]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/task_mmu.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <linux/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200 }
201
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212 }
213
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224 }
225
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228 {
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244 }
245
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255 }
256
257 static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259 {
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262 }
263
264 /*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
268 static int is_stack(struct proc_maps_private *priv,
269 struct vm_area_struct *vma)
270 {
271 /*
272 * We make no effort to guess what a given thread considers to be
273 * its "stack". It's not even well-defined for programs written
274 * languages like Go.
275 */
276 return vma->vm_start <= vma->vm_mm->start_stack &&
277 vma->vm_end >= vma->vm_mm->start_stack;
278 }
279
280 static void
281 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
282 {
283 struct mm_struct *mm = vma->vm_mm;
284 struct file *file = vma->vm_file;
285 struct proc_maps_private *priv = m->private;
286 vm_flags_t flags = vma->vm_flags;
287 unsigned long ino = 0;
288 unsigned long long pgoff = 0;
289 unsigned long start, end;
290 dev_t dev = 0;
291 const char *name = NULL;
292
293 if (file) {
294 struct inode *inode = file_inode(vma->vm_file);
295 dev = inode->i_sb->s_dev;
296 ino = inode->i_ino;
297 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
298 }
299
300 /* We don't show the stack guard page in /proc/maps */
301 start = vma->vm_start;
302 if (stack_guard_page_start(vma, start))
303 start += PAGE_SIZE;
304 end = vma->vm_end;
305 if (stack_guard_page_end(vma, end))
306 end -= PAGE_SIZE;
307
308 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
309 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310 start,
311 end,
312 flags & VM_READ ? 'r' : '-',
313 flags & VM_WRITE ? 'w' : '-',
314 flags & VM_EXEC ? 'x' : '-',
315 flags & VM_MAYSHARE ? 's' : 'p',
316 pgoff,
317 MAJOR(dev), MINOR(dev), ino);
318
319 /*
320 * Print the dentry name for named mappings, and a
321 * special [heap] marker for the heap:
322 */
323 if (file) {
324 seq_pad(m, ' ');
325 seq_file_path(m, file, "\n");
326 goto done;
327 }
328
329 if (vma->vm_ops && vma->vm_ops->name) {
330 name = vma->vm_ops->name(vma);
331 if (name)
332 goto done;
333 }
334
335 name = arch_vma_name(vma);
336 if (!name) {
337 if (!mm) {
338 name = "[vdso]";
339 goto done;
340 }
341
342 if (vma->vm_start <= mm->brk &&
343 vma->vm_end >= mm->start_brk) {
344 name = "[heap]";
345 goto done;
346 }
347
348 if (is_stack(priv, vma))
349 name = "[stack]";
350 }
351
352 done:
353 if (name) {
354 seq_pad(m, ' ');
355 seq_puts(m, name);
356 }
357 seq_putc(m, '\n');
358 }
359
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 show_map_vma(m, v, is_pid);
363 m_cache_vma(m, v);
364 return 0;
365 }
366
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 return show_map(m, v, 1);
370 }
371
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 return show_map(m, v, 0);
375 }
376
377 static const struct seq_operations proc_pid_maps_op = {
378 .start = m_start,
379 .next = m_next,
380 .stop = m_stop,
381 .show = show_pid_map
382 };
383
384 static const struct seq_operations proc_tid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_tid_map
389 };
390
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400
401 const struct file_operations proc_pid_maps_operations = {
402 .open = pid_maps_open,
403 .read = seq_read,
404 .llseek = seq_lseek,
405 .release = proc_map_release,
406 };
407
408 const struct file_operations proc_tid_maps_operations = {
409 .open = tid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413 };
414
415 /*
416 * Proportional Set Size(PSS): my share of RSS.
417 *
418 * PSS of a process is the count of pages it has in memory, where each
419 * page is divided by the number of processes sharing it. So if a
420 * process has 1000 pages all to itself, and 1000 shared with one other
421 * process, its PSS will be 1500.
422 *
423 * To keep (accumulated) division errors low, we adopt a 64bit
424 * fixed-point pss counter to minimize division errors. So (pss >>
425 * PSS_SHIFT) would be the real byte count.
426 *
427 * A shift of 12 before division means (assuming 4K page size):
428 * - 1M 3-user-pages add up to 8KB errors;
429 * - supports mapcount up to 2^24, or 16M;
430 * - supports PSS up to 2^52 bytes, or 4PB.
431 */
432 #define PSS_SHIFT 12
433
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 unsigned long resident;
437 unsigned long shared_clean;
438 unsigned long shared_dirty;
439 unsigned long private_clean;
440 unsigned long private_dirty;
441 unsigned long referenced;
442 unsigned long anonymous;
443 unsigned long anonymous_thp;
444 unsigned long shmem_thp;
445 unsigned long swap;
446 unsigned long shared_hugetlb;
447 unsigned long private_hugetlb;
448 u64 pss;
449 u64 swap_pss;
450 bool check_shmem_swap;
451 };
452
453 static void smaps_account(struct mem_size_stats *mss, struct page *page,
454 bool compound, bool young, bool dirty)
455 {
456 int i, nr = compound ? 1 << compound_order(page) : 1;
457 unsigned long size = nr * PAGE_SIZE;
458
459 if (PageAnon(page))
460 mss->anonymous += size;
461
462 mss->resident += size;
463 /* Accumulate the size in pages that have been accessed. */
464 if (young || page_is_young(page) || PageReferenced(page))
465 mss->referenced += size;
466
467 /*
468 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 * If any subpage of the compound page mapped with PTE it would elevate
470 * page_count().
471 */
472 if (page_count(page) == 1) {
473 if (dirty || PageDirty(page))
474 mss->private_dirty += size;
475 else
476 mss->private_clean += size;
477 mss->pss += (u64)size << PSS_SHIFT;
478 return;
479 }
480
481 for (i = 0; i < nr; i++, page++) {
482 int mapcount = page_mapcount(page);
483
484 if (mapcount >= 2) {
485 if (dirty || PageDirty(page))
486 mss->shared_dirty += PAGE_SIZE;
487 else
488 mss->shared_clean += PAGE_SIZE;
489 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
490 } else {
491 if (dirty || PageDirty(page))
492 mss->private_dirty += PAGE_SIZE;
493 else
494 mss->private_clean += PAGE_SIZE;
495 mss->pss += PAGE_SIZE << PSS_SHIFT;
496 }
497 }
498 }
499
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502 struct mm_walk *walk)
503 {
504 struct mem_size_stats *mss = walk->private;
505
506 mss->swap += shmem_partial_swap_usage(
507 walk->vma->vm_file->f_mapping, addr, end);
508
509 return 0;
510 }
511 #endif
512
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514 struct mm_walk *walk)
515 {
516 struct mem_size_stats *mss = walk->private;
517 struct vm_area_struct *vma = walk->vma;
518 struct page *page = NULL;
519
520 if (pte_present(*pte)) {
521 page = vm_normal_page(vma, addr, *pte);
522 } else if (is_swap_pte(*pte)) {
523 swp_entry_t swpent = pte_to_swp_entry(*pte);
524
525 if (!non_swap_entry(swpent)) {
526 int mapcount;
527
528 mss->swap += PAGE_SIZE;
529 mapcount = swp_swapcount(swpent);
530 if (mapcount >= 2) {
531 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
532
533 do_div(pss_delta, mapcount);
534 mss->swap_pss += pss_delta;
535 } else {
536 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
537 }
538 } else if (is_migration_entry(swpent))
539 page = migration_entry_to_page(swpent);
540 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
541 && pte_none(*pte))) {
542 page = find_get_entry(vma->vm_file->f_mapping,
543 linear_page_index(vma, addr));
544 if (!page)
545 return;
546
547 if (radix_tree_exceptional_entry(page))
548 mss->swap += PAGE_SIZE;
549 else
550 put_page(page);
551
552 return;
553 }
554
555 if (!page)
556 return;
557
558 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559 }
560
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
563 struct mm_walk *walk)
564 {
565 struct mem_size_stats *mss = walk->private;
566 struct vm_area_struct *vma = walk->vma;
567 struct page *page;
568
569 /* FOLL_DUMP will return -EFAULT on huge zero page */
570 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
571 if (IS_ERR_OR_NULL(page))
572 return;
573 if (PageAnon(page))
574 mss->anonymous_thp += HPAGE_PMD_SIZE;
575 else if (PageSwapBacked(page))
576 mss->shmem_thp += HPAGE_PMD_SIZE;
577 else if (is_zone_device_page(page))
578 /* pass */;
579 else
580 VM_BUG_ON_PAGE(1, page);
581 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582 }
583 #else
584 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
585 struct mm_walk *walk)
586 {
587 }
588 #endif
589
590 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591 struct mm_walk *walk)
592 {
593 struct vm_area_struct *vma = walk->vma;
594 pte_t *pte;
595 spinlock_t *ptl;
596
597 ptl = pmd_trans_huge_lock(pmd, vma);
598 if (ptl) {
599 smaps_pmd_entry(pmd, addr, walk);
600 spin_unlock(ptl);
601 return 0;
602 }
603
604 if (pmd_trans_unstable(pmd))
605 return 0;
606 /*
607 * The mmap_sem held all the way back in m_start() is what
608 * keeps khugepaged out of here and from collapsing things
609 * in here.
610 */
611 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612 for (; addr != end; pte++, addr += PAGE_SIZE)
613 smaps_pte_entry(pte, addr, walk);
614 pte_unmap_unlock(pte - 1, ptl);
615 cond_resched();
616 return 0;
617 }
618
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621 /*
622 * Don't forget to update Documentation/ on changes.
623 */
624 static const char mnemonics[BITS_PER_LONG][2] = {
625 /*
626 * In case if we meet a flag we don't know about.
627 */
628 [0 ... (BITS_PER_LONG-1)] = "??",
629
630 [ilog2(VM_READ)] = "rd",
631 [ilog2(VM_WRITE)] = "wr",
632 [ilog2(VM_EXEC)] = "ex",
633 [ilog2(VM_SHARED)] = "sh",
634 [ilog2(VM_MAYREAD)] = "mr",
635 [ilog2(VM_MAYWRITE)] = "mw",
636 [ilog2(VM_MAYEXEC)] = "me",
637 [ilog2(VM_MAYSHARE)] = "ms",
638 [ilog2(VM_GROWSDOWN)] = "gd",
639 [ilog2(VM_PFNMAP)] = "pf",
640 [ilog2(VM_DENYWRITE)] = "dw",
641 #ifdef CONFIG_X86_INTEL_MPX
642 [ilog2(VM_MPX)] = "mp",
643 #endif
644 [ilog2(VM_LOCKED)] = "lo",
645 [ilog2(VM_IO)] = "io",
646 [ilog2(VM_SEQ_READ)] = "sr",
647 [ilog2(VM_RAND_READ)] = "rr",
648 [ilog2(VM_DONTCOPY)] = "dc",
649 [ilog2(VM_DONTEXPAND)] = "de",
650 [ilog2(VM_ACCOUNT)] = "ac",
651 [ilog2(VM_NORESERVE)] = "nr",
652 [ilog2(VM_HUGETLB)] = "ht",
653 [ilog2(VM_ARCH_1)] = "ar",
654 [ilog2(VM_DONTDUMP)] = "dd",
655 #ifdef CONFIG_MEM_SOFT_DIRTY
656 [ilog2(VM_SOFTDIRTY)] = "sd",
657 #endif
658 [ilog2(VM_MIXEDMAP)] = "mm",
659 [ilog2(VM_HUGEPAGE)] = "hg",
660 [ilog2(VM_NOHUGEPAGE)] = "nh",
661 [ilog2(VM_MERGEABLE)] = "mg",
662 [ilog2(VM_UFFD_MISSING)]= "um",
663 [ilog2(VM_UFFD_WP)] = "uw",
664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665 /* These come out via ProtectionKey: */
666 [ilog2(VM_PKEY_BIT0)] = "",
667 [ilog2(VM_PKEY_BIT1)] = "",
668 [ilog2(VM_PKEY_BIT2)] = "",
669 [ilog2(VM_PKEY_BIT3)] = "",
670 #endif
671 };
672 size_t i;
673
674 seq_puts(m, "VmFlags: ");
675 for (i = 0; i < BITS_PER_LONG; i++) {
676 if (!mnemonics[i][0])
677 continue;
678 if (vma->vm_flags & (1UL << i)) {
679 seq_printf(m, "%c%c ",
680 mnemonics[i][0], mnemonics[i][1]);
681 }
682 }
683 seq_putc(m, '\n');
684 }
685
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688 unsigned long addr, unsigned long end,
689 struct mm_walk *walk)
690 {
691 struct mem_size_stats *mss = walk->private;
692 struct vm_area_struct *vma = walk->vma;
693 struct page *page = NULL;
694
695 if (pte_present(*pte)) {
696 page = vm_normal_page(vma, addr, *pte);
697 } else if (is_swap_pte(*pte)) {
698 swp_entry_t swpent = pte_to_swp_entry(*pte);
699
700 if (is_migration_entry(swpent))
701 page = migration_entry_to_page(swpent);
702 }
703 if (page) {
704 int mapcount = page_mapcount(page);
705
706 if (mapcount >= 2)
707 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
708 else
709 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
710 }
711 return 0;
712 }
713 #endif /* HUGETLB_PAGE */
714
715 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
716 {
717 }
718
719 static int show_smap(struct seq_file *m, void *v, int is_pid)
720 {
721 struct vm_area_struct *vma = v;
722 struct mem_size_stats mss;
723 struct mm_walk smaps_walk = {
724 .pmd_entry = smaps_pte_range,
725 #ifdef CONFIG_HUGETLB_PAGE
726 .hugetlb_entry = smaps_hugetlb_range,
727 #endif
728 .mm = vma->vm_mm,
729 .private = &mss,
730 };
731
732 memset(&mss, 0, sizeof mss);
733
734 #ifdef CONFIG_SHMEM
735 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736 /*
737 * For shared or readonly shmem mappings we know that all
738 * swapped out pages belong to the shmem object, and we can
739 * obtain the swap value much more efficiently. For private
740 * writable mappings, we might have COW pages that are
741 * not affected by the parent swapped out pages of the shmem
742 * object, so we have to distinguish them during the page walk.
743 * Unless we know that the shmem object (or the part mapped by
744 * our VMA) has no swapped out pages at all.
745 */
746 unsigned long shmem_swapped = shmem_swap_usage(vma);
747
748 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
749 !(vma->vm_flags & VM_WRITE)) {
750 mss.swap = shmem_swapped;
751 } else {
752 mss.check_shmem_swap = true;
753 smaps_walk.pte_hole = smaps_pte_hole;
754 }
755 }
756 #endif
757
758 /* mmap_sem is held in m_start */
759 walk_page_vma(vma, &smaps_walk);
760
761 show_map_vma(m, vma, is_pid);
762
763 seq_printf(m,
764 "Size: %8lu kB\n"
765 "Rss: %8lu kB\n"
766 "Pss: %8lu kB\n"
767 "Shared_Clean: %8lu kB\n"
768 "Shared_Dirty: %8lu kB\n"
769 "Private_Clean: %8lu kB\n"
770 "Private_Dirty: %8lu kB\n"
771 "Referenced: %8lu kB\n"
772 "Anonymous: %8lu kB\n"
773 "AnonHugePages: %8lu kB\n"
774 "ShmemPmdMapped: %8lu kB\n"
775 "Shared_Hugetlb: %8lu kB\n"
776 "Private_Hugetlb: %7lu kB\n"
777 "Swap: %8lu kB\n"
778 "SwapPss: %8lu kB\n"
779 "KernelPageSize: %8lu kB\n"
780 "MMUPageSize: %8lu kB\n"
781 "Locked: %8lu kB\n",
782 (vma->vm_end - vma->vm_start) >> 10,
783 mss.resident >> 10,
784 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
785 mss.shared_clean >> 10,
786 mss.shared_dirty >> 10,
787 mss.private_clean >> 10,
788 mss.private_dirty >> 10,
789 mss.referenced >> 10,
790 mss.anonymous >> 10,
791 mss.anonymous_thp >> 10,
792 mss.shmem_thp >> 10,
793 mss.shared_hugetlb >> 10,
794 mss.private_hugetlb >> 10,
795 mss.swap >> 10,
796 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
797 vma_kernel_pagesize(vma) >> 10,
798 vma_mmu_pagesize(vma) >> 10,
799 (vma->vm_flags & VM_LOCKED) ?
800 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
801
802 arch_show_smap(m, vma);
803 show_smap_vma_flags(m, vma);
804 m_cache_vma(m, vma);
805 return 0;
806 }
807
808 static int show_pid_smap(struct seq_file *m, void *v)
809 {
810 return show_smap(m, v, 1);
811 }
812
813 static int show_tid_smap(struct seq_file *m, void *v)
814 {
815 return show_smap(m, v, 0);
816 }
817
818 static const struct seq_operations proc_pid_smaps_op = {
819 .start = m_start,
820 .next = m_next,
821 .stop = m_stop,
822 .show = show_pid_smap
823 };
824
825 static const struct seq_operations proc_tid_smaps_op = {
826 .start = m_start,
827 .next = m_next,
828 .stop = m_stop,
829 .show = show_tid_smap
830 };
831
832 static int pid_smaps_open(struct inode *inode, struct file *file)
833 {
834 return do_maps_open(inode, file, &proc_pid_smaps_op);
835 }
836
837 static int tid_smaps_open(struct inode *inode, struct file *file)
838 {
839 return do_maps_open(inode, file, &proc_tid_smaps_op);
840 }
841
842 const struct file_operations proc_pid_smaps_operations = {
843 .open = pid_smaps_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = proc_map_release,
847 };
848
849 const struct file_operations proc_tid_smaps_operations = {
850 .open = tid_smaps_open,
851 .read = seq_read,
852 .llseek = seq_lseek,
853 .release = proc_map_release,
854 };
855
856 enum clear_refs_types {
857 CLEAR_REFS_ALL = 1,
858 CLEAR_REFS_ANON,
859 CLEAR_REFS_MAPPED,
860 CLEAR_REFS_SOFT_DIRTY,
861 CLEAR_REFS_MM_HIWATER_RSS,
862 CLEAR_REFS_LAST,
863 };
864
865 struct clear_refs_private {
866 enum clear_refs_types type;
867 };
868
869 #ifdef CONFIG_MEM_SOFT_DIRTY
870 static inline void clear_soft_dirty(struct vm_area_struct *vma,
871 unsigned long addr, pte_t *pte)
872 {
873 /*
874 * The soft-dirty tracker uses #PF-s to catch writes
875 * to pages, so write-protect the pte as well. See the
876 * Documentation/vm/soft-dirty.txt for full description
877 * of how soft-dirty works.
878 */
879 pte_t ptent = *pte;
880
881 if (pte_present(ptent)) {
882 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
883 ptent = pte_wrprotect(ptent);
884 ptent = pte_clear_soft_dirty(ptent);
885 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
886 } else if (is_swap_pte(ptent)) {
887 ptent = pte_swp_clear_soft_dirty(ptent);
888 set_pte_at(vma->vm_mm, addr, pte, ptent);
889 }
890 }
891 #else
892 static inline void clear_soft_dirty(struct vm_area_struct *vma,
893 unsigned long addr, pte_t *pte)
894 {
895 }
896 #endif
897
898 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
900 unsigned long addr, pmd_t *pmdp)
901 {
902 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
903
904 pmd = pmd_wrprotect(pmd);
905 pmd = pmd_clear_soft_dirty(pmd);
906
907 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
908 }
909 #else
910 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
911 unsigned long addr, pmd_t *pmdp)
912 {
913 }
914 #endif
915
916 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
917 unsigned long end, struct mm_walk *walk)
918 {
919 struct clear_refs_private *cp = walk->private;
920 struct vm_area_struct *vma = walk->vma;
921 pte_t *pte, ptent;
922 spinlock_t *ptl;
923 struct page *page;
924
925 ptl = pmd_trans_huge_lock(pmd, vma);
926 if (ptl) {
927 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
928 clear_soft_dirty_pmd(vma, addr, pmd);
929 goto out;
930 }
931
932 page = pmd_page(*pmd);
933
934 /* Clear accessed and referenced bits. */
935 pmdp_test_and_clear_young(vma, addr, pmd);
936 test_and_clear_page_young(page);
937 ClearPageReferenced(page);
938 out:
939 spin_unlock(ptl);
940 return 0;
941 }
942
943 if (pmd_trans_unstable(pmd))
944 return 0;
945
946 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
947 for (; addr != end; pte++, addr += PAGE_SIZE) {
948 ptent = *pte;
949
950 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
951 clear_soft_dirty(vma, addr, pte);
952 continue;
953 }
954
955 if (!pte_present(ptent))
956 continue;
957
958 page = vm_normal_page(vma, addr, ptent);
959 if (!page)
960 continue;
961
962 /* Clear accessed and referenced bits. */
963 ptep_test_and_clear_young(vma, addr, pte);
964 test_and_clear_page_young(page);
965 ClearPageReferenced(page);
966 }
967 pte_unmap_unlock(pte - 1, ptl);
968 cond_resched();
969 return 0;
970 }
971
972 static int clear_refs_test_walk(unsigned long start, unsigned long end,
973 struct mm_walk *walk)
974 {
975 struct clear_refs_private *cp = walk->private;
976 struct vm_area_struct *vma = walk->vma;
977
978 if (vma->vm_flags & VM_PFNMAP)
979 return 1;
980
981 /*
982 * Writing 1 to /proc/pid/clear_refs affects all pages.
983 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
984 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
985 * Writing 4 to /proc/pid/clear_refs affects all pages.
986 */
987 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
988 return 1;
989 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
990 return 1;
991 return 0;
992 }
993
994 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
995 size_t count, loff_t *ppos)
996 {
997 struct task_struct *task;
998 char buffer[PROC_NUMBUF];
999 struct mm_struct *mm;
1000 struct vm_area_struct *vma;
1001 enum clear_refs_types type;
1002 int itype;
1003 int rv;
1004
1005 memset(buffer, 0, sizeof(buffer));
1006 if (count > sizeof(buffer) - 1)
1007 count = sizeof(buffer) - 1;
1008 if (copy_from_user(buffer, buf, count))
1009 return -EFAULT;
1010 rv = kstrtoint(strstrip(buffer), 10, &itype);
1011 if (rv < 0)
1012 return rv;
1013 type = (enum clear_refs_types)itype;
1014 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1015 return -EINVAL;
1016
1017 task = get_proc_task(file_inode(file));
1018 if (!task)
1019 return -ESRCH;
1020 mm = get_task_mm(task);
1021 if (mm) {
1022 struct clear_refs_private cp = {
1023 .type = type,
1024 };
1025 struct mm_walk clear_refs_walk = {
1026 .pmd_entry = clear_refs_pte_range,
1027 .test_walk = clear_refs_test_walk,
1028 .mm = mm,
1029 .private = &cp,
1030 };
1031
1032 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1033 if (down_write_killable(&mm->mmap_sem)) {
1034 count = -EINTR;
1035 goto out_mm;
1036 }
1037
1038 /*
1039 * Writing 5 to /proc/pid/clear_refs resets the peak
1040 * resident set size to this mm's current rss value.
1041 */
1042 reset_mm_hiwater_rss(mm);
1043 up_write(&mm->mmap_sem);
1044 goto out_mm;
1045 }
1046
1047 down_read(&mm->mmap_sem);
1048 if (type == CLEAR_REFS_SOFT_DIRTY) {
1049 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1050 if (!(vma->vm_flags & VM_SOFTDIRTY))
1051 continue;
1052 up_read(&mm->mmap_sem);
1053 if (down_write_killable(&mm->mmap_sem)) {
1054 count = -EINTR;
1055 goto out_mm;
1056 }
1057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1058 vma->vm_flags &= ~VM_SOFTDIRTY;
1059 vma_set_page_prot(vma);
1060 }
1061 downgrade_write(&mm->mmap_sem);
1062 break;
1063 }
1064 mmu_notifier_invalidate_range_start(mm, 0, -1);
1065 }
1066 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1067 if (type == CLEAR_REFS_SOFT_DIRTY)
1068 mmu_notifier_invalidate_range_end(mm, 0, -1);
1069 flush_tlb_mm(mm);
1070 up_read(&mm->mmap_sem);
1071 out_mm:
1072 mmput(mm);
1073 }
1074 put_task_struct(task);
1075
1076 return count;
1077 }
1078
1079 const struct file_operations proc_clear_refs_operations = {
1080 .write = clear_refs_write,
1081 .llseek = noop_llseek,
1082 };
1083
1084 typedef struct {
1085 u64 pme;
1086 } pagemap_entry_t;
1087
1088 struct pagemapread {
1089 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1090 pagemap_entry_t *buffer;
1091 bool show_pfn;
1092 };
1093
1094 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1095 #define PAGEMAP_WALK_MASK (PMD_MASK)
1096
1097 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1098 #define PM_PFRAME_BITS 55
1099 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1100 #define PM_SOFT_DIRTY BIT_ULL(55)
1101 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1102 #define PM_FILE BIT_ULL(61)
1103 #define PM_SWAP BIT_ULL(62)
1104 #define PM_PRESENT BIT_ULL(63)
1105
1106 #define PM_END_OF_BUFFER 1
1107
1108 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1109 {
1110 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1111 }
1112
1113 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1114 struct pagemapread *pm)
1115 {
1116 pm->buffer[pm->pos++] = *pme;
1117 if (pm->pos >= pm->len)
1118 return PM_END_OF_BUFFER;
1119 return 0;
1120 }
1121
1122 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1123 struct mm_walk *walk)
1124 {
1125 struct pagemapread *pm = walk->private;
1126 unsigned long addr = start;
1127 int err = 0;
1128
1129 while (addr < end) {
1130 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1131 pagemap_entry_t pme = make_pme(0, 0);
1132 /* End of address space hole, which we mark as non-present. */
1133 unsigned long hole_end;
1134
1135 if (vma)
1136 hole_end = min(end, vma->vm_start);
1137 else
1138 hole_end = end;
1139
1140 for (; addr < hole_end; addr += PAGE_SIZE) {
1141 err = add_to_pagemap(addr, &pme, pm);
1142 if (err)
1143 goto out;
1144 }
1145
1146 if (!vma)
1147 break;
1148
1149 /* Addresses in the VMA. */
1150 if (vma->vm_flags & VM_SOFTDIRTY)
1151 pme = make_pme(0, PM_SOFT_DIRTY);
1152 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1153 err = add_to_pagemap(addr, &pme, pm);
1154 if (err)
1155 goto out;
1156 }
1157 }
1158 out:
1159 return err;
1160 }
1161
1162 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1163 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1164 {
1165 u64 frame = 0, flags = 0;
1166 struct page *page = NULL;
1167
1168 if (pte_present(pte)) {
1169 if (pm->show_pfn)
1170 frame = pte_pfn(pte);
1171 flags |= PM_PRESENT;
1172 page = vm_normal_page(vma, addr, pte);
1173 if (pte_soft_dirty(pte))
1174 flags |= PM_SOFT_DIRTY;
1175 } else if (is_swap_pte(pte)) {
1176 swp_entry_t entry;
1177 if (pte_swp_soft_dirty(pte))
1178 flags |= PM_SOFT_DIRTY;
1179 entry = pte_to_swp_entry(pte);
1180 frame = swp_type(entry) |
1181 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1182 flags |= PM_SWAP;
1183 if (is_migration_entry(entry))
1184 page = migration_entry_to_page(entry);
1185 }
1186
1187 if (page && !PageAnon(page))
1188 flags |= PM_FILE;
1189 if (page && page_mapcount(page) == 1)
1190 flags |= PM_MMAP_EXCLUSIVE;
1191 if (vma->vm_flags & VM_SOFTDIRTY)
1192 flags |= PM_SOFT_DIRTY;
1193
1194 return make_pme(frame, flags);
1195 }
1196
1197 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1198 struct mm_walk *walk)
1199 {
1200 struct vm_area_struct *vma = walk->vma;
1201 struct pagemapread *pm = walk->private;
1202 spinlock_t *ptl;
1203 pte_t *pte, *orig_pte;
1204 int err = 0;
1205
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 ptl = pmd_trans_huge_lock(pmdp, vma);
1208 if (ptl) {
1209 u64 flags = 0, frame = 0;
1210 pmd_t pmd = *pmdp;
1211
1212 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1213 flags |= PM_SOFT_DIRTY;
1214
1215 /*
1216 * Currently pmd for thp is always present because thp
1217 * can not be swapped-out, migrated, or HWPOISONed
1218 * (split in such cases instead.)
1219 * This if-check is just to prepare for future implementation.
1220 */
1221 if (pmd_present(pmd)) {
1222 struct page *page = pmd_page(pmd);
1223
1224 if (page_mapcount(page) == 1)
1225 flags |= PM_MMAP_EXCLUSIVE;
1226
1227 flags |= PM_PRESENT;
1228 if (pm->show_pfn)
1229 frame = pmd_pfn(pmd) +
1230 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1231 }
1232
1233 for (; addr != end; addr += PAGE_SIZE) {
1234 pagemap_entry_t pme = make_pme(frame, flags);
1235
1236 err = add_to_pagemap(addr, &pme, pm);
1237 if (err)
1238 break;
1239 if (pm->show_pfn && (flags & PM_PRESENT))
1240 frame++;
1241 }
1242 spin_unlock(ptl);
1243 return err;
1244 }
1245
1246 if (pmd_trans_unstable(pmdp))
1247 return 0;
1248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1249
1250 /*
1251 * We can assume that @vma always points to a valid one and @end never
1252 * goes beyond vma->vm_end.
1253 */
1254 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1255 for (; addr < end; pte++, addr += PAGE_SIZE) {
1256 pagemap_entry_t pme;
1257
1258 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1259 err = add_to_pagemap(addr, &pme, pm);
1260 if (err)
1261 break;
1262 }
1263 pte_unmap_unlock(orig_pte, ptl);
1264
1265 cond_resched();
1266
1267 return err;
1268 }
1269
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 /* This function walks within one hugetlb entry in the single call */
1272 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1273 unsigned long addr, unsigned long end,
1274 struct mm_walk *walk)
1275 {
1276 struct pagemapread *pm = walk->private;
1277 struct vm_area_struct *vma = walk->vma;
1278 u64 flags = 0, frame = 0;
1279 int err = 0;
1280 pte_t pte;
1281
1282 if (vma->vm_flags & VM_SOFTDIRTY)
1283 flags |= PM_SOFT_DIRTY;
1284
1285 pte = huge_ptep_get(ptep);
1286 if (pte_present(pte)) {
1287 struct page *page = pte_page(pte);
1288
1289 if (!PageAnon(page))
1290 flags |= PM_FILE;
1291
1292 if (page_mapcount(page) == 1)
1293 flags |= PM_MMAP_EXCLUSIVE;
1294
1295 flags |= PM_PRESENT;
1296 if (pm->show_pfn)
1297 frame = pte_pfn(pte) +
1298 ((addr & ~hmask) >> PAGE_SHIFT);
1299 }
1300
1301 for (; addr != end; addr += PAGE_SIZE) {
1302 pagemap_entry_t pme = make_pme(frame, flags);
1303
1304 err = add_to_pagemap(addr, &pme, pm);
1305 if (err)
1306 return err;
1307 if (pm->show_pfn && (flags & PM_PRESENT))
1308 frame++;
1309 }
1310
1311 cond_resched();
1312
1313 return err;
1314 }
1315 #endif /* HUGETLB_PAGE */
1316
1317 /*
1318 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1319 *
1320 * For each page in the address space, this file contains one 64-bit entry
1321 * consisting of the following:
1322 *
1323 * Bits 0-54 page frame number (PFN) if present
1324 * Bits 0-4 swap type if swapped
1325 * Bits 5-54 swap offset if swapped
1326 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327 * Bit 56 page exclusively mapped
1328 * Bits 57-60 zero
1329 * Bit 61 page is file-page or shared-anon
1330 * Bit 62 page swapped
1331 * Bit 63 page present
1332 *
1333 * If the page is not present but in swap, then the PFN contains an
1334 * encoding of the swap file number and the page's offset into the
1335 * swap. Unmapped pages return a null PFN. This allows determining
1336 * precisely which pages are mapped (or in swap) and comparing mapped
1337 * pages between processes.
1338 *
1339 * Efficient users of this interface will use /proc/pid/maps to
1340 * determine which areas of memory are actually mapped and llseek to
1341 * skip over unmapped regions.
1342 */
1343 static ssize_t pagemap_read(struct file *file, char __user *buf,
1344 size_t count, loff_t *ppos)
1345 {
1346 struct mm_struct *mm = file->private_data;
1347 struct pagemapread pm;
1348 struct mm_walk pagemap_walk = {};
1349 unsigned long src;
1350 unsigned long svpfn;
1351 unsigned long start_vaddr;
1352 unsigned long end_vaddr;
1353 int ret = 0, copied = 0;
1354
1355 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1356 goto out;
1357
1358 ret = -EINVAL;
1359 /* file position must be aligned */
1360 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1361 goto out_mm;
1362
1363 ret = 0;
1364 if (!count)
1365 goto out_mm;
1366
1367 /* do not disclose physical addresses: attack vector */
1368 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1369
1370 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1371 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1372 ret = -ENOMEM;
1373 if (!pm.buffer)
1374 goto out_mm;
1375
1376 pagemap_walk.pmd_entry = pagemap_pmd_range;
1377 pagemap_walk.pte_hole = pagemap_pte_hole;
1378 #ifdef CONFIG_HUGETLB_PAGE
1379 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1380 #endif
1381 pagemap_walk.mm = mm;
1382 pagemap_walk.private = &pm;
1383
1384 src = *ppos;
1385 svpfn = src / PM_ENTRY_BYTES;
1386 start_vaddr = svpfn << PAGE_SHIFT;
1387 end_vaddr = mm->task_size;
1388
1389 /* watch out for wraparound */
1390 if (svpfn > mm->task_size >> PAGE_SHIFT)
1391 start_vaddr = end_vaddr;
1392
1393 /*
1394 * The odds are that this will stop walking way
1395 * before end_vaddr, because the length of the
1396 * user buffer is tracked in "pm", and the walk
1397 * will stop when we hit the end of the buffer.
1398 */
1399 ret = 0;
1400 while (count && (start_vaddr < end_vaddr)) {
1401 int len;
1402 unsigned long end;
1403
1404 pm.pos = 0;
1405 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1406 /* overflow ? */
1407 if (end < start_vaddr || end > end_vaddr)
1408 end = end_vaddr;
1409 down_read(&mm->mmap_sem);
1410 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1411 up_read(&mm->mmap_sem);
1412 start_vaddr = end;
1413
1414 len = min(count, PM_ENTRY_BYTES * pm.pos);
1415 if (copy_to_user(buf, pm.buffer, len)) {
1416 ret = -EFAULT;
1417 goto out_free;
1418 }
1419 copied += len;
1420 buf += len;
1421 count -= len;
1422 }
1423 *ppos += copied;
1424 if (!ret || ret == PM_END_OF_BUFFER)
1425 ret = copied;
1426
1427 out_free:
1428 kfree(pm.buffer);
1429 out_mm:
1430 mmput(mm);
1431 out:
1432 return ret;
1433 }
1434
1435 static int pagemap_open(struct inode *inode, struct file *file)
1436 {
1437 struct mm_struct *mm;
1438
1439 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1440 if (IS_ERR(mm))
1441 return PTR_ERR(mm);
1442 file->private_data = mm;
1443 return 0;
1444 }
1445
1446 static int pagemap_release(struct inode *inode, struct file *file)
1447 {
1448 struct mm_struct *mm = file->private_data;
1449
1450 if (mm)
1451 mmdrop(mm);
1452 return 0;
1453 }
1454
1455 const struct file_operations proc_pagemap_operations = {
1456 .llseek = mem_lseek, /* borrow this */
1457 .read = pagemap_read,
1458 .open = pagemap_open,
1459 .release = pagemap_release,
1460 };
1461 #endif /* CONFIG_PROC_PAGE_MONITOR */
1462
1463 #ifdef CONFIG_NUMA
1464
1465 struct numa_maps {
1466 unsigned long pages;
1467 unsigned long anon;
1468 unsigned long active;
1469 unsigned long writeback;
1470 unsigned long mapcount_max;
1471 unsigned long dirty;
1472 unsigned long swapcache;
1473 unsigned long node[MAX_NUMNODES];
1474 };
1475
1476 struct numa_maps_private {
1477 struct proc_maps_private proc_maps;
1478 struct numa_maps md;
1479 };
1480
1481 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1482 unsigned long nr_pages)
1483 {
1484 int count = page_mapcount(page);
1485
1486 md->pages += nr_pages;
1487 if (pte_dirty || PageDirty(page))
1488 md->dirty += nr_pages;
1489
1490 if (PageSwapCache(page))
1491 md->swapcache += nr_pages;
1492
1493 if (PageActive(page) || PageUnevictable(page))
1494 md->active += nr_pages;
1495
1496 if (PageWriteback(page))
1497 md->writeback += nr_pages;
1498
1499 if (PageAnon(page))
1500 md->anon += nr_pages;
1501
1502 if (count > md->mapcount_max)
1503 md->mapcount_max = count;
1504
1505 md->node[page_to_nid(page)] += nr_pages;
1506 }
1507
1508 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1509 unsigned long addr)
1510 {
1511 struct page *page;
1512 int nid;
1513
1514 if (!pte_present(pte))
1515 return NULL;
1516
1517 page = vm_normal_page(vma, addr, pte);
1518 if (!page)
1519 return NULL;
1520
1521 if (PageReserved(page))
1522 return NULL;
1523
1524 nid = page_to_nid(page);
1525 if (!node_isset(nid, node_states[N_MEMORY]))
1526 return NULL;
1527
1528 return page;
1529 }
1530
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1533 struct vm_area_struct *vma,
1534 unsigned long addr)
1535 {
1536 struct page *page;
1537 int nid;
1538
1539 if (!pmd_present(pmd))
1540 return NULL;
1541
1542 page = vm_normal_page_pmd(vma, addr, pmd);
1543 if (!page)
1544 return NULL;
1545
1546 if (PageReserved(page))
1547 return NULL;
1548
1549 nid = page_to_nid(page);
1550 if (!node_isset(nid, node_states[N_MEMORY]))
1551 return NULL;
1552
1553 return page;
1554 }
1555 #endif
1556
1557 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1558 unsigned long end, struct mm_walk *walk)
1559 {
1560 struct numa_maps *md = walk->private;
1561 struct vm_area_struct *vma = walk->vma;
1562 spinlock_t *ptl;
1563 pte_t *orig_pte;
1564 pte_t *pte;
1565
1566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 ptl = pmd_trans_huge_lock(pmd, vma);
1568 if (ptl) {
1569 struct page *page;
1570
1571 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1572 if (page)
1573 gather_stats(page, md, pmd_dirty(*pmd),
1574 HPAGE_PMD_SIZE/PAGE_SIZE);
1575 spin_unlock(ptl);
1576 return 0;
1577 }
1578
1579 if (pmd_trans_unstable(pmd))
1580 return 0;
1581 #endif
1582 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1583 do {
1584 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1585 if (!page)
1586 continue;
1587 gather_stats(page, md, pte_dirty(*pte), 1);
1588
1589 } while (pte++, addr += PAGE_SIZE, addr != end);
1590 pte_unmap_unlock(orig_pte, ptl);
1591 cond_resched();
1592 return 0;
1593 }
1594 #ifdef CONFIG_HUGETLB_PAGE
1595 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1596 unsigned long addr, unsigned long end, struct mm_walk *walk)
1597 {
1598 pte_t huge_pte = huge_ptep_get(pte);
1599 struct numa_maps *md;
1600 struct page *page;
1601
1602 if (!pte_present(huge_pte))
1603 return 0;
1604
1605 page = pte_page(huge_pte);
1606 if (!page)
1607 return 0;
1608
1609 md = walk->private;
1610 gather_stats(page, md, pte_dirty(huge_pte), 1);
1611 return 0;
1612 }
1613
1614 #else
1615 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1616 unsigned long addr, unsigned long end, struct mm_walk *walk)
1617 {
1618 return 0;
1619 }
1620 #endif
1621
1622 /*
1623 * Display pages allocated per node and memory policy via /proc.
1624 */
1625 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1626 {
1627 struct numa_maps_private *numa_priv = m->private;
1628 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1629 struct vm_area_struct *vma = v;
1630 struct numa_maps *md = &numa_priv->md;
1631 struct file *file = vma->vm_file;
1632 struct mm_struct *mm = vma->vm_mm;
1633 struct mm_walk walk = {
1634 .hugetlb_entry = gather_hugetlb_stats,
1635 .pmd_entry = gather_pte_stats,
1636 .private = md,
1637 .mm = mm,
1638 };
1639 struct mempolicy *pol;
1640 char buffer[64];
1641 int nid;
1642
1643 if (!mm)
1644 return 0;
1645
1646 /* Ensure we start with an empty set of numa_maps statistics. */
1647 memset(md, 0, sizeof(*md));
1648
1649 pol = __get_vma_policy(vma, vma->vm_start);
1650 if (pol) {
1651 mpol_to_str(buffer, sizeof(buffer), pol);
1652 mpol_cond_put(pol);
1653 } else {
1654 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1655 }
1656
1657 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1658
1659 if (file) {
1660 seq_puts(m, " file=");
1661 seq_file_path(m, file, "\n\t= ");
1662 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1663 seq_puts(m, " heap");
1664 } else if (is_stack(proc_priv, vma)) {
1665 seq_puts(m, " stack");
1666 }
1667
1668 if (is_vm_hugetlb_page(vma))
1669 seq_puts(m, " huge");
1670
1671 /* mmap_sem is held by m_start */
1672 walk_page_vma(vma, &walk);
1673
1674 if (!md->pages)
1675 goto out;
1676
1677 if (md->anon)
1678 seq_printf(m, " anon=%lu", md->anon);
1679
1680 if (md->dirty)
1681 seq_printf(m, " dirty=%lu", md->dirty);
1682
1683 if (md->pages != md->anon && md->pages != md->dirty)
1684 seq_printf(m, " mapped=%lu", md->pages);
1685
1686 if (md->mapcount_max > 1)
1687 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1688
1689 if (md->swapcache)
1690 seq_printf(m, " swapcache=%lu", md->swapcache);
1691
1692 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1693 seq_printf(m, " active=%lu", md->active);
1694
1695 if (md->writeback)
1696 seq_printf(m, " writeback=%lu", md->writeback);
1697
1698 for_each_node_state(nid, N_MEMORY)
1699 if (md->node[nid])
1700 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1701
1702 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1703 out:
1704 seq_putc(m, '\n');
1705 m_cache_vma(m, vma);
1706 return 0;
1707 }
1708
1709 static int show_pid_numa_map(struct seq_file *m, void *v)
1710 {
1711 return show_numa_map(m, v, 1);
1712 }
1713
1714 static int show_tid_numa_map(struct seq_file *m, void *v)
1715 {
1716 return show_numa_map(m, v, 0);
1717 }
1718
1719 static const struct seq_operations proc_pid_numa_maps_op = {
1720 .start = m_start,
1721 .next = m_next,
1722 .stop = m_stop,
1723 .show = show_pid_numa_map,
1724 };
1725
1726 static const struct seq_operations proc_tid_numa_maps_op = {
1727 .start = m_start,
1728 .next = m_next,
1729 .stop = m_stop,
1730 .show = show_tid_numa_map,
1731 };
1732
1733 static int numa_maps_open(struct inode *inode, struct file *file,
1734 const struct seq_operations *ops)
1735 {
1736 return proc_maps_open(inode, file, ops,
1737 sizeof(struct numa_maps_private));
1738 }
1739
1740 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1741 {
1742 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1743 }
1744
1745 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1746 {
1747 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1748 }
1749
1750 const struct file_operations proc_pid_numa_maps_operations = {
1751 .open = pid_numa_maps_open,
1752 .read = seq_read,
1753 .llseek = seq_lseek,
1754 .release = proc_map_release,
1755 };
1756
1757 const struct file_operations proc_tid_numa_maps_operations = {
1758 .open = tid_numa_maps_open,
1759 .read = seq_read,
1760 .llseek = seq_lseek,
1761 .release = proc_map_release,
1762 };
1763 #endif /* CONFIG_NUMA */