]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/task_mmu.c
ASoC: rockchip: add bindings for rk3368 i2s
[mirror_ubuntu-bionic-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19
20 #include <asm/elf.h>
21 #include <linux/uaccess.h>
22 #include <asm/tlbflush.h>
23 #include "internal.h"
24
25 void task_mem(struct seq_file *m, struct mm_struct *mm)
26 {
27 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
28 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
29
30 anon = get_mm_counter(mm, MM_ANONPAGES);
31 file = get_mm_counter(mm, MM_FILEPAGES);
32 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
33
34 /*
35 * Note: to minimize their overhead, mm maintains hiwater_vm and
36 * hiwater_rss only when about to *lower* total_vm or rss. Any
37 * collector of these hiwater stats must therefore get total_vm
38 * and rss too, which will usually be the higher. Barriers? not
39 * worth the effort, such snapshots can always be inconsistent.
40 */
41 hiwater_vm = total_vm = mm->total_vm;
42 if (hiwater_vm < mm->hiwater_vm)
43 hiwater_vm = mm->hiwater_vm;
44 hiwater_rss = total_rss = anon + file + shmem;
45 if (hiwater_rss < mm->hiwater_rss)
46 hiwater_rss = mm->hiwater_rss;
47
48 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
49 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
50 swap = get_mm_counter(mm, MM_SWAPENTS);
51 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
52 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
53 seq_printf(m,
54 "VmPeak:\t%8lu kB\n"
55 "VmSize:\t%8lu kB\n"
56 "VmLck:\t%8lu kB\n"
57 "VmPin:\t%8lu kB\n"
58 "VmHWM:\t%8lu kB\n"
59 "VmRSS:\t%8lu kB\n"
60 "RssAnon:\t%8lu kB\n"
61 "RssFile:\t%8lu kB\n"
62 "RssShmem:\t%8lu kB\n"
63 "VmData:\t%8lu kB\n"
64 "VmStk:\t%8lu kB\n"
65 "VmExe:\t%8lu kB\n"
66 "VmLib:\t%8lu kB\n"
67 "VmPTE:\t%8lu kB\n"
68 "VmPMD:\t%8lu kB\n"
69 "VmSwap:\t%8lu kB\n",
70 hiwater_vm << (PAGE_SHIFT-10),
71 total_vm << (PAGE_SHIFT-10),
72 mm->locked_vm << (PAGE_SHIFT-10),
73 mm->pinned_vm << (PAGE_SHIFT-10),
74 hiwater_rss << (PAGE_SHIFT-10),
75 total_rss << (PAGE_SHIFT-10),
76 anon << (PAGE_SHIFT-10),
77 file << (PAGE_SHIFT-10),
78 shmem << (PAGE_SHIFT-10),
79 mm->data_vm << (PAGE_SHIFT-10),
80 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
81 ptes >> 10,
82 pmds >> 10,
83 swap << (PAGE_SHIFT-10));
84 hugetlb_report_usage(m, mm);
85 }
86
87 unsigned long task_vsize(struct mm_struct *mm)
88 {
89 return PAGE_SIZE * mm->total_vm;
90 }
91
92 unsigned long task_statm(struct mm_struct *mm,
93 unsigned long *shared, unsigned long *text,
94 unsigned long *data, unsigned long *resident)
95 {
96 *shared = get_mm_counter(mm, MM_FILEPAGES) +
97 get_mm_counter(mm, MM_SHMEMPAGES);
98 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
99 >> PAGE_SHIFT;
100 *data = mm->data_vm + mm->stack_vm;
101 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102 return mm->total_vm;
103 }
104
105 #ifdef CONFIG_NUMA
106 /*
107 * Save get_task_policy() for show_numa_map().
108 */
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111 struct task_struct *task = priv->task;
112
113 task_lock(task);
114 priv->task_mempolicy = get_task_policy(task);
115 mpol_get(priv->task_mempolicy);
116 task_unlock(task);
117 }
118 static void release_task_mempolicy(struct proc_maps_private *priv)
119 {
120 mpol_put(priv->task_mempolicy);
121 }
122 #else
123 static void hold_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 }
129 #endif
130
131 static void vma_stop(struct proc_maps_private *priv)
132 {
133 struct mm_struct *mm = priv->mm;
134
135 release_task_mempolicy(priv);
136 up_read(&mm->mmap_sem);
137 mmput(mm);
138 }
139
140 static struct vm_area_struct *
141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
142 {
143 if (vma == priv->tail_vma)
144 return NULL;
145 return vma->vm_next ?: priv->tail_vma;
146 }
147
148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
149 {
150 if (m->count < m->size) /* vma is copied successfully */
151 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
152 }
153
154 static void *m_start(struct seq_file *m, loff_t *ppos)
155 {
156 struct proc_maps_private *priv = m->private;
157 unsigned long last_addr = m->version;
158 struct mm_struct *mm;
159 struct vm_area_struct *vma;
160 unsigned int pos = *ppos;
161
162 /* See m_cache_vma(). Zero at the start or after lseek. */
163 if (last_addr == -1UL)
164 return NULL;
165
166 priv->task = get_proc_task(priv->inode);
167 if (!priv->task)
168 return ERR_PTR(-ESRCH);
169
170 mm = priv->mm;
171 if (!mm || !mmget_not_zero(mm))
172 return NULL;
173
174 down_read(&mm->mmap_sem);
175 hold_task_mempolicy(priv);
176 priv->tail_vma = get_gate_vma(mm);
177
178 if (last_addr) {
179 vma = find_vma(mm, last_addr - 1);
180 if (vma && vma->vm_start <= last_addr)
181 vma = m_next_vma(priv, vma);
182 if (vma)
183 return vma;
184 }
185
186 m->version = 0;
187 if (pos < mm->map_count) {
188 for (vma = mm->mmap; pos; pos--) {
189 m->version = vma->vm_start;
190 vma = vma->vm_next;
191 }
192 return vma;
193 }
194
195 /* we do not bother to update m->version in this case */
196 if (pos == mm->map_count && priv->tail_vma)
197 return priv->tail_vma;
198
199 vma_stop(priv);
200 return NULL;
201 }
202
203 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 {
205 struct proc_maps_private *priv = m->private;
206 struct vm_area_struct *next;
207
208 (*pos)++;
209 next = m_next_vma(priv, v);
210 if (!next)
211 vma_stop(priv);
212 return next;
213 }
214
215 static void m_stop(struct seq_file *m, void *v)
216 {
217 struct proc_maps_private *priv = m->private;
218
219 if (!IS_ERR_OR_NULL(v))
220 vma_stop(priv);
221 if (priv->task) {
222 put_task_struct(priv->task);
223 priv->task = NULL;
224 }
225 }
226
227 static int proc_maps_open(struct inode *inode, struct file *file,
228 const struct seq_operations *ops, int psize)
229 {
230 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
231
232 if (!priv)
233 return -ENOMEM;
234
235 priv->inode = inode;
236 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
237 if (IS_ERR(priv->mm)) {
238 int err = PTR_ERR(priv->mm);
239
240 seq_release_private(inode, file);
241 return err;
242 }
243
244 return 0;
245 }
246
247 static int proc_map_release(struct inode *inode, struct file *file)
248 {
249 struct seq_file *seq = file->private_data;
250 struct proc_maps_private *priv = seq->private;
251
252 if (priv->mm)
253 mmdrop(priv->mm);
254
255 return seq_release_private(inode, file);
256 }
257
258 static int do_maps_open(struct inode *inode, struct file *file,
259 const struct seq_operations *ops)
260 {
261 return proc_maps_open(inode, file, ops,
262 sizeof(struct proc_maps_private));
263 }
264
265 /*
266 * Indicate if the VMA is a stack for the given task; for
267 * /proc/PID/maps that is the stack of the main task.
268 */
269 static int is_stack(struct proc_maps_private *priv,
270 struct vm_area_struct *vma)
271 {
272 /*
273 * We make no effort to guess what a given thread considers to be
274 * its "stack". It's not even well-defined for programs written
275 * languages like Go.
276 */
277 return vma->vm_start <= vma->vm_mm->start_stack &&
278 vma->vm_end >= vma->vm_mm->start_stack;
279 }
280
281 static void
282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
283 {
284 struct mm_struct *mm = vma->vm_mm;
285 struct file *file = vma->vm_file;
286 struct proc_maps_private *priv = m->private;
287 vm_flags_t flags = vma->vm_flags;
288 unsigned long ino = 0;
289 unsigned long long pgoff = 0;
290 unsigned long start, end;
291 dev_t dev = 0;
292 const char *name = NULL;
293
294 if (file) {
295 struct inode *inode = file_inode(vma->vm_file);
296 dev = inode->i_sb->s_dev;
297 ino = inode->i_ino;
298 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
299 }
300
301 /* We don't show the stack guard page in /proc/maps */
302 start = vma->vm_start;
303 if (stack_guard_page_start(vma, start))
304 start += PAGE_SIZE;
305 end = vma->vm_end;
306 if (stack_guard_page_end(vma, end))
307 end -= PAGE_SIZE;
308
309 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
311 start,
312 end,
313 flags & VM_READ ? 'r' : '-',
314 flags & VM_WRITE ? 'w' : '-',
315 flags & VM_EXEC ? 'x' : '-',
316 flags & VM_MAYSHARE ? 's' : 'p',
317 pgoff,
318 MAJOR(dev), MINOR(dev), ino);
319
320 /*
321 * Print the dentry name for named mappings, and a
322 * special [heap] marker for the heap:
323 */
324 if (file) {
325 seq_pad(m, ' ');
326 seq_file_path(m, file, "\n");
327 goto done;
328 }
329
330 if (vma->vm_ops && vma->vm_ops->name) {
331 name = vma->vm_ops->name(vma);
332 if (name)
333 goto done;
334 }
335
336 name = arch_vma_name(vma);
337 if (!name) {
338 if (!mm) {
339 name = "[vdso]";
340 goto done;
341 }
342
343 if (vma->vm_start <= mm->brk &&
344 vma->vm_end >= mm->start_brk) {
345 name = "[heap]";
346 goto done;
347 }
348
349 if (is_stack(priv, vma))
350 name = "[stack]";
351 }
352
353 done:
354 if (name) {
355 seq_pad(m, ' ');
356 seq_puts(m, name);
357 }
358 seq_putc(m, '\n');
359 }
360
361 static int show_map(struct seq_file *m, void *v, int is_pid)
362 {
363 show_map_vma(m, v, is_pid);
364 m_cache_vma(m, v);
365 return 0;
366 }
367
368 static int show_pid_map(struct seq_file *m, void *v)
369 {
370 return show_map(m, v, 1);
371 }
372
373 static int show_tid_map(struct seq_file *m, void *v)
374 {
375 return show_map(m, v, 0);
376 }
377
378 static const struct seq_operations proc_pid_maps_op = {
379 .start = m_start,
380 .next = m_next,
381 .stop = m_stop,
382 .show = show_pid_map
383 };
384
385 static const struct seq_operations proc_tid_maps_op = {
386 .start = m_start,
387 .next = m_next,
388 .stop = m_stop,
389 .show = show_tid_map
390 };
391
392 static int pid_maps_open(struct inode *inode, struct file *file)
393 {
394 return do_maps_open(inode, file, &proc_pid_maps_op);
395 }
396
397 static int tid_maps_open(struct inode *inode, struct file *file)
398 {
399 return do_maps_open(inode, file, &proc_tid_maps_op);
400 }
401
402 const struct file_operations proc_pid_maps_operations = {
403 .open = pid_maps_open,
404 .read = seq_read,
405 .llseek = seq_lseek,
406 .release = proc_map_release,
407 };
408
409 const struct file_operations proc_tid_maps_operations = {
410 .open = tid_maps_open,
411 .read = seq_read,
412 .llseek = seq_lseek,
413 .release = proc_map_release,
414 };
415
416 /*
417 * Proportional Set Size(PSS): my share of RSS.
418 *
419 * PSS of a process is the count of pages it has in memory, where each
420 * page is divided by the number of processes sharing it. So if a
421 * process has 1000 pages all to itself, and 1000 shared with one other
422 * process, its PSS will be 1500.
423 *
424 * To keep (accumulated) division errors low, we adopt a 64bit
425 * fixed-point pss counter to minimize division errors. So (pss >>
426 * PSS_SHIFT) would be the real byte count.
427 *
428 * A shift of 12 before division means (assuming 4K page size):
429 * - 1M 3-user-pages add up to 8KB errors;
430 * - supports mapcount up to 2^24, or 16M;
431 * - supports PSS up to 2^52 bytes, or 4PB.
432 */
433 #define PSS_SHIFT 12
434
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437 unsigned long resident;
438 unsigned long shared_clean;
439 unsigned long shared_dirty;
440 unsigned long private_clean;
441 unsigned long private_dirty;
442 unsigned long referenced;
443 unsigned long anonymous;
444 unsigned long anonymous_thp;
445 unsigned long shmem_thp;
446 unsigned long swap;
447 unsigned long shared_hugetlb;
448 unsigned long private_hugetlb;
449 u64 pss;
450 u64 swap_pss;
451 bool check_shmem_swap;
452 };
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455 bool compound, bool young, bool dirty)
456 {
457 int i, nr = compound ? 1 << compound_order(page) : 1;
458 unsigned long size = nr * PAGE_SIZE;
459
460 if (PageAnon(page))
461 mss->anonymous += size;
462
463 mss->resident += size;
464 /* Accumulate the size in pages that have been accessed. */
465 if (young || page_is_young(page) || PageReferenced(page))
466 mss->referenced += size;
467
468 /*
469 * page_count(page) == 1 guarantees the page is mapped exactly once.
470 * If any subpage of the compound page mapped with PTE it would elevate
471 * page_count().
472 */
473 if (page_count(page) == 1) {
474 if (dirty || PageDirty(page))
475 mss->private_dirty += size;
476 else
477 mss->private_clean += size;
478 mss->pss += (u64)size << PSS_SHIFT;
479 return;
480 }
481
482 for (i = 0; i < nr; i++, page++) {
483 int mapcount = page_mapcount(page);
484
485 if (mapcount >= 2) {
486 if (dirty || PageDirty(page))
487 mss->shared_dirty += PAGE_SIZE;
488 else
489 mss->shared_clean += PAGE_SIZE;
490 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
491 } else {
492 if (dirty || PageDirty(page))
493 mss->private_dirty += PAGE_SIZE;
494 else
495 mss->private_clean += PAGE_SIZE;
496 mss->pss += PAGE_SIZE << PSS_SHIFT;
497 }
498 }
499 }
500
501 #ifdef CONFIG_SHMEM
502 static int smaps_pte_hole(unsigned long addr, unsigned long end,
503 struct mm_walk *walk)
504 {
505 struct mem_size_stats *mss = walk->private;
506
507 mss->swap += shmem_partial_swap_usage(
508 walk->vma->vm_file->f_mapping, addr, end);
509
510 return 0;
511 }
512 #endif
513
514 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
515 struct mm_walk *walk)
516 {
517 struct mem_size_stats *mss = walk->private;
518 struct vm_area_struct *vma = walk->vma;
519 struct page *page = NULL;
520
521 if (pte_present(*pte)) {
522 page = vm_normal_page(vma, addr, *pte);
523 } else if (is_swap_pte(*pte)) {
524 swp_entry_t swpent = pte_to_swp_entry(*pte);
525
526 if (!non_swap_entry(swpent)) {
527 int mapcount;
528
529 mss->swap += PAGE_SIZE;
530 mapcount = swp_swapcount(swpent);
531 if (mapcount >= 2) {
532 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533
534 do_div(pss_delta, mapcount);
535 mss->swap_pss += pss_delta;
536 } else {
537 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538 }
539 } else if (is_migration_entry(swpent))
540 page = migration_entry_to_page(swpent);
541 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
542 && pte_none(*pte))) {
543 page = find_get_entry(vma->vm_file->f_mapping,
544 linear_page_index(vma, addr));
545 if (!page)
546 return;
547
548 if (radix_tree_exceptional_entry(page))
549 mss->swap += PAGE_SIZE;
550 else
551 put_page(page);
552
553 return;
554 }
555
556 if (!page)
557 return;
558
559 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
560 }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
564 struct mm_walk *walk)
565 {
566 struct mem_size_stats *mss = walk->private;
567 struct vm_area_struct *vma = walk->vma;
568 struct page *page;
569
570 /* FOLL_DUMP will return -EFAULT on huge zero page */
571 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
572 if (IS_ERR_OR_NULL(page))
573 return;
574 if (PageAnon(page))
575 mss->anonymous_thp += HPAGE_PMD_SIZE;
576 else if (PageSwapBacked(page))
577 mss->shmem_thp += HPAGE_PMD_SIZE;
578 else if (is_zone_device_page(page))
579 /* pass */;
580 else
581 VM_BUG_ON_PAGE(1, page);
582 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
583 }
584 #else
585 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
586 struct mm_walk *walk)
587 {
588 }
589 #endif
590
591 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
592 struct mm_walk *walk)
593 {
594 struct vm_area_struct *vma = walk->vma;
595 pte_t *pte;
596 spinlock_t *ptl;
597
598 ptl = pmd_trans_huge_lock(pmd, vma);
599 if (ptl) {
600 smaps_pmd_entry(pmd, addr, walk);
601 spin_unlock(ptl);
602 return 0;
603 }
604
605 if (pmd_trans_unstable(pmd))
606 return 0;
607 /*
608 * The mmap_sem held all the way back in m_start() is what
609 * keeps khugepaged out of here and from collapsing things
610 * in here.
611 */
612 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
613 for (; addr != end; pte++, addr += PAGE_SIZE)
614 smaps_pte_entry(pte, addr, walk);
615 pte_unmap_unlock(pte - 1, ptl);
616 cond_resched();
617 return 0;
618 }
619
620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
621 {
622 /*
623 * Don't forget to update Documentation/ on changes.
624 */
625 static const char mnemonics[BITS_PER_LONG][2] = {
626 /*
627 * In case if we meet a flag we don't know about.
628 */
629 [0 ... (BITS_PER_LONG-1)] = "??",
630
631 [ilog2(VM_READ)] = "rd",
632 [ilog2(VM_WRITE)] = "wr",
633 [ilog2(VM_EXEC)] = "ex",
634 [ilog2(VM_SHARED)] = "sh",
635 [ilog2(VM_MAYREAD)] = "mr",
636 [ilog2(VM_MAYWRITE)] = "mw",
637 [ilog2(VM_MAYEXEC)] = "me",
638 [ilog2(VM_MAYSHARE)] = "ms",
639 [ilog2(VM_GROWSDOWN)] = "gd",
640 [ilog2(VM_PFNMAP)] = "pf",
641 [ilog2(VM_DENYWRITE)] = "dw",
642 #ifdef CONFIG_X86_INTEL_MPX
643 [ilog2(VM_MPX)] = "mp",
644 #endif
645 [ilog2(VM_LOCKED)] = "lo",
646 [ilog2(VM_IO)] = "io",
647 [ilog2(VM_SEQ_READ)] = "sr",
648 [ilog2(VM_RAND_READ)] = "rr",
649 [ilog2(VM_DONTCOPY)] = "dc",
650 [ilog2(VM_DONTEXPAND)] = "de",
651 [ilog2(VM_ACCOUNT)] = "ac",
652 [ilog2(VM_NORESERVE)] = "nr",
653 [ilog2(VM_HUGETLB)] = "ht",
654 [ilog2(VM_ARCH_1)] = "ar",
655 [ilog2(VM_DONTDUMP)] = "dd",
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657 [ilog2(VM_SOFTDIRTY)] = "sd",
658 #endif
659 [ilog2(VM_MIXEDMAP)] = "mm",
660 [ilog2(VM_HUGEPAGE)] = "hg",
661 [ilog2(VM_NOHUGEPAGE)] = "nh",
662 [ilog2(VM_MERGEABLE)] = "mg",
663 [ilog2(VM_UFFD_MISSING)]= "um",
664 [ilog2(VM_UFFD_WP)] = "uw",
665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
666 /* These come out via ProtectionKey: */
667 [ilog2(VM_PKEY_BIT0)] = "",
668 [ilog2(VM_PKEY_BIT1)] = "",
669 [ilog2(VM_PKEY_BIT2)] = "",
670 [ilog2(VM_PKEY_BIT3)] = "",
671 #endif
672 };
673 size_t i;
674
675 seq_puts(m, "VmFlags: ");
676 for (i = 0; i < BITS_PER_LONG; i++) {
677 if (!mnemonics[i][0])
678 continue;
679 if (vma->vm_flags & (1UL << i)) {
680 seq_printf(m, "%c%c ",
681 mnemonics[i][0], mnemonics[i][1]);
682 }
683 }
684 seq_putc(m, '\n');
685 }
686
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
689 unsigned long addr, unsigned long end,
690 struct mm_walk *walk)
691 {
692 struct mem_size_stats *mss = walk->private;
693 struct vm_area_struct *vma = walk->vma;
694 struct page *page = NULL;
695
696 if (pte_present(*pte)) {
697 page = vm_normal_page(vma, addr, *pte);
698 } else if (is_swap_pte(*pte)) {
699 swp_entry_t swpent = pte_to_swp_entry(*pte);
700
701 if (is_migration_entry(swpent))
702 page = migration_entry_to_page(swpent);
703 }
704 if (page) {
705 int mapcount = page_mapcount(page);
706
707 if (mapcount >= 2)
708 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709 else
710 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
711 }
712 return 0;
713 }
714 #endif /* HUGETLB_PAGE */
715
716 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
717 {
718 }
719
720 static int show_smap(struct seq_file *m, void *v, int is_pid)
721 {
722 struct vm_area_struct *vma = v;
723 struct mem_size_stats mss;
724 struct mm_walk smaps_walk = {
725 .pmd_entry = smaps_pte_range,
726 #ifdef CONFIG_HUGETLB_PAGE
727 .hugetlb_entry = smaps_hugetlb_range,
728 #endif
729 .mm = vma->vm_mm,
730 .private = &mss,
731 };
732
733 memset(&mss, 0, sizeof mss);
734
735 #ifdef CONFIG_SHMEM
736 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737 /*
738 * For shared or readonly shmem mappings we know that all
739 * swapped out pages belong to the shmem object, and we can
740 * obtain the swap value much more efficiently. For private
741 * writable mappings, we might have COW pages that are
742 * not affected by the parent swapped out pages of the shmem
743 * object, so we have to distinguish them during the page walk.
744 * Unless we know that the shmem object (or the part mapped by
745 * our VMA) has no swapped out pages at all.
746 */
747 unsigned long shmem_swapped = shmem_swap_usage(vma);
748
749 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750 !(vma->vm_flags & VM_WRITE)) {
751 mss.swap = shmem_swapped;
752 } else {
753 mss.check_shmem_swap = true;
754 smaps_walk.pte_hole = smaps_pte_hole;
755 }
756 }
757 #endif
758
759 /* mmap_sem is held in m_start */
760 walk_page_vma(vma, &smaps_walk);
761
762 show_map_vma(m, vma, is_pid);
763
764 seq_printf(m,
765 "Size: %8lu kB\n"
766 "Rss: %8lu kB\n"
767 "Pss: %8lu kB\n"
768 "Shared_Clean: %8lu kB\n"
769 "Shared_Dirty: %8lu kB\n"
770 "Private_Clean: %8lu kB\n"
771 "Private_Dirty: %8lu kB\n"
772 "Referenced: %8lu kB\n"
773 "Anonymous: %8lu kB\n"
774 "AnonHugePages: %8lu kB\n"
775 "ShmemPmdMapped: %8lu kB\n"
776 "Shared_Hugetlb: %8lu kB\n"
777 "Private_Hugetlb: %7lu kB\n"
778 "Swap: %8lu kB\n"
779 "SwapPss: %8lu kB\n"
780 "KernelPageSize: %8lu kB\n"
781 "MMUPageSize: %8lu kB\n"
782 "Locked: %8lu kB\n",
783 (vma->vm_end - vma->vm_start) >> 10,
784 mss.resident >> 10,
785 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
786 mss.shared_clean >> 10,
787 mss.shared_dirty >> 10,
788 mss.private_clean >> 10,
789 mss.private_dirty >> 10,
790 mss.referenced >> 10,
791 mss.anonymous >> 10,
792 mss.anonymous_thp >> 10,
793 mss.shmem_thp >> 10,
794 mss.shared_hugetlb >> 10,
795 mss.private_hugetlb >> 10,
796 mss.swap >> 10,
797 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
798 vma_kernel_pagesize(vma) >> 10,
799 vma_mmu_pagesize(vma) >> 10,
800 (vma->vm_flags & VM_LOCKED) ?
801 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
802
803 arch_show_smap(m, vma);
804 show_smap_vma_flags(m, vma);
805 m_cache_vma(m, vma);
806 return 0;
807 }
808
809 static int show_pid_smap(struct seq_file *m, void *v)
810 {
811 return show_smap(m, v, 1);
812 }
813
814 static int show_tid_smap(struct seq_file *m, void *v)
815 {
816 return show_smap(m, v, 0);
817 }
818
819 static const struct seq_operations proc_pid_smaps_op = {
820 .start = m_start,
821 .next = m_next,
822 .stop = m_stop,
823 .show = show_pid_smap
824 };
825
826 static const struct seq_operations proc_tid_smaps_op = {
827 .start = m_start,
828 .next = m_next,
829 .stop = m_stop,
830 .show = show_tid_smap
831 };
832
833 static int pid_smaps_open(struct inode *inode, struct file *file)
834 {
835 return do_maps_open(inode, file, &proc_pid_smaps_op);
836 }
837
838 static int tid_smaps_open(struct inode *inode, struct file *file)
839 {
840 return do_maps_open(inode, file, &proc_tid_smaps_op);
841 }
842
843 const struct file_operations proc_pid_smaps_operations = {
844 .open = pid_smaps_open,
845 .read = seq_read,
846 .llseek = seq_lseek,
847 .release = proc_map_release,
848 };
849
850 const struct file_operations proc_tid_smaps_operations = {
851 .open = tid_smaps_open,
852 .read = seq_read,
853 .llseek = seq_lseek,
854 .release = proc_map_release,
855 };
856
857 enum clear_refs_types {
858 CLEAR_REFS_ALL = 1,
859 CLEAR_REFS_ANON,
860 CLEAR_REFS_MAPPED,
861 CLEAR_REFS_SOFT_DIRTY,
862 CLEAR_REFS_MM_HIWATER_RSS,
863 CLEAR_REFS_LAST,
864 };
865
866 struct clear_refs_private {
867 enum clear_refs_types type;
868 };
869
870 #ifdef CONFIG_MEM_SOFT_DIRTY
871 static inline void clear_soft_dirty(struct vm_area_struct *vma,
872 unsigned long addr, pte_t *pte)
873 {
874 /*
875 * The soft-dirty tracker uses #PF-s to catch writes
876 * to pages, so write-protect the pte as well. See the
877 * Documentation/vm/soft-dirty.txt for full description
878 * of how soft-dirty works.
879 */
880 pte_t ptent = *pte;
881
882 if (pte_present(ptent)) {
883 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
884 ptent = pte_wrprotect(ptent);
885 ptent = pte_clear_soft_dirty(ptent);
886 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
887 } else if (is_swap_pte(ptent)) {
888 ptent = pte_swp_clear_soft_dirty(ptent);
889 set_pte_at(vma->vm_mm, addr, pte, ptent);
890 }
891 }
892 #else
893 static inline void clear_soft_dirty(struct vm_area_struct *vma,
894 unsigned long addr, pte_t *pte)
895 {
896 }
897 #endif
898
899 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
900 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
901 unsigned long addr, pmd_t *pmdp)
902 {
903 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
904
905 pmd = pmd_wrprotect(pmd);
906 pmd = pmd_clear_soft_dirty(pmd);
907
908 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
909 }
910 #else
911 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
912 unsigned long addr, pmd_t *pmdp)
913 {
914 }
915 #endif
916
917 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
918 unsigned long end, struct mm_walk *walk)
919 {
920 struct clear_refs_private *cp = walk->private;
921 struct vm_area_struct *vma = walk->vma;
922 pte_t *pte, ptent;
923 spinlock_t *ptl;
924 struct page *page;
925
926 ptl = pmd_trans_huge_lock(pmd, vma);
927 if (ptl) {
928 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
929 clear_soft_dirty_pmd(vma, addr, pmd);
930 goto out;
931 }
932
933 page = pmd_page(*pmd);
934
935 /* Clear accessed and referenced bits. */
936 pmdp_test_and_clear_young(vma, addr, pmd);
937 test_and_clear_page_young(page);
938 ClearPageReferenced(page);
939 out:
940 spin_unlock(ptl);
941 return 0;
942 }
943
944 if (pmd_trans_unstable(pmd))
945 return 0;
946
947 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
948 for (; addr != end; pte++, addr += PAGE_SIZE) {
949 ptent = *pte;
950
951 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
952 clear_soft_dirty(vma, addr, pte);
953 continue;
954 }
955
956 if (!pte_present(ptent))
957 continue;
958
959 page = vm_normal_page(vma, addr, ptent);
960 if (!page)
961 continue;
962
963 /* Clear accessed and referenced bits. */
964 ptep_test_and_clear_young(vma, addr, pte);
965 test_and_clear_page_young(page);
966 ClearPageReferenced(page);
967 }
968 pte_unmap_unlock(pte - 1, ptl);
969 cond_resched();
970 return 0;
971 }
972
973 static int clear_refs_test_walk(unsigned long start, unsigned long end,
974 struct mm_walk *walk)
975 {
976 struct clear_refs_private *cp = walk->private;
977 struct vm_area_struct *vma = walk->vma;
978
979 if (vma->vm_flags & VM_PFNMAP)
980 return 1;
981
982 /*
983 * Writing 1 to /proc/pid/clear_refs affects all pages.
984 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
985 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
986 * Writing 4 to /proc/pid/clear_refs affects all pages.
987 */
988 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
989 return 1;
990 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
991 return 1;
992 return 0;
993 }
994
995 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
996 size_t count, loff_t *ppos)
997 {
998 struct task_struct *task;
999 char buffer[PROC_NUMBUF];
1000 struct mm_struct *mm;
1001 struct vm_area_struct *vma;
1002 enum clear_refs_types type;
1003 int itype;
1004 int rv;
1005
1006 memset(buffer, 0, sizeof(buffer));
1007 if (count > sizeof(buffer) - 1)
1008 count = sizeof(buffer) - 1;
1009 if (copy_from_user(buffer, buf, count))
1010 return -EFAULT;
1011 rv = kstrtoint(strstrip(buffer), 10, &itype);
1012 if (rv < 0)
1013 return rv;
1014 type = (enum clear_refs_types)itype;
1015 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1016 return -EINVAL;
1017
1018 task = get_proc_task(file_inode(file));
1019 if (!task)
1020 return -ESRCH;
1021 mm = get_task_mm(task);
1022 if (mm) {
1023 struct clear_refs_private cp = {
1024 .type = type,
1025 };
1026 struct mm_walk clear_refs_walk = {
1027 .pmd_entry = clear_refs_pte_range,
1028 .test_walk = clear_refs_test_walk,
1029 .mm = mm,
1030 .private = &cp,
1031 };
1032
1033 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1034 if (down_write_killable(&mm->mmap_sem)) {
1035 count = -EINTR;
1036 goto out_mm;
1037 }
1038
1039 /*
1040 * Writing 5 to /proc/pid/clear_refs resets the peak
1041 * resident set size to this mm's current rss value.
1042 */
1043 reset_mm_hiwater_rss(mm);
1044 up_write(&mm->mmap_sem);
1045 goto out_mm;
1046 }
1047
1048 down_read(&mm->mmap_sem);
1049 if (type == CLEAR_REFS_SOFT_DIRTY) {
1050 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1051 if (!(vma->vm_flags & VM_SOFTDIRTY))
1052 continue;
1053 up_read(&mm->mmap_sem);
1054 if (down_write_killable(&mm->mmap_sem)) {
1055 count = -EINTR;
1056 goto out_mm;
1057 }
1058 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1059 vma->vm_flags &= ~VM_SOFTDIRTY;
1060 vma_set_page_prot(vma);
1061 }
1062 downgrade_write(&mm->mmap_sem);
1063 break;
1064 }
1065 mmu_notifier_invalidate_range_start(mm, 0, -1);
1066 }
1067 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1068 if (type == CLEAR_REFS_SOFT_DIRTY)
1069 mmu_notifier_invalidate_range_end(mm, 0, -1);
1070 flush_tlb_mm(mm);
1071 up_read(&mm->mmap_sem);
1072 out_mm:
1073 mmput(mm);
1074 }
1075 put_task_struct(task);
1076
1077 return count;
1078 }
1079
1080 const struct file_operations proc_clear_refs_operations = {
1081 .write = clear_refs_write,
1082 .llseek = noop_llseek,
1083 };
1084
1085 typedef struct {
1086 u64 pme;
1087 } pagemap_entry_t;
1088
1089 struct pagemapread {
1090 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1091 pagemap_entry_t *buffer;
1092 bool show_pfn;
1093 };
1094
1095 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1096 #define PAGEMAP_WALK_MASK (PMD_MASK)
1097
1098 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1099 #define PM_PFRAME_BITS 55
1100 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1101 #define PM_SOFT_DIRTY BIT_ULL(55)
1102 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1103 #define PM_FILE BIT_ULL(61)
1104 #define PM_SWAP BIT_ULL(62)
1105 #define PM_PRESENT BIT_ULL(63)
1106
1107 #define PM_END_OF_BUFFER 1
1108
1109 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1110 {
1111 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1112 }
1113
1114 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1115 struct pagemapread *pm)
1116 {
1117 pm->buffer[pm->pos++] = *pme;
1118 if (pm->pos >= pm->len)
1119 return PM_END_OF_BUFFER;
1120 return 0;
1121 }
1122
1123 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1124 struct mm_walk *walk)
1125 {
1126 struct pagemapread *pm = walk->private;
1127 unsigned long addr = start;
1128 int err = 0;
1129
1130 while (addr < end) {
1131 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1132 pagemap_entry_t pme = make_pme(0, 0);
1133 /* End of address space hole, which we mark as non-present. */
1134 unsigned long hole_end;
1135
1136 if (vma)
1137 hole_end = min(end, vma->vm_start);
1138 else
1139 hole_end = end;
1140
1141 for (; addr < hole_end; addr += PAGE_SIZE) {
1142 err = add_to_pagemap(addr, &pme, pm);
1143 if (err)
1144 goto out;
1145 }
1146
1147 if (!vma)
1148 break;
1149
1150 /* Addresses in the VMA. */
1151 if (vma->vm_flags & VM_SOFTDIRTY)
1152 pme = make_pme(0, PM_SOFT_DIRTY);
1153 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1154 err = add_to_pagemap(addr, &pme, pm);
1155 if (err)
1156 goto out;
1157 }
1158 }
1159 out:
1160 return err;
1161 }
1162
1163 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1164 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1165 {
1166 u64 frame = 0, flags = 0;
1167 struct page *page = NULL;
1168
1169 if (pte_present(pte)) {
1170 if (pm->show_pfn)
1171 frame = pte_pfn(pte);
1172 flags |= PM_PRESENT;
1173 page = vm_normal_page(vma, addr, pte);
1174 if (pte_soft_dirty(pte))
1175 flags |= PM_SOFT_DIRTY;
1176 } else if (is_swap_pte(pte)) {
1177 swp_entry_t entry;
1178 if (pte_swp_soft_dirty(pte))
1179 flags |= PM_SOFT_DIRTY;
1180 entry = pte_to_swp_entry(pte);
1181 frame = swp_type(entry) |
1182 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1183 flags |= PM_SWAP;
1184 if (is_migration_entry(entry))
1185 page = migration_entry_to_page(entry);
1186 }
1187
1188 if (page && !PageAnon(page))
1189 flags |= PM_FILE;
1190 if (page && page_mapcount(page) == 1)
1191 flags |= PM_MMAP_EXCLUSIVE;
1192 if (vma->vm_flags & VM_SOFTDIRTY)
1193 flags |= PM_SOFT_DIRTY;
1194
1195 return make_pme(frame, flags);
1196 }
1197
1198 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1199 struct mm_walk *walk)
1200 {
1201 struct vm_area_struct *vma = walk->vma;
1202 struct pagemapread *pm = walk->private;
1203 spinlock_t *ptl;
1204 pte_t *pte, *orig_pte;
1205 int err = 0;
1206
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 ptl = pmd_trans_huge_lock(pmdp, vma);
1209 if (ptl) {
1210 u64 flags = 0, frame = 0;
1211 pmd_t pmd = *pmdp;
1212
1213 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1214 flags |= PM_SOFT_DIRTY;
1215
1216 /*
1217 * Currently pmd for thp is always present because thp
1218 * can not be swapped-out, migrated, or HWPOISONed
1219 * (split in such cases instead.)
1220 * This if-check is just to prepare for future implementation.
1221 */
1222 if (pmd_present(pmd)) {
1223 struct page *page = pmd_page(pmd);
1224
1225 if (page_mapcount(page) == 1)
1226 flags |= PM_MMAP_EXCLUSIVE;
1227
1228 flags |= PM_PRESENT;
1229 if (pm->show_pfn)
1230 frame = pmd_pfn(pmd) +
1231 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1232 }
1233
1234 for (; addr != end; addr += PAGE_SIZE) {
1235 pagemap_entry_t pme = make_pme(frame, flags);
1236
1237 err = add_to_pagemap(addr, &pme, pm);
1238 if (err)
1239 break;
1240 if (pm->show_pfn && (flags & PM_PRESENT))
1241 frame++;
1242 }
1243 spin_unlock(ptl);
1244 return err;
1245 }
1246
1247 if (pmd_trans_unstable(pmdp))
1248 return 0;
1249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1250
1251 /*
1252 * We can assume that @vma always points to a valid one and @end never
1253 * goes beyond vma->vm_end.
1254 */
1255 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1256 for (; addr < end; pte++, addr += PAGE_SIZE) {
1257 pagemap_entry_t pme;
1258
1259 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1260 err = add_to_pagemap(addr, &pme, pm);
1261 if (err)
1262 break;
1263 }
1264 pte_unmap_unlock(orig_pte, ptl);
1265
1266 cond_resched();
1267
1268 return err;
1269 }
1270
1271 #ifdef CONFIG_HUGETLB_PAGE
1272 /* This function walks within one hugetlb entry in the single call */
1273 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1274 unsigned long addr, unsigned long end,
1275 struct mm_walk *walk)
1276 {
1277 struct pagemapread *pm = walk->private;
1278 struct vm_area_struct *vma = walk->vma;
1279 u64 flags = 0, frame = 0;
1280 int err = 0;
1281 pte_t pte;
1282
1283 if (vma->vm_flags & VM_SOFTDIRTY)
1284 flags |= PM_SOFT_DIRTY;
1285
1286 pte = huge_ptep_get(ptep);
1287 if (pte_present(pte)) {
1288 struct page *page = pte_page(pte);
1289
1290 if (!PageAnon(page))
1291 flags |= PM_FILE;
1292
1293 if (page_mapcount(page) == 1)
1294 flags |= PM_MMAP_EXCLUSIVE;
1295
1296 flags |= PM_PRESENT;
1297 if (pm->show_pfn)
1298 frame = pte_pfn(pte) +
1299 ((addr & ~hmask) >> PAGE_SHIFT);
1300 }
1301
1302 for (; addr != end; addr += PAGE_SIZE) {
1303 pagemap_entry_t pme = make_pme(frame, flags);
1304
1305 err = add_to_pagemap(addr, &pme, pm);
1306 if (err)
1307 return err;
1308 if (pm->show_pfn && (flags & PM_PRESENT))
1309 frame++;
1310 }
1311
1312 cond_resched();
1313
1314 return err;
1315 }
1316 #endif /* HUGETLB_PAGE */
1317
1318 /*
1319 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1320 *
1321 * For each page in the address space, this file contains one 64-bit entry
1322 * consisting of the following:
1323 *
1324 * Bits 0-54 page frame number (PFN) if present
1325 * Bits 0-4 swap type if swapped
1326 * Bits 5-54 swap offset if swapped
1327 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1328 * Bit 56 page exclusively mapped
1329 * Bits 57-60 zero
1330 * Bit 61 page is file-page or shared-anon
1331 * Bit 62 page swapped
1332 * Bit 63 page present
1333 *
1334 * If the page is not present but in swap, then the PFN contains an
1335 * encoding of the swap file number and the page's offset into the
1336 * swap. Unmapped pages return a null PFN. This allows determining
1337 * precisely which pages are mapped (or in swap) and comparing mapped
1338 * pages between processes.
1339 *
1340 * Efficient users of this interface will use /proc/pid/maps to
1341 * determine which areas of memory are actually mapped and llseek to
1342 * skip over unmapped regions.
1343 */
1344 static ssize_t pagemap_read(struct file *file, char __user *buf,
1345 size_t count, loff_t *ppos)
1346 {
1347 struct mm_struct *mm = file->private_data;
1348 struct pagemapread pm;
1349 struct mm_walk pagemap_walk = {};
1350 unsigned long src;
1351 unsigned long svpfn;
1352 unsigned long start_vaddr;
1353 unsigned long end_vaddr;
1354 int ret = 0, copied = 0;
1355
1356 if (!mm || !mmget_not_zero(mm))
1357 goto out;
1358
1359 ret = -EINVAL;
1360 /* file position must be aligned */
1361 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1362 goto out_mm;
1363
1364 ret = 0;
1365 if (!count)
1366 goto out_mm;
1367
1368 /* do not disclose physical addresses: attack vector */
1369 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1370
1371 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1372 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1373 ret = -ENOMEM;
1374 if (!pm.buffer)
1375 goto out_mm;
1376
1377 pagemap_walk.pmd_entry = pagemap_pmd_range;
1378 pagemap_walk.pte_hole = pagemap_pte_hole;
1379 #ifdef CONFIG_HUGETLB_PAGE
1380 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1381 #endif
1382 pagemap_walk.mm = mm;
1383 pagemap_walk.private = &pm;
1384
1385 src = *ppos;
1386 svpfn = src / PM_ENTRY_BYTES;
1387 start_vaddr = svpfn << PAGE_SHIFT;
1388 end_vaddr = mm->task_size;
1389
1390 /* watch out for wraparound */
1391 if (svpfn > mm->task_size >> PAGE_SHIFT)
1392 start_vaddr = end_vaddr;
1393
1394 /*
1395 * The odds are that this will stop walking way
1396 * before end_vaddr, because the length of the
1397 * user buffer is tracked in "pm", and the walk
1398 * will stop when we hit the end of the buffer.
1399 */
1400 ret = 0;
1401 while (count && (start_vaddr < end_vaddr)) {
1402 int len;
1403 unsigned long end;
1404
1405 pm.pos = 0;
1406 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1407 /* overflow ? */
1408 if (end < start_vaddr || end > end_vaddr)
1409 end = end_vaddr;
1410 down_read(&mm->mmap_sem);
1411 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1412 up_read(&mm->mmap_sem);
1413 start_vaddr = end;
1414
1415 len = min(count, PM_ENTRY_BYTES * pm.pos);
1416 if (copy_to_user(buf, pm.buffer, len)) {
1417 ret = -EFAULT;
1418 goto out_free;
1419 }
1420 copied += len;
1421 buf += len;
1422 count -= len;
1423 }
1424 *ppos += copied;
1425 if (!ret || ret == PM_END_OF_BUFFER)
1426 ret = copied;
1427
1428 out_free:
1429 kfree(pm.buffer);
1430 out_mm:
1431 mmput(mm);
1432 out:
1433 return ret;
1434 }
1435
1436 static int pagemap_open(struct inode *inode, struct file *file)
1437 {
1438 struct mm_struct *mm;
1439
1440 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1441 if (IS_ERR(mm))
1442 return PTR_ERR(mm);
1443 file->private_data = mm;
1444 return 0;
1445 }
1446
1447 static int pagemap_release(struct inode *inode, struct file *file)
1448 {
1449 struct mm_struct *mm = file->private_data;
1450
1451 if (mm)
1452 mmdrop(mm);
1453 return 0;
1454 }
1455
1456 const struct file_operations proc_pagemap_operations = {
1457 .llseek = mem_lseek, /* borrow this */
1458 .read = pagemap_read,
1459 .open = pagemap_open,
1460 .release = pagemap_release,
1461 };
1462 #endif /* CONFIG_PROC_PAGE_MONITOR */
1463
1464 #ifdef CONFIG_NUMA
1465
1466 struct numa_maps {
1467 unsigned long pages;
1468 unsigned long anon;
1469 unsigned long active;
1470 unsigned long writeback;
1471 unsigned long mapcount_max;
1472 unsigned long dirty;
1473 unsigned long swapcache;
1474 unsigned long node[MAX_NUMNODES];
1475 };
1476
1477 struct numa_maps_private {
1478 struct proc_maps_private proc_maps;
1479 struct numa_maps md;
1480 };
1481
1482 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1483 unsigned long nr_pages)
1484 {
1485 int count = page_mapcount(page);
1486
1487 md->pages += nr_pages;
1488 if (pte_dirty || PageDirty(page))
1489 md->dirty += nr_pages;
1490
1491 if (PageSwapCache(page))
1492 md->swapcache += nr_pages;
1493
1494 if (PageActive(page) || PageUnevictable(page))
1495 md->active += nr_pages;
1496
1497 if (PageWriteback(page))
1498 md->writeback += nr_pages;
1499
1500 if (PageAnon(page))
1501 md->anon += nr_pages;
1502
1503 if (count > md->mapcount_max)
1504 md->mapcount_max = count;
1505
1506 md->node[page_to_nid(page)] += nr_pages;
1507 }
1508
1509 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1510 unsigned long addr)
1511 {
1512 struct page *page;
1513 int nid;
1514
1515 if (!pte_present(pte))
1516 return NULL;
1517
1518 page = vm_normal_page(vma, addr, pte);
1519 if (!page)
1520 return NULL;
1521
1522 if (PageReserved(page))
1523 return NULL;
1524
1525 nid = page_to_nid(page);
1526 if (!node_isset(nid, node_states[N_MEMORY]))
1527 return NULL;
1528
1529 return page;
1530 }
1531
1532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1533 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1534 struct vm_area_struct *vma,
1535 unsigned long addr)
1536 {
1537 struct page *page;
1538 int nid;
1539
1540 if (!pmd_present(pmd))
1541 return NULL;
1542
1543 page = vm_normal_page_pmd(vma, addr, pmd);
1544 if (!page)
1545 return NULL;
1546
1547 if (PageReserved(page))
1548 return NULL;
1549
1550 nid = page_to_nid(page);
1551 if (!node_isset(nid, node_states[N_MEMORY]))
1552 return NULL;
1553
1554 return page;
1555 }
1556 #endif
1557
1558 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1559 unsigned long end, struct mm_walk *walk)
1560 {
1561 struct numa_maps *md = walk->private;
1562 struct vm_area_struct *vma = walk->vma;
1563 spinlock_t *ptl;
1564 pte_t *orig_pte;
1565 pte_t *pte;
1566
1567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1568 ptl = pmd_trans_huge_lock(pmd, vma);
1569 if (ptl) {
1570 struct page *page;
1571
1572 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1573 if (page)
1574 gather_stats(page, md, pmd_dirty(*pmd),
1575 HPAGE_PMD_SIZE/PAGE_SIZE);
1576 spin_unlock(ptl);
1577 return 0;
1578 }
1579
1580 if (pmd_trans_unstable(pmd))
1581 return 0;
1582 #endif
1583 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1584 do {
1585 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1586 if (!page)
1587 continue;
1588 gather_stats(page, md, pte_dirty(*pte), 1);
1589
1590 } while (pte++, addr += PAGE_SIZE, addr != end);
1591 pte_unmap_unlock(orig_pte, ptl);
1592 cond_resched();
1593 return 0;
1594 }
1595 #ifdef CONFIG_HUGETLB_PAGE
1596 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1597 unsigned long addr, unsigned long end, struct mm_walk *walk)
1598 {
1599 pte_t huge_pte = huge_ptep_get(pte);
1600 struct numa_maps *md;
1601 struct page *page;
1602
1603 if (!pte_present(huge_pte))
1604 return 0;
1605
1606 page = pte_page(huge_pte);
1607 if (!page)
1608 return 0;
1609
1610 md = walk->private;
1611 gather_stats(page, md, pte_dirty(huge_pte), 1);
1612 return 0;
1613 }
1614
1615 #else
1616 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1617 unsigned long addr, unsigned long end, struct mm_walk *walk)
1618 {
1619 return 0;
1620 }
1621 #endif
1622
1623 /*
1624 * Display pages allocated per node and memory policy via /proc.
1625 */
1626 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1627 {
1628 struct numa_maps_private *numa_priv = m->private;
1629 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1630 struct vm_area_struct *vma = v;
1631 struct numa_maps *md = &numa_priv->md;
1632 struct file *file = vma->vm_file;
1633 struct mm_struct *mm = vma->vm_mm;
1634 struct mm_walk walk = {
1635 .hugetlb_entry = gather_hugetlb_stats,
1636 .pmd_entry = gather_pte_stats,
1637 .private = md,
1638 .mm = mm,
1639 };
1640 struct mempolicy *pol;
1641 char buffer[64];
1642 int nid;
1643
1644 if (!mm)
1645 return 0;
1646
1647 /* Ensure we start with an empty set of numa_maps statistics. */
1648 memset(md, 0, sizeof(*md));
1649
1650 pol = __get_vma_policy(vma, vma->vm_start);
1651 if (pol) {
1652 mpol_to_str(buffer, sizeof(buffer), pol);
1653 mpol_cond_put(pol);
1654 } else {
1655 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1656 }
1657
1658 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1659
1660 if (file) {
1661 seq_puts(m, " file=");
1662 seq_file_path(m, file, "\n\t= ");
1663 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1664 seq_puts(m, " heap");
1665 } else if (is_stack(proc_priv, vma)) {
1666 seq_puts(m, " stack");
1667 }
1668
1669 if (is_vm_hugetlb_page(vma))
1670 seq_puts(m, " huge");
1671
1672 /* mmap_sem is held by m_start */
1673 walk_page_vma(vma, &walk);
1674
1675 if (!md->pages)
1676 goto out;
1677
1678 if (md->anon)
1679 seq_printf(m, " anon=%lu", md->anon);
1680
1681 if (md->dirty)
1682 seq_printf(m, " dirty=%lu", md->dirty);
1683
1684 if (md->pages != md->anon && md->pages != md->dirty)
1685 seq_printf(m, " mapped=%lu", md->pages);
1686
1687 if (md->mapcount_max > 1)
1688 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1689
1690 if (md->swapcache)
1691 seq_printf(m, " swapcache=%lu", md->swapcache);
1692
1693 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1694 seq_printf(m, " active=%lu", md->active);
1695
1696 if (md->writeback)
1697 seq_printf(m, " writeback=%lu", md->writeback);
1698
1699 for_each_node_state(nid, N_MEMORY)
1700 if (md->node[nid])
1701 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1702
1703 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1704 out:
1705 seq_putc(m, '\n');
1706 m_cache_vma(m, vma);
1707 return 0;
1708 }
1709
1710 static int show_pid_numa_map(struct seq_file *m, void *v)
1711 {
1712 return show_numa_map(m, v, 1);
1713 }
1714
1715 static int show_tid_numa_map(struct seq_file *m, void *v)
1716 {
1717 return show_numa_map(m, v, 0);
1718 }
1719
1720 static const struct seq_operations proc_pid_numa_maps_op = {
1721 .start = m_start,
1722 .next = m_next,
1723 .stop = m_stop,
1724 .show = show_pid_numa_map,
1725 };
1726
1727 static const struct seq_operations proc_tid_numa_maps_op = {
1728 .start = m_start,
1729 .next = m_next,
1730 .stop = m_stop,
1731 .show = show_tid_numa_map,
1732 };
1733
1734 static int numa_maps_open(struct inode *inode, struct file *file,
1735 const struct seq_operations *ops)
1736 {
1737 return proc_maps_open(inode, file, ops,
1738 sizeof(struct numa_maps_private));
1739 }
1740
1741 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1742 {
1743 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1744 }
1745
1746 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1747 {
1748 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1749 }
1750
1751 const struct file_operations proc_pid_numa_maps_operations = {
1752 .open = pid_numa_maps_open,
1753 .read = seq_read,
1754 .llseek = seq_lseek,
1755 .release = proc_map_release,
1756 };
1757
1758 const struct file_operations proc_tid_numa_maps_operations = {
1759 .open = tid_numa_maps_open,
1760 .read = seq_read,
1761 .llseek = seq_lseek,
1762 .release = proc_map_release,
1763 };
1764 #endif /* CONFIG_NUMA */