages belong to the shmem object, and we can
740 * obtain the swap value much more efficiently. For private
741 * writable mappings, we might have COW pages that are
742 * not affected by the parent swapped out pages of the shmem
743 * object, so we have to distinguish them during the page walk.
744 * Unless we know that the shmem object (or the part mapped by
745 * our VMA) has no swapped out pages at all.
746 */
747 unsigned long shmem_swapped = shmem_swap_usage(vma);
748
749 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750 !(vma->vm_flags & VM_WRITE)) {
751 mss.swap = shmem_swapped;
752 } else {
753 mss.check_shmem_swap = true;
754 smaps_walk.pte_hole = smaps_pte_hole;
755 }
756 }
757 #endif
758
759 /* mmap_sem is held in m_start */
760 walk_page_vma(vma, &smaps_walk);
761
762 show_map_vma(m, vma, is_pid);
763
764 seq_printf(m,
765 "Size: %8lu kB\n"
766 "Rss: %8lu kB\n"
767 "Pss: %8lu kB\n"
768 "Shared_Clean: %8lu kB\n"
769 "Shared_Dirty: %8lu kB\n"
770 "Private_Clean: %8lu kB\n"
771 "Private_Dirty: %8lu kB\n"
772 "Referenced: %8lu kB\n"
773 "Anonymous: %8lu kB\n"
774 "LazyFree: %8lu kB\n"
775 "AnonHugePages: %8lu kB\n"
776 "ShmemPmdMapped: %8lu kB\n"
777 "Shared_Hugetlb: %8lu kB\n"
778 "Private_Hugetlb: %7lu kB\n"
779 "Swap: %8lu kB\n"
780 "SwapPss: %8lu kB\n"
781 "KernelPageSize: %8lu kB\n"
782 "MMUPageSize: %8lu kB\n"
783 "Locked: %8lu kB\n",
784 (vma->vm_end - vma->vm_start) >> 10,
785 mss.resident >> 10,
786 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
787 mss.shared_clean >> 10,
788 mss.shared_dirty >> 10,
789 mss.private_clean >> 10,
790 mss.private_dirty >> 10,
791 mss.referenced >> 10,
792 mss.anonymous >> 10,
793 mss.lazyfree >> 10,
794 mss.anonymous_thp >> 10,
795 mss.shmem_thp >> 10,
796 mss.shared_hugetlb >> 10,
797 mss.private_hugetlb >> 10,
798 mss.swap >> 10,
799 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
800 vma_kernel_pagesize(vma) >> 10,
801 vma_mmu_pagesize(vma) >> 10,
802 (vma->vm_flags & VM_LOCKED) ?
803 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
804
805 arch_show_smap(m, vma);
806 show_smap_vma_flags(m, vma);
807 m_cache_vma(m, vma);
808 return 0;
809 }
810
811 static int show_pid_smap(struct seq_file *m, void *v)
812 {
813 return show_smap(m, v, 1);
814 }
815
816 static int show_tid_smap(struct seq_file *m, void *v)
817 {
818 return show_smap(m, v, 0);
819 }
820
821 static const struct seq_operations proc_pid_smaps_op = {
822 .start = m_start,
823 .next = m_next,
824 .stop = m_stop,
825 .show = show_pid_smap
826 };
827
828 static const struct seq_operations proc_tid_smaps_op = {
829 .start = m_start,
830 .next = m_next,
831 .stop = m_stop,
832 .show = show_tid_smap
833 };
834
835 static int pid_smaps_open(struct inode *inode, struct file *file)
836 {
837 return do_maps_open(inode, file, &proc_pid_smaps_op);
838 }
839
840 static int tid_smaps_open(struct inode *inode, struct file *file)
841 {
842 return do_maps_open(inode, file, &proc_tid_smaps_op);
843 }
844
845 const struct file_operations proc_pid_smaps_operations = {
846 .open = pid_smaps_open,
847 .read = seq_read,
848 .llseek = seq_lseek,
849 .release = proc_map_release,
850 };
851
852 const struct file_operations proc_tid_smaps_operations = {
853 .open = tid_smaps_open,
854 .read = seq_read,
855 .llseek = seq_lseek,
856 .release = proc_map_release,
857 };
858
859 enum clear_refs_types {
860 CLEAR_REFS_ALL = 1,
861 CLEAR_REFS_ANON,
862 CLEAR_REFS_MAPPED,
863 CLEAR_REFS_SOFT_DIRTY,
864 CLEAR_REFS_MM_HIWATER_RSS,
865 CLEAR_REFS_LAST,
866 };
867
868 struct clear_refs_private {
869 enum clear_refs_types type;
870 };
871
872 #ifdef CONFIG_MEM_SOFT_DIRTY
873 static inline void clear_soft_dirty(struct vm_area_struct *vma,
874 unsigned long addr, pte_t *pte)
875 {
876 /*
877 * The soft-dirty tracker uses #PF-s to catch writes
878 * to pages, so write-protect the pte as well. See the
879 * Documentation/vm/soft-dirty.txt for full description
880 * of how soft-dirty works.
881 */
882 pte_t ptent = *pte;
883
884 if (pte_present(ptent)) {
885 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
886 ptent = pte_wrprotect(ptent);
887 ptent = pte_clear_soft_dirty(ptent);
888 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
889 } else if (is_swap_pte(ptent)) {
890 ptent = pte_swp_clear_soft_dirty(ptent);
891 set_pte_at(vma->vm_mm, addr, pte, ptent);
892 }
893 }
894 #else
895 static inline void clear_soft_dirty(struct vm_area_struct *vma,
896 unsigned long addr, pte_t *pte)
897 {
898 }
899 #endif
900
901 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
902 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
903 unsigned long addr, pmd_t *pmdp)
904 {
905 pmd_t pmd = *pmdp;
906
907 /* See comment in change_huge_pmd() */
908 pmdp_invalidate(vma, addr, pmdp);
909 if (pmd_dirty(*pmdp))
910 pmd = pmd_mkdirty(pmd);
911 if (pmd_young(*pmdp))
912 pmd = pmd_mkyoung(pmd);
913
914 pmd = pmd_wrprotect(pmd);
915 pmd = pmd_clear_soft_dirty(pmd);
916
917 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
918 }
919 #else
920 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
921 unsigned long addr, pmd_t *pmdp)
922 {
923 }
924 #endif
925
926 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
927 unsigned long end, struct mm_walk *walk)
928 {
929 struct clear_refs_private *cp = walk->private;
930 struct vm_area_struct *vma = walk->vma;
931 pte_t *pte, ptent;
932 spinlock_t *ptl;
933 struct page *page;
934
935 ptl = pmd_trans_huge_lock(pmd, vma);
936 if (ptl) {
937 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
938 clear_soft_dirty_pmd(vma, addr, pmd);
939 goto out;
940 }
941
942 page = pmd_page(*pmd);
943
944 /* Clear accessed and referenced bits. */
945 pmdp_test_and_clear_young(vma, addr, pmd);
946 test_and_clear_page_young(page);
947 ClearPageReferenced(page);
948 out:
949 spin_unlock(ptl);
950 return 0;
951 }
952
953 if (pmd_trans_unstable(pmd))
954 return 0;
955
956 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
957 for (; addr != end; pte++, addr += PAGE_SIZE) {
958 ptent = *pte;
959
960 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
961 clear_soft_dirty(vma, addr, pte);
962 continue;
963 }
964
965 if (!pte_present(ptent))
966 continue;
967
968 page = vm_normal_page(vma, addr, ptent);
969 if (!page)
970 continue;
971
972 /* Clear accessed and referenced bits. */
973 ptep_test_and_clear_young(vma, addr, pte);
974 test_and_clear_page_young(page);
975 ClearPageReferenced(page);
976 }
977 pte_unmap_unlock(pte - 1, ptl);
978 cond_resched();
979 return 0;
980 }
981
982 static int clear_refs_test_walk(unsigned long start, unsigned long end,
983 struct mm_walk *walk)
984 {
985 struct clear_refs_private *cp = walk->private;
986 struct vm_area_struct *vma = walk->vma;
987
988 if (vma->vm_flags & VM_PFNMAP)
989 return 1;
990
991 /*
992 * Writing 1 to /proc/pid/clear_refs affects all pages.
993 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
994 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
995 * Writing 4 to /proc/pid/clear_refs affects all pages.
996 */
997 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
998 return 1;
999 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1000 return 1;
1001 return 0;
1002 }
1003
1004 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1005 size_t count, loff_t *ppos)
1006 {
1007 struct task_struct *task;
1008 char buffer[PROC_NUMBUF];
1009 struct mm_struct *mm;
1010 struct vm_area_struct *vma;
1011 enum clear_refs_types type;
1012 int itype;
1013 int rv;
1014
1015 memset(buffer, 0, sizeof(buffer));
1016 if (count > sizeof(buffer) - 1)
1017 count = sizeof(buffer) - 1;
1018 if (copy_from_user(buffer, buf, count))
1019 return -EFAULT;
1020 rv = kstrtoint(strstrip(buffer), 10, &itype);
1021 if (rv < 0)
1022 return rv;
1023 type = (enum clear_refs_types)itype;
1024 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1025 return -EINVAL;
1026
1027 task = get_proc_task(file_inode(file));
1028 if (!task)
1029 return -ESRCH;
1030 mm = get_task_mm(task);
1031 if (mm) {
1032 struct clear_refs_private cp = {
1033 .type = type,
1034 };
1035 struct mm_walk clear_refs_walk = {
1036 .pmd_entry = clear_refs_pte_range,
1037 .test_walk = clear_refs_test_walk,
1038 .mm = mm,
1039 .private = &cp,
1040 };
1041
1042 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1043 if (down_write_killable(&mm->mmap_sem)) {
1044 count = -EINTR;
1045 goto out_mm;
1046 }
1047
1048 /*
1049 * Writing 5 to /proc/pid/clear_refs resets the peak
1050 * resident set size to this mm's current rss value.
1051 */
1052 reset_mm_hiwater_rss(mm);
1053 up_write(&mm->mmap_sem);
1054 goto out_mm;
1055 }
1056
1057 down_read(&mm->mmap_sem);
1058 if (type == CLEAR_REFS_SOFT_DIRTY) {
1059 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1060 if (!(vma->vm_flags & VM_SOFTDIRTY))
1061 continue;
1062 up_read(&mm->mmap_sem);
1063 if (down_write_killable(&mm->mmap_sem)) {
1064 count = -EINTR;
1065 goto out_mm;
1066 }
1067 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1068 vma->vm_flags &= ~VM_SOFTDIRTY;
1069 vma_set_page_prot(vma);
1070 }
1071 downgrade_write(&mm->mmap_sem);
1072 break;
1073 }
1074 mmu_notifier_invalidate_range_start(mm, 0, -1);
1075 }
1076 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1077 if (type == CLEAR_REFS_SOFT_DIRTY)
1078 mmu_notifier_invalidate_range_end(mm, 0, -1);
1079 flush_tlb_mm(mm);
1080 up_read(&mm->mmap_sem);
1081 out_mm:
1082 mmput(mm);
1083 }
1084 put_task_struct(task);
1085
1086 return count;
1087 }
1088
1089 const struct file_operations proc_clear_refs_operations = {
1090 .write = clear_refs_write,
1091 .llseek = noop_llseek,
1092 };
1093
1094 typedef struct {
1095 u64 pme;
1096 } pagemap_entry_t;
1097
1098 struct pagemapread {
1099 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1100 pagemap_entry_t *buffer;
1101 bool show_pfn;
1102 };
1103
1104 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1105 #define PAGEMAP_WALK_MASK (PMD_MASK)
1106
1107 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1108 #define PM_PFRAME_BITS 55
1109 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1110 #define PM_SOFT_DIRTY BIT_ULL(55)
1111 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1112 #define PM_FILE BIT_ULL(61)
1113 #define PM_SWAP BIT_ULL(62)
1114 #define PM_PRESENT BIT_ULL(63)
1115
1116 #define PM_END_OF_BUFFER 1
1117
1118 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1119 {
1120 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1121 }
1122
1123 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1124 struct pagemapread *pm)
1125 {
1126 pm->buffer[pm->pos++] = *pme;
1127 if (pm->pos >= pm->len)
1128 return PM_END_OF_BUFFER;
1129 return 0;
1130 }
1131
1132 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1133 struct mm_walk *walk)
1134 {
1135 struct pagemapread *pm = walk->private;
1136 unsigned long addr = start;
1137 int err = 0;
1138
1139 while (addr < end) {
1140 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1141 pagemap_entry_t pme = make_pme(0, 0);
1142 /* End of address space hole, which we mark as non-present. */
1143 unsigned long hole_end;
1144
1145 if (vma)
1146 hole_end = min(end, vma->vm_start);
1147 else
1148 hole_end = end;
1149
1150 for (; addr < hole_end; addr += PAGE_SIZE) {
1151 err = add_to_pagemap(addr, &pme, pm);
1152 if (err)
1153 goto out;
1154 }
1155
1156 if (!vma)
1157 break;
1158
1159 /* Addresses in the VMA. */
1160 if (vma->vm_flags & VM_SOFTDIRTY)
1161 pme = make_pme(0, PM_SOFT_DIRTY);
1162 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1163 err = add_to_pagemap(addr, &pme, pm);
1164 if (err)
1165 goto out;
1166 }
1167 }
1168 out:
1169 return err;
1170 }
1171
1172 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1173 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1174 {
1175 u64 frame = 0, flags = 0;
1176 struct page *page = NULL;
1177
1178 if (pte_present(pte)) {
1179 if (pm->show_pfn)
1180 frame = pte_pfn(pte);
1181 flags |= PM_PRESENT;
1182 page = vm_normal_page(vma, addr, pte);
1183 if (pte_soft_dirty(pte))
1184 flags |= PM_SOFT_DIRTY;
1185 } else if (is_swap_pte(pte)) {
1186 swp_entry_t entry;
1187 if (pte_swp_soft_dirty(pte))
1188 flags |= PM_SOFT_DIRTY;
1189 entry = pte_to_swp_entry(pte);
1190 frame = swp_type(entry) |
1191 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1192 flags |= PM_SWAP;
1193 if (is_migration_entry(entry))
1194 page = migration_entry_to_page(entry);
1195 }
1196
1197 if (page && !PageAnon(page))
1198 flags |= PM_FILE;
1199 if (page && page_mapcount(page) == 1)
1200 flags |= PM_MMAP_EXCLUSIVE;
1201 if (vma->vm_flags & VM_SOFTDIRTY)
1202 flags |= PM_SOFT_DIRTY;
1203
1204 return make_pme(frame, flags);
1205 }
1206
1207 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1208 struct mm_walk *walk)
1209 {
1210 struct vm_area_struct *vma = walk->vma;
1211 struct pagemapread *pm = walk->private;
1212 spinlock_t *ptl;
1213 pte_t *pte, *orig_pte;
1214 int err = 0;
1215
1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1217 ptl = pmd_trans_huge_lock(pmdp, vma);
1218 if (ptl) {
1219 u64 flags = 0, frame = 0;
1220 pmd_t pmd = *pmdp;
1221
1222 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1223 flags |= PM_SOFT_DIRTY;
1224
1225 /*
1226 * Currently pmd for thp is always present because thp
1227 * can not be swapped-out, migrated, or HWPOISONed
1228 * (split in such cases instead.)
1229 * This if-check is just to prepare for future implementation.
1230 */
1231 if (pmd_present(pmd)) {
1232 struct page *page = pmd_page(pmd);
1233
1234 if (page_mapcount(page) == 1)
1235 flags |= PM_MMAP_EXCLUSIVE;
1236
1237 flags |= PM_PRESENT;
1238 if (pm->show_pfn)
1239 frame = pmd_pfn(pmd) +
1240 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1241 }
1242
1243 for (; addr != end; addr += PAGE_SIZE) {
1244 pagemap_entry_t pme = make_pme(frame, flags);
1245
1246 err = add_to_pagemap(addr, &pme, pm);
1247 if (err)
1248 break;
1249 if (pm->show_pfn && (flags & PM_PRESENT))
1250 frame++;
1251 }
1252 spin_unlock(ptl);
1253 return err;
1254 }
1255
1256 if (pmd_trans_unstable(pmdp))
1257 return 0;
1258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1259
1260 /*
1261 * We can assume that @vma always points to a valid one and @end never
1262 * goes beyond vma->vm_end.
1263 */
1264 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1265 for (; addr < end; pte++, addr += PAGE_SIZE) {
1266 pagemap_entry_t pme;
1267
1268 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1269 err = add_to_pagemap(addr, &pme, pm);
1270 if (err)
1271 break;
1272 }
1273 pte_unmap_unlock(orig_pte, ptl);
1274
1275 cond_resched();
1276
1277 return err;
1278 }
1279
1280 #ifdef CONFIG_HUGETLB_PAGE
1281 /* This function walks within one hugetlb entry in the single call */
1282 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1283 unsigned long addr, unsigned long end,
1284 struct mm_walk *walk)
1285 {
1286 struct pagemapread *pm = walk->private;
1287 struct vm_area_struct *vma = walk->vma;
1288 u64 flags = 0, frame = 0;
1289 int err = 0;
1290 pte_t pte;
1291
1292 if (vma->vm_flags & VM_SOFTDIRTY)
1293 flags |= PM_SOFT_DIRTY;
1294
1295 pte = huge_ptep_get(ptep);
1296 if (pte_present(pte)) {
1297 struct page *page = pte_page(pte);
1298
1299 if (!PageAnon(page))
1300 flags |= PM_FILE;
1301
1302 if (page_mapcount(page) == 1)
1303 flags |= PM_MMAP_EXCLUSIVE;
1304
1305 flags |= PM_PRESENT;
1306 if (pm->show_pfn)
1307 frame = pte_pfn(pte) +
1308 ((addr & ~hmask) >> PAGE_SHIFT);
1309 }
1310
1311 for (; addr != end; addr += PAGE_SIZE) {
1312 pagemap_entry_t pme = make_pme(frame, flags);
1313
1314 err = add_to_pagemap(addr, &pme, pm);
1315 if (err)
1316 return err;
1317 if (pm->show_pfn && (flags & PM_PRESENT))
1318 frame++;
1319 }
1320
1321 cond_resched();
1322
1323 return err;
1324 }
1325 #endif /* HUGETLB_PAGE */
1326
1327 /*
1328 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1329 *
1330 * For each page in the address space, this file contains one 64-bit entry
1331 * consisting of the following:
1332 *
1333 * Bits 0-54 page frame number (PFN) if present
1334 * Bits 0-4 swap type if swapped
1335 * Bits 5-54 swap offset if swapped
1336 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1337 * Bit 56 page exclusively mapped
1338 * Bits 57-60 zero
1339 * Bit 61 page is file-page or shared-anon
1340 * Bit 62 page swapped
1341 * Bit 63 page present
1342 *
1343 * If the page is not present but in swap, then the PFN contains an
1344 * encoding of the swap file number and the page's offset into the
1345 * swap. Unmapped pages return a null PFN. This allows determining
1346 * precisely which pages are mapped (or in swap) and comparing mapped
1347 * pages between processes.
1348 *
1349 * Efficient users of this interface will use /proc/pid/maps to
1350 * determine which areas of memory are actually mapped and llseek to
1351 * skip over unmapped regions.
1352 */
1353 static ssize_t pagemap_read(struct file *file, char __user *buf,
1354 size_t count, loff_t *ppos)
1355 {
1356 struct mm_struct *mm = file->private_data;
1357 struct pagemapread pm;
1358 struct mm_walk pagemap_walk = {};
1359 unsigned long src;
1360 unsigned long svpfn;
1361 unsigned long start_vaddr;
1362 unsigned long end_vaddr;
1363 int ret = 0, copied = 0;
1364
1365 if (!mm || !mmget_not_zero(mm))
1366 goto out;
1367
1368 ret = -EINVAL;
1369 /* file position must be aligned */
1370 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1371 goto out_mm;
1372
1373 ret = 0;
1374 if (!count)
1375 goto out_mm;
1376
1377 /* do not disclose physical addresses: attack vector */
1378 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1379
1380 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1381 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1382 ret = -ENOMEM;
1383 if (!pm.buffer)
1384 goto out_mm;
1385
1386 pagemap_walk.pmd_entry = pagemap_pmd_range;
1387 pagemap_walk.pte_hole = pagemap_pte_hole;
1388 #ifdef CONFIG_HUGETLB_PAGE
1389 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1390 #endif
1391 pagemap_walk.mm = mm;
1392 pagemap_walk.private = &pm;
1393
1394 src = *ppos;
1395 svpfn = src / PM_ENTRY_BYTES;
1396 start_vaddr = svpfn << PAGE_SHIFT;
1397 end_vaddr = mm->task_size;
1398
1399 /* watch out for wraparound */
1400 if (svpfn > mm->task_size >> PAGE_SHIFT)
1401 start_vaddr = end_vaddr;
1402
1403 /*
1404 * The odds are that this will stop walking way
1405 * before end_vaddr, because the length of the
1406 * user buffer is tracked in "pm", and the walk
1407 * will stop when we hit the end of the buffer.
1408 */
1409 ret = 0;
1410 while (count && (start_vaddr < end_vaddr)) {
1411 int len;
1412 unsigned long end;
1413
1414 pm.pos = 0;
1415 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1416 /* overflow ? */
1417 if (end < start_vaddr || end > end_vaddr)
1418 end = end_vaddr;
1419 down_read(&mm->mmap_sem);
1420 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1421 up_read(&mm->mmap_sem);
1422 start_vaddr = end;
1423
1424 len = min(count, PM_ENTRY_BYTES * pm.pos);
1425 if (copy_to_user(buf, pm.buffer, len)) {
1426 ret = -EFAULT;
1427 goto out_free;
1428 }
1429 copied += len;
1430 buf += len;
1431 count -= len;
1432 }
1433 *ppos += copied;
1434 if (!ret || ret == PM_END_OF_BUFFER)
1435 ret = copied;
1436
1437 out_free:
1438 kfree(pm.buffer);
1439 out_mm:
1440 mmput(mm);
1441 out:
1442 return ret;
1443 }
1444
1445 static int pagemap_open(struct inode *inode, struct file *file)
1446 {
1447 struct mm_struct *mm;
1448
1449 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1450 if (IS_ERR(mm))
1451 return PTR_ERR(mm);
1452 file->private_data = mm;
1453 return 0;
1454 }
1455
1456 static int pagemap_release(struct inode *inode, struct file *file)
1457 {
1458 struct mm_struct *mm = file->private_data;
1459
1460 if (mm)
1461 mmdrop(mm);
1462 return 0;
1463 }
1464
1465 const struct file_operations proc_pagemap_operations = {
1466 .llseek = mem_lseek, /* borrow this */
1467 .read = pagemap_read,
1468 .open = pagemap_open,
1469 .release = pagemap_release,
1470 };
1471 #endif /* CONFIG_PROC_PAGE_MONITOR */
1472
1473 #ifdef CONFIG_NUMA
1474
1475 struct numa_maps {
1476 unsigned long pages;
1477 unsigned long anon;
1478 unsigned long active;
1479 unsigned long writeback;
1480 unsigned long mapcount_max;
1481 unsigned long dirty;
1482 unsigned long swapcache;
1483 unsigned long node[MAX_NUMNODES];
1484 };
1485
1486 struct numa_maps_private {
1487 struct proc_maps_private proc_maps;
1488 struct numa_maps md;
1489 };
1490
1491 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1492 unsigned long nr_pages)
1493 {
1494 int count = page_mapcount(page);
1495
1496 md->pages += nr_pages;
1497 if (pte_dirty || PageDirty(page))
1498 md->dirty += nr_pages;
1499
1500 if (PageSwapCache(page))
1501 md->swapcache += nr_pages;
1502
1503 if (PageActive(page) || PageUnevictable(page))
1504 md->active += nr_pages;
1505
1506 if (PageWriteback(page))
1507 md->writeback += nr_pages;
1508
1509 if (PageAnon(page))
1510 md->anon += nr_pages;
1511
1512 if (count > md->mapcount_max)
1513 md->mapcount_max = count;
1514
1515 md->node[page_to_nid(page)] += nr_pages;
1516 }
1517
1518 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1519 unsigned long addr)
1520 {
1521 struct page *page;
1522 int nid;
1523
1524 if (!pte_present(pte))
1525 return NULL;
1526
1527 page = vm_normal_page(vma, addr, pte);
1528 if (!page)
1529 return NULL;
1530
1531 if (PageReserved(page))
1532 return NULL;
1533
1534 nid = page_to_nid(page);
1535 if (!node_isset(nid, node_states[N_MEMORY]))
1536 return NULL;
1537
1538 return page;
1539 }
1540
1541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1542 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1543 struct vm_area_struct *vma,
1544 unsigned long addr)
1545 {
1546 struct page *page;
1547 int nid;
1548
1549 if (!pmd_present(pmd))
1550 return NULL;
1551
1552 page = vm_normal_page_pmd(vma, addr, pmd);
1553 if (!page)
1554 return NULL;
1555
1556 if (PageReserved(page))
1557 return NULL;
1558
1559 nid = page_to_nid(page);
1560 if (!node_isset(nid, node_states[N_MEMORY]))
1561 return NULL;
1562
1563 return page;
1564 }
1565 #endif
1566
1567 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1568 unsigned long end, struct mm_walk *walk)
1569 {
1570 struct numa_maps *md = walk->private;
1571 struct vm_area_struct *vma = walk->vma;
1572 spinlock_t *ptl;
1573 pte_t *orig_pte;
1574 pte_t *pte;
1575
1576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1577 ptl = pmd_trans_huge_lock(pmd, vma);
1578 if (ptl) {
1579 struct page *page;
1580
1581 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1582 if (page)
1583 gather_stats(page, md, pmd_dirty(*pmd),
1584 HPAGE_PMD_SIZE/PAGE_SIZE);
1585 spin_unlock(ptl);
1586 return 0;
1587 }
1588
1589 if (pmd_trans_unstable(pmd))
1590 return 0;
1591 #endif
1592 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1593 do {
1594 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1595 if (!page)
1596 continue;
1597 gather_stats(page, md, pte_dirty(*pte), 1);
1598
1599 } while (pte++, addr += PAGE_SIZE, addr != end);
1600 pte_unmap_unlock(orig_pte, ptl);
1601 cond_resched();
1602 return 0;
1603 }
1604 #ifdef CONFIG_HUGETLB_PAGE
1605 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1606 unsigned long addr, unsigned long end, struct mm_walk *walk)
1607 {
1608 pte_t huge_pte = huge_ptep_get(pte);
1609 struct numa_maps *md;
1610 struct page *page;
1611
1612 if (!pte_present(huge_pte))
1613 return 0;
1614
1615 page = pte_page(huge_pte);
1616 if (!page)
1617 return 0;
1618
1619 md = walk->private;
1620 gather_stats(page, md, pte_dirty(huge_pte), 1);
1621 return 0;
1622 }
1623
1624 #else
1625 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1626 unsigned long addr, unsigned long end, struct mm_walk *walk)
1627 {
1628 return 0;
1629 }
1630 #endif
1631
1632 /*
1633 * Display pages allocated per node and memory policy via /proc.
1634 */
1635 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1636 {
1637 struct numa_maps_private *numa_priv = m->private;
1638 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1639 struct vm_area_struct *vma = v;
1640 struct numa_maps *md = &numa_priv->md;
1641 struct file *file = vma->vm_file;
1642 struct mm_struct *mm = vma->vm_mm;
1643 struct mm_walk walk = {
1644 .hugetlb_entry = gather_hugetlb_stats,
1645 .pmd_entry = gather_pte_stats,
1646 .private = md,
1647 .mm = mm,
1648 };
1649 struct mempolicy *pol;
1650 char buffer[64];
1651 int nid;
1652
1653 if (!mm)
1654 return 0;
1655
1656 /* Ensure we start with an empty set of numa_maps statistics. */
1657 memset(md, 0, sizeof(*md));
1658
1659 pol = __get_vma_policy(vma, vma->vm_start);
1660 if (pol) {
1661 mpol_to_str(buffer, sizeof(buffer), pol);
1662 mpol_cond_put(pol);
1663 } else {
1664 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1665 }
1666
1667 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1668
1669 if (file) {
1670 seq_puts(m, " file=");
1671 seq_file_path(m, file, "\n\t= ");
1672 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1673 seq_puts(m, " heap");
1674 } else if (is_stack(proc_priv, vma)) {
1675 seq_puts(m, " stack");
1676 }
1677
1678 if (is_vm_hugetlb_page(vma))
1679 seq_puts(m, " huge");
1680
1681 /* mmap_sem is held by m_start */
1682 walk_page_vma(vma, &walk);
1683
1684 if (!md->pages)
1685 goto out;
1686
1687 if (md->anon)
1688 seq_printf(m, " anon=%lu", md->anon);
1689
1690 if (md->dirty)
1691 seq_printf(m, " dirty=%lu", md->dirty);
1692
1693 if (md->pages != md->anon && md->pages != md->dirty)
1694 seq_printf(m, " mapped=%lu", md->pages);
1695
1696 if (md->mapcount_max > 1)
1697 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1698
1699 if (md->swapcache)
1700 seq_printf(m, " swapcache=%lu", md->swapcache);
1701
1702 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1703 seq_printf(m, " active=%lu", md->active);
1704
1705 if (md->writeback)
1706 seq_printf(m, " writeback=%lu", md->writeback);
1707
1708 for_each_node_state(nid, N_MEMORY)
1709 if (md->node[nid])
1710 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1711
1712 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1713 out:
1714 seq_putc(m, '\n');
1715 m_cache_vma(m, vma);
1716 return 0;
1717 }
1718
1719 static int show_pid_numa_map(struct seq_file *m, void *v)
1720 {
1721 return show_numa_map(m, v, 1);
1722 }
1723
1724 static int show_tid_numa_map(struct seq_file *m, void *v)
1725 {
1726 return show_numa_map(m, v, 0);
1727 }
1728
1729 static const struct seq_operations proc_pid_numa_maps_op = {
1730 .start = m_start,
1731 .next = m_next,
1732 .stop = m_stop,
1733 .show = show_pid_numa_map,
1734 };
1735
1736 static const struct seq_operations proc_tid_numa_maps_op = {
1737 .start = m_start,
1738 .next = m_next,
1739 .stop = m_stop,
1740 .show = show_tid_numa_map,
1741 };
1742
1743 static int numa_maps_open(struct inode *inode, struct file *file,
1744 const struct seq_operations *ops)
1745 {
1746 return proc_maps_open(inode, file, ops,
1747 sizeof(struct numa_maps_private));
1748 }
1749
1750 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1751 {
1752 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1753 }
1754
1755 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1756 {
1757 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1758 }
1759
1760 const struct file_operations proc_pid_numa_maps_operations = {
1761 .open = pid_numa_maps_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = proc_map_release,
1765 };
1766
1767 const struct file_operations proc_tid_numa_maps_operations = {
1768 .open = tid_numa_maps_open,
1769 .read = seq_read,
1770 .llseek = seq_lseek,
1771 .release = proc_map_release,
1772 };
1773 #endif /* CONFIG_NUMA */