]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/task_mmu.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-artful-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/uaccess.h>
20
21 #include <asm/elf.h>
22 #include <asm/tlb.h>
23 #include <asm/tlbflush.h>
24 #include "internal.h"
25
26 void task_mem(struct seq_file *m, struct mm_struct *mm)
27 {
28 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
29 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
30
31 anon = get_mm_counter(mm, MM_ANONPAGES);
32 file = get_mm_counter(mm, MM_FILEPAGES);
33 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
34
35 /*
36 * Note: to minimize their overhead, mm maintains hiwater_vm and
37 * hiwater_rss only when about to *lower* total_vm or rss. Any
38 * collector of these hiwater stats must therefore get total_vm
39 * and rss too, which will usually be the higher. Barriers? not
40 * worth the effort, such snapshots can always be inconsistent.
41 */
42 hiwater_vm = total_vm = mm->total_vm;
43 if (hiwater_vm < mm->hiwater_vm)
44 hiwater_vm = mm->hiwater_vm;
45 hiwater_rss = total_rss = anon + file + shmem;
46 if (hiwater_rss < mm->hiwater_rss)
47 hiwater_rss = mm->hiwater_rss;
48
49 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
50 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
51 swap = get_mm_counter(mm, MM_SWAPENTS);
52 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
53 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
54 seq_printf(m,
55 "VmPeak:\t%8lu kB\n"
56 "VmSize:\t%8lu kB\n"
57 "VmLck:\t%8lu kB\n"
58 "VmPin:\t%8lu kB\n"
59 "VmHWM:\t%8lu kB\n"
60 "VmRSS:\t%8lu kB\n"
61 "RssAnon:\t%8lu kB\n"
62 "RssFile:\t%8lu kB\n"
63 "RssShmem:\t%8lu kB\n"
64 "VmData:\t%8lu kB\n"
65 "VmStk:\t%8lu kB\n"
66 "VmExe:\t%8lu kB\n"
67 "VmLib:\t%8lu kB\n"
68 "VmPTE:\t%8lu kB\n"
69 "VmPMD:\t%8lu kB\n"
70 "VmSwap:\t%8lu kB\n",
71 hiwater_vm << (PAGE_SHIFT-10),
72 total_vm << (PAGE_SHIFT-10),
73 mm->locked_vm << (PAGE_SHIFT-10),
74 mm->pinned_vm << (PAGE_SHIFT-10),
75 hiwater_rss << (PAGE_SHIFT-10),
76 total_rss << (PAGE_SHIFT-10),
77 anon << (PAGE_SHIFT-10),
78 file << (PAGE_SHIFT-10),
79 shmem << (PAGE_SHIFT-10),
80 mm->data_vm << (PAGE_SHIFT-10),
81 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
82 ptes >> 10,
83 pmds >> 10,
84 swap << (PAGE_SHIFT-10));
85 hugetlb_report_usage(m, mm);
86 }
87
88 unsigned long task_vsize(struct mm_struct *mm)
89 {
90 return PAGE_SIZE * mm->total_vm;
91 }
92
93 unsigned long task_statm(struct mm_struct *mm,
94 unsigned long *shared, unsigned long *text,
95 unsigned long *data, unsigned long *resident)
96 {
97 *shared = get_mm_counter(mm, MM_FILEPAGES) +
98 get_mm_counter(mm, MM_SHMEMPAGES);
99 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
100 >> PAGE_SHIFT;
101 *data = mm->data_vm + mm->stack_vm;
102 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
103 return mm->total_vm;
104 }
105
106 #ifdef CONFIG_NUMA
107 /*
108 * Save get_task_policy() for show_numa_map().
109 */
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112 struct task_struct *task = priv->task;
113
114 task_lock(task);
115 priv->task_mempolicy = get_task_policy(task);
116 mpol_get(priv->task_mempolicy);
117 task_unlock(task);
118 }
119 static void release_task_mempolicy(struct proc_maps_private *priv)
120 {
121 mpol_put(priv->task_mempolicy);
122 }
123 #else
124 static void hold_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 }
130 #endif
131
132 static void vma_stop(struct proc_maps_private *priv)
133 {
134 struct mm_struct *mm = priv->mm;
135
136 release_task_mempolicy(priv);
137 up_read(&mm->mmap_sem);
138 mmput(mm);
139 }
140
141 static struct vm_area_struct *
142 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
143 {
144 if (vma == priv->tail_vma)
145 return NULL;
146 return vma->vm_next ?: priv->tail_vma;
147 }
148
149 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
150 {
151 if (m->count < m->size) /* vma is copied successfully */
152 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
153 }
154
155 static void *m_start(struct seq_file *m, loff_t *ppos)
156 {
157 struct proc_maps_private *priv = m->private;
158 unsigned long last_addr = m->version;
159 struct mm_struct *mm;
160 struct vm_area_struct *vma;
161 unsigned int pos = *ppos;
162
163 /* See m_cache_vma(). Zero at the start or after lseek. */
164 if (last_addr == -1UL)
165 return NULL;
166
167 priv->task = get_proc_task(priv->inode);
168 if (!priv->task)
169 return ERR_PTR(-ESRCH);
170
171 mm = priv->mm;
172 if (!mm || !mmget_not_zero(mm))
173 return NULL;
174
175 down_read(&mm->mmap_sem);
176 hold_task_mempolicy(priv);
177 priv->tail_vma = get_gate_vma(mm);
178
179 if (last_addr) {
180 vma = find_vma(mm, last_addr - 1);
181 if (vma && vma->vm_start <= last_addr)
182 vma = m_next_vma(priv, vma);
183 if (vma)
184 return vma;
185 }
186
187 m->version = 0;
188 if (pos < mm->map_count) {
189 for (vma = mm->mmap; pos; pos--) {
190 m->version = vma->vm_start;
191 vma = vma->vm_next;
192 }
193 return vma;
194 }
195
196 /* we do not bother to update m->version in this case */
197 if (pos == mm->map_count && priv->tail_vma)
198 return priv->tail_vma;
199
200 vma_stop(priv);
201 return NULL;
202 }
203
204 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
205 {
206 struct proc_maps_private *priv = m->private;
207 struct vm_area_struct *next;
208
209 (*pos)++;
210 next = m_next_vma(priv, v);
211 if (!next)
212 vma_stop(priv);
213 return next;
214 }
215
216 static void m_stop(struct seq_file *m, void *v)
217 {
218 struct proc_maps_private *priv = m->private;
219
220 if (!IS_ERR_OR_NULL(v))
221 vma_stop(priv);
222 if (priv->task) {
223 put_task_struct(priv->task);
224 priv->task = NULL;
225 }
226 }
227
228 static int proc_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops, int psize)
230 {
231 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
232
233 if (!priv)
234 return -ENOMEM;
235
236 priv->inode = inode;
237 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
238 if (IS_ERR(priv->mm)) {
239 int err = PTR_ERR(priv->mm);
240
241 seq_release_private(inode, file);
242 return err;
243 }
244
245 return 0;
246 }
247
248 static int proc_map_release(struct inode *inode, struct file *file)
249 {
250 struct seq_file *seq = file->private_data;
251 struct proc_maps_private *priv = seq->private;
252
253 if (priv->mm)
254 mmdrop(priv->mm);
255
256 return seq_release_private(inode, file);
257 }
258
259 static int do_maps_open(struct inode *inode, struct file *file,
260 const struct seq_operations *ops)
261 {
262 return proc_maps_open(inode, file, ops,
263 sizeof(struct proc_maps_private));
264 }
265
266 /*
267 * Indicate if the VMA is a stack for the given task; for
268 * /proc/PID/maps that is the stack of the main task.
269 */
270 static int is_stack(struct proc_maps_private *priv,
271 struct vm_area_struct *vma)
272 {
273 /*
274 * We make no effort to guess what a given thread considers to be
275 * its "stack". It's not even well-defined for programs written
276 * languages like Go.
277 */
278 return vma->vm_start <= vma->vm_mm->start_stack &&
279 vma->vm_end >= vma->vm_mm->start_stack;
280 }
281
282 static void
283 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
284 {
285 struct mm_struct *mm = vma->vm_mm;
286 struct file *file = vma->vm_file;
287 struct proc_maps_private *priv = m->private;
288 vm_flags_t flags = vma->vm_flags;
289 unsigned long ino = 0;
290 unsigned long long pgoff = 0;
291 unsigned long start, end;
292 dev_t dev = 0;
293 const char *name = NULL;
294
295 if (file) {
296 struct inode *inode;
297
298 file = vma_pr_or_file(vma);
299 inode = file_inode(file);
300 dev = inode->i_sb->s_dev;
301 ino = inode->i_ino;
302 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
303 }
304
305 start = vma->vm_start;
306 end = vma->vm_end;
307
308 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
309 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310 start,
311 end,
312 flags & VM_READ ? 'r' : '-',
313 flags & VM_WRITE ? 'w' : '-',
314 flags & VM_EXEC ? 'x' : '-',
315 flags & VM_MAYSHARE ? 's' : 'p',
316 pgoff,
317 MAJOR(dev), MINOR(dev), ino);
318
319 /*
320 * Print the dentry name for named mappings, and a
321 * special [heap] marker for the heap:
322 */
323 if (file) {
324 seq_pad(m, ' ');
325 seq_file_path(m, file, "\n");
326 goto done;
327 }
328
329 if (vma->vm_ops && vma->vm_ops->name) {
330 name = vma->vm_ops->name(vma);
331 if (name)
332 goto done;
333 }
334
335 name = arch_vma_name(vma);
336 if (!name) {
337 if (!mm) {
338 name = "[vdso]";
339 goto done;
340 }
341
342 if (vma->vm_start <= mm->brk &&
343 vma->vm_end >= mm->start_brk) {
344 name = "[heap]";
345 goto done;
346 }
347
348 if (is_stack(priv, vma))
349 name = "[stack]";
350 }
351
352 done:
353 if (name) {
354 seq_pad(m, ' ');
355 seq_puts(m, name);
356 }
357 seq_putc(m, '\n');
358 }
359
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 show_map_vma(m, v, is_pid);
363 m_cache_vma(m, v);
364 return 0;
365 }
366
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 return show_map(m, v, 1);
370 }
371
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 return show_map(m, v, 0);
375 }
376
377 static const struct seq_operations proc_pid_maps_op = {
378 .start = m_start,
379 .next = m_next,
380 .stop = m_stop,
381 .show = show_pid_map
382 };
383
384 static const struct seq_operations proc_tid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_tid_map
389 };
390
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400
401 const struct file_operations proc_pid_maps_operations = {
402 .open = pid_maps_open,
403 .read = seq_read,
404 .llseek = seq_lseek,
405 .release = proc_map_release,
406 };
407
408 const struct file_operations proc_tid_maps_operations = {
409 .open = tid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413 };
414
415 /*
416 * Proportional Set Size(PSS): my share of RSS.
417 *
418 * PSS of a process is the count of pages it has in memory, where each
419 * page is divided by the number of processes sharing it. So if a
420 * process has 1000 pages all to itself, and 1000 shared with one other
421 * process, its PSS will be 1500.
422 *
423 * To keep (accumulated) division errors low, we adopt a 64bit
424 * fixed-point pss counter to minimize division errors. So (pss >>
425 * PSS_SHIFT) would be the real byte count.
426 *
427 * A shift of 12 before division means (assuming 4K page size):
428 * - 1M 3-user-pages add up to 8KB errors;
429 * - supports mapcount up to 2^24, or 16M;
430 * - supports PSS up to 2^52 bytes, or 4PB.
431 */
432 #define PSS_SHIFT 12
433
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 unsigned long resident;
437 unsigned long shared_clean;
438 unsigned long shared_dirty;
439 unsigned long private_clean;
440 unsigned long private_dirty;
441 unsigned long referenced;
442 unsigned long anonymous;
443 unsigned long lazyfree;
444 unsigned long anonymous_thp;
445 unsigned long shmem_thp;
446 unsigned long swap;
447 unsigned long shared_hugetlb;
448 unsigned long private_hugetlb;
449 u64 pss;
450 u64 swap_pss;
451 bool check_shmem_swap;
452 };
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455 bool compound, bool young, bool dirty)
456 {
457 int i, nr = compound ? 1 << compound_order(page) : 1;
458 unsigned long size = nr * PAGE_SIZE;
459
460 if (PageAnon(page)) {
461 mss->anonymous += size;
462 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
463 mss->lazyfree += size;
464 }
465
466 mss->resident += size;
467 /* Accumulate the size in pages that have been accessed. */
468 if (young || page_is_young(page) || PageReferenced(page))
469 mss->referenced += size;
470
471 /*
472 * page_count(page) == 1 guarantees the page is mapped exactly once.
473 * If any subpage of the compound page mapped with PTE it would elevate
474 * page_count().
475 */
476 if (page_count(page) == 1) {
477 if (dirty || PageDirty(page))
478 mss->private_dirty += size;
479 else
480 mss->private_clean += size;
481 mss->pss += (u64)size << PSS_SHIFT;
482 return;
483 }
484
485 for (i = 0; i < nr; i++, page++) {
486 int mapcount = page_mapcount(page);
487
488 if (mapcount >= 2) {
489 if (dirty || PageDirty(page))
490 mss->shared_dirty += PAGE_SIZE;
491 else
492 mss->shared_clean += PAGE_SIZE;
493 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
494 } else {
495 if (dirty || PageDirty(page))
496 mss->private_dirty += PAGE_SIZE;
497 else
498 mss->private_clean += PAGE_SIZE;
499 mss->pss += PAGE_SIZE << PSS_SHIFT;
500 }
501 }
502 }
503
504 #ifdef CONFIG_SHMEM
505 static int smaps_pte_hole(unsigned long addr, unsigned long end,
506 struct mm_walk *walk)
507 {
508 struct mem_size_stats *mss = walk->private;
509
510 mss->swap += shmem_partial_swap_usage(
511 walk->vma->vm_file->f_mapping, addr, end);
512
513 return 0;
514 }
515 #endif
516
517 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
518 struct mm_walk *walk)
519 {
520 struct mem_size_stats *mss = walk->private;
521 struct vm_area_struct *vma = walk->vma;
522 struct page *page = NULL;
523
524 if (pte_present(*pte)) {
525 page = vm_normal_page(vma, addr, *pte);
526 } else if (is_swap_pte(*pte)) {
527 swp_entry_t swpent = pte_to_swp_entry(*pte);
528
529 if (!non_swap_entry(swpent)) {
530 int mapcount;
531
532 mss->swap += PAGE_SIZE;
533 mapcount = swp_swapcount(swpent);
534 if (mapcount >= 2) {
535 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
536
537 do_div(pss_delta, mapcount);
538 mss->swap_pss += pss_delta;
539 } else {
540 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
541 }
542 } else if (is_migration_entry(swpent))
543 page = migration_entry_to_page(swpent);
544 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
545 && pte_none(*pte))) {
546 page = find_get_entry(vma->vm_file->f_mapping,
547 linear_page_index(vma, addr));
548 if (!page)
549 return;
550
551 if (radix_tree_exceptional_entry(page))
552 mss->swap += PAGE_SIZE;
553 else
554 put_page(page);
555
556 return;
557 }
558
559 if (!page)
560 return;
561
562 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
563 }
564
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567 struct mm_walk *walk)
568 {
569 struct mem_size_stats *mss = walk->private;
570 struct vm_area_struct *vma = walk->vma;
571 struct page *page;
572
573 /* FOLL_DUMP will return -EFAULT on huge zero page */
574 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
575 if (IS_ERR_OR_NULL(page))
576 return;
577 if (PageAnon(page))
578 mss->anonymous_thp += HPAGE_PMD_SIZE;
579 else if (PageSwapBacked(page))
580 mss->shmem_thp += HPAGE_PMD_SIZE;
581 else if (is_zone_device_page(page))
582 /* pass */;
583 else
584 VM_BUG_ON_PAGE(1, page);
585 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
586 }
587 #else
588 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
589 struct mm_walk *walk)
590 {
591 }
592 #endif
593
594 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
595 struct mm_walk *walk)
596 {
597 struct vm_area_struct *vma = walk->vma;
598 pte_t *pte;
599 spinlock_t *ptl;
600
601 ptl = pmd_trans_huge_lock(pmd, vma);
602 if (ptl) {
603 smaps_pmd_entry(pmd, addr, walk);
604 spin_unlock(ptl);
605 return 0;
606 }
607
608 if (pmd_trans_unstable(pmd))
609 return 0;
610 /*
611 * The mmap_sem held all the way back in m_start() is what
612 * keeps khugepaged out of here and from collapsing things
613 * in here.
614 */
615 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
616 for (; addr != end; pte++, addr += PAGE_SIZE)
617 smaps_pte_entry(pte, addr, walk);
618 pte_unmap_unlock(pte - 1, ptl);
619 cond_resched();
620 return 0;
621 }
622
623 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
624 {
625 /*
626 * Don't forget to update Documentation/ on changes.
627 */
628 static const char mnemonics[BITS_PER_LONG][2] = {
629 /*
630 * In case if we meet a flag we don't know about.
631 */
632 [0 ... (BITS_PER_LONG-1)] = "??",
633
634 [ilog2(VM_READ)] = "rd",
635 [ilog2(VM_WRITE)] = "wr",
636 [ilog2(VM_EXEC)] = "ex",
637 [ilog2(VM_SHARED)] = "sh",
638 [ilog2(VM_MAYREAD)] = "mr",
639 [ilog2(VM_MAYWRITE)] = "mw",
640 [ilog2(VM_MAYEXEC)] = "me",
641 [ilog2(VM_MAYSHARE)] = "ms",
642 [ilog2(VM_GROWSDOWN)] = "gd",
643 [ilog2(VM_PFNMAP)] = "pf",
644 [ilog2(VM_DENYWRITE)] = "dw",
645 #ifdef CONFIG_X86_INTEL_MPX
646 [ilog2(VM_MPX)] = "mp",
647 #endif
648 [ilog2(VM_LOCKED)] = "lo",
649 [ilog2(VM_IO)] = "io",
650 [ilog2(VM_SEQ_READ)] = "sr",
651 [ilog2(VM_RAND_READ)] = "rr",
652 [ilog2(VM_DONTCOPY)] = "dc",
653 [ilog2(VM_DONTEXPAND)] = "de",
654 [ilog2(VM_ACCOUNT)] = "ac",
655 [ilog2(VM_NORESERVE)] = "nr",
656 [ilog2(VM_HUGETLB)] = "ht",
657 [ilog2(VM_ARCH_1)] = "ar",
658 [ilog2(VM_DONTDUMP)] = "dd",
659 #ifdef CONFIG_MEM_SOFT_DIRTY
660 [ilog2(VM_SOFTDIRTY)] = "sd",
661 #endif
662 [ilog2(VM_MIXEDMAP)] = "mm",
663 [ilog2(VM_HUGEPAGE)] = "hg",
664 [ilog2(VM_NOHUGEPAGE)] = "nh",
665 [ilog2(VM_MERGEABLE)] = "mg",
666 [ilog2(VM_UFFD_MISSING)]= "um",
667 [ilog2(VM_UFFD_WP)] = "uw",
668 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
669 /* These come out via ProtectionKey: */
670 [ilog2(VM_PKEY_BIT0)] = "",
671 [ilog2(VM_PKEY_BIT1)] = "",
672 [ilog2(VM_PKEY_BIT2)] = "",
673 [ilog2(VM_PKEY_BIT3)] = "",
674 #endif
675 };
676 size_t i;
677
678 seq_puts(m, "VmFlags: ");
679 for (i = 0; i < BITS_PER_LONG; i++) {
680 if (!mnemonics[i][0])
681 continue;
682 if (vma->vm_flags & (1UL << i)) {
683 seq_printf(m, "%c%c ",
684 mnemonics[i][0], mnemonics[i][1]);
685 }
686 }
687 seq_putc(m, '\n');
688 }
689
690 #ifdef CONFIG_HUGETLB_PAGE
691 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
692 unsigned long addr, unsigned long end,
693 struct mm_walk *walk)
694 {
695 struct mem_size_stats *mss = walk->private;
696 struct vm_area_struct *vma = walk->vma;
697 struct page *page = NULL;
698
699 if (pte_present(*pte)) {
700 page = vm_normal_page(vma, addr, *pte);
701 } else if (is_swap_pte(*pte)) {
702 swp_entry_t swpent = pte_to_swp_entry(*pte);
703
704 if (is_migration_entry(swpent))
705 page = migration_entry_to_page(swpent);
706 }
707 if (page) {
708 int mapcount = page_mapcount(page);
709
710 if (mapcount >= 2)
711 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
712 else
713 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
714 }
715 return 0;
716 }
717 #endif /* HUGETLB_PAGE */
718
719 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
720 {
721 }
722
723 static int show_smap(struct seq_file *m, void *v, int is_pid)
724 {
725 struct vm_area_struct *vma = v;
726 struct mem_size_stats mss;
727 struct mm_walk smaps_walk = {
728 .pmd_entry = smaps_pte_range,
729 #ifdef CONFIG_HUGETLB_PAGE
730 .hugetlb_entry = smaps_hugetlb_range,
731 #endif
732 .mm = vma->vm_mm,
733 .private = &mss,
734 };
735
736 memset(&mss, 0, sizeof mss);
737
738 #ifdef CONFIG_SHMEM
739 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
740 /*
741 * For shared or readonly shmem mappings we know that all
742 * swapped out pages belong to the shmem object, and we can
743 * obtain the swap value much more efficiently. For private
744 * writable mappings, we might have COW pages that are
745 * not affected by the parent swapped out pages of the shmem
746 * object, so we have to distinguish them during the page walk.
747 * Unless we know that the shmem object (or the part mapped by
748 * our VMA) has no swapped out pages at all.
749 */
750 unsigned long shmem_swapped = shmem_swap_usage(vma);
751
752 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
753 !(vma->vm_flags & VM_WRITE)) {
754 mss.swap = shmem_swapped;
755 } else {
756 mss.check_shmem_swap = true;
757 smaps_walk.pte_hole = smaps_pte_hole;
758 }
759 }
760 #endif
761
762 /* mmap_sem is held in m_start */
763 walk_page_vma(vma, &smaps_walk);
764
765 show_map_vma(m, vma, is_pid);
766
767 seq_printf(m,
768 "Size: %8lu kB\n"
769 "Rss: %8lu kB\n"
770 "Pss: %8lu kB\n"
771 "Shared_Clean: %8lu kB\n"
772 "Shared_Dirty: %8lu kB\n"
773 "Private_Clean: %8lu kB\n"
774 "Private_Dirty: %8lu kB\n"
775 "Referenced: %8lu kB\n"
776 "Anonymous: %8lu kB\n"
777 "LazyFree: %8lu kB\n"
778 "AnonHugePages: %8lu kB\n"
779 "ShmemPmdMapped: %8lu kB\n"
780 "Shared_Hugetlb: %8lu kB\n"
781 "Private_Hugetlb: %7lu kB\n"
782 "Swap: %8lu kB\n"
783 "SwapPss: %8lu kB\n"
784 "KernelPageSize: %8lu kB\n"
785 "MMUPageSize: %8lu kB\n"
786 "Locked: %8lu kB\n",
787 (vma->vm_end - vma->vm_start) >> 10,
788 mss.resident >> 10,
789 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
790 mss.shared_clean >> 10,
791 mss.shared_dirty >> 10,
792 mss.private_clean >> 10,
793 mss.private_dirty >> 10,
794 mss.referenced >> 10,
795 mss.anonymous >> 10,
796 mss.lazyfree >> 10,
797 mss.anonymous_thp >> 10,
798 mss.shmem_thp >> 10,
799 mss.shared_hugetlb >> 10,
800 mss.private_hugetlb >> 10,
801 mss.swap >> 10,
802 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
803 vma_kernel_pagesize(vma) >> 10,
804 vma_mmu_pagesize(vma) >> 10,
805 (vma->vm_flags & VM_LOCKED) ?
806 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
807
808 arch_show_smap(m, vma);
809 show_smap_vma_flags(m, vma);
810 m_cache_vma(m, vma);
811 return 0;
812 }
813
814 static int show_pid_smap(struct seq_file *m, void *v)
815 {
816 return show_smap(m, v, 1);
817 }
818
819 static int show_tid_smap(struct seq_file *m, void *v)
820 {
821 return show_smap(m, v, 0);
822 }
823
824 static const struct seq_operations proc_pid_smaps_op = {
825 .start = m_start,
826 .next = m_next,
827 .stop = m_stop,
828 .show = show_pid_smap
829 };
830
831 static const struct seq_operations proc_tid_smaps_op = {
832 .start = m_start,
833 .next = m_next,
834 .stop = m_stop,
835 .show = show_tid_smap
836 };
837
838 static int pid_smaps_open(struct inode *inode, struct file *file)
839 {
840 return do_maps_open(inode, file, &proc_pid_smaps_op);
841 }
842
843 static int tid_smaps_open(struct inode *inode, struct file *file)
844 {
845 return do_maps_open(inode, file, &proc_tid_smaps_op);
846 }
847
848 const struct file_operations proc_pid_smaps_operations = {
849 .open = pid_smaps_open,
850 .read = seq_read,
851 .llseek = seq_lseek,
852 .release = proc_map_release,
853 };
854
855 const struct file_operations proc_tid_smaps_operations = {
856 .open = tid_smaps_open,
857 .read = seq_read,
858 .llseek = seq_lseek,
859 .release = proc_map_release,
860 };
861
862 enum clear_refs_types {
863 CLEAR_REFS_ALL = 1,
864 CLEAR_REFS_ANON,
865 CLEAR_REFS_MAPPED,
866 CLEAR_REFS_SOFT_DIRTY,
867 CLEAR_REFS_MM_HIWATER_RSS,
868 CLEAR_REFS_LAST,
869 };
870
871 struct clear_refs_private {
872 enum clear_refs_types type;
873 };
874
875 #ifdef CONFIG_MEM_SOFT_DIRTY
876 static inline void clear_soft_dirty(struct vm_area_struct *vma,
877 unsigned long addr, pte_t *pte)
878 {
879 /*
880 * The soft-dirty tracker uses #PF-s to catch writes
881 * to pages, so write-protect the pte as well. See the
882 * Documentation/vm/soft-dirty.txt for full description
883 * of how soft-dirty works.
884 */
885 pte_t ptent = *pte;
886
887 if (pte_present(ptent)) {
888 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
889 ptent = pte_wrprotect(ptent);
890 ptent = pte_clear_soft_dirty(ptent);
891 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
892 } else if (is_swap_pte(ptent)) {
893 ptent = pte_swp_clear_soft_dirty(ptent);
894 set_pte_at(vma->vm_mm, addr, pte, ptent);
895 }
896 }
897 #else
898 static inline void clear_soft_dirty(struct vm_area_struct *vma,
899 unsigned long addr, pte_t *pte)
900 {
901 }
902 #endif
903
904 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
905 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
906 unsigned long addr, pmd_t *pmdp)
907 {
908 pmd_t pmd = *pmdp;
909
910 /* See comment in change_huge_pmd() */
911 pmdp_invalidate(vma, addr, pmdp);
912 if (pmd_dirty(*pmdp))
913 pmd = pmd_mkdirty(pmd);
914 if (pmd_young(*pmdp))
915 pmd = pmd_mkyoung(pmd);
916
917 pmd = pmd_wrprotect(pmd);
918 pmd = pmd_clear_soft_dirty(pmd);
919
920 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
921 }
922 #else
923 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
924 unsigned long addr, pmd_t *pmdp)
925 {
926 }
927 #endif
928
929 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
930 unsigned long end, struct mm_walk *walk)
931 {
932 struct clear_refs_private *cp = walk->private;
933 struct vm_area_struct *vma = walk->vma;
934 pte_t *pte, ptent;
935 spinlock_t *ptl;
936 struct page *page;
937
938 ptl = pmd_trans_huge_lock(pmd, vma);
939 if (ptl) {
940 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
941 clear_soft_dirty_pmd(vma, addr, pmd);
942 goto out;
943 }
944
945 page = pmd_page(*pmd);
946
947 /* Clear accessed and referenced bits. */
948 pmdp_test_and_clear_young(vma, addr, pmd);
949 test_and_clear_page_young(page);
950 ClearPageReferenced(page);
951 out:
952 spin_unlock(ptl);
953 return 0;
954 }
955
956 if (pmd_trans_unstable(pmd))
957 return 0;
958
959 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
960 for (; addr != end; pte++, addr += PAGE_SIZE) {
961 ptent = *pte;
962
963 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
964 clear_soft_dirty(vma, addr, pte);
965 continue;
966 }
967
968 if (!pte_present(ptent))
969 continue;
970
971 page = vm_normal_page(vma, addr, ptent);
972 if (!page)
973 continue;
974
975 /* Clear accessed and referenced bits. */
976 ptep_test_and_clear_young(vma, addr, pte);
977 test_and_clear_page_young(page);
978 ClearPageReferenced(page);
979 }
980 pte_unmap_unlock(pte - 1, ptl);
981 cond_resched();
982 return 0;
983 }
984
985 static int clear_refs_test_walk(unsigned long start, unsigned long end,
986 struct mm_walk *walk)
987 {
988 struct clear_refs_private *cp = walk->private;
989 struct vm_area_struct *vma = walk->vma;
990
991 if (vma->vm_flags & VM_PFNMAP)
992 return 1;
993
994 /*
995 * Writing 1 to /proc/pid/clear_refs affects all pages.
996 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
997 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
998 * Writing 4 to /proc/pid/clear_refs affects all pages.
999 */
1000 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1001 return 1;
1002 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1003 return 1;
1004 return 0;
1005 }
1006
1007 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1008 size_t count, loff_t *ppos)
1009 {
1010 struct task_struct *task;
1011 char buffer[PROC_NUMBUF];
1012 struct mm_struct *mm;
1013 struct vm_area_struct *vma;
1014 enum clear_refs_types type;
1015 struct mmu_gather tlb;
1016 int itype;
1017 int rv;
1018
1019 memset(buffer, 0, sizeof(buffer));
1020 if (count > sizeof(buffer) - 1)
1021 count = sizeof(buffer) - 1;
1022 if (copy_from_user(buffer, buf, count))
1023 return -EFAULT;
1024 rv = kstrtoint(strstrip(buffer), 10, &itype);
1025 if (rv < 0)
1026 return rv;
1027 type = (enum clear_refs_types)itype;
1028 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1029 return -EINVAL;
1030
1031 task = get_proc_task(file_inode(file));
1032 if (!task)
1033 return -ESRCH;
1034 mm = get_task_mm(task);
1035 if (mm) {
1036 struct clear_refs_private cp = {
1037 .type = type,
1038 };
1039 struct mm_walk clear_refs_walk = {
1040 .pmd_entry = clear_refs_pte_range,
1041 .test_walk = clear_refs_test_walk,
1042 .mm = mm,
1043 .private = &cp,
1044 };
1045
1046 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1047 if (down_write_killable(&mm->mmap_sem)) {
1048 count = -EINTR;
1049 goto out_mm;
1050 }
1051
1052 /*
1053 * Writing 5 to /proc/pid/clear_refs resets the peak
1054 * resident set size to this mm's current rss value.
1055 */
1056 reset_mm_hiwater_rss(mm);
1057 up_write(&mm->mmap_sem);
1058 goto out_mm;
1059 }
1060
1061 down_read(&mm->mmap_sem);
1062 tlb_gather_mmu(&tlb, mm, 0, -1);
1063 if (type == CLEAR_REFS_SOFT_DIRTY) {
1064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1065 if (!(vma->vm_flags & VM_SOFTDIRTY))
1066 continue;
1067 up_read(&mm->mmap_sem);
1068 if (down_write_killable(&mm->mmap_sem)) {
1069 count = -EINTR;
1070 goto out_mm;
1071 }
1072 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1073 vma->vm_flags &= ~VM_SOFTDIRTY;
1074 vma_set_page_prot(vma);
1075 }
1076 downgrade_write(&mm->mmap_sem);
1077 break;
1078 }
1079 mmu_notifier_invalidate_range_start(mm, 0, -1);
1080 }
1081 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1082 if (type == CLEAR_REFS_SOFT_DIRTY)
1083 mmu_notifier_invalidate_range_end(mm, 0, -1);
1084 tlb_finish_mmu(&tlb, 0, -1);
1085 up_read(&mm->mmap_sem);
1086 out_mm:
1087 mmput(mm);
1088 }
1089 put_task_struct(task);
1090
1091 return count;
1092 }
1093
1094 const struct file_operations proc_clear_refs_operations = {
1095 .write = clear_refs_write,
1096 .llseek = noop_llseek,
1097 };
1098
1099 typedef struct {
1100 u64 pme;
1101 } pagemap_entry_t;
1102
1103 struct pagemapread {
1104 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1105 pagemap_entry_t *buffer;
1106 bool show_pfn;
1107 };
1108
1109 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1110 #define PAGEMAP_WALK_MASK (PMD_MASK)
1111
1112 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1113 #define PM_PFRAME_BITS 55
1114 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1115 #define PM_SOFT_DIRTY BIT_ULL(55)
1116 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1117 #define PM_FILE BIT_ULL(61)
1118 #define PM_SWAP BIT_ULL(62)
1119 #define PM_PRESENT BIT_ULL(63)
1120
1121 #define PM_END_OF_BUFFER 1
1122
1123 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1124 {
1125 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1126 }
1127
1128 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1129 struct pagemapread *pm)
1130 {
1131 pm->buffer[pm->pos++] = *pme;
1132 if (pm->pos >= pm->len)
1133 return PM_END_OF_BUFFER;
1134 return 0;
1135 }
1136
1137 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1138 struct mm_walk *walk)
1139 {
1140 struct pagemapread *pm = walk->private;
1141 unsigned long addr = start;
1142 int err = 0;
1143
1144 while (addr < end) {
1145 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1146 pagemap_entry_t pme = make_pme(0, 0);
1147 /* End of address space hole, which we mark as non-present. */
1148 unsigned long hole_end;
1149
1150 if (vma)
1151 hole_end = min(end, vma->vm_start);
1152 else
1153 hole_end = end;
1154
1155 for (; addr < hole_end; addr += PAGE_SIZE) {
1156 err = add_to_pagemap(addr, &pme, pm);
1157 if (err)
1158 goto out;
1159 }
1160
1161 if (!vma)
1162 break;
1163
1164 /* Addresses in the VMA. */
1165 if (vma->vm_flags & VM_SOFTDIRTY)
1166 pme = make_pme(0, PM_SOFT_DIRTY);
1167 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1168 err = add_to_pagemap(addr, &pme, pm);
1169 if (err)
1170 goto out;
1171 }
1172 }
1173 out:
1174 return err;
1175 }
1176
1177 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1178 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1179 {
1180 u64 frame = 0, flags = 0;
1181 struct page *page = NULL;
1182
1183 if (pte_present(pte)) {
1184 if (pm->show_pfn)
1185 frame = pte_pfn(pte);
1186 flags |= PM_PRESENT;
1187 page = vm_normal_page(vma, addr, pte);
1188 if (pte_soft_dirty(pte))
1189 flags |= PM_SOFT_DIRTY;
1190 } else if (is_swap_pte(pte)) {
1191 swp_entry_t entry;
1192 if (pte_swp_soft_dirty(pte))
1193 flags |= PM_SOFT_DIRTY;
1194 entry = pte_to_swp_entry(pte);
1195 frame = swp_type(entry) |
1196 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1197 flags |= PM_SWAP;
1198 if (is_migration_entry(entry))
1199 page = migration_entry_to_page(entry);
1200 }
1201
1202 if (page && !PageAnon(page))
1203 flags |= PM_FILE;
1204 if (page && page_mapcount(page) == 1)
1205 flags |= PM_MMAP_EXCLUSIVE;
1206 if (vma->vm_flags & VM_SOFTDIRTY)
1207 flags |= PM_SOFT_DIRTY;
1208
1209 return make_pme(frame, flags);
1210 }
1211
1212 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1213 struct mm_walk *walk)
1214 {
1215 struct vm_area_struct *vma = walk->vma;
1216 struct pagemapread *pm = walk->private;
1217 spinlock_t *ptl;
1218 pte_t *pte, *orig_pte;
1219 int err = 0;
1220
1221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1222 ptl = pmd_trans_huge_lock(pmdp, vma);
1223 if (ptl) {
1224 u64 flags = 0, frame = 0;
1225 pmd_t pmd = *pmdp;
1226
1227 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1228 flags |= PM_SOFT_DIRTY;
1229
1230 /*
1231 * Currently pmd for thp is always present because thp
1232 * can not be swapped-out, migrated, or HWPOISONed
1233 * (split in such cases instead.)
1234 * This if-check is just to prepare for future implementation.
1235 */
1236 if (pmd_present(pmd)) {
1237 struct page *page = pmd_page(pmd);
1238
1239 if (page_mapcount(page) == 1)
1240 flags |= PM_MMAP_EXCLUSIVE;
1241
1242 flags |= PM_PRESENT;
1243 if (pm->show_pfn)
1244 frame = pmd_pfn(pmd) +
1245 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1246 }
1247
1248 for (; addr != end; addr += PAGE_SIZE) {
1249 pagemap_entry_t pme = make_pme(frame, flags);
1250
1251 err = add_to_pagemap(addr, &pme, pm);
1252 if (err)
1253 break;
1254 if (pm->show_pfn && (flags & PM_PRESENT))
1255 frame++;
1256 }
1257 spin_unlock(ptl);
1258 return err;
1259 }
1260
1261 if (pmd_trans_unstable(pmdp))
1262 return 0;
1263 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1264
1265 /*
1266 * We can assume that @vma always points to a valid one and @end never
1267 * goes beyond vma->vm_end.
1268 */
1269 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1270 for (; addr < end; pte++, addr += PAGE_SIZE) {
1271 pagemap_entry_t pme;
1272
1273 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1274 err = add_to_pagemap(addr, &pme, pm);
1275 if (err)
1276 break;
1277 }
1278 pte_unmap_unlock(orig_pte, ptl);
1279
1280 cond_resched();
1281
1282 return err;
1283 }
1284
1285 #ifdef CONFIG_HUGETLB_PAGE
1286 /* This function walks within one hugetlb entry in the single call */
1287 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1288 unsigned long addr, unsigned long end,
1289 struct mm_walk *walk)
1290 {
1291 struct pagemapread *pm = walk->private;
1292 struct vm_area_struct *vma = walk->vma;
1293 u64 flags = 0, frame = 0;
1294 int err = 0;
1295 pte_t pte;
1296
1297 if (vma->vm_flags & VM_SOFTDIRTY)
1298 flags |= PM_SOFT_DIRTY;
1299
1300 pte = huge_ptep_get(ptep);
1301 if (pte_present(pte)) {
1302 struct page *page = pte_page(pte);
1303
1304 if (!PageAnon(page))
1305 flags |= PM_FILE;
1306
1307 if (page_mapcount(page) == 1)
1308 flags |= PM_MMAP_EXCLUSIVE;
1309
1310 flags |= PM_PRESENT;
1311 if (pm->show_pfn)
1312 frame = pte_pfn(pte) +
1313 ((addr & ~hmask) >> PAGE_SHIFT);
1314 }
1315
1316 for (; addr != end; addr += PAGE_SIZE) {
1317 pagemap_entry_t pme = make_pme(frame, flags);
1318
1319 err = add_to_pagemap(addr, &pme, pm);
1320 if (err)
1321 return err;
1322 if (pm->show_pfn && (flags & PM_PRESENT))
1323 frame++;
1324 }
1325
1326 cond_resched();
1327
1328 return err;
1329 }
1330 #endif /* HUGETLB_PAGE */
1331
1332 /*
1333 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1334 *
1335 * For each page in the address space, this file contains one 64-bit entry
1336 * consisting of the following:
1337 *
1338 * Bits 0-54 page frame number (PFN) if present
1339 * Bits 0-4 swap type if swapped
1340 * Bits 5-54 swap offset if swapped
1341 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1342 * Bit 56 page exclusively mapped
1343 * Bits 57-60 zero
1344 * Bit 61 page is file-page or shared-anon
1345 * Bit 62 page swapped
1346 * Bit 63 page present
1347 *
1348 * If the page is not present but in swap, then the PFN contains an
1349 * encoding of the swap file number and the page's offset into the
1350 * swap. Unmapped pages return a null PFN. This allows determining
1351 * precisely which pages are mapped (or in swap) and comparing mapped
1352 * pages between processes.
1353 *
1354 * Efficient users of this interface will use /proc/pid/maps to
1355 * determine which areas of memory are actually mapped and llseek to
1356 * skip over unmapped regions.
1357 */
1358 static ssize_t pagemap_read(struct file *file, char __user *buf,
1359 size_t count, loff_t *ppos)
1360 {
1361 struct mm_struct *mm = file->private_data;
1362 struct pagemapread pm;
1363 struct mm_walk pagemap_walk = {};
1364 unsigned long src;
1365 unsigned long svpfn;
1366 unsigned long start_vaddr;
1367 unsigned long end_vaddr;
1368 int ret = 0, copied = 0;
1369
1370 if (!mm || !mmget_not_zero(mm))
1371 goto out;
1372
1373 ret = -EINVAL;
1374 /* file position must be aligned */
1375 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1376 goto out_mm;
1377
1378 ret = 0;
1379 if (!count)
1380 goto out_mm;
1381
1382 /* do not disclose physical addresses: attack vector */
1383 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1384
1385 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1386 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1387 ret = -ENOMEM;
1388 if (!pm.buffer)
1389 goto out_mm;
1390
1391 pagemap_walk.pmd_entry = pagemap_pmd_range;
1392 pagemap_walk.pte_hole = pagemap_pte_hole;
1393 #ifdef CONFIG_HUGETLB_PAGE
1394 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1395 #endif
1396 pagemap_walk.mm = mm;
1397 pagemap_walk.private = &pm;
1398
1399 src = *ppos;
1400 svpfn = src / PM_ENTRY_BYTES;
1401 start_vaddr = svpfn << PAGE_SHIFT;
1402 end_vaddr = mm->task_size;
1403
1404 /* watch out for wraparound */
1405 if (svpfn > mm->task_size >> PAGE_SHIFT)
1406 start_vaddr = end_vaddr;
1407
1408 /*
1409 * The odds are that this will stop walking way
1410 * before end_vaddr, because the length of the
1411 * user buffer is tracked in "pm", and the walk
1412 * will stop when we hit the end of the buffer.
1413 */
1414 ret = 0;
1415 while (count && (start_vaddr < end_vaddr)) {
1416 int len;
1417 unsigned long end;
1418
1419 pm.pos = 0;
1420 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1421 /* overflow ? */
1422 if (end < start_vaddr || end > end_vaddr)
1423 end = end_vaddr;
1424 down_read(&mm->mmap_sem);
1425 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1426 up_read(&mm->mmap_sem);
1427 start_vaddr = end;
1428
1429 len = min(count, PM_ENTRY_BYTES * pm.pos);
1430 if (copy_to_user(buf, pm.buffer, len)) {
1431 ret = -EFAULT;
1432 goto out_free;
1433 }
1434 copied += len;
1435 buf += len;
1436 count -= len;
1437 }
1438 *ppos += copied;
1439 if (!ret || ret == PM_END_OF_BUFFER)
1440 ret = copied;
1441
1442 out_free:
1443 kfree(pm.buffer);
1444 out_mm:
1445 mmput(mm);
1446 out:
1447 return ret;
1448 }
1449
1450 static int pagemap_open(struct inode *inode, struct file *file)
1451 {
1452 struct mm_struct *mm;
1453
1454 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1455 if (IS_ERR(mm))
1456 return PTR_ERR(mm);
1457 file->private_data = mm;
1458 return 0;
1459 }
1460
1461 static int pagemap_release(struct inode *inode, struct file *file)
1462 {
1463 struct mm_struct *mm = file->private_data;
1464
1465 if (mm)
1466 mmdrop(mm);
1467 return 0;
1468 }
1469
1470 const struct file_operations proc_pagemap_operations = {
1471 .llseek = mem_lseek, /* borrow this */
1472 .read = pagemap_read,
1473 .open = pagemap_open,
1474 .release = pagemap_release,
1475 };
1476 #endif /* CONFIG_PROC_PAGE_MONITOR */
1477
1478 #ifdef CONFIG_NUMA
1479
1480 struct numa_maps {
1481 unsigned long pages;
1482 unsigned long anon;
1483 unsigned long active;
1484 unsigned long writeback;
1485 unsigned long mapcount_max;
1486 unsigned long dirty;
1487 unsigned long swapcache;
1488 unsigned long node[MAX_NUMNODES];
1489 };
1490
1491 struct numa_maps_private {
1492 struct proc_maps_private proc_maps;
1493 struct numa_maps md;
1494 };
1495
1496 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1497 unsigned long nr_pages)
1498 {
1499 int count = page_mapcount(page);
1500
1501 md->pages += nr_pages;
1502 if (pte_dirty || PageDirty(page))
1503 md->dirty += nr_pages;
1504
1505 if (PageSwapCache(page))
1506 md->swapcache += nr_pages;
1507
1508 if (PageActive(page) || PageUnevictable(page))
1509 md->active += nr_pages;
1510
1511 if (PageWriteback(page))
1512 md->writeback += nr_pages;
1513
1514 if (PageAnon(page))
1515 md->anon += nr_pages;
1516
1517 if (count > md->mapcount_max)
1518 md->mapcount_max = count;
1519
1520 md->node[page_to_nid(page)] += nr_pages;
1521 }
1522
1523 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1524 unsigned long addr)
1525 {
1526 struct page *page;
1527 int nid;
1528
1529 if (!pte_present(pte))
1530 return NULL;
1531
1532 page = vm_normal_page(vma, addr, pte);
1533 if (!page)
1534 return NULL;
1535
1536 if (PageReserved(page))
1537 return NULL;
1538
1539 nid = page_to_nid(page);
1540 if (!node_isset(nid, node_states[N_MEMORY]))
1541 return NULL;
1542
1543 return page;
1544 }
1545
1546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1547 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1548 struct vm_area_struct *vma,
1549 unsigned long addr)
1550 {
1551 struct page *page;
1552 int nid;
1553
1554 if (!pmd_present(pmd))
1555 return NULL;
1556
1557 page = vm_normal_page_pmd(vma, addr, pmd);
1558 if (!page)
1559 return NULL;
1560
1561 if (PageReserved(page))
1562 return NULL;
1563
1564 nid = page_to_nid(page);
1565 if (!node_isset(nid, node_states[N_MEMORY]))
1566 return NULL;
1567
1568 return page;
1569 }
1570 #endif
1571
1572 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1573 unsigned long end, struct mm_walk *walk)
1574 {
1575 struct numa_maps *md = walk->private;
1576 struct vm_area_struct *vma = walk->vma;
1577 spinlock_t *ptl;
1578 pte_t *orig_pte;
1579 pte_t *pte;
1580
1581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1582 ptl = pmd_trans_huge_lock(pmd, vma);
1583 if (ptl) {
1584 struct page *page;
1585
1586 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1587 if (page)
1588 gather_stats(page, md, pmd_dirty(*pmd),
1589 HPAGE_PMD_SIZE/PAGE_SIZE);
1590 spin_unlock(ptl);
1591 return 0;
1592 }
1593
1594 if (pmd_trans_unstable(pmd))
1595 return 0;
1596 #endif
1597 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1598 do {
1599 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1600 if (!page)
1601 continue;
1602 gather_stats(page, md, pte_dirty(*pte), 1);
1603
1604 } while (pte++, addr += PAGE_SIZE, addr != end);
1605 pte_unmap_unlock(orig_pte, ptl);
1606 cond_resched();
1607 return 0;
1608 }
1609 #ifdef CONFIG_HUGETLB_PAGE
1610 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1611 unsigned long addr, unsigned long end, struct mm_walk *walk)
1612 {
1613 pte_t huge_pte = huge_ptep_get(pte);
1614 struct numa_maps *md;
1615 struct page *page;
1616
1617 if (!pte_present(huge_pte))
1618 return 0;
1619
1620 page = pte_page(huge_pte);
1621 if (!page)
1622 return 0;
1623
1624 md = walk->private;
1625 gather_stats(page, md, pte_dirty(huge_pte), 1);
1626 return 0;
1627 }
1628
1629 #else
1630 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1631 unsigned long addr, unsigned long end, struct mm_walk *walk)
1632 {
1633 return 0;
1634 }
1635 #endif
1636
1637 /*
1638 * Display pages allocated per node and memory policy via /proc.
1639 */
1640 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1641 {
1642 struct numa_maps_private *numa_priv = m->private;
1643 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1644 struct vm_area_struct *vma = v;
1645 struct numa_maps *md = &numa_priv->md;
1646 struct file *file = vma_pr_or_file(vma);
1647 struct mm_struct *mm = vma->vm_mm;
1648 struct mm_walk walk = {
1649 .hugetlb_entry = gather_hugetlb_stats,
1650 .pmd_entry = gather_pte_stats,
1651 .private = md,
1652 .mm = mm,
1653 };
1654 struct mempolicy *pol;
1655 char buffer[64];
1656 int nid;
1657
1658 if (!mm)
1659 return 0;
1660
1661 /* Ensure we start with an empty set of numa_maps statistics. */
1662 memset(md, 0, sizeof(*md));
1663
1664 pol = __get_vma_policy(vma, vma->vm_start);
1665 if (pol) {
1666 mpol_to_str(buffer, sizeof(buffer), pol);
1667 mpol_cond_put(pol);
1668 } else {
1669 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1670 }
1671
1672 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1673
1674 if (file) {
1675 seq_puts(m, " file=");
1676 seq_file_path(m, file, "\n\t= ");
1677 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1678 seq_puts(m, " heap");
1679 } else if (is_stack(proc_priv, vma)) {
1680 seq_puts(m, " stack");
1681 }
1682
1683 if (is_vm_hugetlb_page(vma))
1684 seq_puts(m, " huge");
1685
1686 /* mmap_sem is held by m_start */
1687 walk_page_vma(vma, &walk);
1688
1689 if (!md->pages)
1690 goto out;
1691
1692 if (md->anon)
1693 seq_printf(m, " anon=%lu", md->anon);
1694
1695 if (md->dirty)
1696 seq_printf(m, " dirty=%lu", md->dirty);
1697
1698 if (md->pages != md->anon && md->pages != md->dirty)
1699 seq_printf(m, " mapped=%lu", md->pages);
1700
1701 if (md->mapcount_max > 1)
1702 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1703
1704 if (md->swapcache)
1705 seq_printf(m, " swapcache=%lu", md->swapcache);
1706
1707 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1708 seq_printf(m, " active=%lu", md->active);
1709
1710 if (md->writeback)
1711 seq_printf(m, " writeback=%lu", md->writeback);
1712
1713 for_each_node_state(nid, N_MEMORY)
1714 if (md->node[nid])
1715 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1716
1717 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1718 out:
1719 seq_putc(m, '\n');
1720 m_cache_vma(m, vma);
1721 return 0;
1722 }
1723
1724 static int show_pid_numa_map(struct seq_file *m, void *v)
1725 {
1726 return show_numa_map(m, v, 1);
1727 }
1728
1729 static int show_tid_numa_map(struct seq_file *m, void *v)
1730 {
1731 return show_numa_map(m, v, 0);
1732 }
1733
1734 static const struct seq_operations proc_pid_numa_maps_op = {
1735 .start = m_start,
1736 .next = m_next,
1737 .stop = m_stop,
1738 .show = show_pid_numa_map,
1739 };
1740
1741 static const struct seq_operations proc_tid_numa_maps_op = {
1742 .start = m_start,
1743 .next = m_next,
1744 .stop = m_stop,
1745 .show = show_tid_numa_map,
1746 };
1747
1748 static int numa_maps_open(struct inode *inode, struct file *file,
1749 const struct seq_operations *ops)
1750 {
1751 return proc_maps_open(inode, file, ops,
1752 sizeof(struct numa_maps_private));
1753 }
1754
1755 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1756 {
1757 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1758 }
1759
1760 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1761 {
1762 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1763 }
1764
1765 const struct file_operations proc_pid_numa_maps_operations = {
1766 .open = pid_numa_maps_open,
1767 .read = seq_read,
1768 .llseek = seq_lseek,
1769 .release = proc_map_release,
1770 };
1771
1772 const struct file_operations proc_tid_numa_maps_operations = {
1773 .open = tid_numa_maps_open,
1774 .read = seq_read,
1775 .llseek = seq_lseek,
1776 .release = proc_map_release,
1777 };
1778 #endif /* CONFIG_NUMA */